drm/i915: Adjust size of PIPE_CONTROL used for gen8 render seqno write
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL (1 << 0x2)
146 #define RING_EXECLIST1_VALID (1 << 0x3)
147 #define RING_EXECLIST0_VALID (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
158
159 #define CTX_LRI_HEADER_0 0x01
160 #define CTX_CONTEXT_CONTROL 0x02
161 #define CTX_RING_HEAD 0x04
162 #define CTX_RING_TAIL 0x06
163 #define CTX_RING_BUFFER_START 0x08
164 #define CTX_RING_BUFFER_CONTROL 0x0a
165 #define CTX_BB_HEAD_U 0x0c
166 #define CTX_BB_HEAD_L 0x0e
167 #define CTX_BB_STATE 0x10
168 #define CTX_SECOND_BB_HEAD_U 0x12
169 #define CTX_SECOND_BB_HEAD_L 0x14
170 #define CTX_SECOND_BB_STATE 0x16
171 #define CTX_BB_PER_CTX_PTR 0x18
172 #define CTX_RCS_INDIRECT_CTX 0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174 #define CTX_LRI_HEADER_1 0x21
175 #define CTX_CTX_TIMESTAMP 0x22
176 #define CTX_PDP3_UDW 0x24
177 #define CTX_PDP3_LDW 0x26
178 #define CTX_PDP2_UDW 0x28
179 #define CTX_PDP2_LDW 0x2a
180 #define CTX_PDP1_UDW 0x2c
181 #define CTX_PDP1_LDW 0x2e
182 #define CTX_PDP0_UDW 0x30
183 #define CTX_PDP0_LDW 0x32
184 #define CTX_LRI_HEADER_2 0x41
185 #define CTX_R_PWR_CLK_STATE 0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 (reg_state)[(pos)+1] = (val); \
197 } while (0)
198
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209
210 enum {
211 ADVANCED_CONTEXT = 0,
212 LEGACY_32B_CONTEXT,
213 ADVANCED_AD_CONTEXT,
214 LEGACY_64B_CONTEXT
215 };
216 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217 #define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
218 LEGACY_64B_CONTEXT :\
219 LEGACY_32B_CONTEXT)
220 enum {
221 FAULT_AND_HANG = 0,
222 FAULT_AND_HALT, /* Debug only */
223 FAULT_AND_STREAM,
224 FAULT_AND_CONTINUE /* Unsupported */
225 };
226 #define GEN8_CTX_ID_SHIFT 32
227 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
228 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
229
230 static int intel_lr_context_pin(struct intel_context *ctx,
231 struct intel_engine_cs *engine);
232
233 /**
234 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
235 * @dev: DRM device.
236 * @enable_execlists: value of i915.enable_execlists module parameter.
237 *
238 * Only certain platforms support Execlists (the prerequisites being
239 * support for Logical Ring Contexts and Aliasing PPGTT or better).
240 *
241 * Return: 1 if Execlists is supported and has to be enabled.
242 */
243 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
244 {
245 WARN_ON(i915.enable_ppgtt == -1);
246
247 /* On platforms with execlist available, vGPU will only
248 * support execlist mode, no ring buffer mode.
249 */
250 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
251 return 1;
252
253 if (INTEL_INFO(dev)->gen >= 9)
254 return 1;
255
256 if (enable_execlists == 0)
257 return 0;
258
259 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
260 i915.use_mmio_flip >= 0)
261 return 1;
262
263 return 0;
264 }
265
266 static void
267 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
268 {
269 struct drm_device *dev = engine->dev;
270
271 if (IS_GEN8(dev) || IS_GEN9(dev))
272 engine->idle_lite_restore_wa = ~0;
273
274 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
275 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
276 (engine->id == VCS || engine->id == VCS2);
277
278 engine->ctx_desc_template = GEN8_CTX_VALID;
279 engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
280 GEN8_CTX_ADDRESSING_MODE_SHIFT;
281 if (IS_GEN8(dev))
282 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
283 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
284
285 /* TODO: WaDisableLiteRestore when we start using semaphore
286 * signalling between Command Streamers */
287 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
288
289 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
290 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
291 if (engine->disable_lite_restore_wa)
292 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
293 }
294
295 /**
296 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
297 * descriptor for a pinned context
298 *
299 * @ctx: Context to work on
300 * @ring: Engine the descriptor will be used with
301 *
302 * The context descriptor encodes various attributes of a context,
303 * including its GTT address and some flags. Because it's fairly
304 * expensive to calculate, we'll just do it once and cache the result,
305 * which remains valid until the context is unpinned.
306 *
307 * This is what a descriptor looks like, from LSB to MSB:
308 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
309 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
310 * bits 32-51: ctx ID, a globally unique tag (the LRCA again!)
311 * bits 52-63: reserved, may encode the engine ID (for GuC)
312 */
313 static void
314 intel_lr_context_descriptor_update(struct intel_context *ctx,
315 struct intel_engine_cs *engine)
316 {
317 uint64_t lrca, desc;
318
319 lrca = ctx->engine[engine->id].lrc_vma->node.start +
320 LRC_PPHWSP_PN * PAGE_SIZE;
321
322 desc = engine->ctx_desc_template; /* bits 0-11 */
323 desc |= lrca; /* bits 12-31 */
324 desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
325
326 ctx->engine[engine->id].lrc_desc = desc;
327 }
328
329 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
330 struct intel_engine_cs *engine)
331 {
332 return ctx->engine[engine->id].lrc_desc;
333 }
334
335 /**
336 * intel_execlists_ctx_id() - get the Execlists Context ID
337 * @ctx: Context to get the ID for
338 * @ring: Engine to get the ID for
339 *
340 * Do not confuse with ctx->id! Unfortunately we have a name overload
341 * here: the old context ID we pass to userspace as a handler so that
342 * they can refer to a context, and the new context ID we pass to the
343 * ELSP so that the GPU can inform us of the context status via
344 * interrupts.
345 *
346 * The context ID is a portion of the context descriptor, so we can
347 * just extract the required part from the cached descriptor.
348 *
349 * Return: 20-bits globally unique context ID.
350 */
351 u32 intel_execlists_ctx_id(struct intel_context *ctx,
352 struct intel_engine_cs *engine)
353 {
354 return intel_lr_context_descriptor(ctx, engine) >> GEN8_CTX_ID_SHIFT;
355 }
356
357 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
358 struct drm_i915_gem_request *rq1)
359 {
360
361 struct intel_engine_cs *engine = rq0->engine;
362 struct drm_device *dev = engine->dev;
363 struct drm_i915_private *dev_priv = dev->dev_private;
364 uint64_t desc[2];
365
366 if (rq1) {
367 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
368 rq1->elsp_submitted++;
369 } else {
370 desc[1] = 0;
371 }
372
373 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
374 rq0->elsp_submitted++;
375
376 /* You must always write both descriptors in the order below. */
377 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
378 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
379
380 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
381 /* The context is automatically loaded after the following */
382 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
383
384 /* ELSP is a wo register, use another nearby reg for posting */
385 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
386 }
387
388 static void
389 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
390 {
391 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
392 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
393 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
394 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
395 }
396
397 static void execlists_update_context(struct drm_i915_gem_request *rq)
398 {
399 struct intel_engine_cs *engine = rq->engine;
400 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
401 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
402
403 reg_state[CTX_RING_TAIL+1] = rq->tail;
404
405 /* True 32b PPGTT with dynamic page allocation: update PDP
406 * registers and point the unallocated PDPs to scratch page.
407 * PML4 is allocated during ppgtt init, so this is not needed
408 * in 48-bit mode.
409 */
410 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
411 execlists_update_context_pdps(ppgtt, reg_state);
412 }
413
414 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
415 struct drm_i915_gem_request *rq1)
416 {
417 struct drm_i915_private *dev_priv = rq0->i915;
418 unsigned int fw_domains = rq0->engine->fw_domains;
419
420 execlists_update_context(rq0);
421
422 if (rq1)
423 execlists_update_context(rq1);
424
425 spin_lock_irq(&dev_priv->uncore.lock);
426 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
427
428 execlists_elsp_write(rq0, rq1);
429
430 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
431 spin_unlock_irq(&dev_priv->uncore.lock);
432 }
433
434 static void execlists_context_unqueue(struct intel_engine_cs *engine)
435 {
436 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
437 struct drm_i915_gem_request *cursor, *tmp;
438
439 assert_spin_locked(&engine->execlist_lock);
440
441 /*
442 * If irqs are not active generate a warning as batches that finish
443 * without the irqs may get lost and a GPU Hang may occur.
444 */
445 WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
446
447 /* Try to read in pairs */
448 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
449 execlist_link) {
450 if (!req0) {
451 req0 = cursor;
452 } else if (req0->ctx == cursor->ctx) {
453 /* Same ctx: ignore first request, as second request
454 * will update tail past first request's workload */
455 cursor->elsp_submitted = req0->elsp_submitted;
456 list_move_tail(&req0->execlist_link,
457 &engine->execlist_retired_req_list);
458 req0 = cursor;
459 } else {
460 req1 = cursor;
461 WARN_ON(req1->elsp_submitted);
462 break;
463 }
464 }
465
466 if (unlikely(!req0))
467 return;
468
469 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
470 /*
471 * WaIdleLiteRestore: make sure we never cause a lite restore
472 * with HEAD==TAIL.
473 *
474 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
475 * resubmit the request. See gen8_emit_request() for where we
476 * prepare the padding after the end of the request.
477 */
478 struct intel_ringbuffer *ringbuf;
479
480 ringbuf = req0->ctx->engine[engine->id].ringbuf;
481 req0->tail += 8;
482 req0->tail &= ringbuf->size - 1;
483 }
484
485 execlists_submit_requests(req0, req1);
486 }
487
488 static unsigned int
489 execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
490 {
491 struct drm_i915_gem_request *head_req;
492
493 assert_spin_locked(&engine->execlist_lock);
494
495 head_req = list_first_entry_or_null(&engine->execlist_queue,
496 struct drm_i915_gem_request,
497 execlist_link);
498
499 if (!head_req)
500 return 0;
501
502 if (unlikely(intel_execlists_ctx_id(head_req->ctx, engine) != request_id))
503 return 0;
504
505 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
506
507 if (--head_req->elsp_submitted > 0)
508 return 0;
509
510 list_move_tail(&head_req->execlist_link,
511 &engine->execlist_retired_req_list);
512
513 return 1;
514 }
515
516 static u32
517 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
518 u32 *context_id)
519 {
520 struct drm_i915_private *dev_priv = engine->dev->dev_private;
521 u32 status;
522
523 read_pointer %= GEN8_CSB_ENTRIES;
524
525 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
526
527 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
528 return 0;
529
530 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
531 read_pointer));
532
533 return status;
534 }
535
536 /**
537 * intel_lrc_irq_handler() - handle Context Switch interrupts
538 * @engine: Engine Command Streamer to handle.
539 *
540 * Check the unread Context Status Buffers and manage the submission of new
541 * contexts to the ELSP accordingly.
542 */
543 static void intel_lrc_irq_handler(unsigned long data)
544 {
545 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
546 struct drm_i915_private *dev_priv = engine->dev->dev_private;
547 u32 status_pointer;
548 unsigned int read_pointer, write_pointer;
549 u32 csb[GEN8_CSB_ENTRIES][2];
550 unsigned int csb_read = 0, i;
551 unsigned int submit_contexts = 0;
552
553 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
554
555 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
556
557 read_pointer = engine->next_context_status_buffer;
558 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
559 if (read_pointer > write_pointer)
560 write_pointer += GEN8_CSB_ENTRIES;
561
562 while (read_pointer < write_pointer) {
563 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
564 break;
565 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
566 &csb[csb_read][1]);
567 csb_read++;
568 }
569
570 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
571
572 /* Update the read pointer to the old write pointer. Manual ringbuffer
573 * management ftw </sarcasm> */
574 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
575 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
576 engine->next_context_status_buffer << 8));
577
578 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
579
580 spin_lock(&engine->execlist_lock);
581
582 for (i = 0; i < csb_read; i++) {
583 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
584 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
585 if (execlists_check_remove_request(engine, csb[i][1]))
586 WARN(1, "Lite Restored request removed from queue\n");
587 } else
588 WARN(1, "Preemption without Lite Restore\n");
589 }
590
591 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
592 GEN8_CTX_STATUS_ELEMENT_SWITCH))
593 submit_contexts +=
594 execlists_check_remove_request(engine, csb[i][1]);
595 }
596
597 if (submit_contexts) {
598 if (!engine->disable_lite_restore_wa ||
599 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
600 execlists_context_unqueue(engine);
601 }
602
603 spin_unlock(&engine->execlist_lock);
604
605 if (unlikely(submit_contexts > 2))
606 DRM_ERROR("More than two context complete events?\n");
607 }
608
609 static void execlists_context_queue(struct drm_i915_gem_request *request)
610 {
611 struct intel_engine_cs *engine = request->engine;
612 struct drm_i915_gem_request *cursor;
613 int num_elements = 0;
614
615 if (request->ctx != request->i915->kernel_context)
616 intel_lr_context_pin(request->ctx, engine);
617
618 i915_gem_request_reference(request);
619
620 spin_lock_bh(&engine->execlist_lock);
621
622 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
623 if (++num_elements > 2)
624 break;
625
626 if (num_elements > 2) {
627 struct drm_i915_gem_request *tail_req;
628
629 tail_req = list_last_entry(&engine->execlist_queue,
630 struct drm_i915_gem_request,
631 execlist_link);
632
633 if (request->ctx == tail_req->ctx) {
634 WARN(tail_req->elsp_submitted != 0,
635 "More than 2 already-submitted reqs queued\n");
636 list_move_tail(&tail_req->execlist_link,
637 &engine->execlist_retired_req_list);
638 }
639 }
640
641 list_add_tail(&request->execlist_link, &engine->execlist_queue);
642 if (num_elements == 0)
643 execlists_context_unqueue(engine);
644
645 spin_unlock_bh(&engine->execlist_lock);
646 }
647
648 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
649 {
650 struct intel_engine_cs *engine = req->engine;
651 uint32_t flush_domains;
652 int ret;
653
654 flush_domains = 0;
655 if (engine->gpu_caches_dirty)
656 flush_domains = I915_GEM_GPU_DOMAINS;
657
658 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
659 if (ret)
660 return ret;
661
662 engine->gpu_caches_dirty = false;
663 return 0;
664 }
665
666 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
667 struct list_head *vmas)
668 {
669 const unsigned other_rings = ~intel_engine_flag(req->engine);
670 struct i915_vma *vma;
671 uint32_t flush_domains = 0;
672 bool flush_chipset = false;
673 int ret;
674
675 list_for_each_entry(vma, vmas, exec_list) {
676 struct drm_i915_gem_object *obj = vma->obj;
677
678 if (obj->active & other_rings) {
679 ret = i915_gem_object_sync(obj, req->engine, &req);
680 if (ret)
681 return ret;
682 }
683
684 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
685 flush_chipset |= i915_gem_clflush_object(obj, false);
686
687 flush_domains |= obj->base.write_domain;
688 }
689
690 if (flush_domains & I915_GEM_DOMAIN_GTT)
691 wmb();
692
693 /* Unconditionally invalidate gpu caches and ensure that we do flush
694 * any residual writes from the previous batch.
695 */
696 return logical_ring_invalidate_all_caches(req);
697 }
698
699 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
700 {
701 int ret = 0;
702
703 request->ringbuf = request->ctx->engine[request->engine->id].ringbuf;
704
705 if (i915.enable_guc_submission) {
706 /*
707 * Check that the GuC has space for the request before
708 * going any further, as the i915_add_request() call
709 * later on mustn't fail ...
710 */
711 struct intel_guc *guc = &request->i915->guc;
712
713 ret = i915_guc_wq_check_space(guc->execbuf_client);
714 if (ret)
715 return ret;
716 }
717
718 if (request->ctx != request->i915->kernel_context)
719 ret = intel_lr_context_pin(request->ctx, request->engine);
720
721 return ret;
722 }
723
724 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
725 int bytes)
726 {
727 struct intel_ringbuffer *ringbuf = req->ringbuf;
728 struct intel_engine_cs *engine = req->engine;
729 struct drm_i915_gem_request *target;
730 unsigned space;
731 int ret;
732
733 if (intel_ring_space(ringbuf) >= bytes)
734 return 0;
735
736 /* The whole point of reserving space is to not wait! */
737 WARN_ON(ringbuf->reserved_in_use);
738
739 list_for_each_entry(target, &engine->request_list, list) {
740 /*
741 * The request queue is per-engine, so can contain requests
742 * from multiple ringbuffers. Here, we must ignore any that
743 * aren't from the ringbuffer we're considering.
744 */
745 if (target->ringbuf != ringbuf)
746 continue;
747
748 /* Would completion of this request free enough space? */
749 space = __intel_ring_space(target->postfix, ringbuf->tail,
750 ringbuf->size);
751 if (space >= bytes)
752 break;
753 }
754
755 if (WARN_ON(&target->list == &engine->request_list))
756 return -ENOSPC;
757
758 ret = i915_wait_request(target);
759 if (ret)
760 return ret;
761
762 ringbuf->space = space;
763 return 0;
764 }
765
766 /*
767 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
768 * @request: Request to advance the logical ringbuffer of.
769 *
770 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
771 * really happens during submission is that the context and current tail will be placed
772 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
773 * point, the tail *inside* the context is updated and the ELSP written to.
774 */
775 static int
776 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
777 {
778 struct intel_ringbuffer *ringbuf = request->ringbuf;
779 struct drm_i915_private *dev_priv = request->i915;
780 struct intel_engine_cs *engine = request->engine;
781
782 intel_logical_ring_advance(ringbuf);
783 request->tail = ringbuf->tail;
784
785 /*
786 * Here we add two extra NOOPs as padding to avoid
787 * lite restore of a context with HEAD==TAIL.
788 *
789 * Caller must reserve WA_TAIL_DWORDS for us!
790 */
791 intel_logical_ring_emit(ringbuf, MI_NOOP);
792 intel_logical_ring_emit(ringbuf, MI_NOOP);
793 intel_logical_ring_advance(ringbuf);
794
795 if (intel_engine_stopped(engine))
796 return 0;
797
798 if (engine->last_context != request->ctx) {
799 if (engine->last_context)
800 intel_lr_context_unpin(engine->last_context, engine);
801 if (request->ctx != request->i915->kernel_context) {
802 intel_lr_context_pin(request->ctx, engine);
803 engine->last_context = request->ctx;
804 } else {
805 engine->last_context = NULL;
806 }
807 }
808
809 if (dev_priv->guc.execbuf_client)
810 i915_guc_submit(dev_priv->guc.execbuf_client, request);
811 else
812 execlists_context_queue(request);
813
814 return 0;
815 }
816
817 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
818 {
819 uint32_t __iomem *virt;
820 int rem = ringbuf->size - ringbuf->tail;
821
822 virt = ringbuf->virtual_start + ringbuf->tail;
823 rem /= 4;
824 while (rem--)
825 iowrite32(MI_NOOP, virt++);
826
827 ringbuf->tail = 0;
828 intel_ring_update_space(ringbuf);
829 }
830
831 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
832 {
833 struct intel_ringbuffer *ringbuf = req->ringbuf;
834 int remain_usable = ringbuf->effective_size - ringbuf->tail;
835 int remain_actual = ringbuf->size - ringbuf->tail;
836 int ret, total_bytes, wait_bytes = 0;
837 bool need_wrap = false;
838
839 if (ringbuf->reserved_in_use)
840 total_bytes = bytes;
841 else
842 total_bytes = bytes + ringbuf->reserved_size;
843
844 if (unlikely(bytes > remain_usable)) {
845 /*
846 * Not enough space for the basic request. So need to flush
847 * out the remainder and then wait for base + reserved.
848 */
849 wait_bytes = remain_actual + total_bytes;
850 need_wrap = true;
851 } else {
852 if (unlikely(total_bytes > remain_usable)) {
853 /*
854 * The base request will fit but the reserved space
855 * falls off the end. So don't need an immediate wrap
856 * and only need to effectively wait for the reserved
857 * size space from the start of ringbuffer.
858 */
859 wait_bytes = remain_actual + ringbuf->reserved_size;
860 } else if (total_bytes > ringbuf->space) {
861 /* No wrapping required, just waiting. */
862 wait_bytes = total_bytes;
863 }
864 }
865
866 if (wait_bytes) {
867 ret = logical_ring_wait_for_space(req, wait_bytes);
868 if (unlikely(ret))
869 return ret;
870
871 if (need_wrap)
872 __wrap_ring_buffer(ringbuf);
873 }
874
875 return 0;
876 }
877
878 /**
879 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
880 *
881 * @req: The request to start some new work for
882 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
883 *
884 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
885 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
886 * and also preallocates a request (every workload submission is still mediated through
887 * requests, same as it did with legacy ringbuffer submission).
888 *
889 * Return: non-zero if the ringbuffer is not ready to be written to.
890 */
891 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
892 {
893 struct drm_i915_private *dev_priv;
894 int ret;
895
896 WARN_ON(req == NULL);
897 dev_priv = req->i915;
898
899 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
900 dev_priv->mm.interruptible);
901 if (ret)
902 return ret;
903
904 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
905 if (ret)
906 return ret;
907
908 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
909 return 0;
910 }
911
912 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
913 {
914 /*
915 * The first call merely notes the reserve request and is common for
916 * all back ends. The subsequent localised _begin() call actually
917 * ensures that the reservation is available. Without the begin, if
918 * the request creator immediately submitted the request without
919 * adding any commands to it then there might not actually be
920 * sufficient room for the submission commands.
921 */
922 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
923
924 return intel_logical_ring_begin(request, 0);
925 }
926
927 /**
928 * execlists_submission() - submit a batchbuffer for execution, Execlists style
929 * @dev: DRM device.
930 * @file: DRM file.
931 * @ring: Engine Command Streamer to submit to.
932 * @ctx: Context to employ for this submission.
933 * @args: execbuffer call arguments.
934 * @vmas: list of vmas.
935 * @batch_obj: the batchbuffer to submit.
936 * @exec_start: batchbuffer start virtual address pointer.
937 * @dispatch_flags: translated execbuffer call flags.
938 *
939 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
940 * away the submission details of the execbuffer ioctl call.
941 *
942 * Return: non-zero if the submission fails.
943 */
944 int intel_execlists_submission(struct i915_execbuffer_params *params,
945 struct drm_i915_gem_execbuffer2 *args,
946 struct list_head *vmas)
947 {
948 struct drm_device *dev = params->dev;
949 struct intel_engine_cs *engine = params->engine;
950 struct drm_i915_private *dev_priv = dev->dev_private;
951 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
952 u64 exec_start;
953 int instp_mode;
954 u32 instp_mask;
955 int ret;
956
957 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
958 instp_mask = I915_EXEC_CONSTANTS_MASK;
959 switch (instp_mode) {
960 case I915_EXEC_CONSTANTS_REL_GENERAL:
961 case I915_EXEC_CONSTANTS_ABSOLUTE:
962 case I915_EXEC_CONSTANTS_REL_SURFACE:
963 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
964 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
965 return -EINVAL;
966 }
967
968 if (instp_mode != dev_priv->relative_constants_mode) {
969 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
970 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
971 return -EINVAL;
972 }
973
974 /* The HW changed the meaning on this bit on gen6 */
975 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
976 }
977 break;
978 default:
979 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
980 return -EINVAL;
981 }
982
983 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
984 DRM_DEBUG("sol reset is gen7 only\n");
985 return -EINVAL;
986 }
987
988 ret = execlists_move_to_gpu(params->request, vmas);
989 if (ret)
990 return ret;
991
992 if (engine == &dev_priv->engine[RCS] &&
993 instp_mode != dev_priv->relative_constants_mode) {
994 ret = intel_logical_ring_begin(params->request, 4);
995 if (ret)
996 return ret;
997
998 intel_logical_ring_emit(ringbuf, MI_NOOP);
999 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
1000 intel_logical_ring_emit_reg(ringbuf, INSTPM);
1001 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
1002 intel_logical_ring_advance(ringbuf);
1003
1004 dev_priv->relative_constants_mode = instp_mode;
1005 }
1006
1007 exec_start = params->batch_obj_vm_offset +
1008 args->batch_start_offset;
1009
1010 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
1011 if (ret)
1012 return ret;
1013
1014 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
1015
1016 i915_gem_execbuffer_move_to_active(vmas, params->request);
1017 i915_gem_execbuffer_retire_commands(params);
1018
1019 return 0;
1020 }
1021
1022 void intel_execlists_retire_requests(struct intel_engine_cs *engine)
1023 {
1024 struct drm_i915_gem_request *req, *tmp;
1025 struct list_head retired_list;
1026
1027 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1028 if (list_empty(&engine->execlist_retired_req_list))
1029 return;
1030
1031 INIT_LIST_HEAD(&retired_list);
1032 spin_lock_bh(&engine->execlist_lock);
1033 list_replace_init(&engine->execlist_retired_req_list, &retired_list);
1034 spin_unlock_bh(&engine->execlist_lock);
1035
1036 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
1037 struct intel_context *ctx = req->ctx;
1038 struct drm_i915_gem_object *ctx_obj =
1039 ctx->engine[engine->id].state;
1040
1041 if (ctx_obj && (ctx != req->i915->kernel_context))
1042 intel_lr_context_unpin(ctx, engine);
1043
1044 list_del(&req->execlist_link);
1045 i915_gem_request_unreference(req);
1046 }
1047 }
1048
1049 void intel_logical_ring_stop(struct intel_engine_cs *engine)
1050 {
1051 struct drm_i915_private *dev_priv = engine->dev->dev_private;
1052 int ret;
1053
1054 if (!intel_engine_initialized(engine))
1055 return;
1056
1057 ret = intel_engine_idle(engine);
1058 if (ret && !i915_reset_in_progress(&to_i915(engine->dev)->gpu_error))
1059 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1060 engine->name, ret);
1061
1062 /* TODO: Is this correct with Execlists enabled? */
1063 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
1064 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
1065 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
1066 return;
1067 }
1068 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
1069 }
1070
1071 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1072 {
1073 struct intel_engine_cs *engine = req->engine;
1074 int ret;
1075
1076 if (!engine->gpu_caches_dirty)
1077 return 0;
1078
1079 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1080 if (ret)
1081 return ret;
1082
1083 engine->gpu_caches_dirty = false;
1084 return 0;
1085 }
1086
1087 static int intel_lr_context_do_pin(struct intel_context *ctx,
1088 struct intel_engine_cs *engine)
1089 {
1090 struct drm_device *dev = engine->dev;
1091 struct drm_i915_private *dev_priv = dev->dev_private;
1092 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1093 struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf;
1094 void *vaddr;
1095 u32 *lrc_reg_state;
1096 int ret;
1097
1098 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1099
1100 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1101 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1102 if (ret)
1103 return ret;
1104
1105 vaddr = i915_gem_object_pin_map(ctx_obj);
1106 if (IS_ERR(vaddr)) {
1107 ret = PTR_ERR(vaddr);
1108 goto unpin_ctx_obj;
1109 }
1110
1111 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1112
1113 ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
1114 if (ret)
1115 goto unpin_map;
1116
1117 ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
1118 intel_lr_context_descriptor_update(ctx, engine);
1119 lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
1120 ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
1121 ctx_obj->dirty = true;
1122
1123 /* Invalidate GuC TLB. */
1124 if (i915.enable_guc_submission)
1125 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1126
1127 return ret;
1128
1129 unpin_map:
1130 i915_gem_object_unpin_map(ctx_obj);
1131 unpin_ctx_obj:
1132 i915_gem_object_ggtt_unpin(ctx_obj);
1133
1134 return ret;
1135 }
1136
1137 static int intel_lr_context_pin(struct intel_context *ctx,
1138 struct intel_engine_cs *engine)
1139 {
1140 int ret = 0;
1141
1142 if (ctx->engine[engine->id].pin_count++ == 0) {
1143 ret = intel_lr_context_do_pin(ctx, engine);
1144 if (ret)
1145 goto reset_pin_count;
1146
1147 i915_gem_context_reference(ctx);
1148 }
1149 return ret;
1150
1151 reset_pin_count:
1152 ctx->engine[engine->id].pin_count = 0;
1153 return ret;
1154 }
1155
1156 void intel_lr_context_unpin(struct intel_context *ctx,
1157 struct intel_engine_cs *engine)
1158 {
1159 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1160
1161 WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
1162 if (--ctx->engine[engine->id].pin_count == 0) {
1163 i915_gem_object_unpin_map(ctx_obj);
1164 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1165 i915_gem_object_ggtt_unpin(ctx_obj);
1166 ctx->engine[engine->id].lrc_vma = NULL;
1167 ctx->engine[engine->id].lrc_desc = 0;
1168 ctx->engine[engine->id].lrc_reg_state = NULL;
1169
1170 i915_gem_context_unreference(ctx);
1171 }
1172 }
1173
1174 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1175 {
1176 int ret, i;
1177 struct intel_engine_cs *engine = req->engine;
1178 struct intel_ringbuffer *ringbuf = req->ringbuf;
1179 struct drm_device *dev = engine->dev;
1180 struct drm_i915_private *dev_priv = dev->dev_private;
1181 struct i915_workarounds *w = &dev_priv->workarounds;
1182
1183 if (w->count == 0)
1184 return 0;
1185
1186 engine->gpu_caches_dirty = true;
1187 ret = logical_ring_flush_all_caches(req);
1188 if (ret)
1189 return ret;
1190
1191 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1192 if (ret)
1193 return ret;
1194
1195 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1196 for (i = 0; i < w->count; i++) {
1197 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1198 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1199 }
1200 intel_logical_ring_emit(ringbuf, MI_NOOP);
1201
1202 intel_logical_ring_advance(ringbuf);
1203
1204 engine->gpu_caches_dirty = true;
1205 ret = logical_ring_flush_all_caches(req);
1206 if (ret)
1207 return ret;
1208
1209 return 0;
1210 }
1211
1212 #define wa_ctx_emit(batch, index, cmd) \
1213 do { \
1214 int __index = (index)++; \
1215 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1216 return -ENOSPC; \
1217 } \
1218 batch[__index] = (cmd); \
1219 } while (0)
1220
1221 #define wa_ctx_emit_reg(batch, index, reg) \
1222 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1223
1224 /*
1225 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1226 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1227 * but there is a slight complication as this is applied in WA batch where the
1228 * values are only initialized once so we cannot take register value at the
1229 * beginning and reuse it further; hence we save its value to memory, upload a
1230 * constant value with bit21 set and then we restore it back with the saved value.
1231 * To simplify the WA, a constant value is formed by using the default value
1232 * of this register. This shouldn't be a problem because we are only modifying
1233 * it for a short period and this batch in non-premptible. We can ofcourse
1234 * use additional instructions that read the actual value of the register
1235 * at that time and set our bit of interest but it makes the WA complicated.
1236 *
1237 * This WA is also required for Gen9 so extracting as a function avoids
1238 * code duplication.
1239 */
1240 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1241 uint32_t *const batch,
1242 uint32_t index)
1243 {
1244 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1245
1246 /*
1247 * WaDisableLSQCROPERFforOCL:skl
1248 * This WA is implemented in skl_init_clock_gating() but since
1249 * this batch updates GEN8_L3SQCREG4 with default value we need to
1250 * set this bit here to retain the WA during flush.
1251 */
1252 if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
1253 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1254
1255 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1256 MI_SRM_LRM_GLOBAL_GTT));
1257 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1258 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1259 wa_ctx_emit(batch, index, 0);
1260
1261 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1262 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1263 wa_ctx_emit(batch, index, l3sqc4_flush);
1264
1265 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1266 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1267 PIPE_CONTROL_DC_FLUSH_ENABLE));
1268 wa_ctx_emit(batch, index, 0);
1269 wa_ctx_emit(batch, index, 0);
1270 wa_ctx_emit(batch, index, 0);
1271 wa_ctx_emit(batch, index, 0);
1272
1273 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1274 MI_SRM_LRM_GLOBAL_GTT));
1275 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1276 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1277 wa_ctx_emit(batch, index, 0);
1278
1279 return index;
1280 }
1281
1282 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1283 uint32_t offset,
1284 uint32_t start_alignment)
1285 {
1286 return wa_ctx->offset = ALIGN(offset, start_alignment);
1287 }
1288
1289 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1290 uint32_t offset,
1291 uint32_t size_alignment)
1292 {
1293 wa_ctx->size = offset - wa_ctx->offset;
1294
1295 WARN(wa_ctx->size % size_alignment,
1296 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1297 wa_ctx->size, size_alignment);
1298 return 0;
1299 }
1300
1301 /**
1302 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1303 *
1304 * @ring: only applicable for RCS
1305 * @wa_ctx: structure representing wa_ctx
1306 * offset: specifies start of the batch, should be cache-aligned. This is updated
1307 * with the offset value received as input.
1308 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1309 * @batch: page in which WA are loaded
1310 * @offset: This field specifies the start of the batch, it should be
1311 * cache-aligned otherwise it is adjusted accordingly.
1312 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1313 * initialized at the beginning and shared across all contexts but this field
1314 * helps us to have multiple batches at different offsets and select them based
1315 * on a criteria. At the moment this batch always start at the beginning of the page
1316 * and at this point we don't have multiple wa_ctx batch buffers.
1317 *
1318 * The number of WA applied are not known at the beginning; we use this field
1319 * to return the no of DWORDS written.
1320 *
1321 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1322 * so it adds NOOPs as padding to make it cacheline aligned.
1323 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1324 * makes a complete batch buffer.
1325 *
1326 * Return: non-zero if we exceed the PAGE_SIZE limit.
1327 */
1328
1329 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1330 struct i915_wa_ctx_bb *wa_ctx,
1331 uint32_t *const batch,
1332 uint32_t *offset)
1333 {
1334 uint32_t scratch_addr;
1335 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1336
1337 /* WaDisableCtxRestoreArbitration:bdw,chv */
1338 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1339
1340 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1341 if (IS_BROADWELL(engine->dev)) {
1342 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1343 if (rc < 0)
1344 return rc;
1345 index = rc;
1346 }
1347
1348 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1349 /* Actual scratch location is at 128 bytes offset */
1350 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1351
1352 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1353 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1354 PIPE_CONTROL_GLOBAL_GTT_IVB |
1355 PIPE_CONTROL_CS_STALL |
1356 PIPE_CONTROL_QW_WRITE));
1357 wa_ctx_emit(batch, index, scratch_addr);
1358 wa_ctx_emit(batch, index, 0);
1359 wa_ctx_emit(batch, index, 0);
1360 wa_ctx_emit(batch, index, 0);
1361
1362 /* Pad to end of cacheline */
1363 while (index % CACHELINE_DWORDS)
1364 wa_ctx_emit(batch, index, MI_NOOP);
1365
1366 /*
1367 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1368 * execution depends on the length specified in terms of cache lines
1369 * in the register CTX_RCS_INDIRECT_CTX
1370 */
1371
1372 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1373 }
1374
1375 /**
1376 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1377 *
1378 * @ring: only applicable for RCS
1379 * @wa_ctx: structure representing wa_ctx
1380 * offset: specifies start of the batch, should be cache-aligned.
1381 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1382 * @batch: page in which WA are loaded
1383 * @offset: This field specifies the start of this batch.
1384 * This batch is started immediately after indirect_ctx batch. Since we ensure
1385 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1386 *
1387 * The number of DWORDS written are returned using this field.
1388 *
1389 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1390 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1391 */
1392 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1393 struct i915_wa_ctx_bb *wa_ctx,
1394 uint32_t *const batch,
1395 uint32_t *offset)
1396 {
1397 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1398
1399 /* WaDisableCtxRestoreArbitration:bdw,chv */
1400 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1401
1402 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1403
1404 return wa_ctx_end(wa_ctx, *offset = index, 1);
1405 }
1406
1407 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1408 struct i915_wa_ctx_bb *wa_ctx,
1409 uint32_t *const batch,
1410 uint32_t *offset)
1411 {
1412 int ret;
1413 struct drm_device *dev = engine->dev;
1414 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1415
1416 /* WaDisableCtxRestoreArbitration:skl,bxt */
1417 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1418 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1419 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1420
1421 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1422 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1423 if (ret < 0)
1424 return ret;
1425 index = ret;
1426
1427 /* Pad to end of cacheline */
1428 while (index % CACHELINE_DWORDS)
1429 wa_ctx_emit(batch, index, MI_NOOP);
1430
1431 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1432 }
1433
1434 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1435 struct i915_wa_ctx_bb *wa_ctx,
1436 uint32_t *const batch,
1437 uint32_t *offset)
1438 {
1439 struct drm_device *dev = engine->dev;
1440 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1441
1442 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1443 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1444 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1445 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1446 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1447 wa_ctx_emit(batch, index,
1448 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1449 wa_ctx_emit(batch, index, MI_NOOP);
1450 }
1451
1452 /* WaClearTdlStateAckDirtyBits:bxt */
1453 if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1454 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1455
1456 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1457 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1458
1459 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1460 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1461
1462 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1463 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1464
1465 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1466 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1467 wa_ctx_emit(batch, index, 0x0);
1468 wa_ctx_emit(batch, index, MI_NOOP);
1469 }
1470
1471 /* WaDisableCtxRestoreArbitration:skl,bxt */
1472 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1473 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1474 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1475
1476 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1477
1478 return wa_ctx_end(wa_ctx, *offset = index, 1);
1479 }
1480
1481 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1482 {
1483 int ret;
1484
1485 engine->wa_ctx.obj = i915_gem_alloc_object(engine->dev,
1486 PAGE_ALIGN(size));
1487 if (!engine->wa_ctx.obj) {
1488 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1489 return -ENOMEM;
1490 }
1491
1492 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1493 if (ret) {
1494 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1495 ret);
1496 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1497 return ret;
1498 }
1499
1500 return 0;
1501 }
1502
1503 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1504 {
1505 if (engine->wa_ctx.obj) {
1506 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1507 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1508 engine->wa_ctx.obj = NULL;
1509 }
1510 }
1511
1512 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1513 {
1514 int ret;
1515 uint32_t *batch;
1516 uint32_t offset;
1517 struct page *page;
1518 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1519
1520 WARN_ON(engine->id != RCS);
1521
1522 /* update this when WA for higher Gen are added */
1523 if (INTEL_INFO(engine->dev)->gen > 9) {
1524 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1525 INTEL_INFO(engine->dev)->gen);
1526 return 0;
1527 }
1528
1529 /* some WA perform writes to scratch page, ensure it is valid */
1530 if (engine->scratch.obj == NULL) {
1531 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1532 return -EINVAL;
1533 }
1534
1535 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1536 if (ret) {
1537 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1538 return ret;
1539 }
1540
1541 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1542 batch = kmap_atomic(page);
1543 offset = 0;
1544
1545 if (INTEL_INFO(engine->dev)->gen == 8) {
1546 ret = gen8_init_indirectctx_bb(engine,
1547 &wa_ctx->indirect_ctx,
1548 batch,
1549 &offset);
1550 if (ret)
1551 goto out;
1552
1553 ret = gen8_init_perctx_bb(engine,
1554 &wa_ctx->per_ctx,
1555 batch,
1556 &offset);
1557 if (ret)
1558 goto out;
1559 } else if (INTEL_INFO(engine->dev)->gen == 9) {
1560 ret = gen9_init_indirectctx_bb(engine,
1561 &wa_ctx->indirect_ctx,
1562 batch,
1563 &offset);
1564 if (ret)
1565 goto out;
1566
1567 ret = gen9_init_perctx_bb(engine,
1568 &wa_ctx->per_ctx,
1569 batch,
1570 &offset);
1571 if (ret)
1572 goto out;
1573 }
1574
1575 out:
1576 kunmap_atomic(batch);
1577 if (ret)
1578 lrc_destroy_wa_ctx_obj(engine);
1579
1580 return ret;
1581 }
1582
1583 static void lrc_init_hws(struct intel_engine_cs *engine)
1584 {
1585 struct drm_i915_private *dev_priv = engine->dev->dev_private;
1586
1587 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1588 (u32)engine->status_page.gfx_addr);
1589 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1590 }
1591
1592 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1593 {
1594 struct drm_device *dev = engine->dev;
1595 struct drm_i915_private *dev_priv = dev->dev_private;
1596 unsigned int next_context_status_buffer_hw;
1597
1598 lrc_init_hws(engine);
1599
1600 I915_WRITE_IMR(engine,
1601 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1602 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1603
1604 I915_WRITE(RING_MODE_GEN7(engine),
1605 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1606 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1607 POSTING_READ(RING_MODE_GEN7(engine));
1608
1609 /*
1610 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1611 * zero, we need to read the write pointer from hardware and use its
1612 * value because "this register is power context save restored".
1613 * Effectively, these states have been observed:
1614 *
1615 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1616 * BDW | CSB regs not reset | CSB regs reset |
1617 * CHT | CSB regs not reset | CSB regs not reset |
1618 * SKL | ? | ? |
1619 * BXT | ? | ? |
1620 */
1621 next_context_status_buffer_hw =
1622 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1623
1624 /*
1625 * When the CSB registers are reset (also after power-up / gpu reset),
1626 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1627 * this special case, so the first element read is CSB[0].
1628 */
1629 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1630 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1631
1632 engine->next_context_status_buffer = next_context_status_buffer_hw;
1633 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1634
1635 intel_engine_init_hangcheck(engine);
1636
1637 return 0;
1638 }
1639
1640 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1641 {
1642 struct drm_device *dev = engine->dev;
1643 struct drm_i915_private *dev_priv = dev->dev_private;
1644 int ret;
1645
1646 ret = gen8_init_common_ring(engine);
1647 if (ret)
1648 return ret;
1649
1650 /* We need to disable the AsyncFlip performance optimisations in order
1651 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1652 * programmed to '1' on all products.
1653 *
1654 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1655 */
1656 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1657
1658 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1659
1660 return init_workarounds_ring(engine);
1661 }
1662
1663 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1664 {
1665 int ret;
1666
1667 ret = gen8_init_common_ring(engine);
1668 if (ret)
1669 return ret;
1670
1671 return init_workarounds_ring(engine);
1672 }
1673
1674 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1675 {
1676 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1677 struct intel_engine_cs *engine = req->engine;
1678 struct intel_ringbuffer *ringbuf = req->ringbuf;
1679 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1680 int i, ret;
1681
1682 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1683 if (ret)
1684 return ret;
1685
1686 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1687 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1688 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1689
1690 intel_logical_ring_emit_reg(ringbuf,
1691 GEN8_RING_PDP_UDW(engine, i));
1692 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1693 intel_logical_ring_emit_reg(ringbuf,
1694 GEN8_RING_PDP_LDW(engine, i));
1695 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1696 }
1697
1698 intel_logical_ring_emit(ringbuf, MI_NOOP);
1699 intel_logical_ring_advance(ringbuf);
1700
1701 return 0;
1702 }
1703
1704 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1705 u64 offset, unsigned dispatch_flags)
1706 {
1707 struct intel_ringbuffer *ringbuf = req->ringbuf;
1708 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1709 int ret;
1710
1711 /* Don't rely in hw updating PDPs, specially in lite-restore.
1712 * Ideally, we should set Force PD Restore in ctx descriptor,
1713 * but we can't. Force Restore would be a second option, but
1714 * it is unsafe in case of lite-restore (because the ctx is
1715 * not idle). PML4 is allocated during ppgtt init so this is
1716 * not needed in 48-bit.*/
1717 if (req->ctx->ppgtt &&
1718 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1719 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1720 !intel_vgpu_active(req->i915->dev)) {
1721 ret = intel_logical_ring_emit_pdps(req);
1722 if (ret)
1723 return ret;
1724 }
1725
1726 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1727 }
1728
1729 ret = intel_logical_ring_begin(req, 4);
1730 if (ret)
1731 return ret;
1732
1733 /* FIXME(BDW): Address space and security selectors. */
1734 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1735 (ppgtt<<8) |
1736 (dispatch_flags & I915_DISPATCH_RS ?
1737 MI_BATCH_RESOURCE_STREAMER : 0));
1738 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1739 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1740 intel_logical_ring_emit(ringbuf, MI_NOOP);
1741 intel_logical_ring_advance(ringbuf);
1742
1743 return 0;
1744 }
1745
1746 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1747 {
1748 struct drm_device *dev = engine->dev;
1749 struct drm_i915_private *dev_priv = dev->dev_private;
1750 unsigned long flags;
1751
1752 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1753 return false;
1754
1755 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1756 if (engine->irq_refcount++ == 0) {
1757 I915_WRITE_IMR(engine,
1758 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1759 POSTING_READ(RING_IMR(engine->mmio_base));
1760 }
1761 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1762
1763 return true;
1764 }
1765
1766 static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1767 {
1768 struct drm_device *dev = engine->dev;
1769 struct drm_i915_private *dev_priv = dev->dev_private;
1770 unsigned long flags;
1771
1772 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1773 if (--engine->irq_refcount == 0) {
1774 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1775 POSTING_READ(RING_IMR(engine->mmio_base));
1776 }
1777 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1778 }
1779
1780 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1781 u32 invalidate_domains,
1782 u32 unused)
1783 {
1784 struct intel_ringbuffer *ringbuf = request->ringbuf;
1785 struct intel_engine_cs *engine = ringbuf->engine;
1786 struct drm_device *dev = engine->dev;
1787 struct drm_i915_private *dev_priv = dev->dev_private;
1788 uint32_t cmd;
1789 int ret;
1790
1791 ret = intel_logical_ring_begin(request, 4);
1792 if (ret)
1793 return ret;
1794
1795 cmd = MI_FLUSH_DW + 1;
1796
1797 /* We always require a command barrier so that subsequent
1798 * commands, such as breadcrumb interrupts, are strictly ordered
1799 * wrt the contents of the write cache being flushed to memory
1800 * (and thus being coherent from the CPU).
1801 */
1802 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1803
1804 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1805 cmd |= MI_INVALIDATE_TLB;
1806 if (engine == &dev_priv->engine[VCS])
1807 cmd |= MI_INVALIDATE_BSD;
1808 }
1809
1810 intel_logical_ring_emit(ringbuf, cmd);
1811 intel_logical_ring_emit(ringbuf,
1812 I915_GEM_HWS_SCRATCH_ADDR |
1813 MI_FLUSH_DW_USE_GTT);
1814 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1815 intel_logical_ring_emit(ringbuf, 0); /* value */
1816 intel_logical_ring_advance(ringbuf);
1817
1818 return 0;
1819 }
1820
1821 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1822 u32 invalidate_domains,
1823 u32 flush_domains)
1824 {
1825 struct intel_ringbuffer *ringbuf = request->ringbuf;
1826 struct intel_engine_cs *engine = ringbuf->engine;
1827 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1828 bool vf_flush_wa = false;
1829 u32 flags = 0;
1830 int ret;
1831
1832 flags |= PIPE_CONTROL_CS_STALL;
1833
1834 if (flush_domains) {
1835 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1836 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1837 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1838 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1839 }
1840
1841 if (invalidate_domains) {
1842 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1843 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1844 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1845 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1846 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1847 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1848 flags |= PIPE_CONTROL_QW_WRITE;
1849 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1850
1851 /*
1852 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1853 * pipe control.
1854 */
1855 if (IS_GEN9(engine->dev))
1856 vf_flush_wa = true;
1857 }
1858
1859 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1860 if (ret)
1861 return ret;
1862
1863 if (vf_flush_wa) {
1864 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1865 intel_logical_ring_emit(ringbuf, 0);
1866 intel_logical_ring_emit(ringbuf, 0);
1867 intel_logical_ring_emit(ringbuf, 0);
1868 intel_logical_ring_emit(ringbuf, 0);
1869 intel_logical_ring_emit(ringbuf, 0);
1870 }
1871
1872 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1873 intel_logical_ring_emit(ringbuf, flags);
1874 intel_logical_ring_emit(ringbuf, scratch_addr);
1875 intel_logical_ring_emit(ringbuf, 0);
1876 intel_logical_ring_emit(ringbuf, 0);
1877 intel_logical_ring_emit(ringbuf, 0);
1878 intel_logical_ring_advance(ringbuf);
1879
1880 return 0;
1881 }
1882
1883 static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1884 {
1885 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1886 }
1887
1888 static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1889 {
1890 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1891 }
1892
1893 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1894 {
1895 /*
1896 * On BXT A steppings there is a HW coherency issue whereby the
1897 * MI_STORE_DATA_IMM storing the completed request's seqno
1898 * occasionally doesn't invalidate the CPU cache. Work around this by
1899 * clflushing the corresponding cacheline whenever the caller wants
1900 * the coherency to be guaranteed. Note that this cacheline is known
1901 * to be clean at this point, since we only write it in
1902 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1903 * this clflush in practice becomes an invalidate operation.
1904 */
1905 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1906 }
1907
1908 static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1909 {
1910 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1911
1912 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1913 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1914 }
1915
1916 /*
1917 * Reserve space for 2 NOOPs at the end of each request to be
1918 * used as a workaround for not being allowed to do lite
1919 * restore with HEAD==TAIL (WaIdleLiteRestore).
1920 */
1921 #define WA_TAIL_DWORDS 2
1922
1923 static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1924 {
1925 return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1926 }
1927
1928 static int gen8_emit_request(struct drm_i915_gem_request *request)
1929 {
1930 struct intel_ringbuffer *ringbuf = request->ringbuf;
1931 int ret;
1932
1933 ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1934 if (ret)
1935 return ret;
1936
1937 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1938 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1939
1940 intel_logical_ring_emit(ringbuf,
1941 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1942 intel_logical_ring_emit(ringbuf,
1943 hws_seqno_address(request->engine) |
1944 MI_FLUSH_DW_USE_GTT);
1945 intel_logical_ring_emit(ringbuf, 0);
1946 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1947 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1948 intel_logical_ring_emit(ringbuf, MI_NOOP);
1949 return intel_logical_ring_advance_and_submit(request);
1950 }
1951
1952 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1953 {
1954 struct intel_ringbuffer *ringbuf = request->ringbuf;
1955 int ret;
1956
1957 ret = intel_logical_ring_begin(request, 8 + WA_TAIL_DWORDS);
1958 if (ret)
1959 return ret;
1960
1961 /* We're using qword write, seqno should be aligned to 8 bytes. */
1962 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1963
1964 /* w/a for post sync ops following a GPGPU operation we
1965 * need a prior CS_STALL, which is emitted by the flush
1966 * following the batch.
1967 */
1968 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1969 intel_logical_ring_emit(ringbuf,
1970 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1971 PIPE_CONTROL_CS_STALL |
1972 PIPE_CONTROL_QW_WRITE));
1973 intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1974 intel_logical_ring_emit(ringbuf, 0);
1975 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1976 /* We're thrashing one dword of HWS. */
1977 intel_logical_ring_emit(ringbuf, 0);
1978 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1979 intel_logical_ring_emit(ringbuf, MI_NOOP);
1980 return intel_logical_ring_advance_and_submit(request);
1981 }
1982
1983 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1984 {
1985 struct render_state so;
1986 int ret;
1987
1988 ret = i915_gem_render_state_prepare(req->engine, &so);
1989 if (ret)
1990 return ret;
1991
1992 if (so.rodata == NULL)
1993 return 0;
1994
1995 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1996 I915_DISPATCH_SECURE);
1997 if (ret)
1998 goto out;
1999
2000 ret = req->engine->emit_bb_start(req,
2001 (so.ggtt_offset + so.aux_batch_offset),
2002 I915_DISPATCH_SECURE);
2003 if (ret)
2004 goto out;
2005
2006 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
2007
2008 out:
2009 i915_gem_render_state_fini(&so);
2010 return ret;
2011 }
2012
2013 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
2014 {
2015 int ret;
2016
2017 ret = intel_logical_ring_workarounds_emit(req);
2018 if (ret)
2019 return ret;
2020
2021 ret = intel_rcs_context_init_mocs(req);
2022 /*
2023 * Failing to program the MOCS is non-fatal.The system will not
2024 * run at peak performance. So generate an error and carry on.
2025 */
2026 if (ret)
2027 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2028
2029 return intel_lr_context_render_state_init(req);
2030 }
2031
2032 /**
2033 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2034 *
2035 * @ring: Engine Command Streamer.
2036 *
2037 */
2038 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2039 {
2040 struct drm_i915_private *dev_priv;
2041
2042 if (!intel_engine_initialized(engine))
2043 return;
2044
2045 /*
2046 * Tasklet cannot be active at this point due intel_mark_active/idle
2047 * so this is just for documentation.
2048 */
2049 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
2050 tasklet_kill(&engine->irq_tasklet);
2051
2052 dev_priv = engine->dev->dev_private;
2053
2054 if (engine->buffer) {
2055 intel_logical_ring_stop(engine);
2056 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2057 }
2058
2059 if (engine->cleanup)
2060 engine->cleanup(engine);
2061
2062 i915_cmd_parser_fini_ring(engine);
2063 i915_gem_batch_pool_fini(&engine->batch_pool);
2064
2065 if (engine->status_page.obj) {
2066 i915_gem_object_unpin_map(engine->status_page.obj);
2067 engine->status_page.obj = NULL;
2068 }
2069
2070 engine->idle_lite_restore_wa = 0;
2071 engine->disable_lite_restore_wa = false;
2072 engine->ctx_desc_template = 0;
2073
2074 lrc_destroy_wa_ctx_obj(engine);
2075 engine->dev = NULL;
2076 }
2077
2078 static void
2079 logical_ring_default_vfuncs(struct drm_device *dev,
2080 struct intel_engine_cs *engine)
2081 {
2082 /* Default vfuncs which can be overriden by each engine. */
2083 engine->init_hw = gen8_init_common_ring;
2084 engine->emit_request = gen8_emit_request;
2085 engine->emit_flush = gen8_emit_flush;
2086 engine->irq_get = gen8_logical_ring_get_irq;
2087 engine->irq_put = gen8_logical_ring_put_irq;
2088 engine->emit_bb_start = gen8_emit_bb_start;
2089 engine->get_seqno = gen8_get_seqno;
2090 engine->set_seqno = gen8_set_seqno;
2091 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2092 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
2093 engine->set_seqno = bxt_a_set_seqno;
2094 }
2095 }
2096
2097 static inline void
2098 logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
2099 {
2100 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2101 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2102 }
2103
2104 static int
2105 lrc_setup_hws(struct intel_engine_cs *engine,
2106 struct drm_i915_gem_object *dctx_obj)
2107 {
2108 void *hws;
2109
2110 /* The HWSP is part of the default context object in LRC mode. */
2111 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
2112 LRC_PPHWSP_PN * PAGE_SIZE;
2113 hws = i915_gem_object_pin_map(dctx_obj);
2114 if (IS_ERR(hws))
2115 return PTR_ERR(hws);
2116 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
2117 engine->status_page.obj = dctx_obj;
2118
2119 return 0;
2120 }
2121
2122 static int
2123 logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
2124 {
2125 struct drm_i915_private *dev_priv = to_i915(dev);
2126 struct intel_context *dctx = dev_priv->kernel_context;
2127 enum forcewake_domains fw_domains;
2128 int ret;
2129
2130 /* Intentionally left blank. */
2131 engine->buffer = NULL;
2132
2133 engine->dev = dev;
2134 INIT_LIST_HEAD(&engine->active_list);
2135 INIT_LIST_HEAD(&engine->request_list);
2136 i915_gem_batch_pool_init(dev, &engine->batch_pool);
2137 init_waitqueue_head(&engine->irq_queue);
2138
2139 INIT_LIST_HEAD(&engine->buffers);
2140 INIT_LIST_HEAD(&engine->execlist_queue);
2141 INIT_LIST_HEAD(&engine->execlist_retired_req_list);
2142 spin_lock_init(&engine->execlist_lock);
2143
2144 tasklet_init(&engine->irq_tasklet,
2145 intel_lrc_irq_handler, (unsigned long)engine);
2146
2147 logical_ring_init_platform_invariants(engine);
2148
2149 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2150 RING_ELSP(engine),
2151 FW_REG_WRITE);
2152
2153 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2154 RING_CONTEXT_STATUS_PTR(engine),
2155 FW_REG_READ | FW_REG_WRITE);
2156
2157 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2158 RING_CONTEXT_STATUS_BUF_BASE(engine),
2159 FW_REG_READ);
2160
2161 engine->fw_domains = fw_domains;
2162
2163 ret = i915_cmd_parser_init_ring(engine);
2164 if (ret)
2165 goto error;
2166
2167 ret = intel_lr_context_deferred_alloc(dctx, engine);
2168 if (ret)
2169 goto error;
2170
2171 /* As this is the default context, always pin it */
2172 ret = intel_lr_context_do_pin(dctx, engine);
2173 if (ret) {
2174 DRM_ERROR(
2175 "Failed to pin and map ringbuffer %s: %d\n",
2176 engine->name, ret);
2177 goto error;
2178 }
2179
2180 /* And setup the hardware status page. */
2181 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2182 if (ret) {
2183 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2184 goto error;
2185 }
2186
2187 return 0;
2188
2189 error:
2190 intel_logical_ring_cleanup(engine);
2191 return ret;
2192 }
2193
2194 static int logical_render_ring_init(struct drm_device *dev)
2195 {
2196 struct drm_i915_private *dev_priv = dev->dev_private;
2197 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2198 int ret;
2199
2200 engine->name = "render ring";
2201 engine->id = RCS;
2202 engine->exec_id = I915_EXEC_RENDER;
2203 engine->guc_id = GUC_RENDER_ENGINE;
2204 engine->mmio_base = RENDER_RING_BASE;
2205
2206 logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2207 if (HAS_L3_DPF(dev))
2208 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2209
2210 logical_ring_default_vfuncs(dev, engine);
2211
2212 /* Override some for render ring. */
2213 if (INTEL_INFO(dev)->gen >= 9)
2214 engine->init_hw = gen9_init_render_ring;
2215 else
2216 engine->init_hw = gen8_init_render_ring;
2217 engine->init_context = gen8_init_rcs_context;
2218 engine->cleanup = intel_fini_pipe_control;
2219 engine->emit_flush = gen8_emit_flush_render;
2220 engine->emit_request = gen8_emit_request_render;
2221
2222 engine->dev = dev;
2223
2224 ret = intel_init_pipe_control(engine);
2225 if (ret)
2226 return ret;
2227
2228 ret = intel_init_workaround_bb(engine);
2229 if (ret) {
2230 /*
2231 * We continue even if we fail to initialize WA batch
2232 * because we only expect rare glitches but nothing
2233 * critical to prevent us from using GPU
2234 */
2235 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2236 ret);
2237 }
2238
2239 ret = logical_ring_init(dev, engine);
2240 if (ret) {
2241 lrc_destroy_wa_ctx_obj(engine);
2242 }
2243
2244 return ret;
2245 }
2246
2247 static int logical_bsd_ring_init(struct drm_device *dev)
2248 {
2249 struct drm_i915_private *dev_priv = dev->dev_private;
2250 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2251
2252 engine->name = "bsd ring";
2253 engine->id = VCS;
2254 engine->exec_id = I915_EXEC_BSD;
2255 engine->guc_id = GUC_VIDEO_ENGINE;
2256 engine->mmio_base = GEN6_BSD_RING_BASE;
2257
2258 logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2259 logical_ring_default_vfuncs(dev, engine);
2260
2261 return logical_ring_init(dev, engine);
2262 }
2263
2264 static int logical_bsd2_ring_init(struct drm_device *dev)
2265 {
2266 struct drm_i915_private *dev_priv = dev->dev_private;
2267 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2268
2269 engine->name = "bsd2 ring";
2270 engine->id = VCS2;
2271 engine->exec_id = I915_EXEC_BSD;
2272 engine->guc_id = GUC_VIDEO_ENGINE2;
2273 engine->mmio_base = GEN8_BSD2_RING_BASE;
2274
2275 logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2276 logical_ring_default_vfuncs(dev, engine);
2277
2278 return logical_ring_init(dev, engine);
2279 }
2280
2281 static int logical_blt_ring_init(struct drm_device *dev)
2282 {
2283 struct drm_i915_private *dev_priv = dev->dev_private;
2284 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2285
2286 engine->name = "blitter ring";
2287 engine->id = BCS;
2288 engine->exec_id = I915_EXEC_BLT;
2289 engine->guc_id = GUC_BLITTER_ENGINE;
2290 engine->mmio_base = BLT_RING_BASE;
2291
2292 logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2293 logical_ring_default_vfuncs(dev, engine);
2294
2295 return logical_ring_init(dev, engine);
2296 }
2297
2298 static int logical_vebox_ring_init(struct drm_device *dev)
2299 {
2300 struct drm_i915_private *dev_priv = dev->dev_private;
2301 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2302
2303 engine->name = "video enhancement ring";
2304 engine->id = VECS;
2305 engine->exec_id = I915_EXEC_VEBOX;
2306 engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2307 engine->mmio_base = VEBOX_RING_BASE;
2308
2309 logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2310 logical_ring_default_vfuncs(dev, engine);
2311
2312 return logical_ring_init(dev, engine);
2313 }
2314
2315 /**
2316 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2317 * @dev: DRM device.
2318 *
2319 * This function inits the engines for an Execlists submission style (the equivalent in the
2320 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2321 * those engines that are present in the hardware.
2322 *
2323 * Return: non-zero if the initialization failed.
2324 */
2325 int intel_logical_rings_init(struct drm_device *dev)
2326 {
2327 struct drm_i915_private *dev_priv = dev->dev_private;
2328 int ret;
2329
2330 ret = logical_render_ring_init(dev);
2331 if (ret)
2332 return ret;
2333
2334 if (HAS_BSD(dev)) {
2335 ret = logical_bsd_ring_init(dev);
2336 if (ret)
2337 goto cleanup_render_ring;
2338 }
2339
2340 if (HAS_BLT(dev)) {
2341 ret = logical_blt_ring_init(dev);
2342 if (ret)
2343 goto cleanup_bsd_ring;
2344 }
2345
2346 if (HAS_VEBOX(dev)) {
2347 ret = logical_vebox_ring_init(dev);
2348 if (ret)
2349 goto cleanup_blt_ring;
2350 }
2351
2352 if (HAS_BSD2(dev)) {
2353 ret = logical_bsd2_ring_init(dev);
2354 if (ret)
2355 goto cleanup_vebox_ring;
2356 }
2357
2358 return 0;
2359
2360 cleanup_vebox_ring:
2361 intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2362 cleanup_blt_ring:
2363 intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2364 cleanup_bsd_ring:
2365 intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2366 cleanup_render_ring:
2367 intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2368
2369 return ret;
2370 }
2371
2372 static u32
2373 make_rpcs(struct drm_device *dev)
2374 {
2375 u32 rpcs = 0;
2376
2377 /*
2378 * No explicit RPCS request is needed to ensure full
2379 * slice/subslice/EU enablement prior to Gen9.
2380 */
2381 if (INTEL_INFO(dev)->gen < 9)
2382 return 0;
2383
2384 /*
2385 * Starting in Gen9, render power gating can leave
2386 * slice/subslice/EU in a partially enabled state. We
2387 * must make an explicit request through RPCS for full
2388 * enablement.
2389 */
2390 if (INTEL_INFO(dev)->has_slice_pg) {
2391 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2392 rpcs |= INTEL_INFO(dev)->slice_total <<
2393 GEN8_RPCS_S_CNT_SHIFT;
2394 rpcs |= GEN8_RPCS_ENABLE;
2395 }
2396
2397 if (INTEL_INFO(dev)->has_subslice_pg) {
2398 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2399 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2400 GEN8_RPCS_SS_CNT_SHIFT;
2401 rpcs |= GEN8_RPCS_ENABLE;
2402 }
2403
2404 if (INTEL_INFO(dev)->has_eu_pg) {
2405 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2406 GEN8_RPCS_EU_MIN_SHIFT;
2407 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2408 GEN8_RPCS_EU_MAX_SHIFT;
2409 rpcs |= GEN8_RPCS_ENABLE;
2410 }
2411
2412 return rpcs;
2413 }
2414
2415 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2416 {
2417 u32 indirect_ctx_offset;
2418
2419 switch (INTEL_INFO(engine->dev)->gen) {
2420 default:
2421 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2422 /* fall through */
2423 case 9:
2424 indirect_ctx_offset =
2425 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2426 break;
2427 case 8:
2428 indirect_ctx_offset =
2429 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2430 break;
2431 }
2432
2433 return indirect_ctx_offset;
2434 }
2435
2436 static int
2437 populate_lr_context(struct intel_context *ctx,
2438 struct drm_i915_gem_object *ctx_obj,
2439 struct intel_engine_cs *engine,
2440 struct intel_ringbuffer *ringbuf)
2441 {
2442 struct drm_device *dev = engine->dev;
2443 struct drm_i915_private *dev_priv = dev->dev_private;
2444 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2445 void *vaddr;
2446 u32 *reg_state;
2447 int ret;
2448
2449 if (!ppgtt)
2450 ppgtt = dev_priv->mm.aliasing_ppgtt;
2451
2452 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2453 if (ret) {
2454 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2455 return ret;
2456 }
2457
2458 vaddr = i915_gem_object_pin_map(ctx_obj);
2459 if (IS_ERR(vaddr)) {
2460 ret = PTR_ERR(vaddr);
2461 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2462 return ret;
2463 }
2464 ctx_obj->dirty = true;
2465
2466 /* The second page of the context object contains some fields which must
2467 * be set up prior to the first execution. */
2468 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2469
2470 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2471 * commands followed by (reg, value) pairs. The values we are setting here are
2472 * only for the first context restore: on a subsequent save, the GPU will
2473 * recreate this batchbuffer with new values (including all the missing
2474 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2475 reg_state[CTX_LRI_HEADER_0] =
2476 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2477 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2478 RING_CONTEXT_CONTROL(engine),
2479 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2480 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2481 (HAS_RESOURCE_STREAMER(dev) ?
2482 CTX_CTRL_RS_CTX_ENABLE : 0)));
2483 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2484 0);
2485 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2486 0);
2487 /* Ring buffer start address is not known until the buffer is pinned.
2488 * It is written to the context image in execlists_update_context()
2489 */
2490 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2491 RING_START(engine->mmio_base), 0);
2492 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2493 RING_CTL(engine->mmio_base),
2494 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2495 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2496 RING_BBADDR_UDW(engine->mmio_base), 0);
2497 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2498 RING_BBADDR(engine->mmio_base), 0);
2499 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2500 RING_BBSTATE(engine->mmio_base),
2501 RING_BB_PPGTT);
2502 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2503 RING_SBBADDR_UDW(engine->mmio_base), 0);
2504 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2505 RING_SBBADDR(engine->mmio_base), 0);
2506 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2507 RING_SBBSTATE(engine->mmio_base), 0);
2508 if (engine->id == RCS) {
2509 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2510 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2511 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2512 RING_INDIRECT_CTX(engine->mmio_base), 0);
2513 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2514 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2515 if (engine->wa_ctx.obj) {
2516 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2517 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2518
2519 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2520 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2521 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2522
2523 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2524 intel_lr_indirect_ctx_offset(engine) << 6;
2525
2526 reg_state[CTX_BB_PER_CTX_PTR+1] =
2527 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2528 0x01;
2529 }
2530 }
2531 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2532 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2533 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2534 /* PDP values well be assigned later if needed */
2535 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2536 0);
2537 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2538 0);
2539 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2540 0);
2541 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2542 0);
2543 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2544 0);
2545 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2546 0);
2547 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2548 0);
2549 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2550 0);
2551
2552 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2553 /* 64b PPGTT (48bit canonical)
2554 * PDP0_DESCRIPTOR contains the base address to PML4 and
2555 * other PDP Descriptors are ignored.
2556 */
2557 ASSIGN_CTX_PML4(ppgtt, reg_state);
2558 } else {
2559 /* 32b PPGTT
2560 * PDP*_DESCRIPTOR contains the base address of space supported.
2561 * With dynamic page allocation, PDPs may not be allocated at
2562 * this point. Point the unallocated PDPs to the scratch page
2563 */
2564 execlists_update_context_pdps(ppgtt, reg_state);
2565 }
2566
2567 if (engine->id == RCS) {
2568 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2569 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2570 make_rpcs(dev));
2571 }
2572
2573 i915_gem_object_unpin_map(ctx_obj);
2574
2575 return 0;
2576 }
2577
2578 /**
2579 * intel_lr_context_free() - free the LRC specific bits of a context
2580 * @ctx: the LR context to free.
2581 *
2582 * The real context freeing is done in i915_gem_context_free: this only
2583 * takes care of the bits that are LRC related: the per-engine backing
2584 * objects and the logical ringbuffer.
2585 */
2586 void intel_lr_context_free(struct intel_context *ctx)
2587 {
2588 int i;
2589
2590 for (i = I915_NUM_ENGINES; --i >= 0; ) {
2591 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2592 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2593
2594 if (!ctx_obj)
2595 continue;
2596
2597 if (ctx == ctx->i915->kernel_context) {
2598 intel_unpin_ringbuffer_obj(ringbuf);
2599 i915_gem_object_ggtt_unpin(ctx_obj);
2600 i915_gem_object_unpin_map(ctx_obj);
2601 }
2602
2603 WARN_ON(ctx->engine[i].pin_count);
2604 intel_ringbuffer_free(ringbuf);
2605 drm_gem_object_unreference(&ctx_obj->base);
2606 }
2607 }
2608
2609 /**
2610 * intel_lr_context_size() - return the size of the context for an engine
2611 * @ring: which engine to find the context size for
2612 *
2613 * Each engine may require a different amount of space for a context image,
2614 * so when allocating (or copying) an image, this function can be used to
2615 * find the right size for the specific engine.
2616 *
2617 * Return: size (in bytes) of an engine-specific context image
2618 *
2619 * Note: this size includes the HWSP, which is part of the context image
2620 * in LRC mode, but does not include the "shared data page" used with
2621 * GuC submission. The caller should account for this if using the GuC.
2622 */
2623 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2624 {
2625 int ret = 0;
2626
2627 WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2628
2629 switch (engine->id) {
2630 case RCS:
2631 if (INTEL_INFO(engine->dev)->gen >= 9)
2632 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2633 else
2634 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2635 break;
2636 case VCS:
2637 case BCS:
2638 case VECS:
2639 case VCS2:
2640 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2641 break;
2642 }
2643
2644 return ret;
2645 }
2646
2647 /**
2648 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2649 * @ctx: LR context to create.
2650 * @ring: engine to be used with the context.
2651 *
2652 * This function can be called more than once, with different engines, if we plan
2653 * to use the context with them. The context backing objects and the ringbuffers
2654 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2655 * the creation is a deferred call: it's better to make sure first that we need to use
2656 * a given ring with the context.
2657 *
2658 * Return: non-zero on error.
2659 */
2660
2661 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2662 struct intel_engine_cs *engine)
2663 {
2664 struct drm_device *dev = engine->dev;
2665 struct drm_i915_gem_object *ctx_obj;
2666 uint32_t context_size;
2667 struct intel_ringbuffer *ringbuf;
2668 int ret;
2669
2670 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2671 WARN_ON(ctx->engine[engine->id].state);
2672
2673 context_size = round_up(intel_lr_context_size(engine), 4096);
2674
2675 /* One extra page as the sharing data between driver and GuC */
2676 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2677
2678 ctx_obj = i915_gem_alloc_object(dev, context_size);
2679 if (!ctx_obj) {
2680 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2681 return -ENOMEM;
2682 }
2683
2684 ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2685 if (IS_ERR(ringbuf)) {
2686 ret = PTR_ERR(ringbuf);
2687 goto error_deref_obj;
2688 }
2689
2690 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2691 if (ret) {
2692 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2693 goto error_ringbuf;
2694 }
2695
2696 ctx->engine[engine->id].ringbuf = ringbuf;
2697 ctx->engine[engine->id].state = ctx_obj;
2698
2699 if (ctx != ctx->i915->kernel_context && engine->init_context) {
2700 struct drm_i915_gem_request *req;
2701
2702 req = i915_gem_request_alloc(engine, ctx);
2703 if (IS_ERR(req)) {
2704 ret = PTR_ERR(req);
2705 DRM_ERROR("ring create req: %d\n", ret);
2706 goto error_ringbuf;
2707 }
2708
2709 ret = engine->init_context(req);
2710 if (ret) {
2711 DRM_ERROR("ring init context: %d\n",
2712 ret);
2713 i915_gem_request_cancel(req);
2714 goto error_ringbuf;
2715 }
2716 i915_add_request_no_flush(req);
2717 }
2718 return 0;
2719
2720 error_ringbuf:
2721 intel_ringbuffer_free(ringbuf);
2722 error_deref_obj:
2723 drm_gem_object_unreference(&ctx_obj->base);
2724 ctx->engine[engine->id].ringbuf = NULL;
2725 ctx->engine[engine->id].state = NULL;
2726 return ret;
2727 }
2728
2729 void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2730 struct intel_context *ctx)
2731 {
2732 struct intel_engine_cs *engine;
2733
2734 for_each_engine(engine, dev_priv) {
2735 struct drm_i915_gem_object *ctx_obj =
2736 ctx->engine[engine->id].state;
2737 struct intel_ringbuffer *ringbuf =
2738 ctx->engine[engine->id].ringbuf;
2739 void *vaddr;
2740 uint32_t *reg_state;
2741
2742 if (!ctx_obj)
2743 continue;
2744
2745 vaddr = i915_gem_object_pin_map(ctx_obj);
2746 if (WARN_ON(IS_ERR(vaddr)))
2747 continue;
2748
2749 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2750 ctx_obj->dirty = true;
2751
2752 reg_state[CTX_RING_HEAD+1] = 0;
2753 reg_state[CTX_RING_TAIL+1] = 0;
2754
2755 i915_gem_object_unpin_map(ctx_obj);
2756
2757 ringbuf->head = 0;
2758 ringbuf->tail = 0;
2759 }
2760 }
This page took 0.15061 seconds and 5 git commands to generate.