drm/i915: Remove request->uniq
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138
139 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143 #define RING_EXECLIST_QFULL (1 << 0x2)
144 #define RING_EXECLIST1_VALID (1 << 0x3)
145 #define RING_EXECLIST0_VALID (1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
149
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
156
157 #define CTX_LRI_HEADER_0 0x01
158 #define CTX_CONTEXT_CONTROL 0x02
159 #define CTX_RING_HEAD 0x04
160 #define CTX_RING_TAIL 0x06
161 #define CTX_RING_BUFFER_START 0x08
162 #define CTX_RING_BUFFER_CONTROL 0x0a
163 #define CTX_BB_HEAD_U 0x0c
164 #define CTX_BB_HEAD_L 0x0e
165 #define CTX_BB_STATE 0x10
166 #define CTX_SECOND_BB_HEAD_U 0x12
167 #define CTX_SECOND_BB_HEAD_L 0x14
168 #define CTX_SECOND_BB_STATE 0x16
169 #define CTX_BB_PER_CTX_PTR 0x18
170 #define CTX_RCS_INDIRECT_CTX 0x1a
171 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
172 #define CTX_LRI_HEADER_1 0x21
173 #define CTX_CTX_TIMESTAMP 0x22
174 #define CTX_PDP3_UDW 0x24
175 #define CTX_PDP3_LDW 0x26
176 #define CTX_PDP2_UDW 0x28
177 #define CTX_PDP2_LDW 0x2a
178 #define CTX_PDP1_UDW 0x2c
179 #define CTX_PDP1_LDW 0x2e
180 #define CTX_PDP0_UDW 0x30
181 #define CTX_PDP0_LDW 0x32
182 #define CTX_LRI_HEADER_2 0x41
183 #define CTX_R_PWR_CLK_STATE 0x42
184 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
185
186 #define GEN8_CTX_VALID (1<<0)
187 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188 #define GEN8_CTX_FORCE_RESTORE (1<<2)
189 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
190 #define GEN8_CTX_PRIVILEGE (1<<8)
191
192 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
193 const u64 _addr = test_bit(n, ppgtt->pdp.used_pdpes) ? \
194 ppgtt->pdp.page_directory[n]->daddr : \
195 ppgtt->scratch_pd->daddr; \
196 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198 }
199
200 enum {
201 ADVANCED_CONTEXT = 0,
202 LEGACY_CONTEXT,
203 ADVANCED_AD_CONTEXT,
204 LEGACY_64B_CONTEXT
205 };
206 #define GEN8_CTX_MODE_SHIFT 3
207 enum {
208 FAULT_AND_HANG = 0,
209 FAULT_AND_HALT, /* Debug only */
210 FAULT_AND_STREAM,
211 FAULT_AND_CONTINUE /* Unsupported */
212 };
213 #define GEN8_CTX_ID_SHIFT 32
214
215 static int intel_lr_context_pin(struct intel_engine_cs *ring,
216 struct intel_context *ctx);
217
218 /**
219 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
220 * @dev: DRM device.
221 * @enable_execlists: value of i915.enable_execlists module parameter.
222 *
223 * Only certain platforms support Execlists (the prerequisites being
224 * support for Logical Ring Contexts and Aliasing PPGTT or better).
225 *
226 * Return: 1 if Execlists is supported and has to be enabled.
227 */
228 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
229 {
230 WARN_ON(i915.enable_ppgtt == -1);
231
232 if (INTEL_INFO(dev)->gen >= 9)
233 return 1;
234
235 if (enable_execlists == 0)
236 return 0;
237
238 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
239 i915.use_mmio_flip >= 0)
240 return 1;
241
242 return 0;
243 }
244
245 /**
246 * intel_execlists_ctx_id() - get the Execlists Context ID
247 * @ctx_obj: Logical Ring Context backing object.
248 *
249 * Do not confuse with ctx->id! Unfortunately we have a name overload
250 * here: the old context ID we pass to userspace as a handler so that
251 * they can refer to a context, and the new context ID we pass to the
252 * ELSP so that the GPU can inform us of the context status via
253 * interrupts.
254 *
255 * Return: 20-bits globally unique context ID.
256 */
257 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
258 {
259 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
260
261 /* LRCA is required to be 4K aligned so the more significant 20 bits
262 * are globally unique */
263 return lrca >> 12;
264 }
265
266 static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
267 struct drm_i915_gem_object *ctx_obj)
268 {
269 struct drm_device *dev = ring->dev;
270 uint64_t desc;
271 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
272
273 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
274
275 desc = GEN8_CTX_VALID;
276 desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
277 if (IS_GEN8(ctx_obj->base.dev))
278 desc |= GEN8_CTX_L3LLC_COHERENT;
279 desc |= GEN8_CTX_PRIVILEGE;
280 desc |= lrca;
281 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
282
283 /* TODO: WaDisableLiteRestore when we start using semaphore
284 * signalling between Command Streamers */
285 /* desc |= GEN8_CTX_FORCE_RESTORE; */
286
287 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
288 if (IS_GEN9(dev) &&
289 INTEL_REVID(dev) <= SKL_REVID_B0 &&
290 (ring->id == BCS || ring->id == VCS ||
291 ring->id == VECS || ring->id == VCS2))
292 desc |= GEN8_CTX_FORCE_RESTORE;
293
294 return desc;
295 }
296
297 static void execlists_elsp_write(struct intel_engine_cs *ring,
298 struct drm_i915_gem_object *ctx_obj0,
299 struct drm_i915_gem_object *ctx_obj1)
300 {
301 struct drm_device *dev = ring->dev;
302 struct drm_i915_private *dev_priv = dev->dev_private;
303 uint64_t temp = 0;
304 uint32_t desc[4];
305
306 /* XXX: You must always write both descriptors in the order below. */
307 if (ctx_obj1)
308 temp = execlists_ctx_descriptor(ring, ctx_obj1);
309 else
310 temp = 0;
311 desc[1] = (u32)(temp >> 32);
312 desc[0] = (u32)temp;
313
314 temp = execlists_ctx_descriptor(ring, ctx_obj0);
315 desc[3] = (u32)(temp >> 32);
316 desc[2] = (u32)temp;
317
318 spin_lock(&dev_priv->uncore.lock);
319 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
320 I915_WRITE_FW(RING_ELSP(ring), desc[1]);
321 I915_WRITE_FW(RING_ELSP(ring), desc[0]);
322 I915_WRITE_FW(RING_ELSP(ring), desc[3]);
323
324 /* The context is automatically loaded after the following */
325 I915_WRITE_FW(RING_ELSP(ring), desc[2]);
326
327 /* ELSP is a wo register, so use another nearby reg for posting instead */
328 POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
329 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
330 spin_unlock(&dev_priv->uncore.lock);
331 }
332
333 static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
334 struct drm_i915_gem_object *ring_obj,
335 struct i915_hw_ppgtt *ppgtt,
336 u32 tail)
337 {
338 struct page *page;
339 uint32_t *reg_state;
340
341 page = i915_gem_object_get_page(ctx_obj, 1);
342 reg_state = kmap_atomic(page);
343
344 reg_state[CTX_RING_TAIL+1] = tail;
345 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
346
347 /* True PPGTT with dynamic page allocation: update PDP registers and
348 * point the unallocated PDPs to the scratch page
349 */
350 if (ppgtt) {
351 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
352 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
353 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
354 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
355 }
356
357 kunmap_atomic(reg_state);
358
359 return 0;
360 }
361
362 static void execlists_submit_contexts(struct intel_engine_cs *ring,
363 struct intel_context *to0, u32 tail0,
364 struct intel_context *to1, u32 tail1)
365 {
366 struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
367 struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
368 struct drm_i915_gem_object *ctx_obj1 = NULL;
369 struct intel_ringbuffer *ringbuf1 = NULL;
370
371 BUG_ON(!ctx_obj0);
372 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
373 WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
374
375 execlists_update_context(ctx_obj0, ringbuf0->obj, to0->ppgtt, tail0);
376
377 if (to1) {
378 ringbuf1 = to1->engine[ring->id].ringbuf;
379 ctx_obj1 = to1->engine[ring->id].state;
380 BUG_ON(!ctx_obj1);
381 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
382 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
383
384 execlists_update_context(ctx_obj1, ringbuf1->obj, to1->ppgtt, tail1);
385 }
386
387 execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
388 }
389
390 static void execlists_context_unqueue(struct intel_engine_cs *ring)
391 {
392 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
393 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
394
395 assert_spin_locked(&ring->execlist_lock);
396
397 if (list_empty(&ring->execlist_queue))
398 return;
399
400 /* Try to read in pairs */
401 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
402 execlist_link) {
403 if (!req0) {
404 req0 = cursor;
405 } else if (req0->ctx == cursor->ctx) {
406 /* Same ctx: ignore first request, as second request
407 * will update tail past first request's workload */
408 cursor->elsp_submitted = req0->elsp_submitted;
409 list_del(&req0->execlist_link);
410 list_add_tail(&req0->execlist_link,
411 &ring->execlist_retired_req_list);
412 req0 = cursor;
413 } else {
414 req1 = cursor;
415 break;
416 }
417 }
418
419 WARN_ON(req1 && req1->elsp_submitted);
420
421 execlists_submit_contexts(ring, req0->ctx, req0->tail,
422 req1 ? req1->ctx : NULL,
423 req1 ? req1->tail : 0);
424
425 req0->elsp_submitted++;
426 if (req1)
427 req1->elsp_submitted++;
428 }
429
430 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
431 u32 request_id)
432 {
433 struct drm_i915_gem_request *head_req;
434
435 assert_spin_locked(&ring->execlist_lock);
436
437 head_req = list_first_entry_or_null(&ring->execlist_queue,
438 struct drm_i915_gem_request,
439 execlist_link);
440
441 if (head_req != NULL) {
442 struct drm_i915_gem_object *ctx_obj =
443 head_req->ctx->engine[ring->id].state;
444 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
445 WARN(head_req->elsp_submitted == 0,
446 "Never submitted head request\n");
447
448 if (--head_req->elsp_submitted <= 0) {
449 list_del(&head_req->execlist_link);
450 list_add_tail(&head_req->execlist_link,
451 &ring->execlist_retired_req_list);
452 return true;
453 }
454 }
455 }
456
457 return false;
458 }
459
460 /**
461 * intel_lrc_irq_handler() - handle Context Switch interrupts
462 * @ring: Engine Command Streamer to handle.
463 *
464 * Check the unread Context Status Buffers and manage the submission of new
465 * contexts to the ELSP accordingly.
466 */
467 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
468 {
469 struct drm_i915_private *dev_priv = ring->dev->dev_private;
470 u32 status_pointer;
471 u8 read_pointer;
472 u8 write_pointer;
473 u32 status;
474 u32 status_id;
475 u32 submit_contexts = 0;
476
477 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
478
479 read_pointer = ring->next_context_status_buffer;
480 write_pointer = status_pointer & 0x07;
481 if (read_pointer > write_pointer)
482 write_pointer += 6;
483
484 spin_lock(&ring->execlist_lock);
485
486 while (read_pointer < write_pointer) {
487 read_pointer++;
488 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
489 (read_pointer % 6) * 8);
490 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
491 (read_pointer % 6) * 8 + 4);
492
493 if (status & GEN8_CTX_STATUS_PREEMPTED) {
494 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
495 if (execlists_check_remove_request(ring, status_id))
496 WARN(1, "Lite Restored request removed from queue\n");
497 } else
498 WARN(1, "Preemption without Lite Restore\n");
499 }
500
501 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
502 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
503 if (execlists_check_remove_request(ring, status_id))
504 submit_contexts++;
505 }
506 }
507
508 if (submit_contexts != 0)
509 execlists_context_unqueue(ring);
510
511 spin_unlock(&ring->execlist_lock);
512
513 WARN(submit_contexts > 2, "More than two context complete events?\n");
514 ring->next_context_status_buffer = write_pointer % 6;
515
516 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
517 ((u32)ring->next_context_status_buffer & 0x07) << 8);
518 }
519
520 static int execlists_context_queue(struct intel_engine_cs *ring,
521 struct intel_context *to,
522 u32 tail,
523 struct drm_i915_gem_request *request)
524 {
525 struct drm_i915_gem_request *cursor;
526 struct drm_i915_private *dev_priv = ring->dev->dev_private;
527 int num_elements = 0;
528
529 if (to != ring->default_context)
530 intel_lr_context_pin(ring, to);
531
532 if (!request) {
533 /*
534 * If there isn't a request associated with this submission,
535 * create one as a temporary holder.
536 */
537 request = kzalloc(sizeof(*request), GFP_KERNEL);
538 if (request == NULL)
539 return -ENOMEM;
540 request->ring = ring;
541 request->ctx = to;
542 kref_init(&request->ref);
543 i915_gem_context_reference(request->ctx);
544 } else {
545 i915_gem_request_reference(request);
546 WARN_ON(to != request->ctx);
547 }
548 request->tail = tail;
549
550 spin_lock_irq(&ring->execlist_lock);
551
552 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
553 if (++num_elements > 2)
554 break;
555
556 if (num_elements > 2) {
557 struct drm_i915_gem_request *tail_req;
558
559 tail_req = list_last_entry(&ring->execlist_queue,
560 struct drm_i915_gem_request,
561 execlist_link);
562
563 if (to == tail_req->ctx) {
564 WARN(tail_req->elsp_submitted != 0,
565 "More than 2 already-submitted reqs queued\n");
566 list_del(&tail_req->execlist_link);
567 list_add_tail(&tail_req->execlist_link,
568 &ring->execlist_retired_req_list);
569 }
570 }
571
572 list_add_tail(&request->execlist_link, &ring->execlist_queue);
573 if (num_elements == 0)
574 execlists_context_unqueue(ring);
575
576 spin_unlock_irq(&ring->execlist_lock);
577
578 return 0;
579 }
580
581 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
582 struct intel_context *ctx)
583 {
584 struct intel_engine_cs *ring = ringbuf->ring;
585 uint32_t flush_domains;
586 int ret;
587
588 flush_domains = 0;
589 if (ring->gpu_caches_dirty)
590 flush_domains = I915_GEM_GPU_DOMAINS;
591
592 ret = ring->emit_flush(ringbuf, ctx,
593 I915_GEM_GPU_DOMAINS, flush_domains);
594 if (ret)
595 return ret;
596
597 ring->gpu_caches_dirty = false;
598 return 0;
599 }
600
601 static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
602 struct intel_context *ctx,
603 struct list_head *vmas)
604 {
605 struct intel_engine_cs *ring = ringbuf->ring;
606 struct i915_vma *vma;
607 uint32_t flush_domains = 0;
608 bool flush_chipset = false;
609 int ret;
610
611 list_for_each_entry(vma, vmas, exec_list) {
612 struct drm_i915_gem_object *obj = vma->obj;
613
614 ret = i915_gem_object_sync(obj, ring);
615 if (ret)
616 return ret;
617
618 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
619 flush_chipset |= i915_gem_clflush_object(obj, false);
620
621 flush_domains |= obj->base.write_domain;
622 }
623
624 if (flush_domains & I915_GEM_DOMAIN_GTT)
625 wmb();
626
627 /* Unconditionally invalidate gpu caches and ensure that we do flush
628 * any residual writes from the previous batch.
629 */
630 return logical_ring_invalidate_all_caches(ringbuf, ctx);
631 }
632
633 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request,
634 struct intel_context *ctx)
635 {
636 int ret;
637
638 if (ctx != request->ring->default_context) {
639 ret = intel_lr_context_pin(request->ring, ctx);
640 if (ret)
641 return ret;
642 }
643
644 request->ringbuf = ctx->engine[request->ring->id].ringbuf;
645 request->ctx = ctx;
646 i915_gem_context_reference(request->ctx);
647
648 return 0;
649 }
650
651 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
652 struct intel_context *ctx,
653 int bytes)
654 {
655 struct intel_engine_cs *ring = ringbuf->ring;
656 struct drm_i915_gem_request *request;
657 int ret, new_space;
658
659 if (intel_ring_space(ringbuf) >= bytes)
660 return 0;
661
662 list_for_each_entry(request, &ring->request_list, list) {
663 /*
664 * The request queue is per-engine, so can contain requests
665 * from multiple ringbuffers. Here, we must ignore any that
666 * aren't from the ringbuffer we're considering.
667 */
668 struct intel_context *ctx = request->ctx;
669 if (ctx->engine[ring->id].ringbuf != ringbuf)
670 continue;
671
672 /* Would completion of this request free enough space? */
673 new_space = __intel_ring_space(request->postfix, ringbuf->tail,
674 ringbuf->size);
675 if (new_space >= bytes)
676 break;
677 }
678
679 if (WARN_ON(&request->list == &ring->request_list))
680 return -ENOSPC;
681
682 ret = i915_wait_request(request);
683 if (ret)
684 return ret;
685
686 i915_gem_retire_requests_ring(ring);
687
688 WARN_ON(intel_ring_space(ringbuf) < new_space);
689
690 return intel_ring_space(ringbuf) >= bytes ? 0 : -ENOSPC;
691 }
692
693 /*
694 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
695 * @ringbuf: Logical Ringbuffer to advance.
696 *
697 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
698 * really happens during submission is that the context and current tail will be placed
699 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
700 * point, the tail *inside* the context is updated and the ELSP written to.
701 */
702 static void
703 intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
704 struct intel_context *ctx,
705 struct drm_i915_gem_request *request)
706 {
707 struct intel_engine_cs *ring = ringbuf->ring;
708
709 intel_logical_ring_advance(ringbuf);
710
711 if (intel_ring_stopped(ring))
712 return;
713
714 execlists_context_queue(ring, ctx, ringbuf->tail, request);
715 }
716
717 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
718 struct intel_context *ctx)
719 {
720 uint32_t __iomem *virt;
721 int rem = ringbuf->size - ringbuf->tail;
722
723 if (ringbuf->space < rem) {
724 int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
725
726 if (ret)
727 return ret;
728 }
729
730 virt = ringbuf->virtual_start + ringbuf->tail;
731 rem /= 4;
732 while (rem--)
733 iowrite32(MI_NOOP, virt++);
734
735 ringbuf->tail = 0;
736 intel_ring_update_space(ringbuf);
737
738 return 0;
739 }
740
741 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
742 struct intel_context *ctx, int bytes)
743 {
744 int ret;
745
746 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
747 ret = logical_ring_wrap_buffer(ringbuf, ctx);
748 if (unlikely(ret))
749 return ret;
750 }
751
752 if (unlikely(ringbuf->space < bytes)) {
753 ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
754 if (unlikely(ret))
755 return ret;
756 }
757
758 return 0;
759 }
760
761 /**
762 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
763 *
764 * @ringbuf: Logical ringbuffer.
765 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
766 *
767 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
768 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
769 * and also preallocates a request (every workload submission is still mediated through
770 * requests, same as it did with legacy ringbuffer submission).
771 *
772 * Return: non-zero if the ringbuffer is not ready to be written to.
773 */
774 static int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
775 struct intel_context *ctx, int num_dwords)
776 {
777 struct intel_engine_cs *ring = ringbuf->ring;
778 struct drm_device *dev = ring->dev;
779 struct drm_i915_private *dev_priv = dev->dev_private;
780 int ret;
781
782 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
783 dev_priv->mm.interruptible);
784 if (ret)
785 return ret;
786
787 ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
788 if (ret)
789 return ret;
790
791 /* Preallocate the olr before touching the ring */
792 ret = i915_gem_request_alloc(ring, ctx);
793 if (ret)
794 return ret;
795
796 ringbuf->space -= num_dwords * sizeof(uint32_t);
797 return 0;
798 }
799
800 /**
801 * execlists_submission() - submit a batchbuffer for execution, Execlists style
802 * @dev: DRM device.
803 * @file: DRM file.
804 * @ring: Engine Command Streamer to submit to.
805 * @ctx: Context to employ for this submission.
806 * @args: execbuffer call arguments.
807 * @vmas: list of vmas.
808 * @batch_obj: the batchbuffer to submit.
809 * @exec_start: batchbuffer start virtual address pointer.
810 * @dispatch_flags: translated execbuffer call flags.
811 *
812 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
813 * away the submission details of the execbuffer ioctl call.
814 *
815 * Return: non-zero if the submission fails.
816 */
817 int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
818 struct intel_engine_cs *ring,
819 struct intel_context *ctx,
820 struct drm_i915_gem_execbuffer2 *args,
821 struct list_head *vmas,
822 struct drm_i915_gem_object *batch_obj,
823 u64 exec_start, u32 dispatch_flags)
824 {
825 struct drm_i915_private *dev_priv = dev->dev_private;
826 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
827 int instp_mode;
828 u32 instp_mask;
829 int ret;
830
831 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
832 instp_mask = I915_EXEC_CONSTANTS_MASK;
833 switch (instp_mode) {
834 case I915_EXEC_CONSTANTS_REL_GENERAL:
835 case I915_EXEC_CONSTANTS_ABSOLUTE:
836 case I915_EXEC_CONSTANTS_REL_SURFACE:
837 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
838 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
839 return -EINVAL;
840 }
841
842 if (instp_mode != dev_priv->relative_constants_mode) {
843 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
844 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
845 return -EINVAL;
846 }
847
848 /* The HW changed the meaning on this bit on gen6 */
849 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
850 }
851 break;
852 default:
853 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
854 return -EINVAL;
855 }
856
857 if (args->num_cliprects != 0) {
858 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
859 return -EINVAL;
860 } else {
861 if (args->DR4 == 0xffffffff) {
862 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
863 args->DR4 = 0;
864 }
865
866 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
867 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
868 return -EINVAL;
869 }
870 }
871
872 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
873 DRM_DEBUG("sol reset is gen7 only\n");
874 return -EINVAL;
875 }
876
877 ret = execlists_move_to_gpu(ringbuf, ctx, vmas);
878 if (ret)
879 return ret;
880
881 if (ring == &dev_priv->ring[RCS] &&
882 instp_mode != dev_priv->relative_constants_mode) {
883 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
884 if (ret)
885 return ret;
886
887 intel_logical_ring_emit(ringbuf, MI_NOOP);
888 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
889 intel_logical_ring_emit(ringbuf, INSTPM);
890 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
891 intel_logical_ring_advance(ringbuf);
892
893 dev_priv->relative_constants_mode = instp_mode;
894 }
895
896 ret = ring->emit_bb_start(ringbuf, ctx, exec_start, dispatch_flags);
897 if (ret)
898 return ret;
899
900 trace_i915_gem_ring_dispatch(intel_ring_get_request(ring), dispatch_flags);
901
902 i915_gem_execbuffer_move_to_active(vmas, ring);
903 i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
904
905 return 0;
906 }
907
908 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
909 {
910 struct drm_i915_gem_request *req, *tmp;
911 struct list_head retired_list;
912
913 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
914 if (list_empty(&ring->execlist_retired_req_list))
915 return;
916
917 INIT_LIST_HEAD(&retired_list);
918 spin_lock_irq(&ring->execlist_lock);
919 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
920 spin_unlock_irq(&ring->execlist_lock);
921
922 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
923 struct intel_context *ctx = req->ctx;
924 struct drm_i915_gem_object *ctx_obj =
925 ctx->engine[ring->id].state;
926
927 if (ctx_obj && (ctx != ring->default_context))
928 intel_lr_context_unpin(ring, ctx);
929 list_del(&req->execlist_link);
930 i915_gem_request_unreference(req);
931 }
932 }
933
934 void intel_logical_ring_stop(struct intel_engine_cs *ring)
935 {
936 struct drm_i915_private *dev_priv = ring->dev->dev_private;
937 int ret;
938
939 if (!intel_ring_initialized(ring))
940 return;
941
942 ret = intel_ring_idle(ring);
943 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
944 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
945 ring->name, ret);
946
947 /* TODO: Is this correct with Execlists enabled? */
948 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
949 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
950 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
951 return;
952 }
953 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
954 }
955
956 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
957 struct intel_context *ctx)
958 {
959 struct intel_engine_cs *ring = ringbuf->ring;
960 int ret;
961
962 if (!ring->gpu_caches_dirty)
963 return 0;
964
965 ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
966 if (ret)
967 return ret;
968
969 ring->gpu_caches_dirty = false;
970 return 0;
971 }
972
973 static int intel_lr_context_pin(struct intel_engine_cs *ring,
974 struct intel_context *ctx)
975 {
976 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
977 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
978 int ret = 0;
979
980 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
981 if (ctx->engine[ring->id].pin_count++ == 0) {
982 ret = i915_gem_obj_ggtt_pin(ctx_obj,
983 GEN8_LR_CONTEXT_ALIGN, 0);
984 if (ret)
985 goto reset_pin_count;
986
987 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
988 if (ret)
989 goto unpin_ctx_obj;
990 }
991
992 return ret;
993
994 unpin_ctx_obj:
995 i915_gem_object_ggtt_unpin(ctx_obj);
996 reset_pin_count:
997 ctx->engine[ring->id].pin_count = 0;
998
999 return ret;
1000 }
1001
1002 void intel_lr_context_unpin(struct intel_engine_cs *ring,
1003 struct intel_context *ctx)
1004 {
1005 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1006 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1007
1008 if (ctx_obj) {
1009 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1010 if (--ctx->engine[ring->id].pin_count == 0) {
1011 intel_unpin_ringbuffer_obj(ringbuf);
1012 i915_gem_object_ggtt_unpin(ctx_obj);
1013 }
1014 }
1015 }
1016
1017 static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1018 struct intel_context *ctx)
1019 {
1020 int ret, i;
1021 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1022 struct drm_device *dev = ring->dev;
1023 struct drm_i915_private *dev_priv = dev->dev_private;
1024 struct i915_workarounds *w = &dev_priv->workarounds;
1025
1026 if (WARN_ON_ONCE(w->count == 0))
1027 return 0;
1028
1029 ring->gpu_caches_dirty = true;
1030 ret = logical_ring_flush_all_caches(ringbuf, ctx);
1031 if (ret)
1032 return ret;
1033
1034 ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
1035 if (ret)
1036 return ret;
1037
1038 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1039 for (i = 0; i < w->count; i++) {
1040 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1041 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1042 }
1043 intel_logical_ring_emit(ringbuf, MI_NOOP);
1044
1045 intel_logical_ring_advance(ringbuf);
1046
1047 ring->gpu_caches_dirty = true;
1048 ret = logical_ring_flush_all_caches(ringbuf, ctx);
1049 if (ret)
1050 return ret;
1051
1052 return 0;
1053 }
1054
1055 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1056 {
1057 struct drm_device *dev = ring->dev;
1058 struct drm_i915_private *dev_priv = dev->dev_private;
1059
1060 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1061 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1062
1063 I915_WRITE(RING_MODE_GEN7(ring),
1064 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1065 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1066 POSTING_READ(RING_MODE_GEN7(ring));
1067 ring->next_context_status_buffer = 0;
1068 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1069
1070 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1071
1072 return 0;
1073 }
1074
1075 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1076 {
1077 struct drm_device *dev = ring->dev;
1078 struct drm_i915_private *dev_priv = dev->dev_private;
1079 int ret;
1080
1081 ret = gen8_init_common_ring(ring);
1082 if (ret)
1083 return ret;
1084
1085 /* We need to disable the AsyncFlip performance optimisations in order
1086 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1087 * programmed to '1' on all products.
1088 *
1089 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1090 */
1091 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1092
1093 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1094
1095 return init_workarounds_ring(ring);
1096 }
1097
1098 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1099 {
1100 int ret;
1101
1102 ret = gen8_init_common_ring(ring);
1103 if (ret)
1104 return ret;
1105
1106 return init_workarounds_ring(ring);
1107 }
1108
1109 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1110 struct intel_context *ctx,
1111 u64 offset, unsigned dispatch_flags)
1112 {
1113 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1114 int ret;
1115
1116 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1117 if (ret)
1118 return ret;
1119
1120 /* FIXME(BDW): Address space and security selectors. */
1121 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1122 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1123 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1124 intel_logical_ring_emit(ringbuf, MI_NOOP);
1125 intel_logical_ring_advance(ringbuf);
1126
1127 return 0;
1128 }
1129
1130 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1131 {
1132 struct drm_device *dev = ring->dev;
1133 struct drm_i915_private *dev_priv = dev->dev_private;
1134 unsigned long flags;
1135
1136 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1137 return false;
1138
1139 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1140 if (ring->irq_refcount++ == 0) {
1141 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1142 POSTING_READ(RING_IMR(ring->mmio_base));
1143 }
1144 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1145
1146 return true;
1147 }
1148
1149 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1150 {
1151 struct drm_device *dev = ring->dev;
1152 struct drm_i915_private *dev_priv = dev->dev_private;
1153 unsigned long flags;
1154
1155 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1156 if (--ring->irq_refcount == 0) {
1157 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1158 POSTING_READ(RING_IMR(ring->mmio_base));
1159 }
1160 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1161 }
1162
1163 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1164 struct intel_context *ctx,
1165 u32 invalidate_domains,
1166 u32 unused)
1167 {
1168 struct intel_engine_cs *ring = ringbuf->ring;
1169 struct drm_device *dev = ring->dev;
1170 struct drm_i915_private *dev_priv = dev->dev_private;
1171 uint32_t cmd;
1172 int ret;
1173
1174 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1175 if (ret)
1176 return ret;
1177
1178 cmd = MI_FLUSH_DW + 1;
1179
1180 /* We always require a command barrier so that subsequent
1181 * commands, such as breadcrumb interrupts, are strictly ordered
1182 * wrt the contents of the write cache being flushed to memory
1183 * (and thus being coherent from the CPU).
1184 */
1185 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1186
1187 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1188 cmd |= MI_INVALIDATE_TLB;
1189 if (ring == &dev_priv->ring[VCS])
1190 cmd |= MI_INVALIDATE_BSD;
1191 }
1192
1193 intel_logical_ring_emit(ringbuf, cmd);
1194 intel_logical_ring_emit(ringbuf,
1195 I915_GEM_HWS_SCRATCH_ADDR |
1196 MI_FLUSH_DW_USE_GTT);
1197 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1198 intel_logical_ring_emit(ringbuf, 0); /* value */
1199 intel_logical_ring_advance(ringbuf);
1200
1201 return 0;
1202 }
1203
1204 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1205 struct intel_context *ctx,
1206 u32 invalidate_domains,
1207 u32 flush_domains)
1208 {
1209 struct intel_engine_cs *ring = ringbuf->ring;
1210 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1211 u32 flags = 0;
1212 int ret;
1213
1214 flags |= PIPE_CONTROL_CS_STALL;
1215
1216 if (flush_domains) {
1217 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1218 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1219 }
1220
1221 if (invalidate_domains) {
1222 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1223 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1224 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1225 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1226 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1227 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1228 flags |= PIPE_CONTROL_QW_WRITE;
1229 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1230 }
1231
1232 ret = intel_logical_ring_begin(ringbuf, ctx, 6);
1233 if (ret)
1234 return ret;
1235
1236 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1237 intel_logical_ring_emit(ringbuf, flags);
1238 intel_logical_ring_emit(ringbuf, scratch_addr);
1239 intel_logical_ring_emit(ringbuf, 0);
1240 intel_logical_ring_emit(ringbuf, 0);
1241 intel_logical_ring_emit(ringbuf, 0);
1242 intel_logical_ring_advance(ringbuf);
1243
1244 return 0;
1245 }
1246
1247 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1248 {
1249 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1250 }
1251
1252 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1253 {
1254 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1255 }
1256
1257 static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
1258 struct drm_i915_gem_request *request)
1259 {
1260 struct intel_engine_cs *ring = ringbuf->ring;
1261 u32 cmd;
1262 int ret;
1263
1264 ret = intel_logical_ring_begin(ringbuf, request->ctx, 6);
1265 if (ret)
1266 return ret;
1267
1268 cmd = MI_STORE_DWORD_IMM_GEN4;
1269 cmd |= MI_GLOBAL_GTT;
1270
1271 intel_logical_ring_emit(ringbuf, cmd);
1272 intel_logical_ring_emit(ringbuf,
1273 (ring->status_page.gfx_addr +
1274 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1275 intel_logical_ring_emit(ringbuf, 0);
1276 intel_logical_ring_emit(ringbuf,
1277 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1278 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1279 intel_logical_ring_emit(ringbuf, MI_NOOP);
1280 intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
1281
1282 return 0;
1283 }
1284
1285 static int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1286 struct intel_context *ctx)
1287 {
1288 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1289 struct render_state so;
1290 struct drm_i915_file_private *file_priv = ctx->file_priv;
1291 struct drm_file *file = file_priv ? file_priv->file : NULL;
1292 int ret;
1293
1294 ret = i915_gem_render_state_prepare(ring, &so);
1295 if (ret)
1296 return ret;
1297
1298 if (so.rodata == NULL)
1299 return 0;
1300
1301 ret = ring->emit_bb_start(ringbuf,
1302 ctx,
1303 so.ggtt_offset,
1304 I915_DISPATCH_SECURE);
1305 if (ret)
1306 goto out;
1307
1308 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1309
1310 ret = __i915_add_request(ring, file, so.obj);
1311 /* intel_logical_ring_add_request moves object to inactive if it
1312 * fails */
1313 out:
1314 i915_gem_render_state_fini(&so);
1315 return ret;
1316 }
1317
1318 static int gen8_init_rcs_context(struct intel_engine_cs *ring,
1319 struct intel_context *ctx)
1320 {
1321 int ret;
1322
1323 ret = intel_logical_ring_workarounds_emit(ring, ctx);
1324 if (ret)
1325 return ret;
1326
1327 return intel_lr_context_render_state_init(ring, ctx);
1328 }
1329
1330 /**
1331 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1332 *
1333 * @ring: Engine Command Streamer.
1334 *
1335 */
1336 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1337 {
1338 struct drm_i915_private *dev_priv;
1339
1340 if (!intel_ring_initialized(ring))
1341 return;
1342
1343 dev_priv = ring->dev->dev_private;
1344
1345 intel_logical_ring_stop(ring);
1346 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1347 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1348
1349 if (ring->cleanup)
1350 ring->cleanup(ring);
1351
1352 i915_cmd_parser_fini_ring(ring);
1353 i915_gem_batch_pool_fini(&ring->batch_pool);
1354
1355 if (ring->status_page.obj) {
1356 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1357 ring->status_page.obj = NULL;
1358 }
1359 }
1360
1361 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1362 {
1363 int ret;
1364
1365 /* Intentionally left blank. */
1366 ring->buffer = NULL;
1367
1368 ring->dev = dev;
1369 INIT_LIST_HEAD(&ring->active_list);
1370 INIT_LIST_HEAD(&ring->request_list);
1371 i915_gem_batch_pool_init(dev, &ring->batch_pool);
1372 init_waitqueue_head(&ring->irq_queue);
1373
1374 INIT_LIST_HEAD(&ring->execlist_queue);
1375 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1376 spin_lock_init(&ring->execlist_lock);
1377
1378 ret = i915_cmd_parser_init_ring(ring);
1379 if (ret)
1380 return ret;
1381
1382 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1383
1384 return ret;
1385 }
1386
1387 static int logical_render_ring_init(struct drm_device *dev)
1388 {
1389 struct drm_i915_private *dev_priv = dev->dev_private;
1390 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1391 int ret;
1392
1393 ring->name = "render ring";
1394 ring->id = RCS;
1395 ring->mmio_base = RENDER_RING_BASE;
1396 ring->irq_enable_mask =
1397 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1398 ring->irq_keep_mask =
1399 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1400 if (HAS_L3_DPF(dev))
1401 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1402
1403 if (INTEL_INFO(dev)->gen >= 9)
1404 ring->init_hw = gen9_init_render_ring;
1405 else
1406 ring->init_hw = gen8_init_render_ring;
1407 ring->init_context = gen8_init_rcs_context;
1408 ring->cleanup = intel_fini_pipe_control;
1409 ring->get_seqno = gen8_get_seqno;
1410 ring->set_seqno = gen8_set_seqno;
1411 ring->emit_request = gen8_emit_request;
1412 ring->emit_flush = gen8_emit_flush_render;
1413 ring->irq_get = gen8_logical_ring_get_irq;
1414 ring->irq_put = gen8_logical_ring_put_irq;
1415 ring->emit_bb_start = gen8_emit_bb_start;
1416
1417 ring->dev = dev;
1418 ret = logical_ring_init(dev, ring);
1419 if (ret)
1420 return ret;
1421
1422 return intel_init_pipe_control(ring);
1423 }
1424
1425 static int logical_bsd_ring_init(struct drm_device *dev)
1426 {
1427 struct drm_i915_private *dev_priv = dev->dev_private;
1428 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1429
1430 ring->name = "bsd ring";
1431 ring->id = VCS;
1432 ring->mmio_base = GEN6_BSD_RING_BASE;
1433 ring->irq_enable_mask =
1434 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1435 ring->irq_keep_mask =
1436 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1437
1438 ring->init_hw = gen8_init_common_ring;
1439 ring->get_seqno = gen8_get_seqno;
1440 ring->set_seqno = gen8_set_seqno;
1441 ring->emit_request = gen8_emit_request;
1442 ring->emit_flush = gen8_emit_flush;
1443 ring->irq_get = gen8_logical_ring_get_irq;
1444 ring->irq_put = gen8_logical_ring_put_irq;
1445 ring->emit_bb_start = gen8_emit_bb_start;
1446
1447 return logical_ring_init(dev, ring);
1448 }
1449
1450 static int logical_bsd2_ring_init(struct drm_device *dev)
1451 {
1452 struct drm_i915_private *dev_priv = dev->dev_private;
1453 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1454
1455 ring->name = "bds2 ring";
1456 ring->id = VCS2;
1457 ring->mmio_base = GEN8_BSD2_RING_BASE;
1458 ring->irq_enable_mask =
1459 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1460 ring->irq_keep_mask =
1461 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1462
1463 ring->init_hw = gen8_init_common_ring;
1464 ring->get_seqno = gen8_get_seqno;
1465 ring->set_seqno = gen8_set_seqno;
1466 ring->emit_request = gen8_emit_request;
1467 ring->emit_flush = gen8_emit_flush;
1468 ring->irq_get = gen8_logical_ring_get_irq;
1469 ring->irq_put = gen8_logical_ring_put_irq;
1470 ring->emit_bb_start = gen8_emit_bb_start;
1471
1472 return logical_ring_init(dev, ring);
1473 }
1474
1475 static int logical_blt_ring_init(struct drm_device *dev)
1476 {
1477 struct drm_i915_private *dev_priv = dev->dev_private;
1478 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1479
1480 ring->name = "blitter ring";
1481 ring->id = BCS;
1482 ring->mmio_base = BLT_RING_BASE;
1483 ring->irq_enable_mask =
1484 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1485 ring->irq_keep_mask =
1486 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1487
1488 ring->init_hw = gen8_init_common_ring;
1489 ring->get_seqno = gen8_get_seqno;
1490 ring->set_seqno = gen8_set_seqno;
1491 ring->emit_request = gen8_emit_request;
1492 ring->emit_flush = gen8_emit_flush;
1493 ring->irq_get = gen8_logical_ring_get_irq;
1494 ring->irq_put = gen8_logical_ring_put_irq;
1495 ring->emit_bb_start = gen8_emit_bb_start;
1496
1497 return logical_ring_init(dev, ring);
1498 }
1499
1500 static int logical_vebox_ring_init(struct drm_device *dev)
1501 {
1502 struct drm_i915_private *dev_priv = dev->dev_private;
1503 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1504
1505 ring->name = "video enhancement ring";
1506 ring->id = VECS;
1507 ring->mmio_base = VEBOX_RING_BASE;
1508 ring->irq_enable_mask =
1509 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1510 ring->irq_keep_mask =
1511 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1512
1513 ring->init_hw = gen8_init_common_ring;
1514 ring->get_seqno = gen8_get_seqno;
1515 ring->set_seqno = gen8_set_seqno;
1516 ring->emit_request = gen8_emit_request;
1517 ring->emit_flush = gen8_emit_flush;
1518 ring->irq_get = gen8_logical_ring_get_irq;
1519 ring->irq_put = gen8_logical_ring_put_irq;
1520 ring->emit_bb_start = gen8_emit_bb_start;
1521
1522 return logical_ring_init(dev, ring);
1523 }
1524
1525 /**
1526 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1527 * @dev: DRM device.
1528 *
1529 * This function inits the engines for an Execlists submission style (the equivalent in the
1530 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1531 * those engines that are present in the hardware.
1532 *
1533 * Return: non-zero if the initialization failed.
1534 */
1535 int intel_logical_rings_init(struct drm_device *dev)
1536 {
1537 struct drm_i915_private *dev_priv = dev->dev_private;
1538 int ret;
1539
1540 ret = logical_render_ring_init(dev);
1541 if (ret)
1542 return ret;
1543
1544 if (HAS_BSD(dev)) {
1545 ret = logical_bsd_ring_init(dev);
1546 if (ret)
1547 goto cleanup_render_ring;
1548 }
1549
1550 if (HAS_BLT(dev)) {
1551 ret = logical_blt_ring_init(dev);
1552 if (ret)
1553 goto cleanup_bsd_ring;
1554 }
1555
1556 if (HAS_VEBOX(dev)) {
1557 ret = logical_vebox_ring_init(dev);
1558 if (ret)
1559 goto cleanup_blt_ring;
1560 }
1561
1562 if (HAS_BSD2(dev)) {
1563 ret = logical_bsd2_ring_init(dev);
1564 if (ret)
1565 goto cleanup_vebox_ring;
1566 }
1567
1568 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1569 if (ret)
1570 goto cleanup_bsd2_ring;
1571
1572 return 0;
1573
1574 cleanup_bsd2_ring:
1575 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1576 cleanup_vebox_ring:
1577 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1578 cleanup_blt_ring:
1579 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1580 cleanup_bsd_ring:
1581 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1582 cleanup_render_ring:
1583 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1584
1585 return ret;
1586 }
1587
1588 static u32
1589 make_rpcs(struct drm_device *dev)
1590 {
1591 u32 rpcs = 0;
1592
1593 /*
1594 * No explicit RPCS request is needed to ensure full
1595 * slice/subslice/EU enablement prior to Gen9.
1596 */
1597 if (INTEL_INFO(dev)->gen < 9)
1598 return 0;
1599
1600 /*
1601 * Starting in Gen9, render power gating can leave
1602 * slice/subslice/EU in a partially enabled state. We
1603 * must make an explicit request through RPCS for full
1604 * enablement.
1605 */
1606 if (INTEL_INFO(dev)->has_slice_pg) {
1607 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1608 rpcs |= INTEL_INFO(dev)->slice_total <<
1609 GEN8_RPCS_S_CNT_SHIFT;
1610 rpcs |= GEN8_RPCS_ENABLE;
1611 }
1612
1613 if (INTEL_INFO(dev)->has_subslice_pg) {
1614 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1615 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1616 GEN8_RPCS_SS_CNT_SHIFT;
1617 rpcs |= GEN8_RPCS_ENABLE;
1618 }
1619
1620 if (INTEL_INFO(dev)->has_eu_pg) {
1621 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1622 GEN8_RPCS_EU_MIN_SHIFT;
1623 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1624 GEN8_RPCS_EU_MAX_SHIFT;
1625 rpcs |= GEN8_RPCS_ENABLE;
1626 }
1627
1628 return rpcs;
1629 }
1630
1631 static int
1632 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1633 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1634 {
1635 struct drm_device *dev = ring->dev;
1636 struct drm_i915_private *dev_priv = dev->dev_private;
1637 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1638 struct page *page;
1639 uint32_t *reg_state;
1640 int ret;
1641
1642 if (!ppgtt)
1643 ppgtt = dev_priv->mm.aliasing_ppgtt;
1644
1645 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1646 if (ret) {
1647 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1648 return ret;
1649 }
1650
1651 ret = i915_gem_object_get_pages(ctx_obj);
1652 if (ret) {
1653 DRM_DEBUG_DRIVER("Could not get object pages\n");
1654 return ret;
1655 }
1656
1657 i915_gem_object_pin_pages(ctx_obj);
1658
1659 /* The second page of the context object contains some fields which must
1660 * be set up prior to the first execution. */
1661 page = i915_gem_object_get_page(ctx_obj, 1);
1662 reg_state = kmap_atomic(page);
1663
1664 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1665 * commands followed by (reg, value) pairs. The values we are setting here are
1666 * only for the first context restore: on a subsequent save, the GPU will
1667 * recreate this batchbuffer with new values (including all the missing
1668 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1669 if (ring->id == RCS)
1670 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1671 else
1672 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1673 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1674 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1675 reg_state[CTX_CONTEXT_CONTROL+1] =
1676 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1677 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
1678 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1679 reg_state[CTX_RING_HEAD+1] = 0;
1680 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1681 reg_state[CTX_RING_TAIL+1] = 0;
1682 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1683 /* Ring buffer start address is not known until the buffer is pinned.
1684 * It is written to the context image in execlists_update_context()
1685 */
1686 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1687 reg_state[CTX_RING_BUFFER_CONTROL+1] =
1688 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1689 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1690 reg_state[CTX_BB_HEAD_U+1] = 0;
1691 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1692 reg_state[CTX_BB_HEAD_L+1] = 0;
1693 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1694 reg_state[CTX_BB_STATE+1] = (1<<5);
1695 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1696 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1697 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1698 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1699 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1700 reg_state[CTX_SECOND_BB_STATE+1] = 0;
1701 if (ring->id == RCS) {
1702 /* TODO: according to BSpec, the register state context
1703 * for CHV does not have these. OTOH, these registers do
1704 * exist in CHV. I'm waiting for a clarification */
1705 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1706 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1707 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1708 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1709 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1710 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1711 }
1712 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1713 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1714 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1715 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1716 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1717 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1718 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1719 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1720 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1721 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1722 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1723 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1724
1725 /* With dynamic page allocation, PDPs may not be allocated at this point,
1726 * Point the unallocated PDPs to the scratch page
1727 */
1728 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
1729 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
1730 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
1731 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
1732 if (ring->id == RCS) {
1733 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1734 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
1735 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
1736 }
1737
1738 kunmap_atomic(reg_state);
1739
1740 ctx_obj->dirty = 1;
1741 set_page_dirty(page);
1742 i915_gem_object_unpin_pages(ctx_obj);
1743
1744 return 0;
1745 }
1746
1747 /**
1748 * intel_lr_context_free() - free the LRC specific bits of a context
1749 * @ctx: the LR context to free.
1750 *
1751 * The real context freeing is done in i915_gem_context_free: this only
1752 * takes care of the bits that are LRC related: the per-engine backing
1753 * objects and the logical ringbuffer.
1754 */
1755 void intel_lr_context_free(struct intel_context *ctx)
1756 {
1757 int i;
1758
1759 for (i = 0; i < I915_NUM_RINGS; i++) {
1760 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1761
1762 if (ctx_obj) {
1763 struct intel_ringbuffer *ringbuf =
1764 ctx->engine[i].ringbuf;
1765 struct intel_engine_cs *ring = ringbuf->ring;
1766
1767 if (ctx == ring->default_context) {
1768 intel_unpin_ringbuffer_obj(ringbuf);
1769 i915_gem_object_ggtt_unpin(ctx_obj);
1770 }
1771 WARN_ON(ctx->engine[ring->id].pin_count);
1772 intel_destroy_ringbuffer_obj(ringbuf);
1773 kfree(ringbuf);
1774 drm_gem_object_unreference(&ctx_obj->base);
1775 }
1776 }
1777 }
1778
1779 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1780 {
1781 int ret = 0;
1782
1783 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
1784
1785 switch (ring->id) {
1786 case RCS:
1787 if (INTEL_INFO(ring->dev)->gen >= 9)
1788 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1789 else
1790 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1791 break;
1792 case VCS:
1793 case BCS:
1794 case VECS:
1795 case VCS2:
1796 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1797 break;
1798 }
1799
1800 return ret;
1801 }
1802
1803 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1804 struct drm_i915_gem_object *default_ctx_obj)
1805 {
1806 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1807
1808 /* The status page is offset 0 from the default context object
1809 * in LRC mode. */
1810 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1811 ring->status_page.page_addr =
1812 kmap(sg_page(default_ctx_obj->pages->sgl));
1813 ring->status_page.obj = default_ctx_obj;
1814
1815 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1816 (u32)ring->status_page.gfx_addr);
1817 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1818 }
1819
1820 /**
1821 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1822 * @ctx: LR context to create.
1823 * @ring: engine to be used with the context.
1824 *
1825 * This function can be called more than once, with different engines, if we plan
1826 * to use the context with them. The context backing objects and the ringbuffers
1827 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1828 * the creation is a deferred call: it's better to make sure first that we need to use
1829 * a given ring with the context.
1830 *
1831 * Return: non-zero on error.
1832 */
1833 int intel_lr_context_deferred_create(struct intel_context *ctx,
1834 struct intel_engine_cs *ring)
1835 {
1836 const bool is_global_default_ctx = (ctx == ring->default_context);
1837 struct drm_device *dev = ring->dev;
1838 struct drm_i915_gem_object *ctx_obj;
1839 uint32_t context_size;
1840 struct intel_ringbuffer *ringbuf;
1841 int ret;
1842
1843 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1844 WARN_ON(ctx->engine[ring->id].state);
1845
1846 context_size = round_up(get_lr_context_size(ring), 4096);
1847
1848 ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1849 if (IS_ERR(ctx_obj)) {
1850 ret = PTR_ERR(ctx_obj);
1851 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1852 return ret;
1853 }
1854
1855 if (is_global_default_ctx) {
1856 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1857 if (ret) {
1858 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
1859 ret);
1860 drm_gem_object_unreference(&ctx_obj->base);
1861 return ret;
1862 }
1863 }
1864
1865 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1866 if (!ringbuf) {
1867 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1868 ring->name);
1869 ret = -ENOMEM;
1870 goto error_unpin_ctx;
1871 }
1872
1873 ringbuf->ring = ring;
1874
1875 ringbuf->size = 32 * PAGE_SIZE;
1876 ringbuf->effective_size = ringbuf->size;
1877 ringbuf->head = 0;
1878 ringbuf->tail = 0;
1879 ringbuf->last_retired_head = -1;
1880 intel_ring_update_space(ringbuf);
1881
1882 if (ringbuf->obj == NULL) {
1883 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1884 if (ret) {
1885 DRM_DEBUG_DRIVER(
1886 "Failed to allocate ringbuffer obj %s: %d\n",
1887 ring->name, ret);
1888 goto error_free_rbuf;
1889 }
1890
1891 if (is_global_default_ctx) {
1892 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1893 if (ret) {
1894 DRM_ERROR(
1895 "Failed to pin and map ringbuffer %s: %d\n",
1896 ring->name, ret);
1897 goto error_destroy_rbuf;
1898 }
1899 }
1900
1901 }
1902
1903 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1904 if (ret) {
1905 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1906 goto error;
1907 }
1908
1909 ctx->engine[ring->id].ringbuf = ringbuf;
1910 ctx->engine[ring->id].state = ctx_obj;
1911
1912 if (ctx == ring->default_context)
1913 lrc_setup_hardware_status_page(ring, ctx_obj);
1914 else if (ring->id == RCS && !ctx->rcs_initialized) {
1915 if (ring->init_context) {
1916 ret = ring->init_context(ring, ctx);
1917 if (ret) {
1918 DRM_ERROR("ring init context: %d\n", ret);
1919 ctx->engine[ring->id].ringbuf = NULL;
1920 ctx->engine[ring->id].state = NULL;
1921 goto error;
1922 }
1923 }
1924
1925 ctx->rcs_initialized = true;
1926 }
1927
1928 return 0;
1929
1930 error:
1931 if (is_global_default_ctx)
1932 intel_unpin_ringbuffer_obj(ringbuf);
1933 error_destroy_rbuf:
1934 intel_destroy_ringbuffer_obj(ringbuf);
1935 error_free_rbuf:
1936 kfree(ringbuf);
1937 error_unpin_ctx:
1938 if (is_global_default_ctx)
1939 i915_gem_object_ggtt_unpin(ctx_obj);
1940 drm_gem_object_unreference(&ctx_obj->base);
1941 return ret;
1942 }
1943
1944 void intel_lr_context_reset(struct drm_device *dev,
1945 struct intel_context *ctx)
1946 {
1947 struct drm_i915_private *dev_priv = dev->dev_private;
1948 struct intel_engine_cs *ring;
1949 int i;
1950
1951 for_each_ring(ring, dev_priv, i) {
1952 struct drm_i915_gem_object *ctx_obj =
1953 ctx->engine[ring->id].state;
1954 struct intel_ringbuffer *ringbuf =
1955 ctx->engine[ring->id].ringbuf;
1956 uint32_t *reg_state;
1957 struct page *page;
1958
1959 if (!ctx_obj)
1960 continue;
1961
1962 if (i915_gem_object_get_pages(ctx_obj)) {
1963 WARN(1, "Failed get_pages for context obj\n");
1964 continue;
1965 }
1966 page = i915_gem_object_get_page(ctx_obj, 1);
1967 reg_state = kmap_atomic(page);
1968
1969 reg_state[CTX_RING_HEAD+1] = 0;
1970 reg_state[CTX_RING_TAIL+1] = 0;
1971
1972 kunmap_atomic(reg_state);
1973
1974 ringbuf->head = 0;
1975 ringbuf->tail = 0;
1976 }
1977 }
This page took 0.074117 seconds and 5 git commands to generate.