drm/i915: Enable/disable TMDS output buffers in DP++ adaptor as needed
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_hdmi.c
1 /*
2 * Copyright 2006 Dave Airlie <airlied@linux.ie>
3 * Copyright © 2006-2009 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 *
24 * Authors:
25 * Eric Anholt <eric@anholt.net>
26 * Jesse Barnes <jesse.barnes@intel.com>
27 */
28
29 #include <linux/i2c.h>
30 #include <linux/slab.h>
31 #include <linux/delay.h>
32 #include <linux/hdmi.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_edid.h>
37 #include "intel_drv.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40
41 static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
42 {
43 return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
44 }
45
46 static void
47 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
48 {
49 struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
50 struct drm_i915_private *dev_priv = dev->dev_private;
51 uint32_t enabled_bits;
52
53 enabled_bits = HAS_DDI(dev) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
54
55 WARN(I915_READ(intel_hdmi->hdmi_reg) & enabled_bits,
56 "HDMI port enabled, expecting disabled\n");
57 }
58
59 struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder)
60 {
61 struct intel_digital_port *intel_dig_port =
62 container_of(encoder, struct intel_digital_port, base.base);
63 return &intel_dig_port->hdmi;
64 }
65
66 static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector)
67 {
68 return enc_to_intel_hdmi(&intel_attached_encoder(connector)->base);
69 }
70
71 static u32 g4x_infoframe_index(enum hdmi_infoframe_type type)
72 {
73 switch (type) {
74 case HDMI_INFOFRAME_TYPE_AVI:
75 return VIDEO_DIP_SELECT_AVI;
76 case HDMI_INFOFRAME_TYPE_SPD:
77 return VIDEO_DIP_SELECT_SPD;
78 case HDMI_INFOFRAME_TYPE_VENDOR:
79 return VIDEO_DIP_SELECT_VENDOR;
80 default:
81 MISSING_CASE(type);
82 return 0;
83 }
84 }
85
86 static u32 g4x_infoframe_enable(enum hdmi_infoframe_type type)
87 {
88 switch (type) {
89 case HDMI_INFOFRAME_TYPE_AVI:
90 return VIDEO_DIP_ENABLE_AVI;
91 case HDMI_INFOFRAME_TYPE_SPD:
92 return VIDEO_DIP_ENABLE_SPD;
93 case HDMI_INFOFRAME_TYPE_VENDOR:
94 return VIDEO_DIP_ENABLE_VENDOR;
95 default:
96 MISSING_CASE(type);
97 return 0;
98 }
99 }
100
101 static u32 hsw_infoframe_enable(enum hdmi_infoframe_type type)
102 {
103 switch (type) {
104 case HDMI_INFOFRAME_TYPE_AVI:
105 return VIDEO_DIP_ENABLE_AVI_HSW;
106 case HDMI_INFOFRAME_TYPE_SPD:
107 return VIDEO_DIP_ENABLE_SPD_HSW;
108 case HDMI_INFOFRAME_TYPE_VENDOR:
109 return VIDEO_DIP_ENABLE_VS_HSW;
110 default:
111 MISSING_CASE(type);
112 return 0;
113 }
114 }
115
116 static i915_reg_t
117 hsw_dip_data_reg(struct drm_i915_private *dev_priv,
118 enum transcoder cpu_transcoder,
119 enum hdmi_infoframe_type type,
120 int i)
121 {
122 switch (type) {
123 case HDMI_INFOFRAME_TYPE_AVI:
124 return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
125 case HDMI_INFOFRAME_TYPE_SPD:
126 return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
127 case HDMI_INFOFRAME_TYPE_VENDOR:
128 return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
129 default:
130 MISSING_CASE(type);
131 return INVALID_MMIO_REG;
132 }
133 }
134
135 static void g4x_write_infoframe(struct drm_encoder *encoder,
136 enum hdmi_infoframe_type type,
137 const void *frame, ssize_t len)
138 {
139 const uint32_t *data = frame;
140 struct drm_device *dev = encoder->dev;
141 struct drm_i915_private *dev_priv = dev->dev_private;
142 u32 val = I915_READ(VIDEO_DIP_CTL);
143 int i;
144
145 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
146
147 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
148 val |= g4x_infoframe_index(type);
149
150 val &= ~g4x_infoframe_enable(type);
151
152 I915_WRITE(VIDEO_DIP_CTL, val);
153
154 mmiowb();
155 for (i = 0; i < len; i += 4) {
156 I915_WRITE(VIDEO_DIP_DATA, *data);
157 data++;
158 }
159 /* Write every possible data byte to force correct ECC calculation. */
160 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
161 I915_WRITE(VIDEO_DIP_DATA, 0);
162 mmiowb();
163
164 val |= g4x_infoframe_enable(type);
165 val &= ~VIDEO_DIP_FREQ_MASK;
166 val |= VIDEO_DIP_FREQ_VSYNC;
167
168 I915_WRITE(VIDEO_DIP_CTL, val);
169 POSTING_READ(VIDEO_DIP_CTL);
170 }
171
172 static bool g4x_infoframe_enabled(struct drm_encoder *encoder,
173 const struct intel_crtc_state *pipe_config)
174 {
175 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
176 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
177 u32 val = I915_READ(VIDEO_DIP_CTL);
178
179 if ((val & VIDEO_DIP_ENABLE) == 0)
180 return false;
181
182 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
183 return false;
184
185 return val & (VIDEO_DIP_ENABLE_AVI |
186 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
187 }
188
189 static void ibx_write_infoframe(struct drm_encoder *encoder,
190 enum hdmi_infoframe_type type,
191 const void *frame, ssize_t len)
192 {
193 const uint32_t *data = frame;
194 struct drm_device *dev = encoder->dev;
195 struct drm_i915_private *dev_priv = dev->dev_private;
196 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
197 i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
198 u32 val = I915_READ(reg);
199 int i;
200
201 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
202
203 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
204 val |= g4x_infoframe_index(type);
205
206 val &= ~g4x_infoframe_enable(type);
207
208 I915_WRITE(reg, val);
209
210 mmiowb();
211 for (i = 0; i < len; i += 4) {
212 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
213 data++;
214 }
215 /* Write every possible data byte to force correct ECC calculation. */
216 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
217 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
218 mmiowb();
219
220 val |= g4x_infoframe_enable(type);
221 val &= ~VIDEO_DIP_FREQ_MASK;
222 val |= VIDEO_DIP_FREQ_VSYNC;
223
224 I915_WRITE(reg, val);
225 POSTING_READ(reg);
226 }
227
228 static bool ibx_infoframe_enabled(struct drm_encoder *encoder,
229 const struct intel_crtc_state *pipe_config)
230 {
231 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
232 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
233 enum pipe pipe = to_intel_crtc(pipe_config->base.crtc)->pipe;
234 i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
235 u32 val = I915_READ(reg);
236
237 if ((val & VIDEO_DIP_ENABLE) == 0)
238 return false;
239
240 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
241 return false;
242
243 return val & (VIDEO_DIP_ENABLE_AVI |
244 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
245 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
246 }
247
248 static void cpt_write_infoframe(struct drm_encoder *encoder,
249 enum hdmi_infoframe_type type,
250 const void *frame, ssize_t len)
251 {
252 const uint32_t *data = frame;
253 struct drm_device *dev = encoder->dev;
254 struct drm_i915_private *dev_priv = dev->dev_private;
255 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
256 i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
257 u32 val = I915_READ(reg);
258 int i;
259
260 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
261
262 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
263 val |= g4x_infoframe_index(type);
264
265 /* The DIP control register spec says that we need to update the AVI
266 * infoframe without clearing its enable bit */
267 if (type != HDMI_INFOFRAME_TYPE_AVI)
268 val &= ~g4x_infoframe_enable(type);
269
270 I915_WRITE(reg, val);
271
272 mmiowb();
273 for (i = 0; i < len; i += 4) {
274 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
275 data++;
276 }
277 /* Write every possible data byte to force correct ECC calculation. */
278 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
279 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
280 mmiowb();
281
282 val |= g4x_infoframe_enable(type);
283 val &= ~VIDEO_DIP_FREQ_MASK;
284 val |= VIDEO_DIP_FREQ_VSYNC;
285
286 I915_WRITE(reg, val);
287 POSTING_READ(reg);
288 }
289
290 static bool cpt_infoframe_enabled(struct drm_encoder *encoder,
291 const struct intel_crtc_state *pipe_config)
292 {
293 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
294 enum pipe pipe = to_intel_crtc(pipe_config->base.crtc)->pipe;
295 u32 val = I915_READ(TVIDEO_DIP_CTL(pipe));
296
297 if ((val & VIDEO_DIP_ENABLE) == 0)
298 return false;
299
300 return val & (VIDEO_DIP_ENABLE_AVI |
301 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
302 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
303 }
304
305 static void vlv_write_infoframe(struct drm_encoder *encoder,
306 enum hdmi_infoframe_type type,
307 const void *frame, ssize_t len)
308 {
309 const uint32_t *data = frame;
310 struct drm_device *dev = encoder->dev;
311 struct drm_i915_private *dev_priv = dev->dev_private;
312 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
313 i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
314 u32 val = I915_READ(reg);
315 int i;
316
317 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
318
319 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
320 val |= g4x_infoframe_index(type);
321
322 val &= ~g4x_infoframe_enable(type);
323
324 I915_WRITE(reg, val);
325
326 mmiowb();
327 for (i = 0; i < len; i += 4) {
328 I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
329 data++;
330 }
331 /* Write every possible data byte to force correct ECC calculation. */
332 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
333 I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
334 mmiowb();
335
336 val |= g4x_infoframe_enable(type);
337 val &= ~VIDEO_DIP_FREQ_MASK;
338 val |= VIDEO_DIP_FREQ_VSYNC;
339
340 I915_WRITE(reg, val);
341 POSTING_READ(reg);
342 }
343
344 static bool vlv_infoframe_enabled(struct drm_encoder *encoder,
345 const struct intel_crtc_state *pipe_config)
346 {
347 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
348 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
349 enum pipe pipe = to_intel_crtc(pipe_config->base.crtc)->pipe;
350 u32 val = I915_READ(VLV_TVIDEO_DIP_CTL(pipe));
351
352 if ((val & VIDEO_DIP_ENABLE) == 0)
353 return false;
354
355 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
356 return false;
357
358 return val & (VIDEO_DIP_ENABLE_AVI |
359 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
360 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
361 }
362
363 static void hsw_write_infoframe(struct drm_encoder *encoder,
364 enum hdmi_infoframe_type type,
365 const void *frame, ssize_t len)
366 {
367 const uint32_t *data = frame;
368 struct drm_device *dev = encoder->dev;
369 struct drm_i915_private *dev_priv = dev->dev_private;
370 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
371 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
372 i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
373 i915_reg_t data_reg;
374 int i;
375 u32 val = I915_READ(ctl_reg);
376
377 data_reg = hsw_dip_data_reg(dev_priv, cpu_transcoder, type, 0);
378
379 val &= ~hsw_infoframe_enable(type);
380 I915_WRITE(ctl_reg, val);
381
382 mmiowb();
383 for (i = 0; i < len; i += 4) {
384 I915_WRITE(hsw_dip_data_reg(dev_priv, cpu_transcoder,
385 type, i >> 2), *data);
386 data++;
387 }
388 /* Write every possible data byte to force correct ECC calculation. */
389 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
390 I915_WRITE(hsw_dip_data_reg(dev_priv, cpu_transcoder,
391 type, i >> 2), 0);
392 mmiowb();
393
394 val |= hsw_infoframe_enable(type);
395 I915_WRITE(ctl_reg, val);
396 POSTING_READ(ctl_reg);
397 }
398
399 static bool hsw_infoframe_enabled(struct drm_encoder *encoder,
400 const struct intel_crtc_state *pipe_config)
401 {
402 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
403 u32 val = I915_READ(HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder));
404
405 return val & (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
406 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
407 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
408 }
409
410 /*
411 * The data we write to the DIP data buffer registers is 1 byte bigger than the
412 * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
413 * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
414 * used for both technologies.
415 *
416 * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
417 * DW1: DB3 | DB2 | DB1 | DB0
418 * DW2: DB7 | DB6 | DB5 | DB4
419 * DW3: ...
420 *
421 * (HB is Header Byte, DB is Data Byte)
422 *
423 * The hdmi pack() functions don't know about that hardware specific hole so we
424 * trick them by giving an offset into the buffer and moving back the header
425 * bytes by one.
426 */
427 static void intel_write_infoframe(struct drm_encoder *encoder,
428 union hdmi_infoframe *frame)
429 {
430 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
431 uint8_t buffer[VIDEO_DIP_DATA_SIZE];
432 ssize_t len;
433
434 /* see comment above for the reason for this offset */
435 len = hdmi_infoframe_pack(frame, buffer + 1, sizeof(buffer) - 1);
436 if (len < 0)
437 return;
438
439 /* Insert the 'hole' (see big comment above) at position 3 */
440 buffer[0] = buffer[1];
441 buffer[1] = buffer[2];
442 buffer[2] = buffer[3];
443 buffer[3] = 0;
444 len++;
445
446 intel_hdmi->write_infoframe(encoder, frame->any.type, buffer, len);
447 }
448
449 static void intel_hdmi_set_avi_infoframe(struct drm_encoder *encoder,
450 const struct drm_display_mode *adjusted_mode)
451 {
452 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
453 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
454 union hdmi_infoframe frame;
455 int ret;
456
457 ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
458 adjusted_mode);
459 if (ret < 0) {
460 DRM_ERROR("couldn't fill AVI infoframe\n");
461 return;
462 }
463
464 if (intel_hdmi->rgb_quant_range_selectable) {
465 if (intel_crtc->config->limited_color_range)
466 frame.avi.quantization_range =
467 HDMI_QUANTIZATION_RANGE_LIMITED;
468 else
469 frame.avi.quantization_range =
470 HDMI_QUANTIZATION_RANGE_FULL;
471 }
472
473 intel_write_infoframe(encoder, &frame);
474 }
475
476 static void intel_hdmi_set_spd_infoframe(struct drm_encoder *encoder)
477 {
478 union hdmi_infoframe frame;
479 int ret;
480
481 ret = hdmi_spd_infoframe_init(&frame.spd, "Intel", "Integrated gfx");
482 if (ret < 0) {
483 DRM_ERROR("couldn't fill SPD infoframe\n");
484 return;
485 }
486
487 frame.spd.sdi = HDMI_SPD_SDI_PC;
488
489 intel_write_infoframe(encoder, &frame);
490 }
491
492 static void
493 intel_hdmi_set_hdmi_infoframe(struct drm_encoder *encoder,
494 const struct drm_display_mode *adjusted_mode)
495 {
496 union hdmi_infoframe frame;
497 int ret;
498
499 ret = drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
500 adjusted_mode);
501 if (ret < 0)
502 return;
503
504 intel_write_infoframe(encoder, &frame);
505 }
506
507 static void g4x_set_infoframes(struct drm_encoder *encoder,
508 bool enable,
509 const struct drm_display_mode *adjusted_mode)
510 {
511 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
512 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
513 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
514 i915_reg_t reg = VIDEO_DIP_CTL;
515 u32 val = I915_READ(reg);
516 u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
517
518 assert_hdmi_port_disabled(intel_hdmi);
519
520 /* If the registers were not initialized yet, they might be zeroes,
521 * which means we're selecting the AVI DIP and we're setting its
522 * frequency to once. This seems to really confuse the HW and make
523 * things stop working (the register spec says the AVI always needs to
524 * be sent every VSync). So here we avoid writing to the register more
525 * than we need and also explicitly select the AVI DIP and explicitly
526 * set its frequency to every VSync. Avoiding to write it twice seems to
527 * be enough to solve the problem, but being defensive shouldn't hurt us
528 * either. */
529 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
530
531 if (!enable) {
532 if (!(val & VIDEO_DIP_ENABLE))
533 return;
534 if (port != (val & VIDEO_DIP_PORT_MASK)) {
535 DRM_DEBUG_KMS("video DIP still enabled on port %c\n",
536 (val & VIDEO_DIP_PORT_MASK) >> 29);
537 return;
538 }
539 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
540 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
541 I915_WRITE(reg, val);
542 POSTING_READ(reg);
543 return;
544 }
545
546 if (port != (val & VIDEO_DIP_PORT_MASK)) {
547 if (val & VIDEO_DIP_ENABLE) {
548 DRM_DEBUG_KMS("video DIP already enabled on port %c\n",
549 (val & VIDEO_DIP_PORT_MASK) >> 29);
550 return;
551 }
552 val &= ~VIDEO_DIP_PORT_MASK;
553 val |= port;
554 }
555
556 val |= VIDEO_DIP_ENABLE;
557 val &= ~(VIDEO_DIP_ENABLE_AVI |
558 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
559
560 I915_WRITE(reg, val);
561 POSTING_READ(reg);
562
563 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
564 intel_hdmi_set_spd_infoframe(encoder);
565 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
566 }
567
568 static bool hdmi_sink_is_deep_color(struct drm_encoder *encoder)
569 {
570 struct drm_device *dev = encoder->dev;
571 struct drm_connector *connector;
572
573 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
574
575 /*
576 * HDMI cloning is only supported on g4x which doesn't
577 * support deep color or GCP infoframes anyway so no
578 * need to worry about multiple HDMI sinks here.
579 */
580 list_for_each_entry(connector, &dev->mode_config.connector_list, head)
581 if (connector->encoder == encoder)
582 return connector->display_info.bpc > 8;
583
584 return false;
585 }
586
587 /*
588 * Determine if default_phase=1 can be indicated in the GCP infoframe.
589 *
590 * From HDMI specification 1.4a:
591 * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
592 * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
593 * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
594 * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
595 * phase of 0
596 */
597 static bool gcp_default_phase_possible(int pipe_bpp,
598 const struct drm_display_mode *mode)
599 {
600 unsigned int pixels_per_group;
601
602 switch (pipe_bpp) {
603 case 30:
604 /* 4 pixels in 5 clocks */
605 pixels_per_group = 4;
606 break;
607 case 36:
608 /* 2 pixels in 3 clocks */
609 pixels_per_group = 2;
610 break;
611 case 48:
612 /* 1 pixel in 2 clocks */
613 pixels_per_group = 1;
614 break;
615 default:
616 /* phase information not relevant for 8bpc */
617 return false;
618 }
619
620 return mode->crtc_hdisplay % pixels_per_group == 0 &&
621 mode->crtc_htotal % pixels_per_group == 0 &&
622 mode->crtc_hblank_start % pixels_per_group == 0 &&
623 mode->crtc_hblank_end % pixels_per_group == 0 &&
624 mode->crtc_hsync_start % pixels_per_group == 0 &&
625 mode->crtc_hsync_end % pixels_per_group == 0 &&
626 ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
627 mode->crtc_htotal/2 % pixels_per_group == 0);
628 }
629
630 static bool intel_hdmi_set_gcp_infoframe(struct drm_encoder *encoder)
631 {
632 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
633 struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
634 i915_reg_t reg;
635 u32 val = 0;
636
637 if (HAS_DDI(dev_priv))
638 reg = HSW_TVIDEO_DIP_GCP(crtc->config->cpu_transcoder);
639 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
640 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
641 else if (HAS_PCH_SPLIT(dev_priv))
642 reg = TVIDEO_DIP_GCP(crtc->pipe);
643 else
644 return false;
645
646 /* Indicate color depth whenever the sink supports deep color */
647 if (hdmi_sink_is_deep_color(encoder))
648 val |= GCP_COLOR_INDICATION;
649
650 /* Enable default_phase whenever the display mode is suitably aligned */
651 if (gcp_default_phase_possible(crtc->config->pipe_bpp,
652 &crtc->config->base.adjusted_mode))
653 val |= GCP_DEFAULT_PHASE_ENABLE;
654
655 I915_WRITE(reg, val);
656
657 return val != 0;
658 }
659
660 static void ibx_set_infoframes(struct drm_encoder *encoder,
661 bool enable,
662 const struct drm_display_mode *adjusted_mode)
663 {
664 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
665 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
666 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
667 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
668 i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
669 u32 val = I915_READ(reg);
670 u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
671
672 assert_hdmi_port_disabled(intel_hdmi);
673
674 /* See the big comment in g4x_set_infoframes() */
675 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
676
677 if (!enable) {
678 if (!(val & VIDEO_DIP_ENABLE))
679 return;
680 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
681 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
682 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
683 I915_WRITE(reg, val);
684 POSTING_READ(reg);
685 return;
686 }
687
688 if (port != (val & VIDEO_DIP_PORT_MASK)) {
689 WARN(val & VIDEO_DIP_ENABLE,
690 "DIP already enabled on port %c\n",
691 (val & VIDEO_DIP_PORT_MASK) >> 29);
692 val &= ~VIDEO_DIP_PORT_MASK;
693 val |= port;
694 }
695
696 val |= VIDEO_DIP_ENABLE;
697 val &= ~(VIDEO_DIP_ENABLE_AVI |
698 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
699 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
700
701 if (intel_hdmi_set_gcp_infoframe(encoder))
702 val |= VIDEO_DIP_ENABLE_GCP;
703
704 I915_WRITE(reg, val);
705 POSTING_READ(reg);
706
707 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
708 intel_hdmi_set_spd_infoframe(encoder);
709 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
710 }
711
712 static void cpt_set_infoframes(struct drm_encoder *encoder,
713 bool enable,
714 const struct drm_display_mode *adjusted_mode)
715 {
716 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
717 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
718 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
719 i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
720 u32 val = I915_READ(reg);
721
722 assert_hdmi_port_disabled(intel_hdmi);
723
724 /* See the big comment in g4x_set_infoframes() */
725 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
726
727 if (!enable) {
728 if (!(val & VIDEO_DIP_ENABLE))
729 return;
730 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
731 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
732 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
733 I915_WRITE(reg, val);
734 POSTING_READ(reg);
735 return;
736 }
737
738 /* Set both together, unset both together: see the spec. */
739 val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
740 val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
741 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
742
743 if (intel_hdmi_set_gcp_infoframe(encoder))
744 val |= VIDEO_DIP_ENABLE_GCP;
745
746 I915_WRITE(reg, val);
747 POSTING_READ(reg);
748
749 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
750 intel_hdmi_set_spd_infoframe(encoder);
751 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
752 }
753
754 static void vlv_set_infoframes(struct drm_encoder *encoder,
755 bool enable,
756 const struct drm_display_mode *adjusted_mode)
757 {
758 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
759 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
760 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
761 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
762 i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
763 u32 val = I915_READ(reg);
764 u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
765
766 assert_hdmi_port_disabled(intel_hdmi);
767
768 /* See the big comment in g4x_set_infoframes() */
769 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
770
771 if (!enable) {
772 if (!(val & VIDEO_DIP_ENABLE))
773 return;
774 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
775 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
776 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
777 I915_WRITE(reg, val);
778 POSTING_READ(reg);
779 return;
780 }
781
782 if (port != (val & VIDEO_DIP_PORT_MASK)) {
783 WARN(val & VIDEO_DIP_ENABLE,
784 "DIP already enabled on port %c\n",
785 (val & VIDEO_DIP_PORT_MASK) >> 29);
786 val &= ~VIDEO_DIP_PORT_MASK;
787 val |= port;
788 }
789
790 val |= VIDEO_DIP_ENABLE;
791 val &= ~(VIDEO_DIP_ENABLE_AVI |
792 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
793 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
794
795 if (intel_hdmi_set_gcp_infoframe(encoder))
796 val |= VIDEO_DIP_ENABLE_GCP;
797
798 I915_WRITE(reg, val);
799 POSTING_READ(reg);
800
801 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
802 intel_hdmi_set_spd_infoframe(encoder);
803 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
804 }
805
806 static void hsw_set_infoframes(struct drm_encoder *encoder,
807 bool enable,
808 const struct drm_display_mode *adjusted_mode)
809 {
810 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
811 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
812 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
813 i915_reg_t reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config->cpu_transcoder);
814 u32 val = I915_READ(reg);
815
816 assert_hdmi_port_disabled(intel_hdmi);
817
818 val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
819 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
820 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
821
822 if (!enable) {
823 I915_WRITE(reg, val);
824 POSTING_READ(reg);
825 return;
826 }
827
828 if (intel_hdmi_set_gcp_infoframe(encoder))
829 val |= VIDEO_DIP_ENABLE_GCP_HSW;
830
831 I915_WRITE(reg, val);
832 POSTING_READ(reg);
833
834 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
835 intel_hdmi_set_spd_infoframe(encoder);
836 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
837 }
838
839 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
840 {
841 struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi));
842 struct i2c_adapter *adapter =
843 intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
844
845 if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
846 return;
847
848 DRM_DEBUG_KMS("%s DP dual mode adaptor TMDS output\n",
849 enable ? "Enabling" : "Disabling");
850
851 drm_dp_dual_mode_set_tmds_output(hdmi->dp_dual_mode.type,
852 adapter, enable);
853 }
854
855 static void intel_hdmi_prepare(struct intel_encoder *encoder)
856 {
857 struct drm_device *dev = encoder->base.dev;
858 struct drm_i915_private *dev_priv = dev->dev_private;
859 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
860 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
861 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
862 u32 hdmi_val;
863
864 intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
865
866 hdmi_val = SDVO_ENCODING_HDMI;
867 if (!HAS_PCH_SPLIT(dev) && crtc->config->limited_color_range)
868 hdmi_val |= HDMI_COLOR_RANGE_16_235;
869 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
870 hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH;
871 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
872 hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH;
873
874 if (crtc->config->pipe_bpp > 24)
875 hdmi_val |= HDMI_COLOR_FORMAT_12bpc;
876 else
877 hdmi_val |= SDVO_COLOR_FORMAT_8bpc;
878
879 if (crtc->config->has_hdmi_sink)
880 hdmi_val |= HDMI_MODE_SELECT_HDMI;
881
882 if (HAS_PCH_CPT(dev))
883 hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe);
884 else if (IS_CHERRYVIEW(dev))
885 hdmi_val |= SDVO_PIPE_SEL_CHV(crtc->pipe);
886 else
887 hdmi_val |= SDVO_PIPE_SEL(crtc->pipe);
888
889 I915_WRITE(intel_hdmi->hdmi_reg, hdmi_val);
890 POSTING_READ(intel_hdmi->hdmi_reg);
891 }
892
893 static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder,
894 enum pipe *pipe)
895 {
896 struct drm_device *dev = encoder->base.dev;
897 struct drm_i915_private *dev_priv = dev->dev_private;
898 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
899 enum intel_display_power_domain power_domain;
900 u32 tmp;
901 bool ret;
902
903 power_domain = intel_display_port_power_domain(encoder);
904 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
905 return false;
906
907 ret = false;
908
909 tmp = I915_READ(intel_hdmi->hdmi_reg);
910
911 if (!(tmp & SDVO_ENABLE))
912 goto out;
913
914 if (HAS_PCH_CPT(dev))
915 *pipe = PORT_TO_PIPE_CPT(tmp);
916 else if (IS_CHERRYVIEW(dev))
917 *pipe = SDVO_PORT_TO_PIPE_CHV(tmp);
918 else
919 *pipe = PORT_TO_PIPE(tmp);
920
921 ret = true;
922
923 out:
924 intel_display_power_put(dev_priv, power_domain);
925
926 return ret;
927 }
928
929 static void intel_hdmi_get_config(struct intel_encoder *encoder,
930 struct intel_crtc_state *pipe_config)
931 {
932 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
933 struct drm_device *dev = encoder->base.dev;
934 struct drm_i915_private *dev_priv = dev->dev_private;
935 u32 tmp, flags = 0;
936 int dotclock;
937
938 tmp = I915_READ(intel_hdmi->hdmi_reg);
939
940 if (tmp & SDVO_HSYNC_ACTIVE_HIGH)
941 flags |= DRM_MODE_FLAG_PHSYNC;
942 else
943 flags |= DRM_MODE_FLAG_NHSYNC;
944
945 if (tmp & SDVO_VSYNC_ACTIVE_HIGH)
946 flags |= DRM_MODE_FLAG_PVSYNC;
947 else
948 flags |= DRM_MODE_FLAG_NVSYNC;
949
950 if (tmp & HDMI_MODE_SELECT_HDMI)
951 pipe_config->has_hdmi_sink = true;
952
953 if (intel_hdmi->infoframe_enabled(&encoder->base, pipe_config))
954 pipe_config->has_infoframe = true;
955
956 if (tmp & SDVO_AUDIO_ENABLE)
957 pipe_config->has_audio = true;
958
959 if (!HAS_PCH_SPLIT(dev) &&
960 tmp & HDMI_COLOR_RANGE_16_235)
961 pipe_config->limited_color_range = true;
962
963 pipe_config->base.adjusted_mode.flags |= flags;
964
965 if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc)
966 dotclock = pipe_config->port_clock * 2 / 3;
967 else
968 dotclock = pipe_config->port_clock;
969
970 if (pipe_config->pixel_multiplier)
971 dotclock /= pipe_config->pixel_multiplier;
972
973 pipe_config->base.adjusted_mode.crtc_clock = dotclock;
974 }
975
976 static void intel_enable_hdmi_audio(struct intel_encoder *encoder)
977 {
978 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
979
980 WARN_ON(!crtc->config->has_hdmi_sink);
981 DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n",
982 pipe_name(crtc->pipe));
983 intel_audio_codec_enable(encoder);
984 }
985
986 static void g4x_enable_hdmi(struct intel_encoder *encoder)
987 {
988 struct drm_device *dev = encoder->base.dev;
989 struct drm_i915_private *dev_priv = dev->dev_private;
990 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
991 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
992 u32 temp;
993
994 temp = I915_READ(intel_hdmi->hdmi_reg);
995
996 temp |= SDVO_ENABLE;
997 if (crtc->config->has_audio)
998 temp |= SDVO_AUDIO_ENABLE;
999
1000 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1001 POSTING_READ(intel_hdmi->hdmi_reg);
1002
1003 if (crtc->config->has_audio)
1004 intel_enable_hdmi_audio(encoder);
1005 }
1006
1007 static void ibx_enable_hdmi(struct intel_encoder *encoder)
1008 {
1009 struct drm_device *dev = encoder->base.dev;
1010 struct drm_i915_private *dev_priv = dev->dev_private;
1011 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1012 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1013 u32 temp;
1014
1015 temp = I915_READ(intel_hdmi->hdmi_reg);
1016
1017 temp |= SDVO_ENABLE;
1018 if (crtc->config->has_audio)
1019 temp |= SDVO_AUDIO_ENABLE;
1020
1021 /*
1022 * HW workaround, need to write this twice for issue
1023 * that may result in first write getting masked.
1024 */
1025 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1026 POSTING_READ(intel_hdmi->hdmi_reg);
1027 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1028 POSTING_READ(intel_hdmi->hdmi_reg);
1029
1030 /*
1031 * HW workaround, need to toggle enable bit off and on
1032 * for 12bpc with pixel repeat.
1033 *
1034 * FIXME: BSpec says this should be done at the end of
1035 * of the modeset sequence, so not sure if this isn't too soon.
1036 */
1037 if (crtc->config->pipe_bpp > 24 &&
1038 crtc->config->pixel_multiplier > 1) {
1039 I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
1040 POSTING_READ(intel_hdmi->hdmi_reg);
1041
1042 /*
1043 * HW workaround, need to write this twice for issue
1044 * that may result in first write getting masked.
1045 */
1046 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1047 POSTING_READ(intel_hdmi->hdmi_reg);
1048 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1049 POSTING_READ(intel_hdmi->hdmi_reg);
1050 }
1051
1052 if (crtc->config->has_audio)
1053 intel_enable_hdmi_audio(encoder);
1054 }
1055
1056 static void cpt_enable_hdmi(struct intel_encoder *encoder)
1057 {
1058 struct drm_device *dev = encoder->base.dev;
1059 struct drm_i915_private *dev_priv = dev->dev_private;
1060 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1061 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1062 enum pipe pipe = crtc->pipe;
1063 u32 temp;
1064
1065 temp = I915_READ(intel_hdmi->hdmi_reg);
1066
1067 temp |= SDVO_ENABLE;
1068 if (crtc->config->has_audio)
1069 temp |= SDVO_AUDIO_ENABLE;
1070
1071 /*
1072 * WaEnableHDMI8bpcBefore12bpc:snb,ivb
1073 *
1074 * The procedure for 12bpc is as follows:
1075 * 1. disable HDMI clock gating
1076 * 2. enable HDMI with 8bpc
1077 * 3. enable HDMI with 12bpc
1078 * 4. enable HDMI clock gating
1079 */
1080
1081 if (crtc->config->pipe_bpp > 24) {
1082 I915_WRITE(TRANS_CHICKEN1(pipe),
1083 I915_READ(TRANS_CHICKEN1(pipe)) |
1084 TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
1085
1086 temp &= ~SDVO_COLOR_FORMAT_MASK;
1087 temp |= SDVO_COLOR_FORMAT_8bpc;
1088 }
1089
1090 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1091 POSTING_READ(intel_hdmi->hdmi_reg);
1092
1093 if (crtc->config->pipe_bpp > 24) {
1094 temp &= ~SDVO_COLOR_FORMAT_MASK;
1095 temp |= HDMI_COLOR_FORMAT_12bpc;
1096
1097 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1098 POSTING_READ(intel_hdmi->hdmi_reg);
1099
1100 I915_WRITE(TRANS_CHICKEN1(pipe),
1101 I915_READ(TRANS_CHICKEN1(pipe)) &
1102 ~TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
1103 }
1104
1105 if (crtc->config->has_audio)
1106 intel_enable_hdmi_audio(encoder);
1107 }
1108
1109 static void vlv_enable_hdmi(struct intel_encoder *encoder)
1110 {
1111 }
1112
1113 static void intel_disable_hdmi(struct intel_encoder *encoder)
1114 {
1115 struct drm_device *dev = encoder->base.dev;
1116 struct drm_i915_private *dev_priv = dev->dev_private;
1117 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1118 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1119 u32 temp;
1120
1121 temp = I915_READ(intel_hdmi->hdmi_reg);
1122
1123 temp &= ~(SDVO_ENABLE | SDVO_AUDIO_ENABLE);
1124 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1125 POSTING_READ(intel_hdmi->hdmi_reg);
1126
1127 /*
1128 * HW workaround for IBX, we need to move the port
1129 * to transcoder A after disabling it to allow the
1130 * matching DP port to be enabled on transcoder A.
1131 */
1132 if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B) {
1133 /*
1134 * We get CPU/PCH FIFO underruns on the other pipe when
1135 * doing the workaround. Sweep them under the rug.
1136 */
1137 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
1138 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
1139
1140 temp &= ~SDVO_PIPE_B_SELECT;
1141 temp |= SDVO_ENABLE;
1142 /*
1143 * HW workaround, need to write this twice for issue
1144 * that may result in first write getting masked.
1145 */
1146 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1147 POSTING_READ(intel_hdmi->hdmi_reg);
1148 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1149 POSTING_READ(intel_hdmi->hdmi_reg);
1150
1151 temp &= ~SDVO_ENABLE;
1152 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1153 POSTING_READ(intel_hdmi->hdmi_reg);
1154
1155 intel_wait_for_vblank_if_active(dev_priv->dev, PIPE_A);
1156 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
1157 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
1158 }
1159
1160 intel_hdmi->set_infoframes(&encoder->base, false, NULL);
1161
1162 intel_dp_dual_mode_set_tmds_output(intel_hdmi, false);
1163 }
1164
1165 static void g4x_disable_hdmi(struct intel_encoder *encoder)
1166 {
1167 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1168
1169 if (crtc->config->has_audio)
1170 intel_audio_codec_disable(encoder);
1171
1172 intel_disable_hdmi(encoder);
1173 }
1174
1175 static void pch_disable_hdmi(struct intel_encoder *encoder)
1176 {
1177 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1178
1179 if (crtc->config->has_audio)
1180 intel_audio_codec_disable(encoder);
1181 }
1182
1183 static void pch_post_disable_hdmi(struct intel_encoder *encoder)
1184 {
1185 intel_disable_hdmi(encoder);
1186 }
1187
1188 static int intel_hdmi_source_max_tmds_clock(struct drm_i915_private *dev_priv)
1189 {
1190 if (IS_G4X(dev_priv))
1191 return 165000;
1192 else if (IS_HASWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 8)
1193 return 300000;
1194 else
1195 return 225000;
1196 }
1197
1198 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1199 bool respect_downstream_limits)
1200 {
1201 struct drm_device *dev = intel_hdmi_to_dev(hdmi);
1202 int max_tmds_clock = intel_hdmi_source_max_tmds_clock(to_i915(dev));
1203
1204 if (respect_downstream_limits) {
1205 if (hdmi->dp_dual_mode.max_tmds_clock)
1206 max_tmds_clock = min(max_tmds_clock,
1207 hdmi->dp_dual_mode.max_tmds_clock);
1208 if (!hdmi->has_hdmi_sink)
1209 max_tmds_clock = min(max_tmds_clock, 165000);
1210 }
1211
1212 return max_tmds_clock;
1213 }
1214
1215 static enum drm_mode_status
1216 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1217 int clock, bool respect_downstream_limits)
1218 {
1219 struct drm_device *dev = intel_hdmi_to_dev(hdmi);
1220
1221 if (clock < 25000)
1222 return MODE_CLOCK_LOW;
1223 if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits))
1224 return MODE_CLOCK_HIGH;
1225
1226 /* BXT DPLL can't generate 223-240 MHz */
1227 if (IS_BROXTON(dev) && clock > 223333 && clock < 240000)
1228 return MODE_CLOCK_RANGE;
1229
1230 /* CHV DPLL can't generate 216-240 MHz */
1231 if (IS_CHERRYVIEW(dev) && clock > 216000 && clock < 240000)
1232 return MODE_CLOCK_RANGE;
1233
1234 return MODE_OK;
1235 }
1236
1237 static enum drm_mode_status
1238 intel_hdmi_mode_valid(struct drm_connector *connector,
1239 struct drm_display_mode *mode)
1240 {
1241 struct intel_hdmi *hdmi = intel_attached_hdmi(connector);
1242 struct drm_device *dev = intel_hdmi_to_dev(hdmi);
1243 enum drm_mode_status status;
1244 int clock;
1245 int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
1246
1247 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
1248 return MODE_NO_DBLESCAN;
1249
1250 clock = mode->clock;
1251
1252 if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
1253 clock *= 2;
1254
1255 if (clock > max_dotclk)
1256 return MODE_CLOCK_HIGH;
1257
1258 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
1259 clock *= 2;
1260
1261 /* check if we can do 8bpc */
1262 status = hdmi_port_clock_valid(hdmi, clock, true);
1263
1264 /* if we can't do 8bpc we may still be able to do 12bpc */
1265 if (!HAS_GMCH_DISPLAY(dev) && status != MODE_OK)
1266 status = hdmi_port_clock_valid(hdmi, clock * 3 / 2, true);
1267
1268 return status;
1269 }
1270
1271 static bool hdmi_12bpc_possible(struct intel_crtc_state *crtc_state)
1272 {
1273 struct drm_device *dev = crtc_state->base.crtc->dev;
1274 struct drm_atomic_state *state;
1275 struct intel_encoder *encoder;
1276 struct drm_connector *connector;
1277 struct drm_connector_state *connector_state;
1278 int count = 0, count_hdmi = 0;
1279 int i;
1280
1281 if (HAS_GMCH_DISPLAY(dev))
1282 return false;
1283
1284 state = crtc_state->base.state;
1285
1286 for_each_connector_in_state(state, connector, connector_state, i) {
1287 if (connector_state->crtc != crtc_state->base.crtc)
1288 continue;
1289
1290 encoder = to_intel_encoder(connector_state->best_encoder);
1291
1292 count_hdmi += encoder->type == INTEL_OUTPUT_HDMI;
1293 count++;
1294 }
1295
1296 /*
1297 * HDMI 12bpc affects the clocks, so it's only possible
1298 * when not cloning with other encoder types.
1299 */
1300 return count_hdmi > 0 && count_hdmi == count;
1301 }
1302
1303 bool intel_hdmi_compute_config(struct intel_encoder *encoder,
1304 struct intel_crtc_state *pipe_config)
1305 {
1306 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1307 struct drm_device *dev = encoder->base.dev;
1308 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1309 int clock_8bpc = pipe_config->base.adjusted_mode.crtc_clock;
1310 int clock_12bpc = clock_8bpc * 3 / 2;
1311 int desired_bpp;
1312
1313 pipe_config->has_hdmi_sink = intel_hdmi->has_hdmi_sink;
1314
1315 if (pipe_config->has_hdmi_sink)
1316 pipe_config->has_infoframe = true;
1317
1318 if (intel_hdmi->color_range_auto) {
1319 /* See CEA-861-E - 5.1 Default Encoding Parameters */
1320 pipe_config->limited_color_range =
1321 pipe_config->has_hdmi_sink &&
1322 drm_match_cea_mode(adjusted_mode) > 1;
1323 } else {
1324 pipe_config->limited_color_range =
1325 intel_hdmi->limited_color_range;
1326 }
1327
1328 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) {
1329 pipe_config->pixel_multiplier = 2;
1330 clock_8bpc *= 2;
1331 clock_12bpc *= 2;
1332 }
1333
1334 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev))
1335 pipe_config->has_pch_encoder = true;
1336
1337 if (pipe_config->has_hdmi_sink && intel_hdmi->has_audio)
1338 pipe_config->has_audio = true;
1339
1340 /*
1341 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
1342 * through, clamp it down. Note that g4x/vlv don't support 12bpc hdmi
1343 * outputs. We also need to check that the higher clock still fits
1344 * within limits.
1345 */
1346 if (pipe_config->pipe_bpp > 8*3 && pipe_config->has_hdmi_sink &&
1347 hdmi_port_clock_valid(intel_hdmi, clock_12bpc, true) == MODE_OK &&
1348 hdmi_12bpc_possible(pipe_config)) {
1349 DRM_DEBUG_KMS("picking bpc to 12 for HDMI output\n");
1350 desired_bpp = 12*3;
1351
1352 /* Need to adjust the port link by 1.5x for 12bpc. */
1353 pipe_config->port_clock = clock_12bpc;
1354 } else {
1355 DRM_DEBUG_KMS("picking bpc to 8 for HDMI output\n");
1356 desired_bpp = 8*3;
1357
1358 pipe_config->port_clock = clock_8bpc;
1359 }
1360
1361 if (!pipe_config->bw_constrained) {
1362 DRM_DEBUG_KMS("forcing pipe bpc to %i for HDMI\n", desired_bpp);
1363 pipe_config->pipe_bpp = desired_bpp;
1364 }
1365
1366 if (hdmi_port_clock_valid(intel_hdmi, pipe_config->port_clock,
1367 false) != MODE_OK) {
1368 DRM_DEBUG_KMS("unsupported HDMI clock, rejecting mode\n");
1369 return false;
1370 }
1371
1372 /* Set user selected PAR to incoming mode's member */
1373 adjusted_mode->picture_aspect_ratio = intel_hdmi->aspect_ratio;
1374
1375 return true;
1376 }
1377
1378 static void
1379 intel_hdmi_unset_edid(struct drm_connector *connector)
1380 {
1381 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1382
1383 intel_hdmi->has_hdmi_sink = false;
1384 intel_hdmi->has_audio = false;
1385 intel_hdmi->rgb_quant_range_selectable = false;
1386
1387 intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
1388 intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
1389
1390 kfree(to_intel_connector(connector)->detect_edid);
1391 to_intel_connector(connector)->detect_edid = NULL;
1392 }
1393
1394 static void
1395 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector)
1396 {
1397 struct drm_i915_private *dev_priv = to_i915(connector->dev);
1398 struct intel_hdmi *hdmi = intel_attached_hdmi(connector);
1399 struct i2c_adapter *adapter =
1400 intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
1401 enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(adapter);
1402
1403 if (type == DRM_DP_DUAL_MODE_NONE ||
1404 type == DRM_DP_DUAL_MODE_UNKNOWN)
1405 return;
1406
1407 hdmi->dp_dual_mode.type = type;
1408 hdmi->dp_dual_mode.max_tmds_clock =
1409 drm_dp_dual_mode_max_tmds_clock(type, adapter);
1410
1411 DRM_DEBUG_KMS("DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
1412 drm_dp_get_dual_mode_type_name(type),
1413 hdmi->dp_dual_mode.max_tmds_clock);
1414 }
1415
1416 static bool
1417 intel_hdmi_set_edid(struct drm_connector *connector, bool force)
1418 {
1419 struct drm_i915_private *dev_priv = to_i915(connector->dev);
1420 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1421 struct edid *edid = NULL;
1422 bool connected = false;
1423
1424 if (force) {
1425 intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
1426
1427 edid = drm_get_edid(connector,
1428 intel_gmbus_get_adapter(dev_priv,
1429 intel_hdmi->ddc_bus));
1430
1431 intel_hdmi_dp_dual_mode_detect(connector);
1432
1433 intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS);
1434 }
1435
1436 to_intel_connector(connector)->detect_edid = edid;
1437 if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
1438 intel_hdmi->rgb_quant_range_selectable =
1439 drm_rgb_quant_range_selectable(edid);
1440
1441 intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
1442 if (intel_hdmi->force_audio != HDMI_AUDIO_AUTO)
1443 intel_hdmi->has_audio =
1444 intel_hdmi->force_audio == HDMI_AUDIO_ON;
1445
1446 if (intel_hdmi->force_audio != HDMI_AUDIO_OFF_DVI)
1447 intel_hdmi->has_hdmi_sink =
1448 drm_detect_hdmi_monitor(edid);
1449
1450 connected = true;
1451 }
1452
1453 return connected;
1454 }
1455
1456 static enum drm_connector_status
1457 intel_hdmi_detect(struct drm_connector *connector, bool force)
1458 {
1459 enum drm_connector_status status;
1460 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1461 struct drm_i915_private *dev_priv = to_i915(connector->dev);
1462 bool live_status = false;
1463 unsigned int try;
1464
1465 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
1466 connector->base.id, connector->name);
1467
1468 intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
1469
1470 for (try = 0; !live_status && try < 9; try++) {
1471 if (try)
1472 msleep(10);
1473 live_status = intel_digital_port_connected(dev_priv,
1474 hdmi_to_dig_port(intel_hdmi));
1475 }
1476
1477 if (!live_status) {
1478 DRM_DEBUG_KMS("HDMI live status down\n");
1479 /*
1480 * Live status register is not reliable on all intel platforms.
1481 * So consider live_status only for certain platforms, for
1482 * others, read EDID to determine presence of sink.
1483 */
1484 if (INTEL_INFO(dev_priv)->gen < 7 || IS_IVYBRIDGE(dev_priv))
1485 live_status = true;
1486 }
1487
1488 intel_hdmi_unset_edid(connector);
1489
1490 if (intel_hdmi_set_edid(connector, live_status)) {
1491 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1492
1493 hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
1494 status = connector_status_connected;
1495 } else
1496 status = connector_status_disconnected;
1497
1498 intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS);
1499
1500 return status;
1501 }
1502
1503 static void
1504 intel_hdmi_force(struct drm_connector *connector)
1505 {
1506 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1507
1508 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
1509 connector->base.id, connector->name);
1510
1511 intel_hdmi_unset_edid(connector);
1512
1513 if (connector->status != connector_status_connected)
1514 return;
1515
1516 intel_hdmi_set_edid(connector, true);
1517 hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
1518 }
1519
1520 static int intel_hdmi_get_modes(struct drm_connector *connector)
1521 {
1522 struct edid *edid;
1523
1524 edid = to_intel_connector(connector)->detect_edid;
1525 if (edid == NULL)
1526 return 0;
1527
1528 return intel_connector_update_modes(connector, edid);
1529 }
1530
1531 static bool
1532 intel_hdmi_detect_audio(struct drm_connector *connector)
1533 {
1534 bool has_audio = false;
1535 struct edid *edid;
1536
1537 edid = to_intel_connector(connector)->detect_edid;
1538 if (edid && edid->input & DRM_EDID_INPUT_DIGITAL)
1539 has_audio = drm_detect_monitor_audio(edid);
1540
1541 return has_audio;
1542 }
1543
1544 static int
1545 intel_hdmi_set_property(struct drm_connector *connector,
1546 struct drm_property *property,
1547 uint64_t val)
1548 {
1549 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1550 struct intel_digital_port *intel_dig_port =
1551 hdmi_to_dig_port(intel_hdmi);
1552 struct drm_i915_private *dev_priv = connector->dev->dev_private;
1553 int ret;
1554
1555 ret = drm_object_property_set_value(&connector->base, property, val);
1556 if (ret)
1557 return ret;
1558
1559 if (property == dev_priv->force_audio_property) {
1560 enum hdmi_force_audio i = val;
1561 bool has_audio;
1562
1563 if (i == intel_hdmi->force_audio)
1564 return 0;
1565
1566 intel_hdmi->force_audio = i;
1567
1568 if (i == HDMI_AUDIO_AUTO)
1569 has_audio = intel_hdmi_detect_audio(connector);
1570 else
1571 has_audio = (i == HDMI_AUDIO_ON);
1572
1573 if (i == HDMI_AUDIO_OFF_DVI)
1574 intel_hdmi->has_hdmi_sink = 0;
1575
1576 intel_hdmi->has_audio = has_audio;
1577 goto done;
1578 }
1579
1580 if (property == dev_priv->broadcast_rgb_property) {
1581 bool old_auto = intel_hdmi->color_range_auto;
1582 bool old_range = intel_hdmi->limited_color_range;
1583
1584 switch (val) {
1585 case INTEL_BROADCAST_RGB_AUTO:
1586 intel_hdmi->color_range_auto = true;
1587 break;
1588 case INTEL_BROADCAST_RGB_FULL:
1589 intel_hdmi->color_range_auto = false;
1590 intel_hdmi->limited_color_range = false;
1591 break;
1592 case INTEL_BROADCAST_RGB_LIMITED:
1593 intel_hdmi->color_range_auto = false;
1594 intel_hdmi->limited_color_range = true;
1595 break;
1596 default:
1597 return -EINVAL;
1598 }
1599
1600 if (old_auto == intel_hdmi->color_range_auto &&
1601 old_range == intel_hdmi->limited_color_range)
1602 return 0;
1603
1604 goto done;
1605 }
1606
1607 if (property == connector->dev->mode_config.aspect_ratio_property) {
1608 switch (val) {
1609 case DRM_MODE_PICTURE_ASPECT_NONE:
1610 intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
1611 break;
1612 case DRM_MODE_PICTURE_ASPECT_4_3:
1613 intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_4_3;
1614 break;
1615 case DRM_MODE_PICTURE_ASPECT_16_9:
1616 intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_16_9;
1617 break;
1618 default:
1619 return -EINVAL;
1620 }
1621 goto done;
1622 }
1623
1624 return -EINVAL;
1625
1626 done:
1627 if (intel_dig_port->base.base.crtc)
1628 intel_crtc_restore_mode(intel_dig_port->base.base.crtc);
1629
1630 return 0;
1631 }
1632
1633 static void intel_hdmi_pre_enable(struct intel_encoder *encoder)
1634 {
1635 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1636 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1637 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1638
1639 intel_hdmi_prepare(encoder);
1640
1641 intel_hdmi->set_infoframes(&encoder->base,
1642 intel_crtc->config->has_hdmi_sink,
1643 adjusted_mode);
1644 }
1645
1646 static void vlv_hdmi_pre_enable(struct intel_encoder *encoder)
1647 {
1648 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1649 struct intel_hdmi *intel_hdmi = &dport->hdmi;
1650 struct drm_device *dev = encoder->base.dev;
1651 struct drm_i915_private *dev_priv = dev->dev_private;
1652 struct intel_crtc *intel_crtc =
1653 to_intel_crtc(encoder->base.crtc);
1654 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1655 enum dpio_channel port = vlv_dport_to_channel(dport);
1656 int pipe = intel_crtc->pipe;
1657 u32 val;
1658
1659 /* Enable clock channels for this port */
1660 mutex_lock(&dev_priv->sb_lock);
1661 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1662 val = 0;
1663 if (pipe)
1664 val |= (1<<21);
1665 else
1666 val &= ~(1<<21);
1667 val |= 0x001000c4;
1668 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1669
1670 /* HDMI 1.0V-2dB */
1671 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0);
1672 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), 0x2b245f5f);
1673 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), 0x5578b83a);
1674 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0c782040);
1675 vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), 0x2b247878);
1676 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
1677 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
1678 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1679
1680 /* Program lane clock */
1681 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1682 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1683 mutex_unlock(&dev_priv->sb_lock);
1684
1685 intel_hdmi->set_infoframes(&encoder->base,
1686 intel_crtc->config->has_hdmi_sink,
1687 adjusted_mode);
1688
1689 g4x_enable_hdmi(encoder);
1690
1691 vlv_wait_port_ready(dev_priv, dport, 0x0);
1692 }
1693
1694 static void vlv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
1695 {
1696 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1697 struct drm_device *dev = encoder->base.dev;
1698 struct drm_i915_private *dev_priv = dev->dev_private;
1699 struct intel_crtc *intel_crtc =
1700 to_intel_crtc(encoder->base.crtc);
1701 enum dpio_channel port = vlv_dport_to_channel(dport);
1702 int pipe = intel_crtc->pipe;
1703
1704 intel_hdmi_prepare(encoder);
1705
1706 /* Program Tx lane resets to default */
1707 mutex_lock(&dev_priv->sb_lock);
1708 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1709 DPIO_PCS_TX_LANE2_RESET |
1710 DPIO_PCS_TX_LANE1_RESET);
1711 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1712 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1713 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1714 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1715 DPIO_PCS_CLK_SOFT_RESET);
1716
1717 /* Fix up inter-pair skew failure */
1718 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1719 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1720 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1721
1722 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
1723 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1724 mutex_unlock(&dev_priv->sb_lock);
1725 }
1726
1727 static void chv_data_lane_soft_reset(struct intel_encoder *encoder,
1728 bool reset)
1729 {
1730 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1731 enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
1732 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1733 enum pipe pipe = crtc->pipe;
1734 uint32_t val;
1735
1736 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
1737 if (reset)
1738 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1739 else
1740 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
1741 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
1742
1743 if (crtc->config->lane_count > 2) {
1744 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
1745 if (reset)
1746 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1747 else
1748 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
1749 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
1750 }
1751
1752 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
1753 val |= CHV_PCS_REQ_SOFTRESET_EN;
1754 if (reset)
1755 val &= ~DPIO_PCS_CLK_SOFT_RESET;
1756 else
1757 val |= DPIO_PCS_CLK_SOFT_RESET;
1758 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
1759
1760 if (crtc->config->lane_count > 2) {
1761 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
1762 val |= CHV_PCS_REQ_SOFTRESET_EN;
1763 if (reset)
1764 val &= ~DPIO_PCS_CLK_SOFT_RESET;
1765 else
1766 val |= DPIO_PCS_CLK_SOFT_RESET;
1767 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
1768 }
1769 }
1770
1771 static void chv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
1772 {
1773 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1774 struct drm_device *dev = encoder->base.dev;
1775 struct drm_i915_private *dev_priv = dev->dev_private;
1776 struct intel_crtc *intel_crtc =
1777 to_intel_crtc(encoder->base.crtc);
1778 enum dpio_channel ch = vlv_dport_to_channel(dport);
1779 enum pipe pipe = intel_crtc->pipe;
1780 u32 val;
1781
1782 intel_hdmi_prepare(encoder);
1783
1784 /*
1785 * Must trick the second common lane into life.
1786 * Otherwise we can't even access the PLL.
1787 */
1788 if (ch == DPIO_CH0 && pipe == PIPE_B)
1789 dport->release_cl2_override =
1790 !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
1791
1792 chv_phy_powergate_lanes(encoder, true, 0x0);
1793
1794 mutex_lock(&dev_priv->sb_lock);
1795
1796 /* Assert data lane reset */
1797 chv_data_lane_soft_reset(encoder, true);
1798
1799 /* program left/right clock distribution */
1800 if (pipe != PIPE_B) {
1801 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1802 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1803 if (ch == DPIO_CH0)
1804 val |= CHV_BUFLEFTENA1_FORCE;
1805 if (ch == DPIO_CH1)
1806 val |= CHV_BUFRIGHTENA1_FORCE;
1807 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1808 } else {
1809 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1810 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1811 if (ch == DPIO_CH0)
1812 val |= CHV_BUFLEFTENA2_FORCE;
1813 if (ch == DPIO_CH1)
1814 val |= CHV_BUFRIGHTENA2_FORCE;
1815 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1816 }
1817
1818 /* program clock channel usage */
1819 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
1820 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
1821 if (pipe != PIPE_B)
1822 val &= ~CHV_PCS_USEDCLKCHANNEL;
1823 else
1824 val |= CHV_PCS_USEDCLKCHANNEL;
1825 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
1826
1827 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
1828 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
1829 if (pipe != PIPE_B)
1830 val &= ~CHV_PCS_USEDCLKCHANNEL;
1831 else
1832 val |= CHV_PCS_USEDCLKCHANNEL;
1833 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
1834
1835 /*
1836 * This a a bit weird since generally CL
1837 * matches the pipe, but here we need to
1838 * pick the CL based on the port.
1839 */
1840 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
1841 if (pipe != PIPE_B)
1842 val &= ~CHV_CMN_USEDCLKCHANNEL;
1843 else
1844 val |= CHV_CMN_USEDCLKCHANNEL;
1845 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
1846
1847 mutex_unlock(&dev_priv->sb_lock);
1848 }
1849
1850 static void chv_hdmi_post_pll_disable(struct intel_encoder *encoder)
1851 {
1852 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1853 enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
1854 u32 val;
1855
1856 mutex_lock(&dev_priv->sb_lock);
1857
1858 /* disable left/right clock distribution */
1859 if (pipe != PIPE_B) {
1860 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1861 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1862 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1863 } else {
1864 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1865 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1866 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1867 }
1868
1869 mutex_unlock(&dev_priv->sb_lock);
1870
1871 /*
1872 * Leave the power down bit cleared for at least one
1873 * lane so that chv_powergate_phy_ch() will power
1874 * on something when the channel is otherwise unused.
1875 * When the port is off and the override is removed
1876 * the lanes power down anyway, so otherwise it doesn't
1877 * really matter what the state of power down bits is
1878 * after this.
1879 */
1880 chv_phy_powergate_lanes(encoder, false, 0x0);
1881 }
1882
1883 static void vlv_hdmi_post_disable(struct intel_encoder *encoder)
1884 {
1885 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1886 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
1887 struct intel_crtc *intel_crtc =
1888 to_intel_crtc(encoder->base.crtc);
1889 enum dpio_channel port = vlv_dport_to_channel(dport);
1890 int pipe = intel_crtc->pipe;
1891
1892 /* Reset lanes to avoid HDMI flicker (VLV w/a) */
1893 mutex_lock(&dev_priv->sb_lock);
1894 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
1895 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
1896 mutex_unlock(&dev_priv->sb_lock);
1897 }
1898
1899 static void chv_hdmi_post_disable(struct intel_encoder *encoder)
1900 {
1901 struct drm_device *dev = encoder->base.dev;
1902 struct drm_i915_private *dev_priv = dev->dev_private;
1903
1904 mutex_lock(&dev_priv->sb_lock);
1905
1906 /* Assert data lane reset */
1907 chv_data_lane_soft_reset(encoder, true);
1908
1909 mutex_unlock(&dev_priv->sb_lock);
1910 }
1911
1912 static void chv_hdmi_pre_enable(struct intel_encoder *encoder)
1913 {
1914 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1915 struct intel_hdmi *intel_hdmi = &dport->hdmi;
1916 struct drm_device *dev = encoder->base.dev;
1917 struct drm_i915_private *dev_priv = dev->dev_private;
1918 struct intel_crtc *intel_crtc =
1919 to_intel_crtc(encoder->base.crtc);
1920 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1921 enum dpio_channel ch = vlv_dport_to_channel(dport);
1922 int pipe = intel_crtc->pipe;
1923 int data, i, stagger;
1924 u32 val;
1925
1926 mutex_lock(&dev_priv->sb_lock);
1927
1928 /* allow hardware to manage TX FIFO reset source */
1929 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
1930 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
1931 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
1932
1933 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
1934 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
1935 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
1936
1937 /* Program Tx latency optimal setting */
1938 for (i = 0; i < 4; i++) {
1939 /* Set the upar bit */
1940 data = (i == 1) ? 0x0 : 0x1;
1941 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
1942 data << DPIO_UPAR_SHIFT);
1943 }
1944
1945 /* Data lane stagger programming */
1946 if (intel_crtc->config->port_clock > 270000)
1947 stagger = 0x18;
1948 else if (intel_crtc->config->port_clock > 135000)
1949 stagger = 0xd;
1950 else if (intel_crtc->config->port_clock > 67500)
1951 stagger = 0x7;
1952 else if (intel_crtc->config->port_clock > 33750)
1953 stagger = 0x4;
1954 else
1955 stagger = 0x2;
1956
1957 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
1958 val |= DPIO_TX2_STAGGER_MASK(0x1f);
1959 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
1960
1961 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
1962 val |= DPIO_TX2_STAGGER_MASK(0x1f);
1963 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
1964
1965 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
1966 DPIO_LANESTAGGER_STRAP(stagger) |
1967 DPIO_LANESTAGGER_STRAP_OVRD |
1968 DPIO_TX1_STAGGER_MASK(0x1f) |
1969 DPIO_TX1_STAGGER_MULT(6) |
1970 DPIO_TX2_STAGGER_MULT(0));
1971
1972 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
1973 DPIO_LANESTAGGER_STRAP(stagger) |
1974 DPIO_LANESTAGGER_STRAP_OVRD |
1975 DPIO_TX1_STAGGER_MASK(0x1f) |
1976 DPIO_TX1_STAGGER_MULT(7) |
1977 DPIO_TX2_STAGGER_MULT(5));
1978
1979 /* Deassert data lane reset */
1980 chv_data_lane_soft_reset(encoder, false);
1981
1982 /* Clear calc init */
1983 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
1984 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
1985 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
1986 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
1987 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
1988
1989 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
1990 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
1991 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
1992 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
1993 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
1994
1995 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
1996 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
1997 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
1998 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
1999
2000 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
2001 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
2002 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
2003 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
2004
2005 /* FIXME: Program the support xxx V-dB */
2006 /* Use 800mV-0dB */
2007 for (i = 0; i < 4; i++) {
2008 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
2009 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
2010 val |= 128 << DPIO_SWING_DEEMPH9P5_SHIFT;
2011 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
2012 }
2013
2014 for (i = 0; i < 4; i++) {
2015 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2016
2017 val &= ~DPIO_SWING_MARGIN000_MASK;
2018 val |= 102 << DPIO_SWING_MARGIN000_SHIFT;
2019
2020 /*
2021 * Supposedly this value shouldn't matter when unique transition
2022 * scale is disabled, but in fact it does matter. Let's just
2023 * always program the same value and hope it's OK.
2024 */
2025 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2026 val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
2027
2028 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2029 }
2030
2031 /*
2032 * The document said it needs to set bit 27 for ch0 and bit 26
2033 * for ch1. Might be a typo in the doc.
2034 * For now, for this unique transition scale selection, set bit
2035 * 27 for ch0 and ch1.
2036 */
2037 for (i = 0; i < 4; i++) {
2038 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2039 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
2040 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2041 }
2042
2043 /* Start swing calculation */
2044 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2045 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2046 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2047
2048 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2049 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2050 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2051
2052 mutex_unlock(&dev_priv->sb_lock);
2053
2054 intel_hdmi->set_infoframes(&encoder->base,
2055 intel_crtc->config->has_hdmi_sink,
2056 adjusted_mode);
2057
2058 g4x_enable_hdmi(encoder);
2059
2060 vlv_wait_port_ready(dev_priv, dport, 0x0);
2061
2062 /* Second common lane will stay alive on its own now */
2063 if (dport->release_cl2_override) {
2064 chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
2065 dport->release_cl2_override = false;
2066 }
2067 }
2068
2069 static void intel_hdmi_destroy(struct drm_connector *connector)
2070 {
2071 kfree(to_intel_connector(connector)->detect_edid);
2072 drm_connector_cleanup(connector);
2073 kfree(connector);
2074 }
2075
2076 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2077 .dpms = drm_atomic_helper_connector_dpms,
2078 .detect = intel_hdmi_detect,
2079 .force = intel_hdmi_force,
2080 .fill_modes = drm_helper_probe_single_connector_modes,
2081 .set_property = intel_hdmi_set_property,
2082 .atomic_get_property = intel_connector_atomic_get_property,
2083 .destroy = intel_hdmi_destroy,
2084 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2085 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
2086 };
2087
2088 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2089 .get_modes = intel_hdmi_get_modes,
2090 .mode_valid = intel_hdmi_mode_valid,
2091 .best_encoder = intel_best_encoder,
2092 };
2093
2094 static const struct drm_encoder_funcs intel_hdmi_enc_funcs = {
2095 .destroy = intel_encoder_destroy,
2096 };
2097
2098 static void
2099 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2100 {
2101 intel_attach_force_audio_property(connector);
2102 intel_attach_broadcast_rgb_property(connector);
2103 intel_hdmi->color_range_auto = true;
2104 intel_attach_aspect_ratio_property(connector);
2105 intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
2106 }
2107
2108 void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port,
2109 struct intel_connector *intel_connector)
2110 {
2111 struct drm_connector *connector = &intel_connector->base;
2112 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
2113 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2114 struct drm_device *dev = intel_encoder->base.dev;
2115 struct drm_i915_private *dev_priv = dev->dev_private;
2116 enum port port = intel_dig_port->port;
2117 uint8_t alternate_ddc_pin;
2118
2119 if (WARN(intel_dig_port->max_lanes < 4,
2120 "Not enough lanes (%d) for HDMI on port %c\n",
2121 intel_dig_port->max_lanes, port_name(port)))
2122 return;
2123
2124 drm_connector_init(dev, connector, &intel_hdmi_connector_funcs,
2125 DRM_MODE_CONNECTOR_HDMIA);
2126 drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
2127
2128 connector->interlace_allowed = 1;
2129 connector->doublescan_allowed = 0;
2130 connector->stereo_allowed = 1;
2131
2132 switch (port) {
2133 case PORT_B:
2134 if (IS_BROXTON(dev_priv))
2135 intel_hdmi->ddc_bus = GMBUS_PIN_1_BXT;
2136 else
2137 intel_hdmi->ddc_bus = GMBUS_PIN_DPB;
2138 /*
2139 * On BXT A0/A1, sw needs to activate DDIA HPD logic and
2140 * interrupts to check the external panel connection.
2141 */
2142 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
2143 intel_encoder->hpd_pin = HPD_PORT_A;
2144 else
2145 intel_encoder->hpd_pin = HPD_PORT_B;
2146 break;
2147 case PORT_C:
2148 if (IS_BROXTON(dev_priv))
2149 intel_hdmi->ddc_bus = GMBUS_PIN_2_BXT;
2150 else
2151 intel_hdmi->ddc_bus = GMBUS_PIN_DPC;
2152 intel_encoder->hpd_pin = HPD_PORT_C;
2153 break;
2154 case PORT_D:
2155 if (WARN_ON(IS_BROXTON(dev_priv)))
2156 intel_hdmi->ddc_bus = GMBUS_PIN_DISABLED;
2157 else if (IS_CHERRYVIEW(dev_priv))
2158 intel_hdmi->ddc_bus = GMBUS_PIN_DPD_CHV;
2159 else
2160 intel_hdmi->ddc_bus = GMBUS_PIN_DPD;
2161 intel_encoder->hpd_pin = HPD_PORT_D;
2162 break;
2163 case PORT_E:
2164 /* On SKL PORT E doesn't have seperate GMBUS pin
2165 * We rely on VBT to set a proper alternate GMBUS pin. */
2166 alternate_ddc_pin =
2167 dev_priv->vbt.ddi_port_info[PORT_E].alternate_ddc_pin;
2168 switch (alternate_ddc_pin) {
2169 case DDC_PIN_B:
2170 intel_hdmi->ddc_bus = GMBUS_PIN_DPB;
2171 break;
2172 case DDC_PIN_C:
2173 intel_hdmi->ddc_bus = GMBUS_PIN_DPC;
2174 break;
2175 case DDC_PIN_D:
2176 intel_hdmi->ddc_bus = GMBUS_PIN_DPD;
2177 break;
2178 default:
2179 MISSING_CASE(alternate_ddc_pin);
2180 }
2181 intel_encoder->hpd_pin = HPD_PORT_E;
2182 break;
2183 case PORT_A:
2184 intel_encoder->hpd_pin = HPD_PORT_A;
2185 /* Internal port only for eDP. */
2186 default:
2187 BUG();
2188 }
2189
2190 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2191 intel_hdmi->write_infoframe = vlv_write_infoframe;
2192 intel_hdmi->set_infoframes = vlv_set_infoframes;
2193 intel_hdmi->infoframe_enabled = vlv_infoframe_enabled;
2194 } else if (IS_G4X(dev)) {
2195 intel_hdmi->write_infoframe = g4x_write_infoframe;
2196 intel_hdmi->set_infoframes = g4x_set_infoframes;
2197 intel_hdmi->infoframe_enabled = g4x_infoframe_enabled;
2198 } else if (HAS_DDI(dev)) {
2199 intel_hdmi->write_infoframe = hsw_write_infoframe;
2200 intel_hdmi->set_infoframes = hsw_set_infoframes;
2201 intel_hdmi->infoframe_enabled = hsw_infoframe_enabled;
2202 } else if (HAS_PCH_IBX(dev)) {
2203 intel_hdmi->write_infoframe = ibx_write_infoframe;
2204 intel_hdmi->set_infoframes = ibx_set_infoframes;
2205 intel_hdmi->infoframe_enabled = ibx_infoframe_enabled;
2206 } else {
2207 intel_hdmi->write_infoframe = cpt_write_infoframe;
2208 intel_hdmi->set_infoframes = cpt_set_infoframes;
2209 intel_hdmi->infoframe_enabled = cpt_infoframe_enabled;
2210 }
2211
2212 if (HAS_DDI(dev))
2213 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2214 else
2215 intel_connector->get_hw_state = intel_connector_get_hw_state;
2216 intel_connector->unregister = intel_connector_unregister;
2217
2218 intel_hdmi_add_properties(intel_hdmi, connector);
2219
2220 intel_connector_attach_encoder(intel_connector, intel_encoder);
2221 drm_connector_register(connector);
2222 intel_hdmi->attached_connector = intel_connector;
2223
2224 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2225 * 0xd. Failure to do so will result in spurious interrupts being
2226 * generated on the port when a cable is not attached.
2227 */
2228 if (IS_G4X(dev) && !IS_GM45(dev)) {
2229 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2230 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2231 }
2232 }
2233
2234 void intel_hdmi_init(struct drm_device *dev,
2235 i915_reg_t hdmi_reg, enum port port)
2236 {
2237 struct intel_digital_port *intel_dig_port;
2238 struct intel_encoder *intel_encoder;
2239 struct intel_connector *intel_connector;
2240
2241 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
2242 if (!intel_dig_port)
2243 return;
2244
2245 intel_connector = intel_connector_alloc();
2246 if (!intel_connector) {
2247 kfree(intel_dig_port);
2248 return;
2249 }
2250
2251 intel_encoder = &intel_dig_port->base;
2252
2253 drm_encoder_init(dev, &intel_encoder->base, &intel_hdmi_enc_funcs,
2254 DRM_MODE_ENCODER_TMDS, NULL);
2255
2256 intel_encoder->compute_config = intel_hdmi_compute_config;
2257 if (HAS_PCH_SPLIT(dev)) {
2258 intel_encoder->disable = pch_disable_hdmi;
2259 intel_encoder->post_disable = pch_post_disable_hdmi;
2260 } else {
2261 intel_encoder->disable = g4x_disable_hdmi;
2262 }
2263 intel_encoder->get_hw_state = intel_hdmi_get_hw_state;
2264 intel_encoder->get_config = intel_hdmi_get_config;
2265 if (IS_CHERRYVIEW(dev)) {
2266 intel_encoder->pre_pll_enable = chv_hdmi_pre_pll_enable;
2267 intel_encoder->pre_enable = chv_hdmi_pre_enable;
2268 intel_encoder->enable = vlv_enable_hdmi;
2269 intel_encoder->post_disable = chv_hdmi_post_disable;
2270 intel_encoder->post_pll_disable = chv_hdmi_post_pll_disable;
2271 } else if (IS_VALLEYVIEW(dev)) {
2272 intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable;
2273 intel_encoder->pre_enable = vlv_hdmi_pre_enable;
2274 intel_encoder->enable = vlv_enable_hdmi;
2275 intel_encoder->post_disable = vlv_hdmi_post_disable;
2276 } else {
2277 intel_encoder->pre_enable = intel_hdmi_pre_enable;
2278 if (HAS_PCH_CPT(dev))
2279 intel_encoder->enable = cpt_enable_hdmi;
2280 else if (HAS_PCH_IBX(dev))
2281 intel_encoder->enable = ibx_enable_hdmi;
2282 else
2283 intel_encoder->enable = g4x_enable_hdmi;
2284 }
2285
2286 intel_encoder->type = INTEL_OUTPUT_HDMI;
2287 if (IS_CHERRYVIEW(dev)) {
2288 if (port == PORT_D)
2289 intel_encoder->crtc_mask = 1 << 2;
2290 else
2291 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
2292 } else {
2293 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2294 }
2295 intel_encoder->cloneable = 1 << INTEL_OUTPUT_ANALOG;
2296 /*
2297 * BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems
2298 * to work on real hardware. And since g4x can send infoframes to
2299 * only one port anyway, nothing is lost by allowing it.
2300 */
2301 if (IS_G4X(dev))
2302 intel_encoder->cloneable |= 1 << INTEL_OUTPUT_HDMI;
2303
2304 intel_dig_port->port = port;
2305 intel_dig_port->hdmi.hdmi_reg = hdmi_reg;
2306 intel_dig_port->dp.output_reg = INVALID_MMIO_REG;
2307 intel_dig_port->max_lanes = 4;
2308
2309 intel_hdmi_init_connector(intel_dig_port, intel_connector);
2310 }
This page took 0.078413 seconds and 6 git commands to generate.