drm/i915: improve modeset state checking after dpms calls
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include "drmP.h"
32 #include "drm.h"
33 #include "drm_crtc.h"
34 #include "drm_crtc_helper.h"
35 #include "drm_edid.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39
40 #define DP_LINK_STATUS_SIZE 6
41 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42
43 /**
44 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
45 * @intel_dp: DP struct
46 *
47 * If a CPU or PCH DP output is attached to an eDP panel, this function
48 * will return true, and false otherwise.
49 */
50 static bool is_edp(struct intel_dp *intel_dp)
51 {
52 return intel_dp->base.type == INTEL_OUTPUT_EDP;
53 }
54
55 /**
56 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
57 * @intel_dp: DP struct
58 *
59 * Returns true if the given DP struct corresponds to a PCH DP port attached
60 * to an eDP panel, false otherwise. Helpful for determining whether we
61 * may need FDI resources for a given DP output or not.
62 */
63 static bool is_pch_edp(struct intel_dp *intel_dp)
64 {
65 return intel_dp->is_pch_edp;
66 }
67
68 /**
69 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
70 * @intel_dp: DP struct
71 *
72 * Returns true if the given DP struct corresponds to a CPU eDP port.
73 */
74 static bool is_cpu_edp(struct intel_dp *intel_dp)
75 {
76 return is_edp(intel_dp) && !is_pch_edp(intel_dp);
77 }
78
79 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
80 {
81 return container_of(encoder, struct intel_dp, base.base);
82 }
83
84 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
85 {
86 return container_of(intel_attached_encoder(connector),
87 struct intel_dp, base);
88 }
89
90 /**
91 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
92 * @encoder: DRM encoder
93 *
94 * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
95 * by intel_display.c.
96 */
97 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
98 {
99 struct intel_dp *intel_dp;
100
101 if (!encoder)
102 return false;
103
104 intel_dp = enc_to_intel_dp(encoder);
105
106 return is_pch_edp(intel_dp);
107 }
108
109 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
110 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
111 static void intel_dp_link_down(struct intel_dp *intel_dp);
112
113 void
114 intel_edp_link_config(struct intel_encoder *intel_encoder,
115 int *lane_num, int *link_bw)
116 {
117 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
118
119 *lane_num = intel_dp->lane_count;
120 if (intel_dp->link_bw == DP_LINK_BW_1_62)
121 *link_bw = 162000;
122 else if (intel_dp->link_bw == DP_LINK_BW_2_7)
123 *link_bw = 270000;
124 }
125
126 int
127 intel_edp_target_clock(struct intel_encoder *intel_encoder,
128 struct drm_display_mode *mode)
129 {
130 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
131
132 if (intel_dp->panel_fixed_mode)
133 return intel_dp->panel_fixed_mode->clock;
134 else
135 return mode->clock;
136 }
137
138 static int
139 intel_dp_max_lane_count(struct intel_dp *intel_dp)
140 {
141 int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
142 switch (max_lane_count) {
143 case 1: case 2: case 4:
144 break;
145 default:
146 max_lane_count = 4;
147 }
148 return max_lane_count;
149 }
150
151 static int
152 intel_dp_max_link_bw(struct intel_dp *intel_dp)
153 {
154 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
155
156 switch (max_link_bw) {
157 case DP_LINK_BW_1_62:
158 case DP_LINK_BW_2_7:
159 break;
160 default:
161 max_link_bw = DP_LINK_BW_1_62;
162 break;
163 }
164 return max_link_bw;
165 }
166
167 static int
168 intel_dp_link_clock(uint8_t link_bw)
169 {
170 if (link_bw == DP_LINK_BW_2_7)
171 return 270000;
172 else
173 return 162000;
174 }
175
176 /*
177 * The units on the numbers in the next two are... bizarre. Examples will
178 * make it clearer; this one parallels an example in the eDP spec.
179 *
180 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
181 *
182 * 270000 * 1 * 8 / 10 == 216000
183 *
184 * The actual data capacity of that configuration is 2.16Gbit/s, so the
185 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
186 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
187 * 119000. At 18bpp that's 2142000 kilobits per second.
188 *
189 * Thus the strange-looking division by 10 in intel_dp_link_required, to
190 * get the result in decakilobits instead of kilobits.
191 */
192
193 static int
194 intel_dp_link_required(int pixel_clock, int bpp)
195 {
196 return (pixel_clock * bpp + 9) / 10;
197 }
198
199 static int
200 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
201 {
202 return (max_link_clock * max_lanes * 8) / 10;
203 }
204
205 static bool
206 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
207 struct drm_display_mode *mode,
208 bool adjust_mode)
209 {
210 int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
211 int max_lanes = intel_dp_max_lane_count(intel_dp);
212 int max_rate, mode_rate;
213
214 mode_rate = intel_dp_link_required(mode->clock, 24);
215 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
216
217 if (mode_rate > max_rate) {
218 mode_rate = intel_dp_link_required(mode->clock, 18);
219 if (mode_rate > max_rate)
220 return false;
221
222 if (adjust_mode)
223 mode->private_flags
224 |= INTEL_MODE_DP_FORCE_6BPC;
225
226 return true;
227 }
228
229 return true;
230 }
231
232 static int
233 intel_dp_mode_valid(struct drm_connector *connector,
234 struct drm_display_mode *mode)
235 {
236 struct intel_dp *intel_dp = intel_attached_dp(connector);
237
238 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
239 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
240 return MODE_PANEL;
241
242 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
243 return MODE_PANEL;
244 }
245
246 if (!intel_dp_adjust_dithering(intel_dp, mode, false))
247 return MODE_CLOCK_HIGH;
248
249 if (mode->clock < 10000)
250 return MODE_CLOCK_LOW;
251
252 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
253 return MODE_H_ILLEGAL;
254
255 return MODE_OK;
256 }
257
258 static uint32_t
259 pack_aux(uint8_t *src, int src_bytes)
260 {
261 int i;
262 uint32_t v = 0;
263
264 if (src_bytes > 4)
265 src_bytes = 4;
266 for (i = 0; i < src_bytes; i++)
267 v |= ((uint32_t) src[i]) << ((3-i) * 8);
268 return v;
269 }
270
271 static void
272 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
273 {
274 int i;
275 if (dst_bytes > 4)
276 dst_bytes = 4;
277 for (i = 0; i < dst_bytes; i++)
278 dst[i] = src >> ((3-i) * 8);
279 }
280
281 /* hrawclock is 1/4 the FSB frequency */
282 static int
283 intel_hrawclk(struct drm_device *dev)
284 {
285 struct drm_i915_private *dev_priv = dev->dev_private;
286 uint32_t clkcfg;
287
288 clkcfg = I915_READ(CLKCFG);
289 switch (clkcfg & CLKCFG_FSB_MASK) {
290 case CLKCFG_FSB_400:
291 return 100;
292 case CLKCFG_FSB_533:
293 return 133;
294 case CLKCFG_FSB_667:
295 return 166;
296 case CLKCFG_FSB_800:
297 return 200;
298 case CLKCFG_FSB_1067:
299 return 266;
300 case CLKCFG_FSB_1333:
301 return 333;
302 /* these two are just a guess; one of them might be right */
303 case CLKCFG_FSB_1600:
304 case CLKCFG_FSB_1600_ALT:
305 return 400;
306 default:
307 return 133;
308 }
309 }
310
311 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
312 {
313 struct drm_device *dev = intel_dp->base.base.dev;
314 struct drm_i915_private *dev_priv = dev->dev_private;
315
316 return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
317 }
318
319 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
320 {
321 struct drm_device *dev = intel_dp->base.base.dev;
322 struct drm_i915_private *dev_priv = dev->dev_private;
323
324 return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
325 }
326
327 static void
328 intel_dp_check_edp(struct intel_dp *intel_dp)
329 {
330 struct drm_device *dev = intel_dp->base.base.dev;
331 struct drm_i915_private *dev_priv = dev->dev_private;
332
333 if (!is_edp(intel_dp))
334 return;
335 if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
336 WARN(1, "eDP powered off while attempting aux channel communication.\n");
337 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
338 I915_READ(PCH_PP_STATUS),
339 I915_READ(PCH_PP_CONTROL));
340 }
341 }
342
343 static int
344 intel_dp_aux_ch(struct intel_dp *intel_dp,
345 uint8_t *send, int send_bytes,
346 uint8_t *recv, int recv_size)
347 {
348 uint32_t output_reg = intel_dp->output_reg;
349 struct drm_device *dev = intel_dp->base.base.dev;
350 struct drm_i915_private *dev_priv = dev->dev_private;
351 uint32_t ch_ctl = output_reg + 0x10;
352 uint32_t ch_data = ch_ctl + 4;
353 int i;
354 int recv_bytes;
355 uint32_t status;
356 uint32_t aux_clock_divider;
357 int try, precharge;
358
359 intel_dp_check_edp(intel_dp);
360 /* The clock divider is based off the hrawclk,
361 * and would like to run at 2MHz. So, take the
362 * hrawclk value and divide by 2 and use that
363 *
364 * Note that PCH attached eDP panels should use a 125MHz input
365 * clock divider.
366 */
367 if (is_cpu_edp(intel_dp)) {
368 if (IS_GEN6(dev) || IS_GEN7(dev))
369 aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
370 else
371 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
372 } else if (HAS_PCH_SPLIT(dev))
373 aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
374 else
375 aux_clock_divider = intel_hrawclk(dev) / 2;
376
377 if (IS_GEN6(dev))
378 precharge = 3;
379 else
380 precharge = 5;
381
382 /* Try to wait for any previous AUX channel activity */
383 for (try = 0; try < 3; try++) {
384 status = I915_READ(ch_ctl);
385 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
386 break;
387 msleep(1);
388 }
389
390 if (try == 3) {
391 WARN(1, "dp_aux_ch not started status 0x%08x\n",
392 I915_READ(ch_ctl));
393 return -EBUSY;
394 }
395
396 /* Must try at least 3 times according to DP spec */
397 for (try = 0; try < 5; try++) {
398 /* Load the send data into the aux channel data registers */
399 for (i = 0; i < send_bytes; i += 4)
400 I915_WRITE(ch_data + i,
401 pack_aux(send + i, send_bytes - i));
402
403 /* Send the command and wait for it to complete */
404 I915_WRITE(ch_ctl,
405 DP_AUX_CH_CTL_SEND_BUSY |
406 DP_AUX_CH_CTL_TIME_OUT_400us |
407 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
408 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
409 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
410 DP_AUX_CH_CTL_DONE |
411 DP_AUX_CH_CTL_TIME_OUT_ERROR |
412 DP_AUX_CH_CTL_RECEIVE_ERROR);
413 for (;;) {
414 status = I915_READ(ch_ctl);
415 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
416 break;
417 udelay(100);
418 }
419
420 /* Clear done status and any errors */
421 I915_WRITE(ch_ctl,
422 status |
423 DP_AUX_CH_CTL_DONE |
424 DP_AUX_CH_CTL_TIME_OUT_ERROR |
425 DP_AUX_CH_CTL_RECEIVE_ERROR);
426
427 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
428 DP_AUX_CH_CTL_RECEIVE_ERROR))
429 continue;
430 if (status & DP_AUX_CH_CTL_DONE)
431 break;
432 }
433
434 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
435 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
436 return -EBUSY;
437 }
438
439 /* Check for timeout or receive error.
440 * Timeouts occur when the sink is not connected
441 */
442 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
443 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
444 return -EIO;
445 }
446
447 /* Timeouts occur when the device isn't connected, so they're
448 * "normal" -- don't fill the kernel log with these */
449 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
450 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
451 return -ETIMEDOUT;
452 }
453
454 /* Unload any bytes sent back from the other side */
455 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
456 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
457 if (recv_bytes > recv_size)
458 recv_bytes = recv_size;
459
460 for (i = 0; i < recv_bytes; i += 4)
461 unpack_aux(I915_READ(ch_data + i),
462 recv + i, recv_bytes - i);
463
464 return recv_bytes;
465 }
466
467 /* Write data to the aux channel in native mode */
468 static int
469 intel_dp_aux_native_write(struct intel_dp *intel_dp,
470 uint16_t address, uint8_t *send, int send_bytes)
471 {
472 int ret;
473 uint8_t msg[20];
474 int msg_bytes;
475 uint8_t ack;
476
477 intel_dp_check_edp(intel_dp);
478 if (send_bytes > 16)
479 return -1;
480 msg[0] = AUX_NATIVE_WRITE << 4;
481 msg[1] = address >> 8;
482 msg[2] = address & 0xff;
483 msg[3] = send_bytes - 1;
484 memcpy(&msg[4], send, send_bytes);
485 msg_bytes = send_bytes + 4;
486 for (;;) {
487 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
488 if (ret < 0)
489 return ret;
490 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
491 break;
492 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
493 udelay(100);
494 else
495 return -EIO;
496 }
497 return send_bytes;
498 }
499
500 /* Write a single byte to the aux channel in native mode */
501 static int
502 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
503 uint16_t address, uint8_t byte)
504 {
505 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
506 }
507
508 /* read bytes from a native aux channel */
509 static int
510 intel_dp_aux_native_read(struct intel_dp *intel_dp,
511 uint16_t address, uint8_t *recv, int recv_bytes)
512 {
513 uint8_t msg[4];
514 int msg_bytes;
515 uint8_t reply[20];
516 int reply_bytes;
517 uint8_t ack;
518 int ret;
519
520 intel_dp_check_edp(intel_dp);
521 msg[0] = AUX_NATIVE_READ << 4;
522 msg[1] = address >> 8;
523 msg[2] = address & 0xff;
524 msg[3] = recv_bytes - 1;
525
526 msg_bytes = 4;
527 reply_bytes = recv_bytes + 1;
528
529 for (;;) {
530 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
531 reply, reply_bytes);
532 if (ret == 0)
533 return -EPROTO;
534 if (ret < 0)
535 return ret;
536 ack = reply[0];
537 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
538 memcpy(recv, reply + 1, ret - 1);
539 return ret - 1;
540 }
541 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
542 udelay(100);
543 else
544 return -EIO;
545 }
546 }
547
548 static int
549 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
550 uint8_t write_byte, uint8_t *read_byte)
551 {
552 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
553 struct intel_dp *intel_dp = container_of(adapter,
554 struct intel_dp,
555 adapter);
556 uint16_t address = algo_data->address;
557 uint8_t msg[5];
558 uint8_t reply[2];
559 unsigned retry;
560 int msg_bytes;
561 int reply_bytes;
562 int ret;
563
564 intel_dp_check_edp(intel_dp);
565 /* Set up the command byte */
566 if (mode & MODE_I2C_READ)
567 msg[0] = AUX_I2C_READ << 4;
568 else
569 msg[0] = AUX_I2C_WRITE << 4;
570
571 if (!(mode & MODE_I2C_STOP))
572 msg[0] |= AUX_I2C_MOT << 4;
573
574 msg[1] = address >> 8;
575 msg[2] = address;
576
577 switch (mode) {
578 case MODE_I2C_WRITE:
579 msg[3] = 0;
580 msg[4] = write_byte;
581 msg_bytes = 5;
582 reply_bytes = 1;
583 break;
584 case MODE_I2C_READ:
585 msg[3] = 0;
586 msg_bytes = 4;
587 reply_bytes = 2;
588 break;
589 default:
590 msg_bytes = 3;
591 reply_bytes = 1;
592 break;
593 }
594
595 for (retry = 0; retry < 5; retry++) {
596 ret = intel_dp_aux_ch(intel_dp,
597 msg, msg_bytes,
598 reply, reply_bytes);
599 if (ret < 0) {
600 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
601 return ret;
602 }
603
604 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
605 case AUX_NATIVE_REPLY_ACK:
606 /* I2C-over-AUX Reply field is only valid
607 * when paired with AUX ACK.
608 */
609 break;
610 case AUX_NATIVE_REPLY_NACK:
611 DRM_DEBUG_KMS("aux_ch native nack\n");
612 return -EREMOTEIO;
613 case AUX_NATIVE_REPLY_DEFER:
614 udelay(100);
615 continue;
616 default:
617 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
618 reply[0]);
619 return -EREMOTEIO;
620 }
621
622 switch (reply[0] & AUX_I2C_REPLY_MASK) {
623 case AUX_I2C_REPLY_ACK:
624 if (mode == MODE_I2C_READ) {
625 *read_byte = reply[1];
626 }
627 return reply_bytes - 1;
628 case AUX_I2C_REPLY_NACK:
629 DRM_DEBUG_KMS("aux_i2c nack\n");
630 return -EREMOTEIO;
631 case AUX_I2C_REPLY_DEFER:
632 DRM_DEBUG_KMS("aux_i2c defer\n");
633 udelay(100);
634 break;
635 default:
636 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
637 return -EREMOTEIO;
638 }
639 }
640
641 DRM_ERROR("too many retries, giving up\n");
642 return -EREMOTEIO;
643 }
644
645 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
646 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
647
648 static int
649 intel_dp_i2c_init(struct intel_dp *intel_dp,
650 struct intel_connector *intel_connector, const char *name)
651 {
652 int ret;
653
654 DRM_DEBUG_KMS("i2c_init %s\n", name);
655 intel_dp->algo.running = false;
656 intel_dp->algo.address = 0;
657 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
658
659 memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
660 intel_dp->adapter.owner = THIS_MODULE;
661 intel_dp->adapter.class = I2C_CLASS_DDC;
662 strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
663 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
664 intel_dp->adapter.algo_data = &intel_dp->algo;
665 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
666
667 ironlake_edp_panel_vdd_on(intel_dp);
668 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
669 ironlake_edp_panel_vdd_off(intel_dp, false);
670 return ret;
671 }
672
673 static bool
674 intel_dp_mode_fixup(struct drm_encoder *encoder,
675 const struct drm_display_mode *mode,
676 struct drm_display_mode *adjusted_mode)
677 {
678 struct drm_device *dev = encoder->dev;
679 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
680 int lane_count, clock;
681 int max_lane_count = intel_dp_max_lane_count(intel_dp);
682 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
683 int bpp, mode_rate;
684 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
685
686 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
687 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
688 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
689 mode, adjusted_mode);
690 }
691
692 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
693 return false;
694
695 DRM_DEBUG_KMS("DP link computation with max lane count %i "
696 "max bw %02x pixel clock %iKHz\n",
697 max_lane_count, bws[max_clock], adjusted_mode->clock);
698
699 if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
700 return false;
701
702 bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
703 mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
704
705 for (clock = 0; clock <= max_clock; clock++) {
706 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
707 int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
708
709 if (mode_rate <= link_avail) {
710 intel_dp->link_bw = bws[clock];
711 intel_dp->lane_count = lane_count;
712 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
713 DRM_DEBUG_KMS("DP link bw %02x lane "
714 "count %d clock %d bpp %d\n",
715 intel_dp->link_bw, intel_dp->lane_count,
716 adjusted_mode->clock, bpp);
717 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
718 mode_rate, link_avail);
719 return true;
720 }
721 }
722 }
723
724 return false;
725 }
726
727 struct intel_dp_m_n {
728 uint32_t tu;
729 uint32_t gmch_m;
730 uint32_t gmch_n;
731 uint32_t link_m;
732 uint32_t link_n;
733 };
734
735 static void
736 intel_reduce_ratio(uint32_t *num, uint32_t *den)
737 {
738 while (*num > 0xffffff || *den > 0xffffff) {
739 *num >>= 1;
740 *den >>= 1;
741 }
742 }
743
744 static void
745 intel_dp_compute_m_n(int bpp,
746 int nlanes,
747 int pixel_clock,
748 int link_clock,
749 struct intel_dp_m_n *m_n)
750 {
751 m_n->tu = 64;
752 m_n->gmch_m = (pixel_clock * bpp) >> 3;
753 m_n->gmch_n = link_clock * nlanes;
754 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
755 m_n->link_m = pixel_clock;
756 m_n->link_n = link_clock;
757 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
758 }
759
760 void
761 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
762 struct drm_display_mode *adjusted_mode)
763 {
764 struct drm_device *dev = crtc->dev;
765 struct intel_encoder *encoder;
766 struct drm_i915_private *dev_priv = dev->dev_private;
767 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
768 int lane_count = 4;
769 struct intel_dp_m_n m_n;
770 int pipe = intel_crtc->pipe;
771
772 /*
773 * Find the lane count in the intel_encoder private
774 */
775 for_each_encoder_on_crtc(dev, crtc, encoder) {
776 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
777
778 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
779 intel_dp->base.type == INTEL_OUTPUT_EDP)
780 {
781 lane_count = intel_dp->lane_count;
782 break;
783 }
784 }
785
786 /*
787 * Compute the GMCH and Link ratios. The '3' here is
788 * the number of bytes_per_pixel post-LUT, which we always
789 * set up for 8-bits of R/G/B, or 3 bytes total.
790 */
791 intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
792 mode->clock, adjusted_mode->clock, &m_n);
793
794 if (HAS_PCH_SPLIT(dev)) {
795 I915_WRITE(TRANSDATA_M1(pipe),
796 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
797 m_n.gmch_m);
798 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
799 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
800 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
801 } else {
802 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
803 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
804 m_n.gmch_m);
805 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
806 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
807 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
808 }
809 }
810
811 static void ironlake_edp_pll_on(struct drm_encoder *encoder);
812 static void ironlake_edp_pll_off(struct drm_encoder *encoder);
813
814 static void
815 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
816 struct drm_display_mode *adjusted_mode)
817 {
818 struct drm_device *dev = encoder->dev;
819 struct drm_i915_private *dev_priv = dev->dev_private;
820 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
821 struct drm_crtc *crtc = intel_dp->base.base.crtc;
822 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
823
824 /* Turn on the eDP PLL if needed */
825 if (is_edp(intel_dp)) {
826 if (!is_pch_edp(intel_dp))
827 ironlake_edp_pll_on(encoder);
828 else
829 ironlake_edp_pll_off(encoder);
830 }
831
832 /*
833 * There are four kinds of DP registers:
834 *
835 * IBX PCH
836 * SNB CPU
837 * IVB CPU
838 * CPT PCH
839 *
840 * IBX PCH and CPU are the same for almost everything,
841 * except that the CPU DP PLL is configured in this
842 * register
843 *
844 * CPT PCH is quite different, having many bits moved
845 * to the TRANS_DP_CTL register instead. That
846 * configuration happens (oddly) in ironlake_pch_enable
847 */
848
849 /* Preserve the BIOS-computed detected bit. This is
850 * supposed to be read-only.
851 */
852 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
853 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
854
855 /* Handle DP bits in common between all three register formats */
856
857 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
858
859 switch (intel_dp->lane_count) {
860 case 1:
861 intel_dp->DP |= DP_PORT_WIDTH_1;
862 break;
863 case 2:
864 intel_dp->DP |= DP_PORT_WIDTH_2;
865 break;
866 case 4:
867 intel_dp->DP |= DP_PORT_WIDTH_4;
868 break;
869 }
870 if (intel_dp->has_audio) {
871 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
872 pipe_name(intel_crtc->pipe));
873 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
874 intel_write_eld(encoder, adjusted_mode);
875 }
876 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
877 intel_dp->link_configuration[0] = intel_dp->link_bw;
878 intel_dp->link_configuration[1] = intel_dp->lane_count;
879 intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
880 /*
881 * Check for DPCD version > 1.1 and enhanced framing support
882 */
883 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
884 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
885 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
886 }
887
888 /* Split out the IBX/CPU vs CPT settings */
889
890 if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
891 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
892 intel_dp->DP |= DP_SYNC_HS_HIGH;
893 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
894 intel_dp->DP |= DP_SYNC_VS_HIGH;
895 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
896
897 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
898 intel_dp->DP |= DP_ENHANCED_FRAMING;
899
900 intel_dp->DP |= intel_crtc->pipe << 29;
901
902 /* don't miss out required setting for eDP */
903 intel_dp->DP |= DP_PLL_ENABLE;
904 if (adjusted_mode->clock < 200000)
905 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
906 else
907 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
908 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
909 intel_dp->DP |= intel_dp->color_range;
910
911 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
912 intel_dp->DP |= DP_SYNC_HS_HIGH;
913 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
914 intel_dp->DP |= DP_SYNC_VS_HIGH;
915 intel_dp->DP |= DP_LINK_TRAIN_OFF;
916
917 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
918 intel_dp->DP |= DP_ENHANCED_FRAMING;
919
920 if (intel_crtc->pipe == 1)
921 intel_dp->DP |= DP_PIPEB_SELECT;
922
923 if (is_cpu_edp(intel_dp)) {
924 /* don't miss out required setting for eDP */
925 intel_dp->DP |= DP_PLL_ENABLE;
926 if (adjusted_mode->clock < 200000)
927 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
928 else
929 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
930 }
931 } else {
932 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
933 }
934 }
935
936 #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
937 #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
938
939 #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
940 #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
941
942 #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
943 #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
944
945 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
946 u32 mask,
947 u32 value)
948 {
949 struct drm_device *dev = intel_dp->base.base.dev;
950 struct drm_i915_private *dev_priv = dev->dev_private;
951
952 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
953 mask, value,
954 I915_READ(PCH_PP_STATUS),
955 I915_READ(PCH_PP_CONTROL));
956
957 if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
958 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
959 I915_READ(PCH_PP_STATUS),
960 I915_READ(PCH_PP_CONTROL));
961 }
962 }
963
964 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
965 {
966 DRM_DEBUG_KMS("Wait for panel power on\n");
967 ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
968 }
969
970 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
971 {
972 DRM_DEBUG_KMS("Wait for panel power off time\n");
973 ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
974 }
975
976 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
977 {
978 DRM_DEBUG_KMS("Wait for panel power cycle\n");
979 ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
980 }
981
982
983 /* Read the current pp_control value, unlocking the register if it
984 * is locked
985 */
986
987 static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
988 {
989 u32 control = I915_READ(PCH_PP_CONTROL);
990
991 control &= ~PANEL_UNLOCK_MASK;
992 control |= PANEL_UNLOCK_REGS;
993 return control;
994 }
995
996 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
997 {
998 struct drm_device *dev = intel_dp->base.base.dev;
999 struct drm_i915_private *dev_priv = dev->dev_private;
1000 u32 pp;
1001
1002 if (!is_edp(intel_dp))
1003 return;
1004 DRM_DEBUG_KMS("Turn eDP VDD on\n");
1005
1006 WARN(intel_dp->want_panel_vdd,
1007 "eDP VDD already requested on\n");
1008
1009 intel_dp->want_panel_vdd = true;
1010
1011 if (ironlake_edp_have_panel_vdd(intel_dp)) {
1012 DRM_DEBUG_KMS("eDP VDD already on\n");
1013 return;
1014 }
1015
1016 if (!ironlake_edp_have_panel_power(intel_dp))
1017 ironlake_wait_panel_power_cycle(intel_dp);
1018
1019 pp = ironlake_get_pp_control(dev_priv);
1020 pp |= EDP_FORCE_VDD;
1021 I915_WRITE(PCH_PP_CONTROL, pp);
1022 POSTING_READ(PCH_PP_CONTROL);
1023 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1024 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1025
1026 /*
1027 * If the panel wasn't on, delay before accessing aux channel
1028 */
1029 if (!ironlake_edp_have_panel_power(intel_dp)) {
1030 DRM_DEBUG_KMS("eDP was not running\n");
1031 msleep(intel_dp->panel_power_up_delay);
1032 }
1033 }
1034
1035 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1036 {
1037 struct drm_device *dev = intel_dp->base.base.dev;
1038 struct drm_i915_private *dev_priv = dev->dev_private;
1039 u32 pp;
1040
1041 if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1042 pp = ironlake_get_pp_control(dev_priv);
1043 pp &= ~EDP_FORCE_VDD;
1044 I915_WRITE(PCH_PP_CONTROL, pp);
1045 POSTING_READ(PCH_PP_CONTROL);
1046
1047 /* Make sure sequencer is idle before allowing subsequent activity */
1048 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1049 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1050
1051 msleep(intel_dp->panel_power_down_delay);
1052 }
1053 }
1054
1055 static void ironlake_panel_vdd_work(struct work_struct *__work)
1056 {
1057 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1058 struct intel_dp, panel_vdd_work);
1059 struct drm_device *dev = intel_dp->base.base.dev;
1060
1061 mutex_lock(&dev->mode_config.mutex);
1062 ironlake_panel_vdd_off_sync(intel_dp);
1063 mutex_unlock(&dev->mode_config.mutex);
1064 }
1065
1066 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1067 {
1068 if (!is_edp(intel_dp))
1069 return;
1070
1071 DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1072 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1073
1074 intel_dp->want_panel_vdd = false;
1075
1076 if (sync) {
1077 ironlake_panel_vdd_off_sync(intel_dp);
1078 } else {
1079 /*
1080 * Queue the timer to fire a long
1081 * time from now (relative to the power down delay)
1082 * to keep the panel power up across a sequence of operations
1083 */
1084 schedule_delayed_work(&intel_dp->panel_vdd_work,
1085 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1086 }
1087 }
1088
1089 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1090 {
1091 struct drm_device *dev = intel_dp->base.base.dev;
1092 struct drm_i915_private *dev_priv = dev->dev_private;
1093 u32 pp;
1094
1095 if (!is_edp(intel_dp))
1096 return;
1097
1098 DRM_DEBUG_KMS("Turn eDP power on\n");
1099
1100 if (ironlake_edp_have_panel_power(intel_dp)) {
1101 DRM_DEBUG_KMS("eDP power already on\n");
1102 return;
1103 }
1104
1105 ironlake_wait_panel_power_cycle(intel_dp);
1106
1107 pp = ironlake_get_pp_control(dev_priv);
1108 if (IS_GEN5(dev)) {
1109 /* ILK workaround: disable reset around power sequence */
1110 pp &= ~PANEL_POWER_RESET;
1111 I915_WRITE(PCH_PP_CONTROL, pp);
1112 POSTING_READ(PCH_PP_CONTROL);
1113 }
1114
1115 pp |= POWER_TARGET_ON;
1116 if (!IS_GEN5(dev))
1117 pp |= PANEL_POWER_RESET;
1118
1119 I915_WRITE(PCH_PP_CONTROL, pp);
1120 POSTING_READ(PCH_PP_CONTROL);
1121
1122 ironlake_wait_panel_on(intel_dp);
1123
1124 if (IS_GEN5(dev)) {
1125 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1126 I915_WRITE(PCH_PP_CONTROL, pp);
1127 POSTING_READ(PCH_PP_CONTROL);
1128 }
1129 }
1130
1131 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1132 {
1133 struct drm_device *dev = intel_dp->base.base.dev;
1134 struct drm_i915_private *dev_priv = dev->dev_private;
1135 u32 pp;
1136
1137 if (!is_edp(intel_dp))
1138 return;
1139
1140 DRM_DEBUG_KMS("Turn eDP power off\n");
1141
1142 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1143
1144 pp = ironlake_get_pp_control(dev_priv);
1145 /* We need to switch off panel power _and_ force vdd, for otherwise some
1146 * panels get very unhappy and cease to work. */
1147 pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1148 I915_WRITE(PCH_PP_CONTROL, pp);
1149 POSTING_READ(PCH_PP_CONTROL);
1150
1151 intel_dp->want_panel_vdd = false;
1152
1153 ironlake_wait_panel_off(intel_dp);
1154 }
1155
1156 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1157 {
1158 struct drm_device *dev = intel_dp->base.base.dev;
1159 struct drm_i915_private *dev_priv = dev->dev_private;
1160 u32 pp;
1161
1162 if (!is_edp(intel_dp))
1163 return;
1164
1165 DRM_DEBUG_KMS("\n");
1166 /*
1167 * If we enable the backlight right away following a panel power
1168 * on, we may see slight flicker as the panel syncs with the eDP
1169 * link. So delay a bit to make sure the image is solid before
1170 * allowing it to appear.
1171 */
1172 msleep(intel_dp->backlight_on_delay);
1173 pp = ironlake_get_pp_control(dev_priv);
1174 pp |= EDP_BLC_ENABLE;
1175 I915_WRITE(PCH_PP_CONTROL, pp);
1176 POSTING_READ(PCH_PP_CONTROL);
1177 }
1178
1179 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1180 {
1181 struct drm_device *dev = intel_dp->base.base.dev;
1182 struct drm_i915_private *dev_priv = dev->dev_private;
1183 u32 pp;
1184
1185 if (!is_edp(intel_dp))
1186 return;
1187
1188 DRM_DEBUG_KMS("\n");
1189 pp = ironlake_get_pp_control(dev_priv);
1190 pp &= ~EDP_BLC_ENABLE;
1191 I915_WRITE(PCH_PP_CONTROL, pp);
1192 POSTING_READ(PCH_PP_CONTROL);
1193 msleep(intel_dp->backlight_off_delay);
1194 }
1195
1196 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1197 {
1198 struct drm_device *dev = encoder->dev;
1199 struct drm_i915_private *dev_priv = dev->dev_private;
1200 u32 dpa_ctl;
1201
1202 DRM_DEBUG_KMS("\n");
1203 dpa_ctl = I915_READ(DP_A);
1204 dpa_ctl |= DP_PLL_ENABLE;
1205 I915_WRITE(DP_A, dpa_ctl);
1206 POSTING_READ(DP_A);
1207 udelay(200);
1208 }
1209
1210 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1211 {
1212 struct drm_device *dev = encoder->dev;
1213 struct drm_i915_private *dev_priv = dev->dev_private;
1214 u32 dpa_ctl;
1215
1216 dpa_ctl = I915_READ(DP_A);
1217 dpa_ctl &= ~DP_PLL_ENABLE;
1218 I915_WRITE(DP_A, dpa_ctl);
1219 POSTING_READ(DP_A);
1220 udelay(200);
1221 }
1222
1223 /* If the sink supports it, try to set the power state appropriately */
1224 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1225 {
1226 int ret, i;
1227
1228 /* Should have a valid DPCD by this point */
1229 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1230 return;
1231
1232 if (mode != DRM_MODE_DPMS_ON) {
1233 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1234 DP_SET_POWER_D3);
1235 if (ret != 1)
1236 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1237 } else {
1238 /*
1239 * When turning on, we need to retry for 1ms to give the sink
1240 * time to wake up.
1241 */
1242 for (i = 0; i < 3; i++) {
1243 ret = intel_dp_aux_native_write_1(intel_dp,
1244 DP_SET_POWER,
1245 DP_SET_POWER_D0);
1246 if (ret == 1)
1247 break;
1248 msleep(1);
1249 }
1250 }
1251 }
1252
1253 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1254 enum pipe *pipe)
1255 {
1256 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1257 struct drm_device *dev = encoder->base.dev;
1258 struct drm_i915_private *dev_priv = dev->dev_private;
1259 u32 tmp = I915_READ(intel_dp->output_reg);
1260
1261 if (!(tmp & DP_PORT_EN))
1262 return false;
1263
1264 if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
1265 *pipe = PORT_TO_PIPE_CPT(tmp);
1266 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1267 *pipe = PORT_TO_PIPE(tmp);
1268 } else {
1269 u32 trans_sel;
1270 u32 trans_dp;
1271 int i;
1272
1273 switch (intel_dp->output_reg) {
1274 case PCH_DP_B:
1275 trans_sel = TRANS_DP_PORT_SEL_B;
1276 break;
1277 case PCH_DP_C:
1278 trans_sel = TRANS_DP_PORT_SEL_C;
1279 break;
1280 case PCH_DP_D:
1281 trans_sel = TRANS_DP_PORT_SEL_D;
1282 break;
1283 default:
1284 return true;
1285 }
1286
1287 for_each_pipe(i) {
1288 trans_dp = I915_READ(TRANS_DP_CTL(i));
1289 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1290 *pipe = i;
1291 return true;
1292 }
1293 }
1294 }
1295
1296 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n", intel_dp->output_reg);
1297
1298 return true;
1299 }
1300
1301 static void intel_disable_dp(struct intel_encoder *encoder)
1302 {
1303 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1304
1305 /* Make sure the panel is off before trying to change the mode. But also
1306 * ensure that we have vdd while we switch off the panel. */
1307 ironlake_edp_panel_vdd_on(intel_dp);
1308 ironlake_edp_backlight_off(intel_dp);
1309 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1310 ironlake_edp_panel_off(intel_dp);
1311 intel_dp_link_down(intel_dp);
1312 }
1313
1314 static void intel_enable_dp(struct intel_encoder *encoder)
1315 {
1316 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1317 struct drm_device *dev = encoder->base.dev;
1318 struct drm_i915_private *dev_priv = dev->dev_private;
1319 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1320
1321 ironlake_edp_panel_vdd_on(intel_dp);
1322 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1323 if (!(dp_reg & DP_PORT_EN)) {
1324 intel_dp_start_link_train(intel_dp);
1325 ironlake_edp_panel_on(intel_dp);
1326 ironlake_edp_panel_vdd_off(intel_dp, true);
1327 intel_dp_complete_link_train(intel_dp);
1328 } else
1329 ironlake_edp_panel_vdd_off(intel_dp, false);
1330 ironlake_edp_backlight_on(intel_dp);
1331 }
1332
1333 static void
1334 intel_dp_dpms(struct drm_connector *connector, int mode)
1335 {
1336 struct intel_dp *intel_dp = intel_attached_dp(connector);
1337
1338 /* DP supports only 2 dpms states. */
1339 if (mode != DRM_MODE_DPMS_ON)
1340 mode = DRM_MODE_DPMS_OFF;
1341
1342 if (mode == connector->dpms)
1343 return;
1344
1345 connector->dpms = mode;
1346
1347 /* Only need to change hw state when actually enabled */
1348 if (!intel_dp->base.base.crtc) {
1349 intel_dp->base.connectors_active = false;
1350 return;
1351 }
1352
1353 if (mode != DRM_MODE_DPMS_ON) {
1354 intel_encoder_dpms(&intel_dp->base, mode);
1355
1356 if (is_cpu_edp(intel_dp))
1357 ironlake_edp_pll_off(&intel_dp->base.base);
1358 } else {
1359 if (is_cpu_edp(intel_dp))
1360 ironlake_edp_pll_on(&intel_dp->base.base);
1361
1362 intel_encoder_dpms(&intel_dp->base, mode);
1363 }
1364
1365 intel_modeset_check_state(connector->dev);
1366 }
1367
1368 /*
1369 * Native read with retry for link status and receiver capability reads for
1370 * cases where the sink may still be asleep.
1371 */
1372 static bool
1373 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1374 uint8_t *recv, int recv_bytes)
1375 {
1376 int ret, i;
1377
1378 /*
1379 * Sinks are *supposed* to come up within 1ms from an off state,
1380 * but we're also supposed to retry 3 times per the spec.
1381 */
1382 for (i = 0; i < 3; i++) {
1383 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1384 recv_bytes);
1385 if (ret == recv_bytes)
1386 return true;
1387 msleep(1);
1388 }
1389
1390 return false;
1391 }
1392
1393 /*
1394 * Fetch AUX CH registers 0x202 - 0x207 which contain
1395 * link status information
1396 */
1397 static bool
1398 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1399 {
1400 return intel_dp_aux_native_read_retry(intel_dp,
1401 DP_LANE0_1_STATUS,
1402 link_status,
1403 DP_LINK_STATUS_SIZE);
1404 }
1405
1406 static uint8_t
1407 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1408 int r)
1409 {
1410 return link_status[r - DP_LANE0_1_STATUS];
1411 }
1412
1413 static uint8_t
1414 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1415 int lane)
1416 {
1417 int s = ((lane & 1) ?
1418 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1419 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1420 uint8_t l = adjust_request[lane>>1];
1421
1422 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1423 }
1424
1425 static uint8_t
1426 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1427 int lane)
1428 {
1429 int s = ((lane & 1) ?
1430 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1431 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1432 uint8_t l = adjust_request[lane>>1];
1433
1434 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1435 }
1436
1437
1438 #if 0
1439 static char *voltage_names[] = {
1440 "0.4V", "0.6V", "0.8V", "1.2V"
1441 };
1442 static char *pre_emph_names[] = {
1443 "0dB", "3.5dB", "6dB", "9.5dB"
1444 };
1445 static char *link_train_names[] = {
1446 "pattern 1", "pattern 2", "idle", "off"
1447 };
1448 #endif
1449
1450 /*
1451 * These are source-specific values; current Intel hardware supports
1452 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1453 */
1454
1455 static uint8_t
1456 intel_dp_voltage_max(struct intel_dp *intel_dp)
1457 {
1458 struct drm_device *dev = intel_dp->base.base.dev;
1459
1460 if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1461 return DP_TRAIN_VOLTAGE_SWING_800;
1462 else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1463 return DP_TRAIN_VOLTAGE_SWING_1200;
1464 else
1465 return DP_TRAIN_VOLTAGE_SWING_800;
1466 }
1467
1468 static uint8_t
1469 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1470 {
1471 struct drm_device *dev = intel_dp->base.base.dev;
1472
1473 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1474 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1475 case DP_TRAIN_VOLTAGE_SWING_400:
1476 return DP_TRAIN_PRE_EMPHASIS_6;
1477 case DP_TRAIN_VOLTAGE_SWING_600:
1478 case DP_TRAIN_VOLTAGE_SWING_800:
1479 return DP_TRAIN_PRE_EMPHASIS_3_5;
1480 default:
1481 return DP_TRAIN_PRE_EMPHASIS_0;
1482 }
1483 } else {
1484 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1485 case DP_TRAIN_VOLTAGE_SWING_400:
1486 return DP_TRAIN_PRE_EMPHASIS_6;
1487 case DP_TRAIN_VOLTAGE_SWING_600:
1488 return DP_TRAIN_PRE_EMPHASIS_6;
1489 case DP_TRAIN_VOLTAGE_SWING_800:
1490 return DP_TRAIN_PRE_EMPHASIS_3_5;
1491 case DP_TRAIN_VOLTAGE_SWING_1200:
1492 default:
1493 return DP_TRAIN_PRE_EMPHASIS_0;
1494 }
1495 }
1496 }
1497
1498 static void
1499 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1500 {
1501 uint8_t v = 0;
1502 uint8_t p = 0;
1503 int lane;
1504 uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1505 uint8_t voltage_max;
1506 uint8_t preemph_max;
1507
1508 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1509 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1510 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1511
1512 if (this_v > v)
1513 v = this_v;
1514 if (this_p > p)
1515 p = this_p;
1516 }
1517
1518 voltage_max = intel_dp_voltage_max(intel_dp);
1519 if (v >= voltage_max)
1520 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1521
1522 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1523 if (p >= preemph_max)
1524 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1525
1526 for (lane = 0; lane < 4; lane++)
1527 intel_dp->train_set[lane] = v | p;
1528 }
1529
1530 static uint32_t
1531 intel_dp_signal_levels(uint8_t train_set)
1532 {
1533 uint32_t signal_levels = 0;
1534
1535 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1536 case DP_TRAIN_VOLTAGE_SWING_400:
1537 default:
1538 signal_levels |= DP_VOLTAGE_0_4;
1539 break;
1540 case DP_TRAIN_VOLTAGE_SWING_600:
1541 signal_levels |= DP_VOLTAGE_0_6;
1542 break;
1543 case DP_TRAIN_VOLTAGE_SWING_800:
1544 signal_levels |= DP_VOLTAGE_0_8;
1545 break;
1546 case DP_TRAIN_VOLTAGE_SWING_1200:
1547 signal_levels |= DP_VOLTAGE_1_2;
1548 break;
1549 }
1550 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1551 case DP_TRAIN_PRE_EMPHASIS_0:
1552 default:
1553 signal_levels |= DP_PRE_EMPHASIS_0;
1554 break;
1555 case DP_TRAIN_PRE_EMPHASIS_3_5:
1556 signal_levels |= DP_PRE_EMPHASIS_3_5;
1557 break;
1558 case DP_TRAIN_PRE_EMPHASIS_6:
1559 signal_levels |= DP_PRE_EMPHASIS_6;
1560 break;
1561 case DP_TRAIN_PRE_EMPHASIS_9_5:
1562 signal_levels |= DP_PRE_EMPHASIS_9_5;
1563 break;
1564 }
1565 return signal_levels;
1566 }
1567
1568 /* Gen6's DP voltage swing and pre-emphasis control */
1569 static uint32_t
1570 intel_gen6_edp_signal_levels(uint8_t train_set)
1571 {
1572 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1573 DP_TRAIN_PRE_EMPHASIS_MASK);
1574 switch (signal_levels) {
1575 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1576 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1577 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1578 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1579 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1580 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1581 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1582 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1583 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1584 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1585 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1586 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1587 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1588 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1589 default:
1590 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1591 "0x%x\n", signal_levels);
1592 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1593 }
1594 }
1595
1596 /* Gen7's DP voltage swing and pre-emphasis control */
1597 static uint32_t
1598 intel_gen7_edp_signal_levels(uint8_t train_set)
1599 {
1600 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1601 DP_TRAIN_PRE_EMPHASIS_MASK);
1602 switch (signal_levels) {
1603 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1604 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1605 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1606 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1607 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1608 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1609
1610 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1611 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1612 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1613 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1614
1615 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1616 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1617 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1618 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1619
1620 default:
1621 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1622 "0x%x\n", signal_levels);
1623 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1624 }
1625 }
1626
1627 static uint8_t
1628 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1629 int lane)
1630 {
1631 int s = (lane & 1) * 4;
1632 uint8_t l = link_status[lane>>1];
1633
1634 return (l >> s) & 0xf;
1635 }
1636
1637 /* Check for clock recovery is done on all channels */
1638 static bool
1639 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1640 {
1641 int lane;
1642 uint8_t lane_status;
1643
1644 for (lane = 0; lane < lane_count; lane++) {
1645 lane_status = intel_get_lane_status(link_status, lane);
1646 if ((lane_status & DP_LANE_CR_DONE) == 0)
1647 return false;
1648 }
1649 return true;
1650 }
1651
1652 /* Check to see if channel eq is done on all channels */
1653 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1654 DP_LANE_CHANNEL_EQ_DONE|\
1655 DP_LANE_SYMBOL_LOCKED)
1656 static bool
1657 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1658 {
1659 uint8_t lane_align;
1660 uint8_t lane_status;
1661 int lane;
1662
1663 lane_align = intel_dp_link_status(link_status,
1664 DP_LANE_ALIGN_STATUS_UPDATED);
1665 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1666 return false;
1667 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1668 lane_status = intel_get_lane_status(link_status, lane);
1669 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1670 return false;
1671 }
1672 return true;
1673 }
1674
1675 static bool
1676 intel_dp_set_link_train(struct intel_dp *intel_dp,
1677 uint32_t dp_reg_value,
1678 uint8_t dp_train_pat)
1679 {
1680 struct drm_device *dev = intel_dp->base.base.dev;
1681 struct drm_i915_private *dev_priv = dev->dev_private;
1682 int ret;
1683
1684 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1685 dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1686
1687 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1688 case DP_TRAINING_PATTERN_DISABLE:
1689 dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1690 break;
1691 case DP_TRAINING_PATTERN_1:
1692 dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1693 break;
1694 case DP_TRAINING_PATTERN_2:
1695 dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1696 break;
1697 case DP_TRAINING_PATTERN_3:
1698 DRM_ERROR("DP training pattern 3 not supported\n");
1699 dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1700 break;
1701 }
1702
1703 } else {
1704 dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1705
1706 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1707 case DP_TRAINING_PATTERN_DISABLE:
1708 dp_reg_value |= DP_LINK_TRAIN_OFF;
1709 break;
1710 case DP_TRAINING_PATTERN_1:
1711 dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1712 break;
1713 case DP_TRAINING_PATTERN_2:
1714 dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1715 break;
1716 case DP_TRAINING_PATTERN_3:
1717 DRM_ERROR("DP training pattern 3 not supported\n");
1718 dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1719 break;
1720 }
1721 }
1722
1723 I915_WRITE(intel_dp->output_reg, dp_reg_value);
1724 POSTING_READ(intel_dp->output_reg);
1725
1726 intel_dp_aux_native_write_1(intel_dp,
1727 DP_TRAINING_PATTERN_SET,
1728 dp_train_pat);
1729
1730 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1731 DP_TRAINING_PATTERN_DISABLE) {
1732 ret = intel_dp_aux_native_write(intel_dp,
1733 DP_TRAINING_LANE0_SET,
1734 intel_dp->train_set,
1735 intel_dp->lane_count);
1736 if (ret != intel_dp->lane_count)
1737 return false;
1738 }
1739
1740 return true;
1741 }
1742
1743 /* Enable corresponding port and start training pattern 1 */
1744 static void
1745 intel_dp_start_link_train(struct intel_dp *intel_dp)
1746 {
1747 struct drm_device *dev = intel_dp->base.base.dev;
1748 struct drm_i915_private *dev_priv = dev->dev_private;
1749 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1750 int i;
1751 uint8_t voltage;
1752 bool clock_recovery = false;
1753 int voltage_tries, loop_tries;
1754 uint32_t DP = intel_dp->DP;
1755
1756 /*
1757 * On CPT we have to enable the port in training pattern 1, which
1758 * will happen below in intel_dp_set_link_train. Otherwise, enable
1759 * the port and wait for it to become active.
1760 */
1761 if (!HAS_PCH_CPT(dev)) {
1762 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1763 POSTING_READ(intel_dp->output_reg);
1764 intel_wait_for_vblank(dev, intel_crtc->pipe);
1765 }
1766
1767 /* Write the link configuration data */
1768 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1769 intel_dp->link_configuration,
1770 DP_LINK_CONFIGURATION_SIZE);
1771
1772 DP |= DP_PORT_EN;
1773
1774 memset(intel_dp->train_set, 0, 4);
1775 voltage = 0xff;
1776 voltage_tries = 0;
1777 loop_tries = 0;
1778 clock_recovery = false;
1779 for (;;) {
1780 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1781 uint8_t link_status[DP_LINK_STATUS_SIZE];
1782 uint32_t signal_levels;
1783
1784
1785 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1786 signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1787 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1788 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1789 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1790 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1791 } else {
1792 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1793 DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1794 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1795 }
1796
1797 if (!intel_dp_set_link_train(intel_dp, DP,
1798 DP_TRAINING_PATTERN_1 |
1799 DP_LINK_SCRAMBLING_DISABLE))
1800 break;
1801 /* Set training pattern 1 */
1802
1803 udelay(100);
1804 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1805 DRM_ERROR("failed to get link status\n");
1806 break;
1807 }
1808
1809 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1810 DRM_DEBUG_KMS("clock recovery OK\n");
1811 clock_recovery = true;
1812 break;
1813 }
1814
1815 /* Check to see if we've tried the max voltage */
1816 for (i = 0; i < intel_dp->lane_count; i++)
1817 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1818 break;
1819 if (i == intel_dp->lane_count && voltage_tries == 5) {
1820 ++loop_tries;
1821 if (loop_tries == 5) {
1822 DRM_DEBUG_KMS("too many full retries, give up\n");
1823 break;
1824 }
1825 memset(intel_dp->train_set, 0, 4);
1826 voltage_tries = 0;
1827 continue;
1828 }
1829
1830 /* Check to see if we've tried the same voltage 5 times */
1831 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1832 ++voltage_tries;
1833 if (voltage_tries == 5) {
1834 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1835 break;
1836 }
1837 } else
1838 voltage_tries = 0;
1839 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1840
1841 /* Compute new intel_dp->train_set as requested by target */
1842 intel_get_adjust_train(intel_dp, link_status);
1843 }
1844
1845 intel_dp->DP = DP;
1846 }
1847
1848 static void
1849 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1850 {
1851 struct drm_device *dev = intel_dp->base.base.dev;
1852 bool channel_eq = false;
1853 int tries, cr_tries;
1854 uint32_t DP = intel_dp->DP;
1855
1856 /* channel equalization */
1857 tries = 0;
1858 cr_tries = 0;
1859 channel_eq = false;
1860 for (;;) {
1861 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1862 uint32_t signal_levels;
1863 uint8_t link_status[DP_LINK_STATUS_SIZE];
1864
1865 if (cr_tries > 5) {
1866 DRM_ERROR("failed to train DP, aborting\n");
1867 intel_dp_link_down(intel_dp);
1868 break;
1869 }
1870
1871 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1872 signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1873 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1874 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1875 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1876 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1877 } else {
1878 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1879 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1880 }
1881
1882 /* channel eq pattern */
1883 if (!intel_dp_set_link_train(intel_dp, DP,
1884 DP_TRAINING_PATTERN_2 |
1885 DP_LINK_SCRAMBLING_DISABLE))
1886 break;
1887
1888 udelay(400);
1889 if (!intel_dp_get_link_status(intel_dp, link_status))
1890 break;
1891
1892 /* Make sure clock is still ok */
1893 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1894 intel_dp_start_link_train(intel_dp);
1895 cr_tries++;
1896 continue;
1897 }
1898
1899 if (intel_channel_eq_ok(intel_dp, link_status)) {
1900 channel_eq = true;
1901 break;
1902 }
1903
1904 /* Try 5 times, then try clock recovery if that fails */
1905 if (tries > 5) {
1906 intel_dp_link_down(intel_dp);
1907 intel_dp_start_link_train(intel_dp);
1908 tries = 0;
1909 cr_tries++;
1910 continue;
1911 }
1912
1913 /* Compute new intel_dp->train_set as requested by target */
1914 intel_get_adjust_train(intel_dp, link_status);
1915 ++tries;
1916 }
1917
1918 intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
1919 }
1920
1921 static void
1922 intel_dp_link_down(struct intel_dp *intel_dp)
1923 {
1924 struct drm_device *dev = intel_dp->base.base.dev;
1925 struct drm_i915_private *dev_priv = dev->dev_private;
1926 uint32_t DP = intel_dp->DP;
1927
1928 if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1929 return;
1930
1931 DRM_DEBUG_KMS("\n");
1932
1933 if (is_edp(intel_dp)) {
1934 DP &= ~DP_PLL_ENABLE;
1935 I915_WRITE(intel_dp->output_reg, DP);
1936 POSTING_READ(intel_dp->output_reg);
1937 udelay(100);
1938 }
1939
1940 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1941 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1942 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1943 } else {
1944 DP &= ~DP_LINK_TRAIN_MASK;
1945 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1946 }
1947 POSTING_READ(intel_dp->output_reg);
1948
1949 msleep(17);
1950
1951 if (is_edp(intel_dp)) {
1952 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1953 DP |= DP_LINK_TRAIN_OFF_CPT;
1954 else
1955 DP |= DP_LINK_TRAIN_OFF;
1956 }
1957
1958 if (HAS_PCH_IBX(dev) &&
1959 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1960 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1961
1962 /* Hardware workaround: leaving our transcoder select
1963 * set to transcoder B while it's off will prevent the
1964 * corresponding HDMI output on transcoder A.
1965 *
1966 * Combine this with another hardware workaround:
1967 * transcoder select bit can only be cleared while the
1968 * port is enabled.
1969 */
1970 DP &= ~DP_PIPEB_SELECT;
1971 I915_WRITE(intel_dp->output_reg, DP);
1972
1973 /* Changes to enable or select take place the vblank
1974 * after being written.
1975 */
1976 if (crtc == NULL) {
1977 /* We can arrive here never having been attached
1978 * to a CRTC, for instance, due to inheriting
1979 * random state from the BIOS.
1980 *
1981 * If the pipe is not running, play safe and
1982 * wait for the clocks to stabilise before
1983 * continuing.
1984 */
1985 POSTING_READ(intel_dp->output_reg);
1986 msleep(50);
1987 } else
1988 intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1989 }
1990
1991 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1992 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1993 POSTING_READ(intel_dp->output_reg);
1994 msleep(intel_dp->panel_power_down_delay);
1995 }
1996
1997 static bool
1998 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1999 {
2000 if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2001 sizeof(intel_dp->dpcd)) &&
2002 (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
2003 return true;
2004 }
2005
2006 return false;
2007 }
2008
2009 static void
2010 intel_dp_probe_oui(struct intel_dp *intel_dp)
2011 {
2012 u8 buf[3];
2013
2014 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2015 return;
2016
2017 ironlake_edp_panel_vdd_on(intel_dp);
2018
2019 if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2020 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2021 buf[0], buf[1], buf[2]);
2022
2023 if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2024 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2025 buf[0], buf[1], buf[2]);
2026
2027 ironlake_edp_panel_vdd_off(intel_dp, false);
2028 }
2029
2030 static bool
2031 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2032 {
2033 int ret;
2034
2035 ret = intel_dp_aux_native_read_retry(intel_dp,
2036 DP_DEVICE_SERVICE_IRQ_VECTOR,
2037 sink_irq_vector, 1);
2038 if (!ret)
2039 return false;
2040
2041 return true;
2042 }
2043
2044 static void
2045 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2046 {
2047 /* NAK by default */
2048 intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
2049 }
2050
2051 /*
2052 * According to DP spec
2053 * 5.1.2:
2054 * 1. Read DPCD
2055 * 2. Configure link according to Receiver Capabilities
2056 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
2057 * 4. Check link status on receipt of hot-plug interrupt
2058 */
2059
2060 static void
2061 intel_dp_check_link_status(struct intel_dp *intel_dp)
2062 {
2063 u8 sink_irq_vector;
2064 u8 link_status[DP_LINK_STATUS_SIZE];
2065
2066 if (!intel_dp->base.connectors_active)
2067 return;
2068
2069 if (WARN_ON(!intel_dp->base.base.crtc))
2070 return;
2071
2072 /* Try to read receiver status if the link appears to be up */
2073 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2074 intel_dp_link_down(intel_dp);
2075 return;
2076 }
2077
2078 /* Now read the DPCD to see if it's actually running */
2079 if (!intel_dp_get_dpcd(intel_dp)) {
2080 intel_dp_link_down(intel_dp);
2081 return;
2082 }
2083
2084 /* Try to read the source of the interrupt */
2085 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2086 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2087 /* Clear interrupt source */
2088 intel_dp_aux_native_write_1(intel_dp,
2089 DP_DEVICE_SERVICE_IRQ_VECTOR,
2090 sink_irq_vector);
2091
2092 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2093 intel_dp_handle_test_request(intel_dp);
2094 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2095 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2096 }
2097
2098 if (!intel_channel_eq_ok(intel_dp, link_status)) {
2099 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2100 drm_get_encoder_name(&intel_dp->base.base));
2101 intel_dp_start_link_train(intel_dp);
2102 intel_dp_complete_link_train(intel_dp);
2103 }
2104 }
2105
2106 static enum drm_connector_status
2107 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2108 {
2109 if (intel_dp_get_dpcd(intel_dp))
2110 return connector_status_connected;
2111 return connector_status_disconnected;
2112 }
2113
2114 static enum drm_connector_status
2115 ironlake_dp_detect(struct intel_dp *intel_dp)
2116 {
2117 enum drm_connector_status status;
2118
2119 /* Can't disconnect eDP, but you can close the lid... */
2120 if (is_edp(intel_dp)) {
2121 status = intel_panel_detect(intel_dp->base.base.dev);
2122 if (status == connector_status_unknown)
2123 status = connector_status_connected;
2124 return status;
2125 }
2126
2127 return intel_dp_detect_dpcd(intel_dp);
2128 }
2129
2130 static enum drm_connector_status
2131 g4x_dp_detect(struct intel_dp *intel_dp)
2132 {
2133 struct drm_device *dev = intel_dp->base.base.dev;
2134 struct drm_i915_private *dev_priv = dev->dev_private;
2135 uint32_t bit;
2136
2137 switch (intel_dp->output_reg) {
2138 case DP_B:
2139 bit = DPB_HOTPLUG_LIVE_STATUS;
2140 break;
2141 case DP_C:
2142 bit = DPC_HOTPLUG_LIVE_STATUS;
2143 break;
2144 case DP_D:
2145 bit = DPD_HOTPLUG_LIVE_STATUS;
2146 break;
2147 default:
2148 return connector_status_unknown;
2149 }
2150
2151 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2152 return connector_status_disconnected;
2153
2154 return intel_dp_detect_dpcd(intel_dp);
2155 }
2156
2157 static struct edid *
2158 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2159 {
2160 struct intel_dp *intel_dp = intel_attached_dp(connector);
2161 struct edid *edid;
2162 int size;
2163
2164 if (is_edp(intel_dp)) {
2165 if (!intel_dp->edid)
2166 return NULL;
2167
2168 size = (intel_dp->edid->extensions + 1) * EDID_LENGTH;
2169 edid = kmalloc(size, GFP_KERNEL);
2170 if (!edid)
2171 return NULL;
2172
2173 memcpy(edid, intel_dp->edid, size);
2174 return edid;
2175 }
2176
2177 edid = drm_get_edid(connector, adapter);
2178 return edid;
2179 }
2180
2181 static int
2182 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2183 {
2184 struct intel_dp *intel_dp = intel_attached_dp(connector);
2185 int ret;
2186
2187 if (is_edp(intel_dp)) {
2188 drm_mode_connector_update_edid_property(connector,
2189 intel_dp->edid);
2190 ret = drm_add_edid_modes(connector, intel_dp->edid);
2191 drm_edid_to_eld(connector,
2192 intel_dp->edid);
2193 connector->display_info.raw_edid = NULL;
2194 return intel_dp->edid_mode_count;
2195 }
2196
2197 ret = intel_ddc_get_modes(connector, adapter);
2198 return ret;
2199 }
2200
2201
2202 /**
2203 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2204 *
2205 * \return true if DP port is connected.
2206 * \return false if DP port is disconnected.
2207 */
2208 static enum drm_connector_status
2209 intel_dp_detect(struct drm_connector *connector, bool force)
2210 {
2211 struct intel_dp *intel_dp = intel_attached_dp(connector);
2212 struct drm_device *dev = intel_dp->base.base.dev;
2213 enum drm_connector_status status;
2214 struct edid *edid = NULL;
2215
2216 intel_dp->has_audio = false;
2217
2218 if (HAS_PCH_SPLIT(dev))
2219 status = ironlake_dp_detect(intel_dp);
2220 else
2221 status = g4x_dp_detect(intel_dp);
2222
2223 DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2224 intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2225 intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2226 intel_dp->dpcd[6], intel_dp->dpcd[7]);
2227
2228 if (status != connector_status_connected)
2229 return status;
2230
2231 intel_dp_probe_oui(intel_dp);
2232
2233 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2234 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2235 } else {
2236 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2237 if (edid) {
2238 intel_dp->has_audio = drm_detect_monitor_audio(edid);
2239 connector->display_info.raw_edid = NULL;
2240 kfree(edid);
2241 }
2242 }
2243
2244 return connector_status_connected;
2245 }
2246
2247 static int intel_dp_get_modes(struct drm_connector *connector)
2248 {
2249 struct intel_dp *intel_dp = intel_attached_dp(connector);
2250 struct drm_device *dev = intel_dp->base.base.dev;
2251 struct drm_i915_private *dev_priv = dev->dev_private;
2252 int ret;
2253
2254 /* We should parse the EDID data and find out if it has an audio sink
2255 */
2256
2257 ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2258 if (ret) {
2259 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2260 struct drm_display_mode *newmode;
2261 list_for_each_entry(newmode, &connector->probed_modes,
2262 head) {
2263 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2264 intel_dp->panel_fixed_mode =
2265 drm_mode_duplicate(dev, newmode);
2266 break;
2267 }
2268 }
2269 }
2270 return ret;
2271 }
2272
2273 /* if eDP has no EDID, try to use fixed panel mode from VBT */
2274 if (is_edp(intel_dp)) {
2275 /* initialize panel mode from VBT if available for eDP */
2276 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2277 intel_dp->panel_fixed_mode =
2278 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2279 if (intel_dp->panel_fixed_mode) {
2280 intel_dp->panel_fixed_mode->type |=
2281 DRM_MODE_TYPE_PREFERRED;
2282 }
2283 }
2284 if (intel_dp->panel_fixed_mode) {
2285 struct drm_display_mode *mode;
2286 mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2287 drm_mode_probed_add(connector, mode);
2288 return 1;
2289 }
2290 }
2291 return 0;
2292 }
2293
2294 static bool
2295 intel_dp_detect_audio(struct drm_connector *connector)
2296 {
2297 struct intel_dp *intel_dp = intel_attached_dp(connector);
2298 struct edid *edid;
2299 bool has_audio = false;
2300
2301 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2302 if (edid) {
2303 has_audio = drm_detect_monitor_audio(edid);
2304
2305 connector->display_info.raw_edid = NULL;
2306 kfree(edid);
2307 }
2308
2309 return has_audio;
2310 }
2311
2312 static int
2313 intel_dp_set_property(struct drm_connector *connector,
2314 struct drm_property *property,
2315 uint64_t val)
2316 {
2317 struct drm_i915_private *dev_priv = connector->dev->dev_private;
2318 struct intel_dp *intel_dp = intel_attached_dp(connector);
2319 int ret;
2320
2321 ret = drm_connector_property_set_value(connector, property, val);
2322 if (ret)
2323 return ret;
2324
2325 if (property == dev_priv->force_audio_property) {
2326 int i = val;
2327 bool has_audio;
2328
2329 if (i == intel_dp->force_audio)
2330 return 0;
2331
2332 intel_dp->force_audio = i;
2333
2334 if (i == HDMI_AUDIO_AUTO)
2335 has_audio = intel_dp_detect_audio(connector);
2336 else
2337 has_audio = (i == HDMI_AUDIO_ON);
2338
2339 if (has_audio == intel_dp->has_audio)
2340 return 0;
2341
2342 intel_dp->has_audio = has_audio;
2343 goto done;
2344 }
2345
2346 if (property == dev_priv->broadcast_rgb_property) {
2347 if (val == !!intel_dp->color_range)
2348 return 0;
2349
2350 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2351 goto done;
2352 }
2353
2354 return -EINVAL;
2355
2356 done:
2357 if (intel_dp->base.base.crtc) {
2358 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2359 intel_set_mode(crtc, &crtc->mode,
2360 crtc->x, crtc->y, crtc->fb);
2361 }
2362
2363 return 0;
2364 }
2365
2366 static void
2367 intel_dp_destroy(struct drm_connector *connector)
2368 {
2369 struct drm_device *dev = connector->dev;
2370
2371 if (intel_dpd_is_edp(dev))
2372 intel_panel_destroy_backlight(dev);
2373
2374 drm_sysfs_connector_remove(connector);
2375 drm_connector_cleanup(connector);
2376 kfree(connector);
2377 }
2378
2379 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2380 {
2381 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2382
2383 i2c_del_adapter(&intel_dp->adapter);
2384 drm_encoder_cleanup(encoder);
2385 if (is_edp(intel_dp)) {
2386 kfree(intel_dp->edid);
2387 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2388 ironlake_panel_vdd_off_sync(intel_dp);
2389 }
2390 kfree(intel_dp);
2391 }
2392
2393 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2394 .mode_fixup = intel_dp_mode_fixup,
2395 .mode_set = intel_dp_mode_set,
2396 .disable = intel_encoder_noop,
2397 };
2398
2399 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2400 .dpms = intel_dp_dpms,
2401 .detect = intel_dp_detect,
2402 .fill_modes = drm_helper_probe_single_connector_modes,
2403 .set_property = intel_dp_set_property,
2404 .destroy = intel_dp_destroy,
2405 };
2406
2407 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2408 .get_modes = intel_dp_get_modes,
2409 .mode_valid = intel_dp_mode_valid,
2410 .best_encoder = intel_best_encoder,
2411 };
2412
2413 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2414 .destroy = intel_dp_encoder_destroy,
2415 };
2416
2417 static void
2418 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2419 {
2420 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2421
2422 intel_dp_check_link_status(intel_dp);
2423 }
2424
2425 /* Return which DP Port should be selected for Transcoder DP control */
2426 int
2427 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2428 {
2429 struct drm_device *dev = crtc->dev;
2430 struct intel_encoder *encoder;
2431
2432 for_each_encoder_on_crtc(dev, crtc, encoder) {
2433 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2434
2435 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2436 intel_dp->base.type == INTEL_OUTPUT_EDP)
2437 return intel_dp->output_reg;
2438 }
2439
2440 return -1;
2441 }
2442
2443 /* check the VBT to see whether the eDP is on DP-D port */
2444 bool intel_dpd_is_edp(struct drm_device *dev)
2445 {
2446 struct drm_i915_private *dev_priv = dev->dev_private;
2447 struct child_device_config *p_child;
2448 int i;
2449
2450 if (!dev_priv->child_dev_num)
2451 return false;
2452
2453 for (i = 0; i < dev_priv->child_dev_num; i++) {
2454 p_child = dev_priv->child_dev + i;
2455
2456 if (p_child->dvo_port == PORT_IDPD &&
2457 p_child->device_type == DEVICE_TYPE_eDP)
2458 return true;
2459 }
2460 return false;
2461 }
2462
2463 static void
2464 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2465 {
2466 intel_attach_force_audio_property(connector);
2467 intel_attach_broadcast_rgb_property(connector);
2468 }
2469
2470 void
2471 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2472 {
2473 struct drm_i915_private *dev_priv = dev->dev_private;
2474 struct drm_connector *connector;
2475 struct intel_dp *intel_dp;
2476 struct intel_encoder *intel_encoder;
2477 struct intel_connector *intel_connector;
2478 const char *name = NULL;
2479 int type;
2480
2481 intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2482 if (!intel_dp)
2483 return;
2484
2485 intel_dp->output_reg = output_reg;
2486 intel_dp->port = port;
2487
2488 intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2489 if (!intel_connector) {
2490 kfree(intel_dp);
2491 return;
2492 }
2493 intel_encoder = &intel_dp->base;
2494
2495 if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2496 if (intel_dpd_is_edp(dev))
2497 intel_dp->is_pch_edp = true;
2498
2499 if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2500 type = DRM_MODE_CONNECTOR_eDP;
2501 intel_encoder->type = INTEL_OUTPUT_EDP;
2502 } else {
2503 type = DRM_MODE_CONNECTOR_DisplayPort;
2504 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2505 }
2506
2507 connector = &intel_connector->base;
2508 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2509 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2510
2511 connector->polled = DRM_CONNECTOR_POLL_HPD;
2512
2513 intel_encoder->cloneable = false;
2514
2515 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2516 ironlake_panel_vdd_work);
2517
2518 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2519
2520 connector->interlace_allowed = true;
2521 connector->doublescan_allowed = 0;
2522
2523 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2524 DRM_MODE_ENCODER_TMDS);
2525 drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2526
2527 intel_connector_attach_encoder(intel_connector, intel_encoder);
2528 drm_sysfs_connector_add(connector);
2529
2530 intel_encoder->enable = intel_enable_dp;
2531 intel_encoder->disable = intel_disable_dp;
2532 intel_encoder->get_hw_state = intel_dp_get_hw_state;
2533 intel_connector->get_hw_state = intel_connector_get_hw_state;
2534
2535 /* Set up the DDC bus. */
2536 switch (port) {
2537 case PORT_A:
2538 name = "DPDDC-A";
2539 break;
2540 case PORT_B:
2541 dev_priv->hotplug_supported_mask |= DPB_HOTPLUG_INT_STATUS;
2542 name = "DPDDC-B";
2543 break;
2544 case PORT_C:
2545 dev_priv->hotplug_supported_mask |= DPC_HOTPLUG_INT_STATUS;
2546 name = "DPDDC-C";
2547 break;
2548 case PORT_D:
2549 dev_priv->hotplug_supported_mask |= DPD_HOTPLUG_INT_STATUS;
2550 name = "DPDDC-D";
2551 break;
2552 default:
2553 WARN(1, "Invalid port %c\n", port_name(port));
2554 break;
2555 }
2556
2557 intel_dp_i2c_init(intel_dp, intel_connector, name);
2558
2559 /* Cache some DPCD data in the eDP case */
2560 if (is_edp(intel_dp)) {
2561 bool ret;
2562 struct edp_power_seq cur, vbt;
2563 u32 pp_on, pp_off, pp_div;
2564 struct edid *edid;
2565
2566 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2567 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2568 pp_div = I915_READ(PCH_PP_DIVISOR);
2569
2570 if (!pp_on || !pp_off || !pp_div) {
2571 DRM_INFO("bad panel power sequencing delays, disabling panel\n");
2572 intel_dp_encoder_destroy(&intel_dp->base.base);
2573 intel_dp_destroy(&intel_connector->base);
2574 return;
2575 }
2576
2577 /* Pull timing values out of registers */
2578 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2579 PANEL_POWER_UP_DELAY_SHIFT;
2580
2581 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2582 PANEL_LIGHT_ON_DELAY_SHIFT;
2583
2584 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2585 PANEL_LIGHT_OFF_DELAY_SHIFT;
2586
2587 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2588 PANEL_POWER_DOWN_DELAY_SHIFT;
2589
2590 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2591 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2592
2593 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2594 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2595
2596 vbt = dev_priv->edp.pps;
2597
2598 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2599 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2600
2601 #define get_delay(field) ((max(cur.field, vbt.field) + 9) / 10)
2602
2603 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2604 intel_dp->backlight_on_delay = get_delay(t8);
2605 intel_dp->backlight_off_delay = get_delay(t9);
2606 intel_dp->panel_power_down_delay = get_delay(t10);
2607 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2608
2609 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2610 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2611 intel_dp->panel_power_cycle_delay);
2612
2613 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2614 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2615
2616 ironlake_edp_panel_vdd_on(intel_dp);
2617 ret = intel_dp_get_dpcd(intel_dp);
2618 ironlake_edp_panel_vdd_off(intel_dp, false);
2619
2620 if (ret) {
2621 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2622 dev_priv->no_aux_handshake =
2623 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2624 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2625 } else {
2626 /* if this fails, presume the device is a ghost */
2627 DRM_INFO("failed to retrieve link info, disabling eDP\n");
2628 intel_dp_encoder_destroy(&intel_dp->base.base);
2629 intel_dp_destroy(&intel_connector->base);
2630 return;
2631 }
2632
2633 ironlake_edp_panel_vdd_on(intel_dp);
2634 edid = drm_get_edid(connector, &intel_dp->adapter);
2635 if (edid) {
2636 drm_mode_connector_update_edid_property(connector,
2637 edid);
2638 intel_dp->edid_mode_count =
2639 drm_add_edid_modes(connector, edid);
2640 drm_edid_to_eld(connector, edid);
2641 intel_dp->edid = edid;
2642 }
2643 ironlake_edp_panel_vdd_off(intel_dp, false);
2644 }
2645
2646 intel_encoder->hot_plug = intel_dp_hot_plug;
2647
2648 if (is_edp(intel_dp)) {
2649 dev_priv->int_edp_connector = connector;
2650 intel_panel_setup_backlight(dev);
2651 }
2652
2653 intel_dp_add_properties(intel_dp, connector);
2654
2655 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2656 * 0xd. Failure to do so will result in spurious interrupts being
2657 * generated on the port when a cable is not attached.
2658 */
2659 if (IS_G4X(dev) && !IS_GM45(dev)) {
2660 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2661 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2662 }
2663 }
This page took 0.141046 seconds and 6 git commands to generate.