Merge branches 'arm/rockchip', 'arm/exynos', 'arm/smmu', 'arm/mediatek', 'arm/io...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_mocs.h"
139
140 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
144 #define RING_EXECLIST_QFULL (1 << 0x2)
145 #define RING_EXECLIST1_VALID (1 << 0x3)
146 #define RING_EXECLIST0_VALID (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
157
158 #define CTX_LRI_HEADER_0 0x01
159 #define CTX_CONTEXT_CONTROL 0x02
160 #define CTX_RING_HEAD 0x04
161 #define CTX_RING_TAIL 0x06
162 #define CTX_RING_BUFFER_START 0x08
163 #define CTX_RING_BUFFER_CONTROL 0x0a
164 #define CTX_BB_HEAD_U 0x0c
165 #define CTX_BB_HEAD_L 0x0e
166 #define CTX_BB_STATE 0x10
167 #define CTX_SECOND_BB_HEAD_U 0x12
168 #define CTX_SECOND_BB_HEAD_L 0x14
169 #define CTX_SECOND_BB_STATE 0x16
170 #define CTX_BB_PER_CTX_PTR 0x18
171 #define CTX_RCS_INDIRECT_CTX 0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173 #define CTX_LRI_HEADER_1 0x21
174 #define CTX_CTX_TIMESTAMP 0x22
175 #define CTX_PDP3_UDW 0x24
176 #define CTX_PDP3_LDW 0x26
177 #define CTX_PDP2_UDW 0x28
178 #define CTX_PDP2_LDW 0x2a
179 #define CTX_PDP1_UDW 0x2c
180 #define CTX_PDP1_LDW 0x2e
181 #define CTX_PDP0_UDW 0x30
182 #define CTX_PDP0_LDW 0x32
183 #define CTX_LRI_HEADER_2 0x41
184 #define CTX_R_PWR_CLK_STATE 0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192
193 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
194 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195 (reg_state)[(pos)+1] = (val); \
196 } while (0)
197
198 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
199 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
200 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202 } while (0)
203
204 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207 } while (0)
208
209 enum {
210 ADVANCED_CONTEXT = 0,
211 LEGACY_32B_CONTEXT,
212 ADVANCED_AD_CONTEXT,
213 LEGACY_64B_CONTEXT
214 };
215 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
216 #define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
217 LEGACY_64B_CONTEXT :\
218 LEGACY_32B_CONTEXT)
219 enum {
220 FAULT_AND_HANG = 0,
221 FAULT_AND_HALT, /* Debug only */
222 FAULT_AND_STREAM,
223 FAULT_AND_CONTINUE /* Unsupported */
224 };
225 #define GEN8_CTX_ID_SHIFT 32
226 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
227
228 static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
229 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
230 struct drm_i915_gem_object *default_ctx_obj);
231
232
233 /**
234 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
235 * @dev: DRM device.
236 * @enable_execlists: value of i915.enable_execlists module parameter.
237 *
238 * Only certain platforms support Execlists (the prerequisites being
239 * support for Logical Ring Contexts and Aliasing PPGTT or better).
240 *
241 * Return: 1 if Execlists is supported and has to be enabled.
242 */
243 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
244 {
245 WARN_ON(i915.enable_ppgtt == -1);
246
247 /* On platforms with execlist available, vGPU will only
248 * support execlist mode, no ring buffer mode.
249 */
250 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
251 return 1;
252
253 if (INTEL_INFO(dev)->gen >= 9)
254 return 1;
255
256 if (enable_execlists == 0)
257 return 0;
258
259 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
260 i915.use_mmio_flip >= 0)
261 return 1;
262
263 return 0;
264 }
265
266 /**
267 * intel_execlists_ctx_id() - get the Execlists Context ID
268 * @ctx_obj: Logical Ring Context backing object.
269 *
270 * Do not confuse with ctx->id! Unfortunately we have a name overload
271 * here: the old context ID we pass to userspace as a handler so that
272 * they can refer to a context, and the new context ID we pass to the
273 * ELSP so that the GPU can inform us of the context status via
274 * interrupts.
275 *
276 * Return: 20-bits globally unique context ID.
277 */
278 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
279 {
280 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
281 LRC_PPHWSP_PN * PAGE_SIZE;
282
283 /* LRCA is required to be 4K aligned so the more significant 20 bits
284 * are globally unique */
285 return lrca >> 12;
286 }
287
288 static bool disable_lite_restore_wa(struct intel_engine_cs *ring)
289 {
290 struct drm_device *dev = ring->dev;
291
292 return (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
293 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
294 (ring->id == VCS || ring->id == VCS2);
295 }
296
297 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
298 struct intel_engine_cs *ring)
299 {
300 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
301 uint64_t desc;
302 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
303 LRC_PPHWSP_PN * PAGE_SIZE;
304
305 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
306
307 desc = GEN8_CTX_VALID;
308 desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
309 if (IS_GEN8(ctx_obj->base.dev))
310 desc |= GEN8_CTX_L3LLC_COHERENT;
311 desc |= GEN8_CTX_PRIVILEGE;
312 desc |= lrca;
313 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
314
315 /* TODO: WaDisableLiteRestore when we start using semaphore
316 * signalling between Command Streamers */
317 /* desc |= GEN8_CTX_FORCE_RESTORE; */
318
319 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
320 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
321 if (disable_lite_restore_wa(ring))
322 desc |= GEN8_CTX_FORCE_RESTORE;
323
324 return desc;
325 }
326
327 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
328 struct drm_i915_gem_request *rq1)
329 {
330
331 struct intel_engine_cs *ring = rq0->ring;
332 struct drm_device *dev = ring->dev;
333 struct drm_i915_private *dev_priv = dev->dev_private;
334 uint64_t desc[2];
335
336 if (rq1) {
337 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
338 rq1->elsp_submitted++;
339 } else {
340 desc[1] = 0;
341 }
342
343 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
344 rq0->elsp_submitted++;
345
346 /* You must always write both descriptors in the order below. */
347 spin_lock(&dev_priv->uncore.lock);
348 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
349 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
350 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
351
352 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
353 /* The context is automatically loaded after the following */
354 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
355
356 /* ELSP is a wo register, use another nearby reg for posting */
357 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
358 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
359 spin_unlock(&dev_priv->uncore.lock);
360 }
361
362 static int execlists_update_context(struct drm_i915_gem_request *rq)
363 {
364 struct intel_engine_cs *ring = rq->ring;
365 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
366 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
367 struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
368 struct page *page;
369 uint32_t *reg_state;
370
371 BUG_ON(!ctx_obj);
372 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
373 WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
374
375 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
376 reg_state = kmap_atomic(page);
377
378 reg_state[CTX_RING_TAIL+1] = rq->tail;
379 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
380
381 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
382 /* True 32b PPGTT with dynamic page allocation: update PDP
383 * registers and point the unallocated PDPs to scratch page.
384 * PML4 is allocated during ppgtt init, so this is not needed
385 * in 48-bit mode.
386 */
387 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
388 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
389 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
390 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
391 }
392
393 kunmap_atomic(reg_state);
394
395 return 0;
396 }
397
398 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
399 struct drm_i915_gem_request *rq1)
400 {
401 execlists_update_context(rq0);
402
403 if (rq1)
404 execlists_update_context(rq1);
405
406 execlists_elsp_write(rq0, rq1);
407 }
408
409 static void execlists_context_unqueue(struct intel_engine_cs *ring)
410 {
411 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
412 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
413
414 assert_spin_locked(&ring->execlist_lock);
415
416 /*
417 * If irqs are not active generate a warning as batches that finish
418 * without the irqs may get lost and a GPU Hang may occur.
419 */
420 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
421
422 if (list_empty(&ring->execlist_queue))
423 return;
424
425 /* Try to read in pairs */
426 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
427 execlist_link) {
428 if (!req0) {
429 req0 = cursor;
430 } else if (req0->ctx == cursor->ctx) {
431 /* Same ctx: ignore first request, as second request
432 * will update tail past first request's workload */
433 cursor->elsp_submitted = req0->elsp_submitted;
434 list_del(&req0->execlist_link);
435 list_add_tail(&req0->execlist_link,
436 &ring->execlist_retired_req_list);
437 req0 = cursor;
438 } else {
439 req1 = cursor;
440 break;
441 }
442 }
443
444 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
445 /*
446 * WaIdleLiteRestore: make sure we never cause a lite
447 * restore with HEAD==TAIL
448 */
449 if (req0->elsp_submitted) {
450 /*
451 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
452 * as we resubmit the request. See gen8_emit_request()
453 * for where we prepare the padding after the end of the
454 * request.
455 */
456 struct intel_ringbuffer *ringbuf;
457
458 ringbuf = req0->ctx->engine[ring->id].ringbuf;
459 req0->tail += 8;
460 req0->tail &= ringbuf->size - 1;
461 }
462 }
463
464 WARN_ON(req1 && req1->elsp_submitted);
465
466 execlists_submit_requests(req0, req1);
467 }
468
469 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
470 u32 request_id)
471 {
472 struct drm_i915_gem_request *head_req;
473
474 assert_spin_locked(&ring->execlist_lock);
475
476 head_req = list_first_entry_or_null(&ring->execlist_queue,
477 struct drm_i915_gem_request,
478 execlist_link);
479
480 if (head_req != NULL) {
481 struct drm_i915_gem_object *ctx_obj =
482 head_req->ctx->engine[ring->id].state;
483 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
484 WARN(head_req->elsp_submitted == 0,
485 "Never submitted head request\n");
486
487 if (--head_req->elsp_submitted <= 0) {
488 list_del(&head_req->execlist_link);
489 list_add_tail(&head_req->execlist_link,
490 &ring->execlist_retired_req_list);
491 return true;
492 }
493 }
494 }
495
496 return false;
497 }
498
499 /**
500 * intel_lrc_irq_handler() - handle Context Switch interrupts
501 * @ring: Engine Command Streamer to handle.
502 *
503 * Check the unread Context Status Buffers and manage the submission of new
504 * contexts to the ELSP accordingly.
505 */
506 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
507 {
508 struct drm_i915_private *dev_priv = ring->dev->dev_private;
509 u32 status_pointer;
510 u8 read_pointer;
511 u8 write_pointer;
512 u32 status = 0;
513 u32 status_id;
514 u32 submit_contexts = 0;
515
516 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
517
518 read_pointer = ring->next_context_status_buffer;
519 write_pointer = status_pointer & GEN8_CSB_PTR_MASK;
520 if (read_pointer > write_pointer)
521 write_pointer += GEN8_CSB_ENTRIES;
522
523 spin_lock(&ring->execlist_lock);
524
525 while (read_pointer < write_pointer) {
526 read_pointer++;
527 status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer % GEN8_CSB_ENTRIES));
528 status_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer % GEN8_CSB_ENTRIES));
529
530 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
531 continue;
532
533 if (status & GEN8_CTX_STATUS_PREEMPTED) {
534 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
535 if (execlists_check_remove_request(ring, status_id))
536 WARN(1, "Lite Restored request removed from queue\n");
537 } else
538 WARN(1, "Preemption without Lite Restore\n");
539 }
540
541 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
542 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
543 if (execlists_check_remove_request(ring, status_id))
544 submit_contexts++;
545 }
546 }
547
548 if (disable_lite_restore_wa(ring)) {
549 /* Prevent a ctx to preempt itself */
550 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
551 (submit_contexts != 0))
552 execlists_context_unqueue(ring);
553 } else if (submit_contexts != 0) {
554 execlists_context_unqueue(ring);
555 }
556
557 spin_unlock(&ring->execlist_lock);
558
559 WARN(submit_contexts > 2, "More than two context complete events?\n");
560 ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
561
562 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
563 _MASKED_FIELD(GEN8_CSB_PTR_MASK << 8,
564 ((u32)ring->next_context_status_buffer &
565 GEN8_CSB_PTR_MASK) << 8));
566 }
567
568 static int execlists_context_queue(struct drm_i915_gem_request *request)
569 {
570 struct intel_engine_cs *ring = request->ring;
571 struct drm_i915_gem_request *cursor;
572 int num_elements = 0;
573
574 if (request->ctx != ring->default_context)
575 intel_lr_context_pin(request);
576
577 i915_gem_request_reference(request);
578
579 spin_lock_irq(&ring->execlist_lock);
580
581 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
582 if (++num_elements > 2)
583 break;
584
585 if (num_elements > 2) {
586 struct drm_i915_gem_request *tail_req;
587
588 tail_req = list_last_entry(&ring->execlist_queue,
589 struct drm_i915_gem_request,
590 execlist_link);
591
592 if (request->ctx == tail_req->ctx) {
593 WARN(tail_req->elsp_submitted != 0,
594 "More than 2 already-submitted reqs queued\n");
595 list_del(&tail_req->execlist_link);
596 list_add_tail(&tail_req->execlist_link,
597 &ring->execlist_retired_req_list);
598 }
599 }
600
601 list_add_tail(&request->execlist_link, &ring->execlist_queue);
602 if (num_elements == 0)
603 execlists_context_unqueue(ring);
604
605 spin_unlock_irq(&ring->execlist_lock);
606
607 return 0;
608 }
609
610 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
611 {
612 struct intel_engine_cs *ring = req->ring;
613 uint32_t flush_domains;
614 int ret;
615
616 flush_domains = 0;
617 if (ring->gpu_caches_dirty)
618 flush_domains = I915_GEM_GPU_DOMAINS;
619
620 ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
621 if (ret)
622 return ret;
623
624 ring->gpu_caches_dirty = false;
625 return 0;
626 }
627
628 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
629 struct list_head *vmas)
630 {
631 const unsigned other_rings = ~intel_ring_flag(req->ring);
632 struct i915_vma *vma;
633 uint32_t flush_domains = 0;
634 bool flush_chipset = false;
635 int ret;
636
637 list_for_each_entry(vma, vmas, exec_list) {
638 struct drm_i915_gem_object *obj = vma->obj;
639
640 if (obj->active & other_rings) {
641 ret = i915_gem_object_sync(obj, req->ring, &req);
642 if (ret)
643 return ret;
644 }
645
646 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
647 flush_chipset |= i915_gem_clflush_object(obj, false);
648
649 flush_domains |= obj->base.write_domain;
650 }
651
652 if (flush_domains & I915_GEM_DOMAIN_GTT)
653 wmb();
654
655 /* Unconditionally invalidate gpu caches and ensure that we do flush
656 * any residual writes from the previous batch.
657 */
658 return logical_ring_invalidate_all_caches(req);
659 }
660
661 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
662 {
663 int ret;
664
665 request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
666
667 if (request->ctx != request->ring->default_context) {
668 ret = intel_lr_context_pin(request);
669 if (ret)
670 return ret;
671 }
672
673 return 0;
674 }
675
676 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
677 int bytes)
678 {
679 struct intel_ringbuffer *ringbuf = req->ringbuf;
680 struct intel_engine_cs *ring = req->ring;
681 struct drm_i915_gem_request *target;
682 unsigned space;
683 int ret;
684
685 if (intel_ring_space(ringbuf) >= bytes)
686 return 0;
687
688 /* The whole point of reserving space is to not wait! */
689 WARN_ON(ringbuf->reserved_in_use);
690
691 list_for_each_entry(target, &ring->request_list, list) {
692 /*
693 * The request queue is per-engine, so can contain requests
694 * from multiple ringbuffers. Here, we must ignore any that
695 * aren't from the ringbuffer we're considering.
696 */
697 if (target->ringbuf != ringbuf)
698 continue;
699
700 /* Would completion of this request free enough space? */
701 space = __intel_ring_space(target->postfix, ringbuf->tail,
702 ringbuf->size);
703 if (space >= bytes)
704 break;
705 }
706
707 if (WARN_ON(&target->list == &ring->request_list))
708 return -ENOSPC;
709
710 ret = i915_wait_request(target);
711 if (ret)
712 return ret;
713
714 ringbuf->space = space;
715 return 0;
716 }
717
718 /*
719 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
720 * @request: Request to advance the logical ringbuffer of.
721 *
722 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
723 * really happens during submission is that the context and current tail will be placed
724 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
725 * point, the tail *inside* the context is updated and the ELSP written to.
726 */
727 static void
728 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
729 {
730 struct intel_engine_cs *ring = request->ring;
731 struct drm_i915_private *dev_priv = request->i915;
732
733 intel_logical_ring_advance(request->ringbuf);
734
735 request->tail = request->ringbuf->tail;
736
737 if (intel_ring_stopped(ring))
738 return;
739
740 if (dev_priv->guc.execbuf_client)
741 i915_guc_submit(dev_priv->guc.execbuf_client, request);
742 else
743 execlists_context_queue(request);
744 }
745
746 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
747 {
748 uint32_t __iomem *virt;
749 int rem = ringbuf->size - ringbuf->tail;
750
751 virt = ringbuf->virtual_start + ringbuf->tail;
752 rem /= 4;
753 while (rem--)
754 iowrite32(MI_NOOP, virt++);
755
756 ringbuf->tail = 0;
757 intel_ring_update_space(ringbuf);
758 }
759
760 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
761 {
762 struct intel_ringbuffer *ringbuf = req->ringbuf;
763 int remain_usable = ringbuf->effective_size - ringbuf->tail;
764 int remain_actual = ringbuf->size - ringbuf->tail;
765 int ret, total_bytes, wait_bytes = 0;
766 bool need_wrap = false;
767
768 if (ringbuf->reserved_in_use)
769 total_bytes = bytes;
770 else
771 total_bytes = bytes + ringbuf->reserved_size;
772
773 if (unlikely(bytes > remain_usable)) {
774 /*
775 * Not enough space for the basic request. So need to flush
776 * out the remainder and then wait for base + reserved.
777 */
778 wait_bytes = remain_actual + total_bytes;
779 need_wrap = true;
780 } else {
781 if (unlikely(total_bytes > remain_usable)) {
782 /*
783 * The base request will fit but the reserved space
784 * falls off the end. So only need to to wait for the
785 * reserved size after flushing out the remainder.
786 */
787 wait_bytes = remain_actual + ringbuf->reserved_size;
788 need_wrap = true;
789 } else if (total_bytes > ringbuf->space) {
790 /* No wrapping required, just waiting. */
791 wait_bytes = total_bytes;
792 }
793 }
794
795 if (wait_bytes) {
796 ret = logical_ring_wait_for_space(req, wait_bytes);
797 if (unlikely(ret))
798 return ret;
799
800 if (need_wrap)
801 __wrap_ring_buffer(ringbuf);
802 }
803
804 return 0;
805 }
806
807 /**
808 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
809 *
810 * @req: The request to start some new work for
811 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
812 *
813 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
814 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
815 * and also preallocates a request (every workload submission is still mediated through
816 * requests, same as it did with legacy ringbuffer submission).
817 *
818 * Return: non-zero if the ringbuffer is not ready to be written to.
819 */
820 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
821 {
822 struct drm_i915_private *dev_priv;
823 int ret;
824
825 WARN_ON(req == NULL);
826 dev_priv = req->ring->dev->dev_private;
827
828 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
829 dev_priv->mm.interruptible);
830 if (ret)
831 return ret;
832
833 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
834 if (ret)
835 return ret;
836
837 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
838 return 0;
839 }
840
841 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
842 {
843 /*
844 * The first call merely notes the reserve request and is common for
845 * all back ends. The subsequent localised _begin() call actually
846 * ensures that the reservation is available. Without the begin, if
847 * the request creator immediately submitted the request without
848 * adding any commands to it then there might not actually be
849 * sufficient room for the submission commands.
850 */
851 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
852
853 return intel_logical_ring_begin(request, 0);
854 }
855
856 /**
857 * execlists_submission() - submit a batchbuffer for execution, Execlists style
858 * @dev: DRM device.
859 * @file: DRM file.
860 * @ring: Engine Command Streamer to submit to.
861 * @ctx: Context to employ for this submission.
862 * @args: execbuffer call arguments.
863 * @vmas: list of vmas.
864 * @batch_obj: the batchbuffer to submit.
865 * @exec_start: batchbuffer start virtual address pointer.
866 * @dispatch_flags: translated execbuffer call flags.
867 *
868 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
869 * away the submission details of the execbuffer ioctl call.
870 *
871 * Return: non-zero if the submission fails.
872 */
873 int intel_execlists_submission(struct i915_execbuffer_params *params,
874 struct drm_i915_gem_execbuffer2 *args,
875 struct list_head *vmas)
876 {
877 struct drm_device *dev = params->dev;
878 struct intel_engine_cs *ring = params->ring;
879 struct drm_i915_private *dev_priv = dev->dev_private;
880 struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
881 u64 exec_start;
882 int instp_mode;
883 u32 instp_mask;
884 int ret;
885
886 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
887 instp_mask = I915_EXEC_CONSTANTS_MASK;
888 switch (instp_mode) {
889 case I915_EXEC_CONSTANTS_REL_GENERAL:
890 case I915_EXEC_CONSTANTS_ABSOLUTE:
891 case I915_EXEC_CONSTANTS_REL_SURFACE:
892 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
893 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
894 return -EINVAL;
895 }
896
897 if (instp_mode != dev_priv->relative_constants_mode) {
898 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
899 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
900 return -EINVAL;
901 }
902
903 /* The HW changed the meaning on this bit on gen6 */
904 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
905 }
906 break;
907 default:
908 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
909 return -EINVAL;
910 }
911
912 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
913 DRM_DEBUG("sol reset is gen7 only\n");
914 return -EINVAL;
915 }
916
917 ret = execlists_move_to_gpu(params->request, vmas);
918 if (ret)
919 return ret;
920
921 if (ring == &dev_priv->ring[RCS] &&
922 instp_mode != dev_priv->relative_constants_mode) {
923 ret = intel_logical_ring_begin(params->request, 4);
924 if (ret)
925 return ret;
926
927 intel_logical_ring_emit(ringbuf, MI_NOOP);
928 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
929 intel_logical_ring_emit_reg(ringbuf, INSTPM);
930 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
931 intel_logical_ring_advance(ringbuf);
932
933 dev_priv->relative_constants_mode = instp_mode;
934 }
935
936 exec_start = params->batch_obj_vm_offset +
937 args->batch_start_offset;
938
939 ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
940 if (ret)
941 return ret;
942
943 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
944
945 i915_gem_execbuffer_move_to_active(vmas, params->request);
946 i915_gem_execbuffer_retire_commands(params);
947
948 return 0;
949 }
950
951 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
952 {
953 struct drm_i915_gem_request *req, *tmp;
954 struct list_head retired_list;
955
956 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
957 if (list_empty(&ring->execlist_retired_req_list))
958 return;
959
960 INIT_LIST_HEAD(&retired_list);
961 spin_lock_irq(&ring->execlist_lock);
962 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
963 spin_unlock_irq(&ring->execlist_lock);
964
965 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
966 struct intel_context *ctx = req->ctx;
967 struct drm_i915_gem_object *ctx_obj =
968 ctx->engine[ring->id].state;
969
970 if (ctx_obj && (ctx != ring->default_context))
971 intel_lr_context_unpin(req);
972 list_del(&req->execlist_link);
973 i915_gem_request_unreference(req);
974 }
975 }
976
977 void intel_logical_ring_stop(struct intel_engine_cs *ring)
978 {
979 struct drm_i915_private *dev_priv = ring->dev->dev_private;
980 int ret;
981
982 if (!intel_ring_initialized(ring))
983 return;
984
985 ret = intel_ring_idle(ring);
986 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
987 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
988 ring->name, ret);
989
990 /* TODO: Is this correct with Execlists enabled? */
991 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
992 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
993 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
994 return;
995 }
996 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
997 }
998
999 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1000 {
1001 struct intel_engine_cs *ring = req->ring;
1002 int ret;
1003
1004 if (!ring->gpu_caches_dirty)
1005 return 0;
1006
1007 ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1008 if (ret)
1009 return ret;
1010
1011 ring->gpu_caches_dirty = false;
1012 return 0;
1013 }
1014
1015 static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
1016 struct drm_i915_gem_object *ctx_obj,
1017 struct intel_ringbuffer *ringbuf)
1018 {
1019 struct drm_device *dev = ring->dev;
1020 struct drm_i915_private *dev_priv = dev->dev_private;
1021 int ret = 0;
1022
1023 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1024 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1025 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1026 if (ret)
1027 return ret;
1028
1029 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1030 if (ret)
1031 goto unpin_ctx_obj;
1032
1033 ctx_obj->dirty = true;
1034
1035 /* Invalidate GuC TLB. */
1036 if (i915.enable_guc_submission)
1037 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1038
1039 return ret;
1040
1041 unpin_ctx_obj:
1042 i915_gem_object_ggtt_unpin(ctx_obj);
1043
1044 return ret;
1045 }
1046
1047 static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1048 {
1049 int ret = 0;
1050 struct intel_engine_cs *ring = rq->ring;
1051 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1052 struct intel_ringbuffer *ringbuf = rq->ringbuf;
1053
1054 if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1055 ret = intel_lr_context_do_pin(ring, ctx_obj, ringbuf);
1056 if (ret)
1057 goto reset_pin_count;
1058 }
1059 return ret;
1060
1061 reset_pin_count:
1062 rq->ctx->engine[ring->id].pin_count = 0;
1063 return ret;
1064 }
1065
1066 void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1067 {
1068 struct intel_engine_cs *ring = rq->ring;
1069 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1070 struct intel_ringbuffer *ringbuf = rq->ringbuf;
1071
1072 if (ctx_obj) {
1073 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1074 if (--rq->ctx->engine[ring->id].pin_count == 0) {
1075 intel_unpin_ringbuffer_obj(ringbuf);
1076 i915_gem_object_ggtt_unpin(ctx_obj);
1077 }
1078 }
1079 }
1080
1081 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1082 {
1083 int ret, i;
1084 struct intel_engine_cs *ring = req->ring;
1085 struct intel_ringbuffer *ringbuf = req->ringbuf;
1086 struct drm_device *dev = ring->dev;
1087 struct drm_i915_private *dev_priv = dev->dev_private;
1088 struct i915_workarounds *w = &dev_priv->workarounds;
1089
1090 if (WARN_ON_ONCE(w->count == 0))
1091 return 0;
1092
1093 ring->gpu_caches_dirty = true;
1094 ret = logical_ring_flush_all_caches(req);
1095 if (ret)
1096 return ret;
1097
1098 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1099 if (ret)
1100 return ret;
1101
1102 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1103 for (i = 0; i < w->count; i++) {
1104 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1105 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1106 }
1107 intel_logical_ring_emit(ringbuf, MI_NOOP);
1108
1109 intel_logical_ring_advance(ringbuf);
1110
1111 ring->gpu_caches_dirty = true;
1112 ret = logical_ring_flush_all_caches(req);
1113 if (ret)
1114 return ret;
1115
1116 return 0;
1117 }
1118
1119 #define wa_ctx_emit(batch, index, cmd) \
1120 do { \
1121 int __index = (index)++; \
1122 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1123 return -ENOSPC; \
1124 } \
1125 batch[__index] = (cmd); \
1126 } while (0)
1127
1128 #define wa_ctx_emit_reg(batch, index, reg) \
1129 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1130
1131 /*
1132 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1133 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1134 * but there is a slight complication as this is applied in WA batch where the
1135 * values are only initialized once so we cannot take register value at the
1136 * beginning and reuse it further; hence we save its value to memory, upload a
1137 * constant value with bit21 set and then we restore it back with the saved value.
1138 * To simplify the WA, a constant value is formed by using the default value
1139 * of this register. This shouldn't be a problem because we are only modifying
1140 * it for a short period and this batch in non-premptible. We can ofcourse
1141 * use additional instructions that read the actual value of the register
1142 * at that time and set our bit of interest but it makes the WA complicated.
1143 *
1144 * This WA is also required for Gen9 so extracting as a function avoids
1145 * code duplication.
1146 */
1147 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1148 uint32_t *const batch,
1149 uint32_t index)
1150 {
1151 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1152
1153 /*
1154 * WaDisableLSQCROPERFforOCL:skl
1155 * This WA is implemented in skl_init_clock_gating() but since
1156 * this batch updates GEN8_L3SQCREG4 with default value we need to
1157 * set this bit here to retain the WA during flush.
1158 */
1159 if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
1160 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1161
1162 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1163 MI_SRM_LRM_GLOBAL_GTT));
1164 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1165 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1166 wa_ctx_emit(batch, index, 0);
1167
1168 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1169 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1170 wa_ctx_emit(batch, index, l3sqc4_flush);
1171
1172 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1173 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1174 PIPE_CONTROL_DC_FLUSH_ENABLE));
1175 wa_ctx_emit(batch, index, 0);
1176 wa_ctx_emit(batch, index, 0);
1177 wa_ctx_emit(batch, index, 0);
1178 wa_ctx_emit(batch, index, 0);
1179
1180 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1181 MI_SRM_LRM_GLOBAL_GTT));
1182 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1183 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1184 wa_ctx_emit(batch, index, 0);
1185
1186 return index;
1187 }
1188
1189 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1190 uint32_t offset,
1191 uint32_t start_alignment)
1192 {
1193 return wa_ctx->offset = ALIGN(offset, start_alignment);
1194 }
1195
1196 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1197 uint32_t offset,
1198 uint32_t size_alignment)
1199 {
1200 wa_ctx->size = offset - wa_ctx->offset;
1201
1202 WARN(wa_ctx->size % size_alignment,
1203 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1204 wa_ctx->size, size_alignment);
1205 return 0;
1206 }
1207
1208 /**
1209 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1210 *
1211 * @ring: only applicable for RCS
1212 * @wa_ctx: structure representing wa_ctx
1213 * offset: specifies start of the batch, should be cache-aligned. This is updated
1214 * with the offset value received as input.
1215 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1216 * @batch: page in which WA are loaded
1217 * @offset: This field specifies the start of the batch, it should be
1218 * cache-aligned otherwise it is adjusted accordingly.
1219 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1220 * initialized at the beginning and shared across all contexts but this field
1221 * helps us to have multiple batches at different offsets and select them based
1222 * on a criteria. At the moment this batch always start at the beginning of the page
1223 * and at this point we don't have multiple wa_ctx batch buffers.
1224 *
1225 * The number of WA applied are not known at the beginning; we use this field
1226 * to return the no of DWORDS written.
1227 *
1228 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1229 * so it adds NOOPs as padding to make it cacheline aligned.
1230 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1231 * makes a complete batch buffer.
1232 *
1233 * Return: non-zero if we exceed the PAGE_SIZE limit.
1234 */
1235
1236 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1237 struct i915_wa_ctx_bb *wa_ctx,
1238 uint32_t *const batch,
1239 uint32_t *offset)
1240 {
1241 uint32_t scratch_addr;
1242 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1243
1244 /* WaDisableCtxRestoreArbitration:bdw,chv */
1245 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1246
1247 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1248 if (IS_BROADWELL(ring->dev)) {
1249 int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1250 if (rc < 0)
1251 return rc;
1252 index = rc;
1253 }
1254
1255 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1256 /* Actual scratch location is at 128 bytes offset */
1257 scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1258
1259 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1260 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1261 PIPE_CONTROL_GLOBAL_GTT_IVB |
1262 PIPE_CONTROL_CS_STALL |
1263 PIPE_CONTROL_QW_WRITE));
1264 wa_ctx_emit(batch, index, scratch_addr);
1265 wa_ctx_emit(batch, index, 0);
1266 wa_ctx_emit(batch, index, 0);
1267 wa_ctx_emit(batch, index, 0);
1268
1269 /* Pad to end of cacheline */
1270 while (index % CACHELINE_DWORDS)
1271 wa_ctx_emit(batch, index, MI_NOOP);
1272
1273 /*
1274 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1275 * execution depends on the length specified in terms of cache lines
1276 * in the register CTX_RCS_INDIRECT_CTX
1277 */
1278
1279 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1280 }
1281
1282 /**
1283 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1284 *
1285 * @ring: only applicable for RCS
1286 * @wa_ctx: structure representing wa_ctx
1287 * offset: specifies start of the batch, should be cache-aligned.
1288 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1289 * @batch: page in which WA are loaded
1290 * @offset: This field specifies the start of this batch.
1291 * This batch is started immediately after indirect_ctx batch. Since we ensure
1292 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1293 *
1294 * The number of DWORDS written are returned using this field.
1295 *
1296 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1297 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1298 */
1299 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1300 struct i915_wa_ctx_bb *wa_ctx,
1301 uint32_t *const batch,
1302 uint32_t *offset)
1303 {
1304 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1305
1306 /* WaDisableCtxRestoreArbitration:bdw,chv */
1307 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1308
1309 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1310
1311 return wa_ctx_end(wa_ctx, *offset = index, 1);
1312 }
1313
1314 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1315 struct i915_wa_ctx_bb *wa_ctx,
1316 uint32_t *const batch,
1317 uint32_t *offset)
1318 {
1319 int ret;
1320 struct drm_device *dev = ring->dev;
1321 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1322
1323 /* WaDisableCtxRestoreArbitration:skl,bxt */
1324 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1325 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1326 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1327
1328 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1329 ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1330 if (ret < 0)
1331 return ret;
1332 index = ret;
1333
1334 /* Pad to end of cacheline */
1335 while (index % CACHELINE_DWORDS)
1336 wa_ctx_emit(batch, index, MI_NOOP);
1337
1338 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1339 }
1340
1341 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1342 struct i915_wa_ctx_bb *wa_ctx,
1343 uint32_t *const batch,
1344 uint32_t *offset)
1345 {
1346 struct drm_device *dev = ring->dev;
1347 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1348
1349 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1350 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1351 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1352 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1353 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1354 wa_ctx_emit(batch, index,
1355 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1356 wa_ctx_emit(batch, index, MI_NOOP);
1357 }
1358
1359 /* WaDisableCtxRestoreArbitration:skl,bxt */
1360 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1361 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1362 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1363
1364 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1365
1366 return wa_ctx_end(wa_ctx, *offset = index, 1);
1367 }
1368
1369 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1370 {
1371 int ret;
1372
1373 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1374 if (!ring->wa_ctx.obj) {
1375 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1376 return -ENOMEM;
1377 }
1378
1379 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1380 if (ret) {
1381 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1382 ret);
1383 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1384 return ret;
1385 }
1386
1387 return 0;
1388 }
1389
1390 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1391 {
1392 if (ring->wa_ctx.obj) {
1393 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1394 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1395 ring->wa_ctx.obj = NULL;
1396 }
1397 }
1398
1399 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1400 {
1401 int ret;
1402 uint32_t *batch;
1403 uint32_t offset;
1404 struct page *page;
1405 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1406
1407 WARN_ON(ring->id != RCS);
1408
1409 /* update this when WA for higher Gen are added */
1410 if (INTEL_INFO(ring->dev)->gen > 9) {
1411 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1412 INTEL_INFO(ring->dev)->gen);
1413 return 0;
1414 }
1415
1416 /* some WA perform writes to scratch page, ensure it is valid */
1417 if (ring->scratch.obj == NULL) {
1418 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1419 return -EINVAL;
1420 }
1421
1422 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1423 if (ret) {
1424 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1425 return ret;
1426 }
1427
1428 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1429 batch = kmap_atomic(page);
1430 offset = 0;
1431
1432 if (INTEL_INFO(ring->dev)->gen == 8) {
1433 ret = gen8_init_indirectctx_bb(ring,
1434 &wa_ctx->indirect_ctx,
1435 batch,
1436 &offset);
1437 if (ret)
1438 goto out;
1439
1440 ret = gen8_init_perctx_bb(ring,
1441 &wa_ctx->per_ctx,
1442 batch,
1443 &offset);
1444 if (ret)
1445 goto out;
1446 } else if (INTEL_INFO(ring->dev)->gen == 9) {
1447 ret = gen9_init_indirectctx_bb(ring,
1448 &wa_ctx->indirect_ctx,
1449 batch,
1450 &offset);
1451 if (ret)
1452 goto out;
1453
1454 ret = gen9_init_perctx_bb(ring,
1455 &wa_ctx->per_ctx,
1456 batch,
1457 &offset);
1458 if (ret)
1459 goto out;
1460 }
1461
1462 out:
1463 kunmap_atomic(batch);
1464 if (ret)
1465 lrc_destroy_wa_ctx_obj(ring);
1466
1467 return ret;
1468 }
1469
1470 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1471 {
1472 struct drm_device *dev = ring->dev;
1473 struct drm_i915_private *dev_priv = dev->dev_private;
1474 u8 next_context_status_buffer_hw;
1475
1476 lrc_setup_hardware_status_page(ring,
1477 ring->default_context->engine[ring->id].state);
1478
1479 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1480 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1481
1482 I915_WRITE(RING_MODE_GEN7(ring),
1483 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1484 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1485 POSTING_READ(RING_MODE_GEN7(ring));
1486
1487 /*
1488 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1489 * zero, we need to read the write pointer from hardware and use its
1490 * value because "this register is power context save restored".
1491 * Effectively, these states have been observed:
1492 *
1493 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1494 * BDW | CSB regs not reset | CSB regs reset |
1495 * CHT | CSB regs not reset | CSB regs not reset |
1496 */
1497 next_context_status_buffer_hw = (I915_READ(RING_CONTEXT_STATUS_PTR(ring))
1498 & GEN8_CSB_PTR_MASK);
1499
1500 /*
1501 * When the CSB registers are reset (also after power-up / gpu reset),
1502 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1503 * this special case, so the first element read is CSB[0].
1504 */
1505 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1506 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1507
1508 ring->next_context_status_buffer = next_context_status_buffer_hw;
1509 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1510
1511 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1512
1513 return 0;
1514 }
1515
1516 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1517 {
1518 struct drm_device *dev = ring->dev;
1519 struct drm_i915_private *dev_priv = dev->dev_private;
1520 int ret;
1521
1522 ret = gen8_init_common_ring(ring);
1523 if (ret)
1524 return ret;
1525
1526 /* We need to disable the AsyncFlip performance optimisations in order
1527 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1528 * programmed to '1' on all products.
1529 *
1530 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1531 */
1532 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1533
1534 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1535
1536 return init_workarounds_ring(ring);
1537 }
1538
1539 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1540 {
1541 int ret;
1542
1543 ret = gen8_init_common_ring(ring);
1544 if (ret)
1545 return ret;
1546
1547 return init_workarounds_ring(ring);
1548 }
1549
1550 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1551 {
1552 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1553 struct intel_engine_cs *ring = req->ring;
1554 struct intel_ringbuffer *ringbuf = req->ringbuf;
1555 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1556 int i, ret;
1557
1558 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1559 if (ret)
1560 return ret;
1561
1562 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1563 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1564 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1565
1566 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1567 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1568 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1569 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1570 }
1571
1572 intel_logical_ring_emit(ringbuf, MI_NOOP);
1573 intel_logical_ring_advance(ringbuf);
1574
1575 return 0;
1576 }
1577
1578 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1579 u64 offset, unsigned dispatch_flags)
1580 {
1581 struct intel_ringbuffer *ringbuf = req->ringbuf;
1582 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1583 int ret;
1584
1585 /* Don't rely in hw updating PDPs, specially in lite-restore.
1586 * Ideally, we should set Force PD Restore in ctx descriptor,
1587 * but we can't. Force Restore would be a second option, but
1588 * it is unsafe in case of lite-restore (because the ctx is
1589 * not idle). PML4 is allocated during ppgtt init so this is
1590 * not needed in 48-bit.*/
1591 if (req->ctx->ppgtt &&
1592 (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1593 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1594 !intel_vgpu_active(req->i915->dev)) {
1595 ret = intel_logical_ring_emit_pdps(req);
1596 if (ret)
1597 return ret;
1598 }
1599
1600 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1601 }
1602
1603 ret = intel_logical_ring_begin(req, 4);
1604 if (ret)
1605 return ret;
1606
1607 /* FIXME(BDW): Address space and security selectors. */
1608 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1609 (ppgtt<<8) |
1610 (dispatch_flags & I915_DISPATCH_RS ?
1611 MI_BATCH_RESOURCE_STREAMER : 0));
1612 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1613 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1614 intel_logical_ring_emit(ringbuf, MI_NOOP);
1615 intel_logical_ring_advance(ringbuf);
1616
1617 return 0;
1618 }
1619
1620 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1621 {
1622 struct drm_device *dev = ring->dev;
1623 struct drm_i915_private *dev_priv = dev->dev_private;
1624 unsigned long flags;
1625
1626 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1627 return false;
1628
1629 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1630 if (ring->irq_refcount++ == 0) {
1631 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1632 POSTING_READ(RING_IMR(ring->mmio_base));
1633 }
1634 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1635
1636 return true;
1637 }
1638
1639 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1640 {
1641 struct drm_device *dev = ring->dev;
1642 struct drm_i915_private *dev_priv = dev->dev_private;
1643 unsigned long flags;
1644
1645 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1646 if (--ring->irq_refcount == 0) {
1647 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1648 POSTING_READ(RING_IMR(ring->mmio_base));
1649 }
1650 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1651 }
1652
1653 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1654 u32 invalidate_domains,
1655 u32 unused)
1656 {
1657 struct intel_ringbuffer *ringbuf = request->ringbuf;
1658 struct intel_engine_cs *ring = ringbuf->ring;
1659 struct drm_device *dev = ring->dev;
1660 struct drm_i915_private *dev_priv = dev->dev_private;
1661 uint32_t cmd;
1662 int ret;
1663
1664 ret = intel_logical_ring_begin(request, 4);
1665 if (ret)
1666 return ret;
1667
1668 cmd = MI_FLUSH_DW + 1;
1669
1670 /* We always require a command barrier so that subsequent
1671 * commands, such as breadcrumb interrupts, are strictly ordered
1672 * wrt the contents of the write cache being flushed to memory
1673 * (and thus being coherent from the CPU).
1674 */
1675 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1676
1677 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1678 cmd |= MI_INVALIDATE_TLB;
1679 if (ring == &dev_priv->ring[VCS])
1680 cmd |= MI_INVALIDATE_BSD;
1681 }
1682
1683 intel_logical_ring_emit(ringbuf, cmd);
1684 intel_logical_ring_emit(ringbuf,
1685 I915_GEM_HWS_SCRATCH_ADDR |
1686 MI_FLUSH_DW_USE_GTT);
1687 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1688 intel_logical_ring_emit(ringbuf, 0); /* value */
1689 intel_logical_ring_advance(ringbuf);
1690
1691 return 0;
1692 }
1693
1694 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1695 u32 invalidate_domains,
1696 u32 flush_domains)
1697 {
1698 struct intel_ringbuffer *ringbuf = request->ringbuf;
1699 struct intel_engine_cs *ring = ringbuf->ring;
1700 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1701 bool vf_flush_wa;
1702 u32 flags = 0;
1703 int ret;
1704
1705 flags |= PIPE_CONTROL_CS_STALL;
1706
1707 if (flush_domains) {
1708 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1709 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1710 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1711 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1712 }
1713
1714 if (invalidate_domains) {
1715 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1716 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1717 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1718 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1719 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1720 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1721 flags |= PIPE_CONTROL_QW_WRITE;
1722 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1723 }
1724
1725 /*
1726 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1727 * control.
1728 */
1729 vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1730 flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1731
1732 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1733 if (ret)
1734 return ret;
1735
1736 if (vf_flush_wa) {
1737 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1738 intel_logical_ring_emit(ringbuf, 0);
1739 intel_logical_ring_emit(ringbuf, 0);
1740 intel_logical_ring_emit(ringbuf, 0);
1741 intel_logical_ring_emit(ringbuf, 0);
1742 intel_logical_ring_emit(ringbuf, 0);
1743 }
1744
1745 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1746 intel_logical_ring_emit(ringbuf, flags);
1747 intel_logical_ring_emit(ringbuf, scratch_addr);
1748 intel_logical_ring_emit(ringbuf, 0);
1749 intel_logical_ring_emit(ringbuf, 0);
1750 intel_logical_ring_emit(ringbuf, 0);
1751 intel_logical_ring_advance(ringbuf);
1752
1753 return 0;
1754 }
1755
1756 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1757 {
1758 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1759 }
1760
1761 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1762 {
1763 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1764 }
1765
1766 static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1767 {
1768
1769 /*
1770 * On BXT A steppings there is a HW coherency issue whereby the
1771 * MI_STORE_DATA_IMM storing the completed request's seqno
1772 * occasionally doesn't invalidate the CPU cache. Work around this by
1773 * clflushing the corresponding cacheline whenever the caller wants
1774 * the coherency to be guaranteed. Note that this cacheline is known
1775 * to be clean at this point, since we only write it in
1776 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1777 * this clflush in practice becomes an invalidate operation.
1778 */
1779
1780 if (!lazy_coherency)
1781 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1782
1783 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1784 }
1785
1786 static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1787 {
1788 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1789
1790 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1791 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1792 }
1793
1794 static int gen8_emit_request(struct drm_i915_gem_request *request)
1795 {
1796 struct intel_ringbuffer *ringbuf = request->ringbuf;
1797 struct intel_engine_cs *ring = ringbuf->ring;
1798 u32 cmd;
1799 int ret;
1800
1801 /*
1802 * Reserve space for 2 NOOPs at the end of each request to be
1803 * used as a workaround for not being allowed to do lite
1804 * restore with HEAD==TAIL (WaIdleLiteRestore).
1805 */
1806 ret = intel_logical_ring_begin(request, 8);
1807 if (ret)
1808 return ret;
1809
1810 cmd = MI_STORE_DWORD_IMM_GEN4;
1811 cmd |= MI_GLOBAL_GTT;
1812
1813 intel_logical_ring_emit(ringbuf, cmd);
1814 intel_logical_ring_emit(ringbuf,
1815 (ring->status_page.gfx_addr +
1816 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1817 intel_logical_ring_emit(ringbuf, 0);
1818 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1819 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1820 intel_logical_ring_emit(ringbuf, MI_NOOP);
1821 intel_logical_ring_advance_and_submit(request);
1822
1823 /*
1824 * Here we add two extra NOOPs as padding to avoid
1825 * lite restore of a context with HEAD==TAIL.
1826 */
1827 intel_logical_ring_emit(ringbuf, MI_NOOP);
1828 intel_logical_ring_emit(ringbuf, MI_NOOP);
1829 intel_logical_ring_advance(ringbuf);
1830
1831 return 0;
1832 }
1833
1834 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1835 {
1836 struct render_state so;
1837 int ret;
1838
1839 ret = i915_gem_render_state_prepare(req->ring, &so);
1840 if (ret)
1841 return ret;
1842
1843 if (so.rodata == NULL)
1844 return 0;
1845
1846 ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1847 I915_DISPATCH_SECURE);
1848 if (ret)
1849 goto out;
1850
1851 ret = req->ring->emit_bb_start(req,
1852 (so.ggtt_offset + so.aux_batch_offset),
1853 I915_DISPATCH_SECURE);
1854 if (ret)
1855 goto out;
1856
1857 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1858
1859 out:
1860 i915_gem_render_state_fini(&so);
1861 return ret;
1862 }
1863
1864 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1865 {
1866 int ret;
1867
1868 ret = intel_logical_ring_workarounds_emit(req);
1869 if (ret)
1870 return ret;
1871
1872 ret = intel_rcs_context_init_mocs(req);
1873 /*
1874 * Failing to program the MOCS is non-fatal.The system will not
1875 * run at peak performance. So generate an error and carry on.
1876 */
1877 if (ret)
1878 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1879
1880 return intel_lr_context_render_state_init(req);
1881 }
1882
1883 /**
1884 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1885 *
1886 * @ring: Engine Command Streamer.
1887 *
1888 */
1889 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1890 {
1891 struct drm_i915_private *dev_priv;
1892
1893 if (!intel_ring_initialized(ring))
1894 return;
1895
1896 dev_priv = ring->dev->dev_private;
1897
1898 if (ring->buffer) {
1899 intel_logical_ring_stop(ring);
1900 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1901 }
1902
1903 if (ring->cleanup)
1904 ring->cleanup(ring);
1905
1906 i915_cmd_parser_fini_ring(ring);
1907 i915_gem_batch_pool_fini(&ring->batch_pool);
1908
1909 if (ring->status_page.obj) {
1910 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1911 ring->status_page.obj = NULL;
1912 }
1913
1914 lrc_destroy_wa_ctx_obj(ring);
1915 ring->dev = NULL;
1916 }
1917
1918 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1919 {
1920 int ret;
1921
1922 /* Intentionally left blank. */
1923 ring->buffer = NULL;
1924
1925 ring->dev = dev;
1926 INIT_LIST_HEAD(&ring->active_list);
1927 INIT_LIST_HEAD(&ring->request_list);
1928 i915_gem_batch_pool_init(dev, &ring->batch_pool);
1929 init_waitqueue_head(&ring->irq_queue);
1930
1931 INIT_LIST_HEAD(&ring->buffers);
1932 INIT_LIST_HEAD(&ring->execlist_queue);
1933 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1934 spin_lock_init(&ring->execlist_lock);
1935
1936 ret = i915_cmd_parser_init_ring(ring);
1937 if (ret)
1938 goto error;
1939
1940 ret = intel_lr_context_deferred_alloc(ring->default_context, ring);
1941 if (ret)
1942 goto error;
1943
1944 /* As this is the default context, always pin it */
1945 ret = intel_lr_context_do_pin(
1946 ring,
1947 ring->default_context->engine[ring->id].state,
1948 ring->default_context->engine[ring->id].ringbuf);
1949 if (ret) {
1950 DRM_ERROR(
1951 "Failed to pin and map ringbuffer %s: %d\n",
1952 ring->name, ret);
1953 goto error;
1954 }
1955
1956 return 0;
1957
1958 error:
1959 intel_logical_ring_cleanup(ring);
1960 return ret;
1961 }
1962
1963 static int logical_render_ring_init(struct drm_device *dev)
1964 {
1965 struct drm_i915_private *dev_priv = dev->dev_private;
1966 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1967 int ret;
1968
1969 ring->name = "render ring";
1970 ring->id = RCS;
1971 ring->mmio_base = RENDER_RING_BASE;
1972 ring->irq_enable_mask =
1973 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1974 ring->irq_keep_mask =
1975 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1976 if (HAS_L3_DPF(dev))
1977 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1978
1979 if (INTEL_INFO(dev)->gen >= 9)
1980 ring->init_hw = gen9_init_render_ring;
1981 else
1982 ring->init_hw = gen8_init_render_ring;
1983 ring->init_context = gen8_init_rcs_context;
1984 ring->cleanup = intel_fini_pipe_control;
1985 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1986 ring->get_seqno = bxt_a_get_seqno;
1987 ring->set_seqno = bxt_a_set_seqno;
1988 } else {
1989 ring->get_seqno = gen8_get_seqno;
1990 ring->set_seqno = gen8_set_seqno;
1991 }
1992 ring->emit_request = gen8_emit_request;
1993 ring->emit_flush = gen8_emit_flush_render;
1994 ring->irq_get = gen8_logical_ring_get_irq;
1995 ring->irq_put = gen8_logical_ring_put_irq;
1996 ring->emit_bb_start = gen8_emit_bb_start;
1997
1998 ring->dev = dev;
1999
2000 ret = intel_init_pipe_control(ring);
2001 if (ret)
2002 return ret;
2003
2004 ret = intel_init_workaround_bb(ring);
2005 if (ret) {
2006 /*
2007 * We continue even if we fail to initialize WA batch
2008 * because we only expect rare glitches but nothing
2009 * critical to prevent us from using GPU
2010 */
2011 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2012 ret);
2013 }
2014
2015 ret = logical_ring_init(dev, ring);
2016 if (ret) {
2017 lrc_destroy_wa_ctx_obj(ring);
2018 }
2019
2020 return ret;
2021 }
2022
2023 static int logical_bsd_ring_init(struct drm_device *dev)
2024 {
2025 struct drm_i915_private *dev_priv = dev->dev_private;
2026 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2027
2028 ring->name = "bsd ring";
2029 ring->id = VCS;
2030 ring->mmio_base = GEN6_BSD_RING_BASE;
2031 ring->irq_enable_mask =
2032 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2033 ring->irq_keep_mask =
2034 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2035
2036 ring->init_hw = gen8_init_common_ring;
2037 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2038 ring->get_seqno = bxt_a_get_seqno;
2039 ring->set_seqno = bxt_a_set_seqno;
2040 } else {
2041 ring->get_seqno = gen8_get_seqno;
2042 ring->set_seqno = gen8_set_seqno;
2043 }
2044 ring->emit_request = gen8_emit_request;
2045 ring->emit_flush = gen8_emit_flush;
2046 ring->irq_get = gen8_logical_ring_get_irq;
2047 ring->irq_put = gen8_logical_ring_put_irq;
2048 ring->emit_bb_start = gen8_emit_bb_start;
2049
2050 return logical_ring_init(dev, ring);
2051 }
2052
2053 static int logical_bsd2_ring_init(struct drm_device *dev)
2054 {
2055 struct drm_i915_private *dev_priv = dev->dev_private;
2056 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2057
2058 ring->name = "bds2 ring";
2059 ring->id = VCS2;
2060 ring->mmio_base = GEN8_BSD2_RING_BASE;
2061 ring->irq_enable_mask =
2062 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2063 ring->irq_keep_mask =
2064 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2065
2066 ring->init_hw = gen8_init_common_ring;
2067 ring->get_seqno = gen8_get_seqno;
2068 ring->set_seqno = gen8_set_seqno;
2069 ring->emit_request = gen8_emit_request;
2070 ring->emit_flush = gen8_emit_flush;
2071 ring->irq_get = gen8_logical_ring_get_irq;
2072 ring->irq_put = gen8_logical_ring_put_irq;
2073 ring->emit_bb_start = gen8_emit_bb_start;
2074
2075 return logical_ring_init(dev, ring);
2076 }
2077
2078 static int logical_blt_ring_init(struct drm_device *dev)
2079 {
2080 struct drm_i915_private *dev_priv = dev->dev_private;
2081 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2082
2083 ring->name = "blitter ring";
2084 ring->id = BCS;
2085 ring->mmio_base = BLT_RING_BASE;
2086 ring->irq_enable_mask =
2087 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2088 ring->irq_keep_mask =
2089 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2090
2091 ring->init_hw = gen8_init_common_ring;
2092 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2093 ring->get_seqno = bxt_a_get_seqno;
2094 ring->set_seqno = bxt_a_set_seqno;
2095 } else {
2096 ring->get_seqno = gen8_get_seqno;
2097 ring->set_seqno = gen8_set_seqno;
2098 }
2099 ring->emit_request = gen8_emit_request;
2100 ring->emit_flush = gen8_emit_flush;
2101 ring->irq_get = gen8_logical_ring_get_irq;
2102 ring->irq_put = gen8_logical_ring_put_irq;
2103 ring->emit_bb_start = gen8_emit_bb_start;
2104
2105 return logical_ring_init(dev, ring);
2106 }
2107
2108 static int logical_vebox_ring_init(struct drm_device *dev)
2109 {
2110 struct drm_i915_private *dev_priv = dev->dev_private;
2111 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2112
2113 ring->name = "video enhancement ring";
2114 ring->id = VECS;
2115 ring->mmio_base = VEBOX_RING_BASE;
2116 ring->irq_enable_mask =
2117 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2118 ring->irq_keep_mask =
2119 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2120
2121 ring->init_hw = gen8_init_common_ring;
2122 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2123 ring->get_seqno = bxt_a_get_seqno;
2124 ring->set_seqno = bxt_a_set_seqno;
2125 } else {
2126 ring->get_seqno = gen8_get_seqno;
2127 ring->set_seqno = gen8_set_seqno;
2128 }
2129 ring->emit_request = gen8_emit_request;
2130 ring->emit_flush = gen8_emit_flush;
2131 ring->irq_get = gen8_logical_ring_get_irq;
2132 ring->irq_put = gen8_logical_ring_put_irq;
2133 ring->emit_bb_start = gen8_emit_bb_start;
2134
2135 return logical_ring_init(dev, ring);
2136 }
2137
2138 /**
2139 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2140 * @dev: DRM device.
2141 *
2142 * This function inits the engines for an Execlists submission style (the equivalent in the
2143 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2144 * those engines that are present in the hardware.
2145 *
2146 * Return: non-zero if the initialization failed.
2147 */
2148 int intel_logical_rings_init(struct drm_device *dev)
2149 {
2150 struct drm_i915_private *dev_priv = dev->dev_private;
2151 int ret;
2152
2153 ret = logical_render_ring_init(dev);
2154 if (ret)
2155 return ret;
2156
2157 if (HAS_BSD(dev)) {
2158 ret = logical_bsd_ring_init(dev);
2159 if (ret)
2160 goto cleanup_render_ring;
2161 }
2162
2163 if (HAS_BLT(dev)) {
2164 ret = logical_blt_ring_init(dev);
2165 if (ret)
2166 goto cleanup_bsd_ring;
2167 }
2168
2169 if (HAS_VEBOX(dev)) {
2170 ret = logical_vebox_ring_init(dev);
2171 if (ret)
2172 goto cleanup_blt_ring;
2173 }
2174
2175 if (HAS_BSD2(dev)) {
2176 ret = logical_bsd2_ring_init(dev);
2177 if (ret)
2178 goto cleanup_vebox_ring;
2179 }
2180
2181 return 0;
2182
2183 cleanup_vebox_ring:
2184 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2185 cleanup_blt_ring:
2186 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2187 cleanup_bsd_ring:
2188 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2189 cleanup_render_ring:
2190 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2191
2192 return ret;
2193 }
2194
2195 static u32
2196 make_rpcs(struct drm_device *dev)
2197 {
2198 u32 rpcs = 0;
2199
2200 /*
2201 * No explicit RPCS request is needed to ensure full
2202 * slice/subslice/EU enablement prior to Gen9.
2203 */
2204 if (INTEL_INFO(dev)->gen < 9)
2205 return 0;
2206
2207 /*
2208 * Starting in Gen9, render power gating can leave
2209 * slice/subslice/EU in a partially enabled state. We
2210 * must make an explicit request through RPCS for full
2211 * enablement.
2212 */
2213 if (INTEL_INFO(dev)->has_slice_pg) {
2214 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2215 rpcs |= INTEL_INFO(dev)->slice_total <<
2216 GEN8_RPCS_S_CNT_SHIFT;
2217 rpcs |= GEN8_RPCS_ENABLE;
2218 }
2219
2220 if (INTEL_INFO(dev)->has_subslice_pg) {
2221 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2222 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2223 GEN8_RPCS_SS_CNT_SHIFT;
2224 rpcs |= GEN8_RPCS_ENABLE;
2225 }
2226
2227 if (INTEL_INFO(dev)->has_eu_pg) {
2228 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2229 GEN8_RPCS_EU_MIN_SHIFT;
2230 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2231 GEN8_RPCS_EU_MAX_SHIFT;
2232 rpcs |= GEN8_RPCS_ENABLE;
2233 }
2234
2235 return rpcs;
2236 }
2237
2238 static int
2239 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2240 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2241 {
2242 struct drm_device *dev = ring->dev;
2243 struct drm_i915_private *dev_priv = dev->dev_private;
2244 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2245 struct page *page;
2246 uint32_t *reg_state;
2247 int ret;
2248
2249 if (!ppgtt)
2250 ppgtt = dev_priv->mm.aliasing_ppgtt;
2251
2252 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2253 if (ret) {
2254 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2255 return ret;
2256 }
2257
2258 ret = i915_gem_object_get_pages(ctx_obj);
2259 if (ret) {
2260 DRM_DEBUG_DRIVER("Could not get object pages\n");
2261 return ret;
2262 }
2263
2264 i915_gem_object_pin_pages(ctx_obj);
2265
2266 /* The second page of the context object contains some fields which must
2267 * be set up prior to the first execution. */
2268 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2269 reg_state = kmap_atomic(page);
2270
2271 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2272 * commands followed by (reg, value) pairs. The values we are setting here are
2273 * only for the first context restore: on a subsequent save, the GPU will
2274 * recreate this batchbuffer with new values (including all the missing
2275 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2276 reg_state[CTX_LRI_HEADER_0] =
2277 MI_LOAD_REGISTER_IMM(ring->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2278 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(ring),
2279 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2280 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2281 CTX_CTRL_RS_CTX_ENABLE));
2282 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(ring->mmio_base), 0);
2283 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(ring->mmio_base), 0);
2284 /* Ring buffer start address is not known until the buffer is pinned.
2285 * It is written to the context image in execlists_update_context()
2286 */
2287 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, RING_START(ring->mmio_base), 0);
2288 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, RING_CTL(ring->mmio_base),
2289 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2290 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, RING_BBADDR_UDW(ring->mmio_base), 0);
2291 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, RING_BBADDR(ring->mmio_base), 0);
2292 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, RING_BBSTATE(ring->mmio_base),
2293 RING_BB_PPGTT);
2294 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(ring->mmio_base), 0);
2295 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(ring->mmio_base), 0);
2296 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, RING_SBBSTATE(ring->mmio_base), 0);
2297 if (ring->id == RCS) {
2298 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(ring->mmio_base), 0);
2299 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(ring->mmio_base), 0);
2300 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, RING_INDIRECT_CTX_OFFSET(ring->mmio_base), 0);
2301 if (ring->wa_ctx.obj) {
2302 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2303 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2304
2305 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2306 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2307 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2308
2309 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2310 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2311
2312 reg_state[CTX_BB_PER_CTX_PTR+1] =
2313 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2314 0x01;
2315 }
2316 }
2317 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2318 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(ring->mmio_base), 0);
2319 /* PDP values well be assigned later if needed */
2320 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(ring, 3), 0);
2321 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(ring, 3), 0);
2322 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(ring, 2), 0);
2323 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(ring, 2), 0);
2324 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(ring, 1), 0);
2325 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(ring, 1), 0);
2326 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(ring, 0), 0);
2327 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(ring, 0), 0);
2328
2329 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2330 /* 64b PPGTT (48bit canonical)
2331 * PDP0_DESCRIPTOR contains the base address to PML4 and
2332 * other PDP Descriptors are ignored.
2333 */
2334 ASSIGN_CTX_PML4(ppgtt, reg_state);
2335 } else {
2336 /* 32b PPGTT
2337 * PDP*_DESCRIPTOR contains the base address of space supported.
2338 * With dynamic page allocation, PDPs may not be allocated at
2339 * this point. Point the unallocated PDPs to the scratch page
2340 */
2341 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2342 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2343 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2344 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2345 }
2346
2347 if (ring->id == RCS) {
2348 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2349 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2350 make_rpcs(dev));
2351 }
2352
2353 kunmap_atomic(reg_state);
2354 i915_gem_object_unpin_pages(ctx_obj);
2355
2356 return 0;
2357 }
2358
2359 /**
2360 * intel_lr_context_free() - free the LRC specific bits of a context
2361 * @ctx: the LR context to free.
2362 *
2363 * The real context freeing is done in i915_gem_context_free: this only
2364 * takes care of the bits that are LRC related: the per-engine backing
2365 * objects and the logical ringbuffer.
2366 */
2367 void intel_lr_context_free(struct intel_context *ctx)
2368 {
2369 int i;
2370
2371 for (i = 0; i < I915_NUM_RINGS; i++) {
2372 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2373
2374 if (ctx_obj) {
2375 struct intel_ringbuffer *ringbuf =
2376 ctx->engine[i].ringbuf;
2377 struct intel_engine_cs *ring = ringbuf->ring;
2378
2379 if (ctx == ring->default_context) {
2380 intel_unpin_ringbuffer_obj(ringbuf);
2381 i915_gem_object_ggtt_unpin(ctx_obj);
2382 }
2383 WARN_ON(ctx->engine[ring->id].pin_count);
2384 intel_ringbuffer_free(ringbuf);
2385 drm_gem_object_unreference(&ctx_obj->base);
2386 }
2387 }
2388 }
2389
2390 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2391 {
2392 int ret = 0;
2393
2394 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2395
2396 switch (ring->id) {
2397 case RCS:
2398 if (INTEL_INFO(ring->dev)->gen >= 9)
2399 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2400 else
2401 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2402 break;
2403 case VCS:
2404 case BCS:
2405 case VECS:
2406 case VCS2:
2407 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2408 break;
2409 }
2410
2411 return ret;
2412 }
2413
2414 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2415 struct drm_i915_gem_object *default_ctx_obj)
2416 {
2417 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2418 struct page *page;
2419
2420 /* The HWSP is part of the default context object in LRC mode. */
2421 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2422 + LRC_PPHWSP_PN * PAGE_SIZE;
2423 page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2424 ring->status_page.page_addr = kmap(page);
2425 ring->status_page.obj = default_ctx_obj;
2426
2427 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2428 (u32)ring->status_page.gfx_addr);
2429 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2430 }
2431
2432 /**
2433 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2434 * @ctx: LR context to create.
2435 * @ring: engine to be used with the context.
2436 *
2437 * This function can be called more than once, with different engines, if we plan
2438 * to use the context with them. The context backing objects and the ringbuffers
2439 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2440 * the creation is a deferred call: it's better to make sure first that we need to use
2441 * a given ring with the context.
2442 *
2443 * Return: non-zero on error.
2444 */
2445
2446 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2447 struct intel_engine_cs *ring)
2448 {
2449 struct drm_device *dev = ring->dev;
2450 struct drm_i915_gem_object *ctx_obj;
2451 uint32_t context_size;
2452 struct intel_ringbuffer *ringbuf;
2453 int ret;
2454
2455 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2456 WARN_ON(ctx->engine[ring->id].state);
2457
2458 context_size = round_up(get_lr_context_size(ring), 4096);
2459
2460 /* One extra page as the sharing data between driver and GuC */
2461 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2462
2463 ctx_obj = i915_gem_alloc_object(dev, context_size);
2464 if (!ctx_obj) {
2465 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2466 return -ENOMEM;
2467 }
2468
2469 ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2470 if (IS_ERR(ringbuf)) {
2471 ret = PTR_ERR(ringbuf);
2472 goto error_deref_obj;
2473 }
2474
2475 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2476 if (ret) {
2477 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2478 goto error_ringbuf;
2479 }
2480
2481 ctx->engine[ring->id].ringbuf = ringbuf;
2482 ctx->engine[ring->id].state = ctx_obj;
2483
2484 if (ctx != ring->default_context && ring->init_context) {
2485 struct drm_i915_gem_request *req;
2486
2487 ret = i915_gem_request_alloc(ring,
2488 ctx, &req);
2489 if (ret) {
2490 DRM_ERROR("ring create req: %d\n",
2491 ret);
2492 goto error_ringbuf;
2493 }
2494
2495 ret = ring->init_context(req);
2496 if (ret) {
2497 DRM_ERROR("ring init context: %d\n",
2498 ret);
2499 i915_gem_request_cancel(req);
2500 goto error_ringbuf;
2501 }
2502 i915_add_request_no_flush(req);
2503 }
2504 return 0;
2505
2506 error_ringbuf:
2507 intel_ringbuffer_free(ringbuf);
2508 error_deref_obj:
2509 drm_gem_object_unreference(&ctx_obj->base);
2510 ctx->engine[ring->id].ringbuf = NULL;
2511 ctx->engine[ring->id].state = NULL;
2512 return ret;
2513 }
2514
2515 void intel_lr_context_reset(struct drm_device *dev,
2516 struct intel_context *ctx)
2517 {
2518 struct drm_i915_private *dev_priv = dev->dev_private;
2519 struct intel_engine_cs *ring;
2520 int i;
2521
2522 for_each_ring(ring, dev_priv, i) {
2523 struct drm_i915_gem_object *ctx_obj =
2524 ctx->engine[ring->id].state;
2525 struct intel_ringbuffer *ringbuf =
2526 ctx->engine[ring->id].ringbuf;
2527 uint32_t *reg_state;
2528 struct page *page;
2529
2530 if (!ctx_obj)
2531 continue;
2532
2533 if (i915_gem_object_get_pages(ctx_obj)) {
2534 WARN(1, "Failed get_pages for context obj\n");
2535 continue;
2536 }
2537 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2538 reg_state = kmap_atomic(page);
2539
2540 reg_state[CTX_RING_HEAD+1] = 0;
2541 reg_state[CTX_RING_TAIL+1] = 0;
2542
2543 kunmap_atomic(reg_state);
2544
2545 ringbuf->head = 0;
2546 ringbuf->tail = 0;
2547 }
2548 }
This page took 0.082913 seconds and 6 git commands to generate.