Merge tag 'platform-drivers-x86-v4.3-1' of git://git.infradead.org/users/dvhart/linux...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_hdmi.c
1 /*
2 * Copyright 2006 Dave Airlie <airlied@linux.ie>
3 * Copyright © 2006-2009 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 *
24 * Authors:
25 * Eric Anholt <eric@anholt.net>
26 * Jesse Barnes <jesse.barnes@intel.com>
27 */
28
29 #include <linux/i2c.h>
30 #include <linux/slab.h>
31 #include <linux/delay.h>
32 #include <linux/hdmi.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_edid.h>
37 #include "intel_drv.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40
41 static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
42 {
43 return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
44 }
45
46 static void
47 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
48 {
49 struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
50 struct drm_i915_private *dev_priv = dev->dev_private;
51 uint32_t enabled_bits;
52
53 enabled_bits = HAS_DDI(dev) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
54
55 WARN(I915_READ(intel_hdmi->hdmi_reg) & enabled_bits,
56 "HDMI port enabled, expecting disabled\n");
57 }
58
59 struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder)
60 {
61 struct intel_digital_port *intel_dig_port =
62 container_of(encoder, struct intel_digital_port, base.base);
63 return &intel_dig_port->hdmi;
64 }
65
66 static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector)
67 {
68 return enc_to_intel_hdmi(&intel_attached_encoder(connector)->base);
69 }
70
71 static u32 g4x_infoframe_index(enum hdmi_infoframe_type type)
72 {
73 switch (type) {
74 case HDMI_INFOFRAME_TYPE_AVI:
75 return VIDEO_DIP_SELECT_AVI;
76 case HDMI_INFOFRAME_TYPE_SPD:
77 return VIDEO_DIP_SELECT_SPD;
78 case HDMI_INFOFRAME_TYPE_VENDOR:
79 return VIDEO_DIP_SELECT_VENDOR;
80 default:
81 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
82 return 0;
83 }
84 }
85
86 static u32 g4x_infoframe_enable(enum hdmi_infoframe_type type)
87 {
88 switch (type) {
89 case HDMI_INFOFRAME_TYPE_AVI:
90 return VIDEO_DIP_ENABLE_AVI;
91 case HDMI_INFOFRAME_TYPE_SPD:
92 return VIDEO_DIP_ENABLE_SPD;
93 case HDMI_INFOFRAME_TYPE_VENDOR:
94 return VIDEO_DIP_ENABLE_VENDOR;
95 default:
96 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
97 return 0;
98 }
99 }
100
101 static u32 hsw_infoframe_enable(enum hdmi_infoframe_type type)
102 {
103 switch (type) {
104 case HDMI_INFOFRAME_TYPE_AVI:
105 return VIDEO_DIP_ENABLE_AVI_HSW;
106 case HDMI_INFOFRAME_TYPE_SPD:
107 return VIDEO_DIP_ENABLE_SPD_HSW;
108 case HDMI_INFOFRAME_TYPE_VENDOR:
109 return VIDEO_DIP_ENABLE_VS_HSW;
110 default:
111 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
112 return 0;
113 }
114 }
115
116 static u32 hsw_infoframe_data_reg(enum hdmi_infoframe_type type,
117 enum transcoder cpu_transcoder,
118 struct drm_i915_private *dev_priv)
119 {
120 switch (type) {
121 case HDMI_INFOFRAME_TYPE_AVI:
122 return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder);
123 case HDMI_INFOFRAME_TYPE_SPD:
124 return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder);
125 case HDMI_INFOFRAME_TYPE_VENDOR:
126 return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder);
127 default:
128 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
129 return 0;
130 }
131 }
132
133 static void g4x_write_infoframe(struct drm_encoder *encoder,
134 enum hdmi_infoframe_type type,
135 const void *frame, ssize_t len)
136 {
137 const uint32_t *data = frame;
138 struct drm_device *dev = encoder->dev;
139 struct drm_i915_private *dev_priv = dev->dev_private;
140 u32 val = I915_READ(VIDEO_DIP_CTL);
141 int i;
142
143 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
144
145 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
146 val |= g4x_infoframe_index(type);
147
148 val &= ~g4x_infoframe_enable(type);
149
150 I915_WRITE(VIDEO_DIP_CTL, val);
151
152 mmiowb();
153 for (i = 0; i < len; i += 4) {
154 I915_WRITE(VIDEO_DIP_DATA, *data);
155 data++;
156 }
157 /* Write every possible data byte to force correct ECC calculation. */
158 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
159 I915_WRITE(VIDEO_DIP_DATA, 0);
160 mmiowb();
161
162 val |= g4x_infoframe_enable(type);
163 val &= ~VIDEO_DIP_FREQ_MASK;
164 val |= VIDEO_DIP_FREQ_VSYNC;
165
166 I915_WRITE(VIDEO_DIP_CTL, val);
167 POSTING_READ(VIDEO_DIP_CTL);
168 }
169
170 static bool g4x_infoframe_enabled(struct drm_encoder *encoder)
171 {
172 struct drm_device *dev = encoder->dev;
173 struct drm_i915_private *dev_priv = dev->dev_private;
174 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
175 u32 val = I915_READ(VIDEO_DIP_CTL);
176
177 if ((val & VIDEO_DIP_ENABLE) == 0)
178 return false;
179
180 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
181 return false;
182
183 return val & (VIDEO_DIP_ENABLE_AVI |
184 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
185 }
186
187 static void ibx_write_infoframe(struct drm_encoder *encoder,
188 enum hdmi_infoframe_type type,
189 const void *frame, ssize_t len)
190 {
191 const uint32_t *data = frame;
192 struct drm_device *dev = encoder->dev;
193 struct drm_i915_private *dev_priv = dev->dev_private;
194 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
195 int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
196 u32 val = I915_READ(reg);
197
198 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
199
200 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
201 val |= g4x_infoframe_index(type);
202
203 val &= ~g4x_infoframe_enable(type);
204
205 I915_WRITE(reg, val);
206
207 mmiowb();
208 for (i = 0; i < len; i += 4) {
209 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
210 data++;
211 }
212 /* Write every possible data byte to force correct ECC calculation. */
213 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
214 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
215 mmiowb();
216
217 val |= g4x_infoframe_enable(type);
218 val &= ~VIDEO_DIP_FREQ_MASK;
219 val |= VIDEO_DIP_FREQ_VSYNC;
220
221 I915_WRITE(reg, val);
222 POSTING_READ(reg);
223 }
224
225 static bool ibx_infoframe_enabled(struct drm_encoder *encoder)
226 {
227 struct drm_device *dev = encoder->dev;
228 struct drm_i915_private *dev_priv = dev->dev_private;
229 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
230 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
231 int reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
232 u32 val = I915_READ(reg);
233
234 if ((val & VIDEO_DIP_ENABLE) == 0)
235 return false;
236
237 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
238 return false;
239
240 return val & (VIDEO_DIP_ENABLE_AVI |
241 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
242 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
243 }
244
245 static void cpt_write_infoframe(struct drm_encoder *encoder,
246 enum hdmi_infoframe_type type,
247 const void *frame, ssize_t len)
248 {
249 const uint32_t *data = frame;
250 struct drm_device *dev = encoder->dev;
251 struct drm_i915_private *dev_priv = dev->dev_private;
252 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
253 int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
254 u32 val = I915_READ(reg);
255
256 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
257
258 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
259 val |= g4x_infoframe_index(type);
260
261 /* The DIP control register spec says that we need to update the AVI
262 * infoframe without clearing its enable bit */
263 if (type != HDMI_INFOFRAME_TYPE_AVI)
264 val &= ~g4x_infoframe_enable(type);
265
266 I915_WRITE(reg, val);
267
268 mmiowb();
269 for (i = 0; i < len; i += 4) {
270 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
271 data++;
272 }
273 /* Write every possible data byte to force correct ECC calculation. */
274 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
275 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
276 mmiowb();
277
278 val |= g4x_infoframe_enable(type);
279 val &= ~VIDEO_DIP_FREQ_MASK;
280 val |= VIDEO_DIP_FREQ_VSYNC;
281
282 I915_WRITE(reg, val);
283 POSTING_READ(reg);
284 }
285
286 static bool cpt_infoframe_enabled(struct drm_encoder *encoder)
287 {
288 struct drm_device *dev = encoder->dev;
289 struct drm_i915_private *dev_priv = dev->dev_private;
290 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
291 int reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
292 u32 val = I915_READ(reg);
293
294 if ((val & VIDEO_DIP_ENABLE) == 0)
295 return false;
296
297 return val & (VIDEO_DIP_ENABLE_AVI |
298 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
299 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
300 }
301
302 static void vlv_write_infoframe(struct drm_encoder *encoder,
303 enum hdmi_infoframe_type type,
304 const void *frame, ssize_t len)
305 {
306 const uint32_t *data = frame;
307 struct drm_device *dev = encoder->dev;
308 struct drm_i915_private *dev_priv = dev->dev_private;
309 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
310 int i, reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
311 u32 val = I915_READ(reg);
312
313 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
314
315 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
316 val |= g4x_infoframe_index(type);
317
318 val &= ~g4x_infoframe_enable(type);
319
320 I915_WRITE(reg, val);
321
322 mmiowb();
323 for (i = 0; i < len; i += 4) {
324 I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
325 data++;
326 }
327 /* Write every possible data byte to force correct ECC calculation. */
328 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
329 I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
330 mmiowb();
331
332 val |= g4x_infoframe_enable(type);
333 val &= ~VIDEO_DIP_FREQ_MASK;
334 val |= VIDEO_DIP_FREQ_VSYNC;
335
336 I915_WRITE(reg, val);
337 POSTING_READ(reg);
338 }
339
340 static bool vlv_infoframe_enabled(struct drm_encoder *encoder)
341 {
342 struct drm_device *dev = encoder->dev;
343 struct drm_i915_private *dev_priv = dev->dev_private;
344 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
345 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
346 int reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
347 u32 val = I915_READ(reg);
348
349 if ((val & VIDEO_DIP_ENABLE) == 0)
350 return false;
351
352 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
353 return false;
354
355 return val & (VIDEO_DIP_ENABLE_AVI |
356 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
357 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
358 }
359
360 static void hsw_write_infoframe(struct drm_encoder *encoder,
361 enum hdmi_infoframe_type type,
362 const void *frame, ssize_t len)
363 {
364 const uint32_t *data = frame;
365 struct drm_device *dev = encoder->dev;
366 struct drm_i915_private *dev_priv = dev->dev_private;
367 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
368 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config->cpu_transcoder);
369 u32 data_reg;
370 int i;
371 u32 val = I915_READ(ctl_reg);
372
373 data_reg = hsw_infoframe_data_reg(type,
374 intel_crtc->config->cpu_transcoder,
375 dev_priv);
376 if (data_reg == 0)
377 return;
378
379 val &= ~hsw_infoframe_enable(type);
380 I915_WRITE(ctl_reg, val);
381
382 mmiowb();
383 for (i = 0; i < len; i += 4) {
384 I915_WRITE(data_reg + i, *data);
385 data++;
386 }
387 /* Write every possible data byte to force correct ECC calculation. */
388 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
389 I915_WRITE(data_reg + i, 0);
390 mmiowb();
391
392 val |= hsw_infoframe_enable(type);
393 I915_WRITE(ctl_reg, val);
394 POSTING_READ(ctl_reg);
395 }
396
397 static bool hsw_infoframe_enabled(struct drm_encoder *encoder)
398 {
399 struct drm_device *dev = encoder->dev;
400 struct drm_i915_private *dev_priv = dev->dev_private;
401 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
402 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config->cpu_transcoder);
403 u32 val = I915_READ(ctl_reg);
404
405 return val & (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
406 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
407 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
408 }
409
410 /*
411 * The data we write to the DIP data buffer registers is 1 byte bigger than the
412 * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
413 * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
414 * used for both technologies.
415 *
416 * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
417 * DW1: DB3 | DB2 | DB1 | DB0
418 * DW2: DB7 | DB6 | DB5 | DB4
419 * DW3: ...
420 *
421 * (HB is Header Byte, DB is Data Byte)
422 *
423 * The hdmi pack() functions don't know about that hardware specific hole so we
424 * trick them by giving an offset into the buffer and moving back the header
425 * bytes by one.
426 */
427 static void intel_write_infoframe(struct drm_encoder *encoder,
428 union hdmi_infoframe *frame)
429 {
430 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
431 uint8_t buffer[VIDEO_DIP_DATA_SIZE];
432 ssize_t len;
433
434 /* see comment above for the reason for this offset */
435 len = hdmi_infoframe_pack(frame, buffer + 1, sizeof(buffer) - 1);
436 if (len < 0)
437 return;
438
439 /* Insert the 'hole' (see big comment above) at position 3 */
440 buffer[0] = buffer[1];
441 buffer[1] = buffer[2];
442 buffer[2] = buffer[3];
443 buffer[3] = 0;
444 len++;
445
446 intel_hdmi->write_infoframe(encoder, frame->any.type, buffer, len);
447 }
448
449 static void intel_hdmi_set_avi_infoframe(struct drm_encoder *encoder,
450 struct drm_display_mode *adjusted_mode)
451 {
452 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
453 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
454 union hdmi_infoframe frame;
455 int ret;
456
457 /* Set user selected PAR to incoming mode's member */
458 adjusted_mode->picture_aspect_ratio = intel_hdmi->aspect_ratio;
459
460 ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
461 adjusted_mode);
462 if (ret < 0) {
463 DRM_ERROR("couldn't fill AVI infoframe\n");
464 return;
465 }
466
467 if (intel_hdmi->rgb_quant_range_selectable) {
468 if (intel_crtc->config->limited_color_range)
469 frame.avi.quantization_range =
470 HDMI_QUANTIZATION_RANGE_LIMITED;
471 else
472 frame.avi.quantization_range =
473 HDMI_QUANTIZATION_RANGE_FULL;
474 }
475
476 intel_write_infoframe(encoder, &frame);
477 }
478
479 static void intel_hdmi_set_spd_infoframe(struct drm_encoder *encoder)
480 {
481 union hdmi_infoframe frame;
482 int ret;
483
484 ret = hdmi_spd_infoframe_init(&frame.spd, "Intel", "Integrated gfx");
485 if (ret < 0) {
486 DRM_ERROR("couldn't fill SPD infoframe\n");
487 return;
488 }
489
490 frame.spd.sdi = HDMI_SPD_SDI_PC;
491
492 intel_write_infoframe(encoder, &frame);
493 }
494
495 static void
496 intel_hdmi_set_hdmi_infoframe(struct drm_encoder *encoder,
497 struct drm_display_mode *adjusted_mode)
498 {
499 union hdmi_infoframe frame;
500 int ret;
501
502 ret = drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
503 adjusted_mode);
504 if (ret < 0)
505 return;
506
507 intel_write_infoframe(encoder, &frame);
508 }
509
510 static void g4x_set_infoframes(struct drm_encoder *encoder,
511 bool enable,
512 struct drm_display_mode *adjusted_mode)
513 {
514 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
515 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
516 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
517 u32 reg = VIDEO_DIP_CTL;
518 u32 val = I915_READ(reg);
519 u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
520
521 assert_hdmi_port_disabled(intel_hdmi);
522
523 /* If the registers were not initialized yet, they might be zeroes,
524 * which means we're selecting the AVI DIP and we're setting its
525 * frequency to once. This seems to really confuse the HW and make
526 * things stop working (the register spec says the AVI always needs to
527 * be sent every VSync). So here we avoid writing to the register more
528 * than we need and also explicitly select the AVI DIP and explicitly
529 * set its frequency to every VSync. Avoiding to write it twice seems to
530 * be enough to solve the problem, but being defensive shouldn't hurt us
531 * either. */
532 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
533
534 if (!enable) {
535 if (!(val & VIDEO_DIP_ENABLE))
536 return;
537 if (port != (val & VIDEO_DIP_PORT_MASK)) {
538 DRM_DEBUG_KMS("video DIP still enabled on port %c\n",
539 (val & VIDEO_DIP_PORT_MASK) >> 29);
540 return;
541 }
542 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
543 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
544 I915_WRITE(reg, val);
545 POSTING_READ(reg);
546 return;
547 }
548
549 if (port != (val & VIDEO_DIP_PORT_MASK)) {
550 if (val & VIDEO_DIP_ENABLE) {
551 DRM_DEBUG_KMS("video DIP already enabled on port %c\n",
552 (val & VIDEO_DIP_PORT_MASK) >> 29);
553 return;
554 }
555 val &= ~VIDEO_DIP_PORT_MASK;
556 val |= port;
557 }
558
559 val |= VIDEO_DIP_ENABLE;
560 val &= ~(VIDEO_DIP_ENABLE_AVI |
561 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
562
563 I915_WRITE(reg, val);
564 POSTING_READ(reg);
565
566 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
567 intel_hdmi_set_spd_infoframe(encoder);
568 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
569 }
570
571 static bool hdmi_sink_is_deep_color(struct drm_encoder *encoder)
572 {
573 struct drm_device *dev = encoder->dev;
574 struct drm_connector *connector;
575
576 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
577
578 /*
579 * HDMI cloning is only supported on g4x which doesn't
580 * support deep color or GCP infoframes anyway so no
581 * need to worry about multiple HDMI sinks here.
582 */
583 list_for_each_entry(connector, &dev->mode_config.connector_list, head)
584 if (connector->encoder == encoder)
585 return connector->display_info.bpc > 8;
586
587 return false;
588 }
589
590 /*
591 * Determine if default_phase=1 can be indicated in the GCP infoframe.
592 *
593 * From HDMI specification 1.4a:
594 * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
595 * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
596 * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
597 * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
598 * phase of 0
599 */
600 static bool gcp_default_phase_possible(int pipe_bpp,
601 const struct drm_display_mode *mode)
602 {
603 unsigned int pixels_per_group;
604
605 switch (pipe_bpp) {
606 case 30:
607 /* 4 pixels in 5 clocks */
608 pixels_per_group = 4;
609 break;
610 case 36:
611 /* 2 pixels in 3 clocks */
612 pixels_per_group = 2;
613 break;
614 case 48:
615 /* 1 pixel in 2 clocks */
616 pixels_per_group = 1;
617 break;
618 default:
619 /* phase information not relevant for 8bpc */
620 return false;
621 }
622
623 return mode->crtc_hdisplay % pixels_per_group == 0 &&
624 mode->crtc_htotal % pixels_per_group == 0 &&
625 mode->crtc_hblank_start % pixels_per_group == 0 &&
626 mode->crtc_hblank_end % pixels_per_group == 0 &&
627 mode->crtc_hsync_start % pixels_per_group == 0 &&
628 mode->crtc_hsync_end % pixels_per_group == 0 &&
629 ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
630 mode->crtc_htotal/2 % pixels_per_group == 0);
631 }
632
633 static bool intel_hdmi_set_gcp_infoframe(struct drm_encoder *encoder)
634 {
635 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
636 struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
637 u32 reg, val = 0;
638
639 if (HAS_DDI(dev_priv))
640 reg = HSW_TVIDEO_DIP_GCP(crtc->config->cpu_transcoder);
641 else if (IS_VALLEYVIEW(dev_priv))
642 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
643 else if (HAS_PCH_SPLIT(dev_priv->dev))
644 reg = TVIDEO_DIP_GCP(crtc->pipe);
645 else
646 return false;
647
648 /* Indicate color depth whenever the sink supports deep color */
649 if (hdmi_sink_is_deep_color(encoder))
650 val |= GCP_COLOR_INDICATION;
651
652 /* Enable default_phase whenever the display mode is suitably aligned */
653 if (gcp_default_phase_possible(crtc->config->pipe_bpp,
654 &crtc->config->base.adjusted_mode))
655 val |= GCP_DEFAULT_PHASE_ENABLE;
656
657 I915_WRITE(reg, val);
658
659 return val != 0;
660 }
661
662 static void ibx_set_infoframes(struct drm_encoder *encoder,
663 bool enable,
664 struct drm_display_mode *adjusted_mode)
665 {
666 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
667 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
668 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
669 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
670 u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
671 u32 val = I915_READ(reg);
672 u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
673
674 assert_hdmi_port_disabled(intel_hdmi);
675
676 /* See the big comment in g4x_set_infoframes() */
677 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
678
679 if (!enable) {
680 if (!(val & VIDEO_DIP_ENABLE))
681 return;
682 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
683 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
684 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
685 I915_WRITE(reg, val);
686 POSTING_READ(reg);
687 return;
688 }
689
690 if (port != (val & VIDEO_DIP_PORT_MASK)) {
691 WARN(val & VIDEO_DIP_ENABLE,
692 "DIP already enabled on port %c\n",
693 (val & VIDEO_DIP_PORT_MASK) >> 29);
694 val &= ~VIDEO_DIP_PORT_MASK;
695 val |= port;
696 }
697
698 val |= VIDEO_DIP_ENABLE;
699 val &= ~(VIDEO_DIP_ENABLE_AVI |
700 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
701 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
702
703 if (intel_hdmi_set_gcp_infoframe(encoder))
704 val |= VIDEO_DIP_ENABLE_GCP;
705
706 I915_WRITE(reg, val);
707 POSTING_READ(reg);
708
709 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
710 intel_hdmi_set_spd_infoframe(encoder);
711 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
712 }
713
714 static void cpt_set_infoframes(struct drm_encoder *encoder,
715 bool enable,
716 struct drm_display_mode *adjusted_mode)
717 {
718 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
719 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
720 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
721 u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
722 u32 val = I915_READ(reg);
723
724 assert_hdmi_port_disabled(intel_hdmi);
725
726 /* See the big comment in g4x_set_infoframes() */
727 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
728
729 if (!enable) {
730 if (!(val & VIDEO_DIP_ENABLE))
731 return;
732 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
733 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
734 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
735 I915_WRITE(reg, val);
736 POSTING_READ(reg);
737 return;
738 }
739
740 /* Set both together, unset both together: see the spec. */
741 val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
742 val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
743 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
744
745 if (intel_hdmi_set_gcp_infoframe(encoder))
746 val |= VIDEO_DIP_ENABLE_GCP;
747
748 I915_WRITE(reg, val);
749 POSTING_READ(reg);
750
751 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
752 intel_hdmi_set_spd_infoframe(encoder);
753 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
754 }
755
756 static void vlv_set_infoframes(struct drm_encoder *encoder,
757 bool enable,
758 struct drm_display_mode *adjusted_mode)
759 {
760 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
761 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
762 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
763 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
764 u32 reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
765 u32 val = I915_READ(reg);
766 u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
767
768 assert_hdmi_port_disabled(intel_hdmi);
769
770 /* See the big comment in g4x_set_infoframes() */
771 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
772
773 if (!enable) {
774 if (!(val & VIDEO_DIP_ENABLE))
775 return;
776 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
777 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
778 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
779 I915_WRITE(reg, val);
780 POSTING_READ(reg);
781 return;
782 }
783
784 if (port != (val & VIDEO_DIP_PORT_MASK)) {
785 WARN(val & VIDEO_DIP_ENABLE,
786 "DIP already enabled on port %c\n",
787 (val & VIDEO_DIP_PORT_MASK) >> 29);
788 val &= ~VIDEO_DIP_PORT_MASK;
789 val |= port;
790 }
791
792 val |= VIDEO_DIP_ENABLE;
793 val &= ~(VIDEO_DIP_ENABLE_AVI |
794 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
795 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
796
797 if (intel_hdmi_set_gcp_infoframe(encoder))
798 val |= VIDEO_DIP_ENABLE_GCP;
799
800 I915_WRITE(reg, val);
801 POSTING_READ(reg);
802
803 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
804 intel_hdmi_set_spd_infoframe(encoder);
805 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
806 }
807
808 static void hsw_set_infoframes(struct drm_encoder *encoder,
809 bool enable,
810 struct drm_display_mode *adjusted_mode)
811 {
812 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
813 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
814 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
815 u32 reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config->cpu_transcoder);
816 u32 val = I915_READ(reg);
817
818 assert_hdmi_port_disabled(intel_hdmi);
819
820 val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
821 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
822 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
823
824 if (!enable) {
825 I915_WRITE(reg, val);
826 POSTING_READ(reg);
827 return;
828 }
829
830 if (intel_hdmi_set_gcp_infoframe(encoder))
831 val |= VIDEO_DIP_ENABLE_GCP_HSW;
832
833 I915_WRITE(reg, val);
834 POSTING_READ(reg);
835
836 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
837 intel_hdmi_set_spd_infoframe(encoder);
838 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
839 }
840
841 static void intel_hdmi_prepare(struct intel_encoder *encoder)
842 {
843 struct drm_device *dev = encoder->base.dev;
844 struct drm_i915_private *dev_priv = dev->dev_private;
845 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
846 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
847 struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
848 u32 hdmi_val;
849
850 hdmi_val = SDVO_ENCODING_HDMI;
851 if (!HAS_PCH_SPLIT(dev))
852 hdmi_val |= intel_hdmi->color_range;
853 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
854 hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH;
855 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
856 hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH;
857
858 if (crtc->config->pipe_bpp > 24)
859 hdmi_val |= HDMI_COLOR_FORMAT_12bpc;
860 else
861 hdmi_val |= SDVO_COLOR_FORMAT_8bpc;
862
863 if (crtc->config->has_hdmi_sink)
864 hdmi_val |= HDMI_MODE_SELECT_HDMI;
865
866 if (HAS_PCH_CPT(dev))
867 hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe);
868 else if (IS_CHERRYVIEW(dev))
869 hdmi_val |= SDVO_PIPE_SEL_CHV(crtc->pipe);
870 else
871 hdmi_val |= SDVO_PIPE_SEL(crtc->pipe);
872
873 I915_WRITE(intel_hdmi->hdmi_reg, hdmi_val);
874 POSTING_READ(intel_hdmi->hdmi_reg);
875 }
876
877 static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder,
878 enum pipe *pipe)
879 {
880 struct drm_device *dev = encoder->base.dev;
881 struct drm_i915_private *dev_priv = dev->dev_private;
882 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
883 enum intel_display_power_domain power_domain;
884 u32 tmp;
885
886 power_domain = intel_display_port_power_domain(encoder);
887 if (!intel_display_power_is_enabled(dev_priv, power_domain))
888 return false;
889
890 tmp = I915_READ(intel_hdmi->hdmi_reg);
891
892 if (!(tmp & SDVO_ENABLE))
893 return false;
894
895 if (HAS_PCH_CPT(dev))
896 *pipe = PORT_TO_PIPE_CPT(tmp);
897 else if (IS_CHERRYVIEW(dev))
898 *pipe = SDVO_PORT_TO_PIPE_CHV(tmp);
899 else
900 *pipe = PORT_TO_PIPE(tmp);
901
902 return true;
903 }
904
905 static void intel_hdmi_get_config(struct intel_encoder *encoder,
906 struct intel_crtc_state *pipe_config)
907 {
908 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
909 struct drm_device *dev = encoder->base.dev;
910 struct drm_i915_private *dev_priv = dev->dev_private;
911 u32 tmp, flags = 0;
912 int dotclock;
913
914 tmp = I915_READ(intel_hdmi->hdmi_reg);
915
916 if (tmp & SDVO_HSYNC_ACTIVE_HIGH)
917 flags |= DRM_MODE_FLAG_PHSYNC;
918 else
919 flags |= DRM_MODE_FLAG_NHSYNC;
920
921 if (tmp & SDVO_VSYNC_ACTIVE_HIGH)
922 flags |= DRM_MODE_FLAG_PVSYNC;
923 else
924 flags |= DRM_MODE_FLAG_NVSYNC;
925
926 if (tmp & HDMI_MODE_SELECT_HDMI)
927 pipe_config->has_hdmi_sink = true;
928
929 if (intel_hdmi->infoframe_enabled(&encoder->base))
930 pipe_config->has_infoframe = true;
931
932 if (tmp & SDVO_AUDIO_ENABLE)
933 pipe_config->has_audio = true;
934
935 if (!HAS_PCH_SPLIT(dev) &&
936 tmp & HDMI_COLOR_RANGE_16_235)
937 pipe_config->limited_color_range = true;
938
939 pipe_config->base.adjusted_mode.flags |= flags;
940
941 if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc)
942 dotclock = pipe_config->port_clock * 2 / 3;
943 else
944 dotclock = pipe_config->port_clock;
945
946 if (pipe_config->pixel_multiplier)
947 dotclock /= pipe_config->pixel_multiplier;
948
949 if (HAS_PCH_SPLIT(dev_priv->dev))
950 ironlake_check_encoder_dotclock(pipe_config, dotclock);
951
952 pipe_config->base.adjusted_mode.crtc_clock = dotclock;
953 }
954
955 static void intel_enable_hdmi_audio(struct intel_encoder *encoder)
956 {
957 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
958
959 WARN_ON(!crtc->config->has_hdmi_sink);
960 DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n",
961 pipe_name(crtc->pipe));
962 intel_audio_codec_enable(encoder);
963 }
964
965 static void g4x_enable_hdmi(struct intel_encoder *encoder)
966 {
967 struct drm_device *dev = encoder->base.dev;
968 struct drm_i915_private *dev_priv = dev->dev_private;
969 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
970 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
971 u32 temp;
972
973 temp = I915_READ(intel_hdmi->hdmi_reg);
974
975 temp |= SDVO_ENABLE;
976 if (crtc->config->has_audio)
977 temp |= SDVO_AUDIO_ENABLE;
978
979 I915_WRITE(intel_hdmi->hdmi_reg, temp);
980 POSTING_READ(intel_hdmi->hdmi_reg);
981
982 if (crtc->config->has_audio)
983 intel_enable_hdmi_audio(encoder);
984 }
985
986 static void ibx_enable_hdmi(struct intel_encoder *encoder)
987 {
988 struct drm_device *dev = encoder->base.dev;
989 struct drm_i915_private *dev_priv = dev->dev_private;
990 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
991 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
992 u32 temp;
993
994 temp = I915_READ(intel_hdmi->hdmi_reg);
995
996 temp |= SDVO_ENABLE;
997 if (crtc->config->has_audio)
998 temp |= SDVO_AUDIO_ENABLE;
999
1000 /*
1001 * HW workaround, need to write this twice for issue
1002 * that may result in first write getting masked.
1003 */
1004 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1005 POSTING_READ(intel_hdmi->hdmi_reg);
1006 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1007 POSTING_READ(intel_hdmi->hdmi_reg);
1008
1009 /*
1010 * HW workaround, need to toggle enable bit off and on
1011 * for 12bpc with pixel repeat.
1012 *
1013 * FIXME: BSpec says this should be done at the end of
1014 * of the modeset sequence, so not sure if this isn't too soon.
1015 */
1016 if (crtc->config->pipe_bpp > 24 &&
1017 crtc->config->pixel_multiplier > 1) {
1018 I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
1019 POSTING_READ(intel_hdmi->hdmi_reg);
1020
1021 /*
1022 * HW workaround, need to write this twice for issue
1023 * that may result in first write getting masked.
1024 */
1025 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1026 POSTING_READ(intel_hdmi->hdmi_reg);
1027 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1028 POSTING_READ(intel_hdmi->hdmi_reg);
1029 }
1030
1031 if (crtc->config->has_audio)
1032 intel_enable_hdmi_audio(encoder);
1033 }
1034
1035 static void cpt_enable_hdmi(struct intel_encoder *encoder)
1036 {
1037 struct drm_device *dev = encoder->base.dev;
1038 struct drm_i915_private *dev_priv = dev->dev_private;
1039 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1040 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1041 enum pipe pipe = crtc->pipe;
1042 u32 temp;
1043
1044 temp = I915_READ(intel_hdmi->hdmi_reg);
1045
1046 temp |= SDVO_ENABLE;
1047 if (crtc->config->has_audio)
1048 temp |= SDVO_AUDIO_ENABLE;
1049
1050 /*
1051 * WaEnableHDMI8bpcBefore12bpc:snb,ivb
1052 *
1053 * The procedure for 12bpc is as follows:
1054 * 1. disable HDMI clock gating
1055 * 2. enable HDMI with 8bpc
1056 * 3. enable HDMI with 12bpc
1057 * 4. enable HDMI clock gating
1058 */
1059
1060 if (crtc->config->pipe_bpp > 24) {
1061 I915_WRITE(TRANS_CHICKEN1(pipe),
1062 I915_READ(TRANS_CHICKEN1(pipe)) |
1063 TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
1064
1065 temp &= ~SDVO_COLOR_FORMAT_MASK;
1066 temp |= SDVO_COLOR_FORMAT_8bpc;
1067 }
1068
1069 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1070 POSTING_READ(intel_hdmi->hdmi_reg);
1071
1072 if (crtc->config->pipe_bpp > 24) {
1073 temp &= ~SDVO_COLOR_FORMAT_MASK;
1074 temp |= HDMI_COLOR_FORMAT_12bpc;
1075
1076 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1077 POSTING_READ(intel_hdmi->hdmi_reg);
1078
1079 I915_WRITE(TRANS_CHICKEN1(pipe),
1080 I915_READ(TRANS_CHICKEN1(pipe)) &
1081 ~TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
1082 }
1083
1084 if (crtc->config->has_audio)
1085 intel_enable_hdmi_audio(encoder);
1086 }
1087
1088 static void vlv_enable_hdmi(struct intel_encoder *encoder)
1089 {
1090 }
1091
1092 static void intel_disable_hdmi(struct intel_encoder *encoder)
1093 {
1094 struct drm_device *dev = encoder->base.dev;
1095 struct drm_i915_private *dev_priv = dev->dev_private;
1096 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1097 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1098 u32 temp;
1099
1100 temp = I915_READ(intel_hdmi->hdmi_reg);
1101
1102 temp &= ~(SDVO_ENABLE | SDVO_AUDIO_ENABLE);
1103 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1104 POSTING_READ(intel_hdmi->hdmi_reg);
1105
1106 /*
1107 * HW workaround for IBX, we need to move the port
1108 * to transcoder A after disabling it to allow the
1109 * matching DP port to be enabled on transcoder A.
1110 */
1111 if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B) {
1112 temp &= ~SDVO_PIPE_B_SELECT;
1113 temp |= SDVO_ENABLE;
1114 /*
1115 * HW workaround, need to write this twice for issue
1116 * that may result in first write getting masked.
1117 */
1118 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1119 POSTING_READ(intel_hdmi->hdmi_reg);
1120 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1121 POSTING_READ(intel_hdmi->hdmi_reg);
1122
1123 temp &= ~SDVO_ENABLE;
1124 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1125 POSTING_READ(intel_hdmi->hdmi_reg);
1126 }
1127
1128 intel_hdmi->set_infoframes(&encoder->base, false, NULL);
1129 }
1130
1131 static void g4x_disable_hdmi(struct intel_encoder *encoder)
1132 {
1133 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1134
1135 if (crtc->config->has_audio)
1136 intel_audio_codec_disable(encoder);
1137
1138 intel_disable_hdmi(encoder);
1139 }
1140
1141 static void pch_disable_hdmi(struct intel_encoder *encoder)
1142 {
1143 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1144
1145 if (crtc->config->has_audio)
1146 intel_audio_codec_disable(encoder);
1147 }
1148
1149 static void pch_post_disable_hdmi(struct intel_encoder *encoder)
1150 {
1151 intel_disable_hdmi(encoder);
1152 }
1153
1154 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi, bool respect_dvi_limit)
1155 {
1156 struct drm_device *dev = intel_hdmi_to_dev(hdmi);
1157
1158 if ((respect_dvi_limit && !hdmi->has_hdmi_sink) || IS_G4X(dev))
1159 return 165000;
1160 else if (IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8)
1161 return 300000;
1162 else
1163 return 225000;
1164 }
1165
1166 static enum drm_mode_status
1167 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1168 int clock, bool respect_dvi_limit)
1169 {
1170 struct drm_device *dev = intel_hdmi_to_dev(hdmi);
1171
1172 if (clock < 25000)
1173 return MODE_CLOCK_LOW;
1174 if (clock > hdmi_port_clock_limit(hdmi, respect_dvi_limit))
1175 return MODE_CLOCK_HIGH;
1176
1177 /* BXT DPLL can't generate 223-240 MHz */
1178 if (IS_BROXTON(dev) && clock > 223333 && clock < 240000)
1179 return MODE_CLOCK_RANGE;
1180
1181 /* CHV DPLL can't generate 216-240 MHz */
1182 if (IS_CHERRYVIEW(dev) && clock > 216000 && clock < 240000)
1183 return MODE_CLOCK_RANGE;
1184
1185 return MODE_OK;
1186 }
1187
1188 static enum drm_mode_status
1189 intel_hdmi_mode_valid(struct drm_connector *connector,
1190 struct drm_display_mode *mode)
1191 {
1192 struct intel_hdmi *hdmi = intel_attached_hdmi(connector);
1193 struct drm_device *dev = intel_hdmi_to_dev(hdmi);
1194 enum drm_mode_status status;
1195 int clock;
1196
1197 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
1198 return MODE_NO_DBLESCAN;
1199
1200 clock = mode->clock;
1201 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
1202 clock *= 2;
1203
1204 /* check if we can do 8bpc */
1205 status = hdmi_port_clock_valid(hdmi, clock, true);
1206
1207 /* if we can't do 8bpc we may still be able to do 12bpc */
1208 if (!HAS_GMCH_DISPLAY(dev) && status != MODE_OK)
1209 status = hdmi_port_clock_valid(hdmi, clock * 3 / 2, true);
1210
1211 return status;
1212 }
1213
1214 static bool hdmi_12bpc_possible(struct intel_crtc_state *crtc_state)
1215 {
1216 struct drm_device *dev = crtc_state->base.crtc->dev;
1217 struct drm_atomic_state *state;
1218 struct intel_encoder *encoder;
1219 struct drm_connector *connector;
1220 struct drm_connector_state *connector_state;
1221 int count = 0, count_hdmi = 0;
1222 int i;
1223
1224 if (HAS_GMCH_DISPLAY(dev))
1225 return false;
1226
1227 state = crtc_state->base.state;
1228
1229 for_each_connector_in_state(state, connector, connector_state, i) {
1230 if (connector_state->crtc != crtc_state->base.crtc)
1231 continue;
1232
1233 encoder = to_intel_encoder(connector_state->best_encoder);
1234
1235 count_hdmi += encoder->type == INTEL_OUTPUT_HDMI;
1236 count++;
1237 }
1238
1239 /*
1240 * HDMI 12bpc affects the clocks, so it's only possible
1241 * when not cloning with other encoder types.
1242 */
1243 return count_hdmi > 0 && count_hdmi == count;
1244 }
1245
1246 bool intel_hdmi_compute_config(struct intel_encoder *encoder,
1247 struct intel_crtc_state *pipe_config)
1248 {
1249 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1250 struct drm_device *dev = encoder->base.dev;
1251 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1252 int clock_8bpc = pipe_config->base.adjusted_mode.crtc_clock;
1253 int clock_12bpc = clock_8bpc * 3 / 2;
1254 int desired_bpp;
1255
1256 pipe_config->has_hdmi_sink = intel_hdmi->has_hdmi_sink;
1257
1258 if (pipe_config->has_hdmi_sink)
1259 pipe_config->has_infoframe = true;
1260
1261 if (intel_hdmi->color_range_auto) {
1262 /* See CEA-861-E - 5.1 Default Encoding Parameters */
1263 if (pipe_config->has_hdmi_sink &&
1264 drm_match_cea_mode(adjusted_mode) > 1)
1265 intel_hdmi->color_range = HDMI_COLOR_RANGE_16_235;
1266 else
1267 intel_hdmi->color_range = 0;
1268 }
1269
1270 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) {
1271 pipe_config->pixel_multiplier = 2;
1272 clock_8bpc *= 2;
1273 clock_12bpc *= 2;
1274 }
1275
1276 if (intel_hdmi->color_range)
1277 pipe_config->limited_color_range = true;
1278
1279 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev))
1280 pipe_config->has_pch_encoder = true;
1281
1282 if (pipe_config->has_hdmi_sink && intel_hdmi->has_audio)
1283 pipe_config->has_audio = true;
1284
1285 /*
1286 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
1287 * through, clamp it down. Note that g4x/vlv don't support 12bpc hdmi
1288 * outputs. We also need to check that the higher clock still fits
1289 * within limits.
1290 */
1291 if (pipe_config->pipe_bpp > 8*3 && pipe_config->has_hdmi_sink &&
1292 hdmi_port_clock_valid(intel_hdmi, clock_12bpc, false) == MODE_OK &&
1293 hdmi_12bpc_possible(pipe_config)) {
1294 DRM_DEBUG_KMS("picking bpc to 12 for HDMI output\n");
1295 desired_bpp = 12*3;
1296
1297 /* Need to adjust the port link by 1.5x for 12bpc. */
1298 pipe_config->port_clock = clock_12bpc;
1299 } else {
1300 DRM_DEBUG_KMS("picking bpc to 8 for HDMI output\n");
1301 desired_bpp = 8*3;
1302
1303 pipe_config->port_clock = clock_8bpc;
1304 }
1305
1306 if (!pipe_config->bw_constrained) {
1307 DRM_DEBUG_KMS("forcing pipe bpc to %i for HDMI\n", desired_bpp);
1308 pipe_config->pipe_bpp = desired_bpp;
1309 }
1310
1311 if (hdmi_port_clock_valid(intel_hdmi, pipe_config->port_clock,
1312 false) != MODE_OK) {
1313 DRM_DEBUG_KMS("unsupported HDMI clock, rejecting mode\n");
1314 return false;
1315 }
1316
1317 return true;
1318 }
1319
1320 static void
1321 intel_hdmi_unset_edid(struct drm_connector *connector)
1322 {
1323 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1324
1325 intel_hdmi->has_hdmi_sink = false;
1326 intel_hdmi->has_audio = false;
1327 intel_hdmi->rgb_quant_range_selectable = false;
1328
1329 kfree(to_intel_connector(connector)->detect_edid);
1330 to_intel_connector(connector)->detect_edid = NULL;
1331 }
1332
1333 static bool
1334 intel_hdmi_set_edid(struct drm_connector *connector)
1335 {
1336 struct drm_i915_private *dev_priv = to_i915(connector->dev);
1337 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1338 struct intel_encoder *intel_encoder =
1339 &hdmi_to_dig_port(intel_hdmi)->base;
1340 enum intel_display_power_domain power_domain;
1341 struct edid *edid;
1342 bool connected = false;
1343
1344 power_domain = intel_display_port_power_domain(intel_encoder);
1345 intel_display_power_get(dev_priv, power_domain);
1346
1347 edid = drm_get_edid(connector,
1348 intel_gmbus_get_adapter(dev_priv,
1349 intel_hdmi->ddc_bus));
1350
1351 intel_display_power_put(dev_priv, power_domain);
1352
1353 to_intel_connector(connector)->detect_edid = edid;
1354 if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
1355 intel_hdmi->rgb_quant_range_selectable =
1356 drm_rgb_quant_range_selectable(edid);
1357
1358 intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
1359 if (intel_hdmi->force_audio != HDMI_AUDIO_AUTO)
1360 intel_hdmi->has_audio =
1361 intel_hdmi->force_audio == HDMI_AUDIO_ON;
1362
1363 if (intel_hdmi->force_audio != HDMI_AUDIO_OFF_DVI)
1364 intel_hdmi->has_hdmi_sink =
1365 drm_detect_hdmi_monitor(edid);
1366
1367 connected = true;
1368 }
1369
1370 return connected;
1371 }
1372
1373 static enum drm_connector_status
1374 intel_hdmi_detect(struct drm_connector *connector, bool force)
1375 {
1376 enum drm_connector_status status;
1377
1378 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
1379 connector->base.id, connector->name);
1380
1381 intel_hdmi_unset_edid(connector);
1382
1383 if (intel_hdmi_set_edid(connector)) {
1384 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1385
1386 hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
1387 status = connector_status_connected;
1388 } else
1389 status = connector_status_disconnected;
1390
1391 return status;
1392 }
1393
1394 static void
1395 intel_hdmi_force(struct drm_connector *connector)
1396 {
1397 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1398
1399 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
1400 connector->base.id, connector->name);
1401
1402 intel_hdmi_unset_edid(connector);
1403
1404 if (connector->status != connector_status_connected)
1405 return;
1406
1407 intel_hdmi_set_edid(connector);
1408 hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
1409 }
1410
1411 static int intel_hdmi_get_modes(struct drm_connector *connector)
1412 {
1413 struct edid *edid;
1414
1415 edid = to_intel_connector(connector)->detect_edid;
1416 if (edid == NULL)
1417 return 0;
1418
1419 return intel_connector_update_modes(connector, edid);
1420 }
1421
1422 static bool
1423 intel_hdmi_detect_audio(struct drm_connector *connector)
1424 {
1425 bool has_audio = false;
1426 struct edid *edid;
1427
1428 edid = to_intel_connector(connector)->detect_edid;
1429 if (edid && edid->input & DRM_EDID_INPUT_DIGITAL)
1430 has_audio = drm_detect_monitor_audio(edid);
1431
1432 return has_audio;
1433 }
1434
1435 static int
1436 intel_hdmi_set_property(struct drm_connector *connector,
1437 struct drm_property *property,
1438 uint64_t val)
1439 {
1440 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1441 struct intel_digital_port *intel_dig_port =
1442 hdmi_to_dig_port(intel_hdmi);
1443 struct drm_i915_private *dev_priv = connector->dev->dev_private;
1444 int ret;
1445
1446 ret = drm_object_property_set_value(&connector->base, property, val);
1447 if (ret)
1448 return ret;
1449
1450 if (property == dev_priv->force_audio_property) {
1451 enum hdmi_force_audio i = val;
1452 bool has_audio;
1453
1454 if (i == intel_hdmi->force_audio)
1455 return 0;
1456
1457 intel_hdmi->force_audio = i;
1458
1459 if (i == HDMI_AUDIO_AUTO)
1460 has_audio = intel_hdmi_detect_audio(connector);
1461 else
1462 has_audio = (i == HDMI_AUDIO_ON);
1463
1464 if (i == HDMI_AUDIO_OFF_DVI)
1465 intel_hdmi->has_hdmi_sink = 0;
1466
1467 intel_hdmi->has_audio = has_audio;
1468 goto done;
1469 }
1470
1471 if (property == dev_priv->broadcast_rgb_property) {
1472 bool old_auto = intel_hdmi->color_range_auto;
1473 uint32_t old_range = intel_hdmi->color_range;
1474
1475 switch (val) {
1476 case INTEL_BROADCAST_RGB_AUTO:
1477 intel_hdmi->color_range_auto = true;
1478 break;
1479 case INTEL_BROADCAST_RGB_FULL:
1480 intel_hdmi->color_range_auto = false;
1481 intel_hdmi->color_range = 0;
1482 break;
1483 case INTEL_BROADCAST_RGB_LIMITED:
1484 intel_hdmi->color_range_auto = false;
1485 intel_hdmi->color_range = HDMI_COLOR_RANGE_16_235;
1486 break;
1487 default:
1488 return -EINVAL;
1489 }
1490
1491 if (old_auto == intel_hdmi->color_range_auto &&
1492 old_range == intel_hdmi->color_range)
1493 return 0;
1494
1495 goto done;
1496 }
1497
1498 if (property == connector->dev->mode_config.aspect_ratio_property) {
1499 switch (val) {
1500 case DRM_MODE_PICTURE_ASPECT_NONE:
1501 intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
1502 break;
1503 case DRM_MODE_PICTURE_ASPECT_4_3:
1504 intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_4_3;
1505 break;
1506 case DRM_MODE_PICTURE_ASPECT_16_9:
1507 intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_16_9;
1508 break;
1509 default:
1510 return -EINVAL;
1511 }
1512 goto done;
1513 }
1514
1515 return -EINVAL;
1516
1517 done:
1518 if (intel_dig_port->base.base.crtc)
1519 intel_crtc_restore_mode(intel_dig_port->base.base.crtc);
1520
1521 return 0;
1522 }
1523
1524 static void intel_hdmi_pre_enable(struct intel_encoder *encoder)
1525 {
1526 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1527 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1528 struct drm_display_mode *adjusted_mode =
1529 &intel_crtc->config->base.adjusted_mode;
1530
1531 intel_hdmi_prepare(encoder);
1532
1533 intel_hdmi->set_infoframes(&encoder->base,
1534 intel_crtc->config->has_hdmi_sink,
1535 adjusted_mode);
1536 }
1537
1538 static void vlv_hdmi_pre_enable(struct intel_encoder *encoder)
1539 {
1540 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1541 struct intel_hdmi *intel_hdmi = &dport->hdmi;
1542 struct drm_device *dev = encoder->base.dev;
1543 struct drm_i915_private *dev_priv = dev->dev_private;
1544 struct intel_crtc *intel_crtc =
1545 to_intel_crtc(encoder->base.crtc);
1546 struct drm_display_mode *adjusted_mode =
1547 &intel_crtc->config->base.adjusted_mode;
1548 enum dpio_channel port = vlv_dport_to_channel(dport);
1549 int pipe = intel_crtc->pipe;
1550 u32 val;
1551
1552 /* Enable clock channels for this port */
1553 mutex_lock(&dev_priv->sb_lock);
1554 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1555 val = 0;
1556 if (pipe)
1557 val |= (1<<21);
1558 else
1559 val &= ~(1<<21);
1560 val |= 0x001000c4;
1561 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1562
1563 /* HDMI 1.0V-2dB */
1564 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0);
1565 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), 0x2b245f5f);
1566 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), 0x5578b83a);
1567 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0c782040);
1568 vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), 0x2b247878);
1569 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
1570 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
1571 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1572
1573 /* Program lane clock */
1574 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1575 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1576 mutex_unlock(&dev_priv->sb_lock);
1577
1578 intel_hdmi->set_infoframes(&encoder->base,
1579 intel_crtc->config->has_hdmi_sink,
1580 adjusted_mode);
1581
1582 g4x_enable_hdmi(encoder);
1583
1584 vlv_wait_port_ready(dev_priv, dport, 0x0);
1585 }
1586
1587 static void vlv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
1588 {
1589 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1590 struct drm_device *dev = encoder->base.dev;
1591 struct drm_i915_private *dev_priv = dev->dev_private;
1592 struct intel_crtc *intel_crtc =
1593 to_intel_crtc(encoder->base.crtc);
1594 enum dpio_channel port = vlv_dport_to_channel(dport);
1595 int pipe = intel_crtc->pipe;
1596
1597 intel_hdmi_prepare(encoder);
1598
1599 /* Program Tx lane resets to default */
1600 mutex_lock(&dev_priv->sb_lock);
1601 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1602 DPIO_PCS_TX_LANE2_RESET |
1603 DPIO_PCS_TX_LANE1_RESET);
1604 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1605 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1606 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1607 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1608 DPIO_PCS_CLK_SOFT_RESET);
1609
1610 /* Fix up inter-pair skew failure */
1611 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1612 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1613 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1614
1615 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
1616 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1617 mutex_unlock(&dev_priv->sb_lock);
1618 }
1619
1620 static void chv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
1621 {
1622 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1623 struct drm_device *dev = encoder->base.dev;
1624 struct drm_i915_private *dev_priv = dev->dev_private;
1625 struct intel_crtc *intel_crtc =
1626 to_intel_crtc(encoder->base.crtc);
1627 enum dpio_channel ch = vlv_dport_to_channel(dport);
1628 enum pipe pipe = intel_crtc->pipe;
1629 u32 val;
1630
1631 intel_hdmi_prepare(encoder);
1632
1633 mutex_lock(&dev_priv->sb_lock);
1634
1635 /* program left/right clock distribution */
1636 if (pipe != PIPE_B) {
1637 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1638 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1639 if (ch == DPIO_CH0)
1640 val |= CHV_BUFLEFTENA1_FORCE;
1641 if (ch == DPIO_CH1)
1642 val |= CHV_BUFRIGHTENA1_FORCE;
1643 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1644 } else {
1645 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1646 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1647 if (ch == DPIO_CH0)
1648 val |= CHV_BUFLEFTENA2_FORCE;
1649 if (ch == DPIO_CH1)
1650 val |= CHV_BUFRIGHTENA2_FORCE;
1651 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1652 }
1653
1654 /* program clock channel usage */
1655 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
1656 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
1657 if (pipe != PIPE_B)
1658 val &= ~CHV_PCS_USEDCLKCHANNEL;
1659 else
1660 val |= CHV_PCS_USEDCLKCHANNEL;
1661 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
1662
1663 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
1664 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
1665 if (pipe != PIPE_B)
1666 val &= ~CHV_PCS_USEDCLKCHANNEL;
1667 else
1668 val |= CHV_PCS_USEDCLKCHANNEL;
1669 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
1670
1671 /*
1672 * This a a bit weird since generally CL
1673 * matches the pipe, but here we need to
1674 * pick the CL based on the port.
1675 */
1676 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
1677 if (pipe != PIPE_B)
1678 val &= ~CHV_CMN_USEDCLKCHANNEL;
1679 else
1680 val |= CHV_CMN_USEDCLKCHANNEL;
1681 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
1682
1683 mutex_unlock(&dev_priv->sb_lock);
1684 }
1685
1686 static void vlv_hdmi_post_disable(struct intel_encoder *encoder)
1687 {
1688 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1689 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
1690 struct intel_crtc *intel_crtc =
1691 to_intel_crtc(encoder->base.crtc);
1692 enum dpio_channel port = vlv_dport_to_channel(dport);
1693 int pipe = intel_crtc->pipe;
1694
1695 /* Reset lanes to avoid HDMI flicker (VLV w/a) */
1696 mutex_lock(&dev_priv->sb_lock);
1697 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
1698 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
1699 mutex_unlock(&dev_priv->sb_lock);
1700 }
1701
1702 static void chv_hdmi_post_disable(struct intel_encoder *encoder)
1703 {
1704 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1705 struct drm_device *dev = encoder->base.dev;
1706 struct drm_i915_private *dev_priv = dev->dev_private;
1707 struct intel_crtc *intel_crtc =
1708 to_intel_crtc(encoder->base.crtc);
1709 enum dpio_channel ch = vlv_dport_to_channel(dport);
1710 enum pipe pipe = intel_crtc->pipe;
1711 u32 val;
1712
1713 mutex_lock(&dev_priv->sb_lock);
1714
1715 /* Propagate soft reset to data lane reset */
1716 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
1717 val |= CHV_PCS_REQ_SOFTRESET_EN;
1718 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
1719
1720 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
1721 val |= CHV_PCS_REQ_SOFTRESET_EN;
1722 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
1723
1724 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
1725 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1726 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
1727
1728 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
1729 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1730 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
1731
1732 mutex_unlock(&dev_priv->sb_lock);
1733 }
1734
1735 static void chv_hdmi_pre_enable(struct intel_encoder *encoder)
1736 {
1737 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1738 struct intel_hdmi *intel_hdmi = &dport->hdmi;
1739 struct drm_device *dev = encoder->base.dev;
1740 struct drm_i915_private *dev_priv = dev->dev_private;
1741 struct intel_crtc *intel_crtc =
1742 to_intel_crtc(encoder->base.crtc);
1743 struct drm_display_mode *adjusted_mode =
1744 &intel_crtc->config->base.adjusted_mode;
1745 enum dpio_channel ch = vlv_dport_to_channel(dport);
1746 int pipe = intel_crtc->pipe;
1747 int data, i, stagger;
1748 u32 val;
1749
1750 mutex_lock(&dev_priv->sb_lock);
1751
1752 /* allow hardware to manage TX FIFO reset source */
1753 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
1754 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
1755 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
1756
1757 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
1758 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
1759 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
1760
1761 /* Deassert soft data lane reset*/
1762 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
1763 val |= CHV_PCS_REQ_SOFTRESET_EN;
1764 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
1765
1766 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
1767 val |= CHV_PCS_REQ_SOFTRESET_EN;
1768 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
1769
1770 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
1771 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1772 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
1773
1774 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
1775 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1776 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
1777
1778 /* Program Tx latency optimal setting */
1779 for (i = 0; i < 4; i++) {
1780 /* Set the upar bit */
1781 data = (i == 1) ? 0x0 : 0x1;
1782 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
1783 data << DPIO_UPAR_SHIFT);
1784 }
1785
1786 /* Data lane stagger programming */
1787 if (intel_crtc->config->port_clock > 270000)
1788 stagger = 0x18;
1789 else if (intel_crtc->config->port_clock > 135000)
1790 stagger = 0xd;
1791 else if (intel_crtc->config->port_clock > 67500)
1792 stagger = 0x7;
1793 else if (intel_crtc->config->port_clock > 33750)
1794 stagger = 0x4;
1795 else
1796 stagger = 0x2;
1797
1798 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
1799 val |= DPIO_TX2_STAGGER_MASK(0x1f);
1800 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
1801
1802 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
1803 val |= DPIO_TX2_STAGGER_MASK(0x1f);
1804 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
1805
1806 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
1807 DPIO_LANESTAGGER_STRAP(stagger) |
1808 DPIO_LANESTAGGER_STRAP_OVRD |
1809 DPIO_TX1_STAGGER_MASK(0x1f) |
1810 DPIO_TX1_STAGGER_MULT(6) |
1811 DPIO_TX2_STAGGER_MULT(0));
1812
1813 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
1814 DPIO_LANESTAGGER_STRAP(stagger) |
1815 DPIO_LANESTAGGER_STRAP_OVRD |
1816 DPIO_TX1_STAGGER_MASK(0x1f) |
1817 DPIO_TX1_STAGGER_MULT(7) |
1818 DPIO_TX2_STAGGER_MULT(5));
1819
1820 /* Clear calc init */
1821 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
1822 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
1823 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
1824 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
1825 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
1826
1827 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
1828 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
1829 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
1830 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
1831 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
1832
1833 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
1834 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
1835 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
1836 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
1837
1838 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
1839 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
1840 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
1841 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
1842
1843 /* FIXME: Program the support xxx V-dB */
1844 /* Use 800mV-0dB */
1845 for (i = 0; i < 4; i++) {
1846 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
1847 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
1848 val |= 128 << DPIO_SWING_DEEMPH9P5_SHIFT;
1849 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
1850 }
1851
1852 for (i = 0; i < 4; i++) {
1853 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
1854 val &= ~DPIO_SWING_MARGIN000_MASK;
1855 val |= 102 << DPIO_SWING_MARGIN000_SHIFT;
1856 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
1857 }
1858
1859 /* Disable unique transition scale */
1860 for (i = 0; i < 4; i++) {
1861 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
1862 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
1863 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
1864 }
1865
1866 /* Additional steps for 1200mV-0dB */
1867 #if 0
1868 val = vlv_dpio_read(dev_priv, pipe, VLV_TX_DW3(ch));
1869 if (ch)
1870 val |= DPIO_TX_UNIQ_TRANS_SCALE_CH1;
1871 else
1872 val |= DPIO_TX_UNIQ_TRANS_SCALE_CH0;
1873 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(ch), val);
1874
1875 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(ch),
1876 vlv_dpio_read(dev_priv, pipe, VLV_TX_DW2(ch)) |
1877 (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT));
1878 #endif
1879 /* Start swing calculation */
1880 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
1881 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
1882 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
1883
1884 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
1885 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
1886 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
1887
1888 /* LRC Bypass */
1889 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1890 val |= DPIO_LRC_BYPASS;
1891 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
1892
1893 mutex_unlock(&dev_priv->sb_lock);
1894
1895 intel_hdmi->set_infoframes(&encoder->base,
1896 intel_crtc->config->has_hdmi_sink,
1897 adjusted_mode);
1898
1899 g4x_enable_hdmi(encoder);
1900
1901 vlv_wait_port_ready(dev_priv, dport, 0x0);
1902 }
1903
1904 static void intel_hdmi_destroy(struct drm_connector *connector)
1905 {
1906 kfree(to_intel_connector(connector)->detect_edid);
1907 drm_connector_cleanup(connector);
1908 kfree(connector);
1909 }
1910
1911 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
1912 .dpms = drm_atomic_helper_connector_dpms,
1913 .detect = intel_hdmi_detect,
1914 .force = intel_hdmi_force,
1915 .fill_modes = drm_helper_probe_single_connector_modes,
1916 .set_property = intel_hdmi_set_property,
1917 .atomic_get_property = intel_connector_atomic_get_property,
1918 .destroy = intel_hdmi_destroy,
1919 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1920 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
1921 };
1922
1923 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
1924 .get_modes = intel_hdmi_get_modes,
1925 .mode_valid = intel_hdmi_mode_valid,
1926 .best_encoder = intel_best_encoder,
1927 };
1928
1929 static const struct drm_encoder_funcs intel_hdmi_enc_funcs = {
1930 .destroy = intel_encoder_destroy,
1931 };
1932
1933 static void
1934 intel_attach_aspect_ratio_property(struct drm_connector *connector)
1935 {
1936 if (!drm_mode_create_aspect_ratio_property(connector->dev))
1937 drm_object_attach_property(&connector->base,
1938 connector->dev->mode_config.aspect_ratio_property,
1939 DRM_MODE_PICTURE_ASPECT_NONE);
1940 }
1941
1942 static void
1943 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
1944 {
1945 intel_attach_force_audio_property(connector);
1946 intel_attach_broadcast_rgb_property(connector);
1947 intel_hdmi->color_range_auto = true;
1948 intel_attach_aspect_ratio_property(connector);
1949 intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
1950 }
1951
1952 void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port,
1953 struct intel_connector *intel_connector)
1954 {
1955 struct drm_connector *connector = &intel_connector->base;
1956 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
1957 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1958 struct drm_device *dev = intel_encoder->base.dev;
1959 struct drm_i915_private *dev_priv = dev->dev_private;
1960 enum port port = intel_dig_port->port;
1961 uint8_t alternate_ddc_pin;
1962
1963 drm_connector_init(dev, connector, &intel_hdmi_connector_funcs,
1964 DRM_MODE_CONNECTOR_HDMIA);
1965 drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
1966
1967 connector->interlace_allowed = 1;
1968 connector->doublescan_allowed = 0;
1969 connector->stereo_allowed = 1;
1970
1971 switch (port) {
1972 case PORT_B:
1973 if (IS_BROXTON(dev_priv))
1974 intel_hdmi->ddc_bus = GMBUS_PIN_1_BXT;
1975 else
1976 intel_hdmi->ddc_bus = GMBUS_PIN_DPB;
1977 intel_encoder->hpd_pin = HPD_PORT_B;
1978 break;
1979 case PORT_C:
1980 if (IS_BROXTON(dev_priv))
1981 intel_hdmi->ddc_bus = GMBUS_PIN_2_BXT;
1982 else
1983 intel_hdmi->ddc_bus = GMBUS_PIN_DPC;
1984 intel_encoder->hpd_pin = HPD_PORT_C;
1985 break;
1986 case PORT_D:
1987 if (WARN_ON(IS_BROXTON(dev_priv)))
1988 intel_hdmi->ddc_bus = GMBUS_PIN_DISABLED;
1989 else if (IS_CHERRYVIEW(dev_priv))
1990 intel_hdmi->ddc_bus = GMBUS_PIN_DPD_CHV;
1991 else
1992 intel_hdmi->ddc_bus = GMBUS_PIN_DPD;
1993 intel_encoder->hpd_pin = HPD_PORT_D;
1994 break;
1995 case PORT_E:
1996 /* On SKL PORT E doesn't have seperate GMBUS pin
1997 * We rely on VBT to set a proper alternate GMBUS pin. */
1998 alternate_ddc_pin =
1999 dev_priv->vbt.ddi_port_info[PORT_E].alternate_ddc_pin;
2000 switch (alternate_ddc_pin) {
2001 case DDC_PIN_B:
2002 intel_hdmi->ddc_bus = GMBUS_PIN_DPB;
2003 break;
2004 case DDC_PIN_C:
2005 intel_hdmi->ddc_bus = GMBUS_PIN_DPC;
2006 break;
2007 case DDC_PIN_D:
2008 intel_hdmi->ddc_bus = GMBUS_PIN_DPD;
2009 break;
2010 default:
2011 MISSING_CASE(alternate_ddc_pin);
2012 }
2013 intel_encoder->hpd_pin = HPD_PORT_E;
2014 break;
2015 case PORT_A:
2016 intel_encoder->hpd_pin = HPD_PORT_A;
2017 /* Internal port only for eDP. */
2018 default:
2019 BUG();
2020 }
2021
2022 if (IS_VALLEYVIEW(dev)) {
2023 intel_hdmi->write_infoframe = vlv_write_infoframe;
2024 intel_hdmi->set_infoframes = vlv_set_infoframes;
2025 intel_hdmi->infoframe_enabled = vlv_infoframe_enabled;
2026 } else if (IS_G4X(dev)) {
2027 intel_hdmi->write_infoframe = g4x_write_infoframe;
2028 intel_hdmi->set_infoframes = g4x_set_infoframes;
2029 intel_hdmi->infoframe_enabled = g4x_infoframe_enabled;
2030 } else if (HAS_DDI(dev)) {
2031 intel_hdmi->write_infoframe = hsw_write_infoframe;
2032 intel_hdmi->set_infoframes = hsw_set_infoframes;
2033 intel_hdmi->infoframe_enabled = hsw_infoframe_enabled;
2034 } else if (HAS_PCH_IBX(dev)) {
2035 intel_hdmi->write_infoframe = ibx_write_infoframe;
2036 intel_hdmi->set_infoframes = ibx_set_infoframes;
2037 intel_hdmi->infoframe_enabled = ibx_infoframe_enabled;
2038 } else {
2039 intel_hdmi->write_infoframe = cpt_write_infoframe;
2040 intel_hdmi->set_infoframes = cpt_set_infoframes;
2041 intel_hdmi->infoframe_enabled = cpt_infoframe_enabled;
2042 }
2043
2044 if (HAS_DDI(dev))
2045 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2046 else
2047 intel_connector->get_hw_state = intel_connector_get_hw_state;
2048 intel_connector->unregister = intel_connector_unregister;
2049
2050 intel_hdmi_add_properties(intel_hdmi, connector);
2051
2052 intel_connector_attach_encoder(intel_connector, intel_encoder);
2053 drm_connector_register(connector);
2054
2055 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2056 * 0xd. Failure to do so will result in spurious interrupts being
2057 * generated on the port when a cable is not attached.
2058 */
2059 if (IS_G4X(dev) && !IS_GM45(dev)) {
2060 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2061 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2062 }
2063 }
2064
2065 void intel_hdmi_init(struct drm_device *dev, int hdmi_reg, enum port port)
2066 {
2067 struct intel_digital_port *intel_dig_port;
2068 struct intel_encoder *intel_encoder;
2069 struct intel_connector *intel_connector;
2070
2071 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
2072 if (!intel_dig_port)
2073 return;
2074
2075 intel_connector = intel_connector_alloc();
2076 if (!intel_connector) {
2077 kfree(intel_dig_port);
2078 return;
2079 }
2080
2081 intel_encoder = &intel_dig_port->base;
2082
2083 drm_encoder_init(dev, &intel_encoder->base, &intel_hdmi_enc_funcs,
2084 DRM_MODE_ENCODER_TMDS);
2085
2086 intel_encoder->compute_config = intel_hdmi_compute_config;
2087 if (HAS_PCH_SPLIT(dev)) {
2088 intel_encoder->disable = pch_disable_hdmi;
2089 intel_encoder->post_disable = pch_post_disable_hdmi;
2090 } else {
2091 intel_encoder->disable = g4x_disable_hdmi;
2092 }
2093 intel_encoder->get_hw_state = intel_hdmi_get_hw_state;
2094 intel_encoder->get_config = intel_hdmi_get_config;
2095 if (IS_CHERRYVIEW(dev)) {
2096 intel_encoder->pre_pll_enable = chv_hdmi_pre_pll_enable;
2097 intel_encoder->pre_enable = chv_hdmi_pre_enable;
2098 intel_encoder->enable = vlv_enable_hdmi;
2099 intel_encoder->post_disable = chv_hdmi_post_disable;
2100 } else if (IS_VALLEYVIEW(dev)) {
2101 intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable;
2102 intel_encoder->pre_enable = vlv_hdmi_pre_enable;
2103 intel_encoder->enable = vlv_enable_hdmi;
2104 intel_encoder->post_disable = vlv_hdmi_post_disable;
2105 } else {
2106 intel_encoder->pre_enable = intel_hdmi_pre_enable;
2107 if (HAS_PCH_CPT(dev))
2108 intel_encoder->enable = cpt_enable_hdmi;
2109 else if (HAS_PCH_IBX(dev))
2110 intel_encoder->enable = ibx_enable_hdmi;
2111 else
2112 intel_encoder->enable = g4x_enable_hdmi;
2113 }
2114
2115 intel_encoder->type = INTEL_OUTPUT_HDMI;
2116 if (IS_CHERRYVIEW(dev)) {
2117 if (port == PORT_D)
2118 intel_encoder->crtc_mask = 1 << 2;
2119 else
2120 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
2121 } else {
2122 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2123 }
2124 intel_encoder->cloneable = 1 << INTEL_OUTPUT_ANALOG;
2125 /*
2126 * BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems
2127 * to work on real hardware. And since g4x can send infoframes to
2128 * only one port anyway, nothing is lost by allowing it.
2129 */
2130 if (IS_G4X(dev))
2131 intel_encoder->cloneable |= 1 << INTEL_OUTPUT_HDMI;
2132
2133 intel_dig_port->port = port;
2134 intel_dig_port->hdmi.hdmi_reg = hdmi_reg;
2135 intel_dig_port->dp.output_reg = 0;
2136
2137 intel_hdmi_init_connector(intel_dig_port, intel_connector);
2138 }
This page took 0.11912 seconds and 6 git commands to generate.