drm/i915: Simplify i915_gem_execbuffer_retire_commands() parameters
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138
139 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143 #define RING_EXECLIST_QFULL (1 << 0x2)
144 #define RING_EXECLIST1_VALID (1 << 0x3)
145 #define RING_EXECLIST0_VALID (1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
149
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
156
157 #define CTX_LRI_HEADER_0 0x01
158 #define CTX_CONTEXT_CONTROL 0x02
159 #define CTX_RING_HEAD 0x04
160 #define CTX_RING_TAIL 0x06
161 #define CTX_RING_BUFFER_START 0x08
162 #define CTX_RING_BUFFER_CONTROL 0x0a
163 #define CTX_BB_HEAD_U 0x0c
164 #define CTX_BB_HEAD_L 0x0e
165 #define CTX_BB_STATE 0x10
166 #define CTX_SECOND_BB_HEAD_U 0x12
167 #define CTX_SECOND_BB_HEAD_L 0x14
168 #define CTX_SECOND_BB_STATE 0x16
169 #define CTX_BB_PER_CTX_PTR 0x18
170 #define CTX_RCS_INDIRECT_CTX 0x1a
171 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
172 #define CTX_LRI_HEADER_1 0x21
173 #define CTX_CTX_TIMESTAMP 0x22
174 #define CTX_PDP3_UDW 0x24
175 #define CTX_PDP3_LDW 0x26
176 #define CTX_PDP2_UDW 0x28
177 #define CTX_PDP2_LDW 0x2a
178 #define CTX_PDP1_UDW 0x2c
179 #define CTX_PDP1_LDW 0x2e
180 #define CTX_PDP0_UDW 0x30
181 #define CTX_PDP0_LDW 0x32
182 #define CTX_LRI_HEADER_2 0x41
183 #define CTX_R_PWR_CLK_STATE 0x42
184 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
185
186 #define GEN8_CTX_VALID (1<<0)
187 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188 #define GEN8_CTX_FORCE_RESTORE (1<<2)
189 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
190 #define GEN8_CTX_PRIVILEGE (1<<8)
191
192 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
193 const u64 _addr = test_bit(n, ppgtt->pdp.used_pdpes) ? \
194 ppgtt->pdp.page_directory[n]->daddr : \
195 ppgtt->scratch_pd->daddr; \
196 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198 }
199
200 enum {
201 ADVANCED_CONTEXT = 0,
202 LEGACY_CONTEXT,
203 ADVANCED_AD_CONTEXT,
204 LEGACY_64B_CONTEXT
205 };
206 #define GEN8_CTX_MODE_SHIFT 3
207 enum {
208 FAULT_AND_HANG = 0,
209 FAULT_AND_HALT, /* Debug only */
210 FAULT_AND_STREAM,
211 FAULT_AND_CONTINUE /* Unsupported */
212 };
213 #define GEN8_CTX_ID_SHIFT 32
214 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
215
216 static int intel_lr_context_pin(struct intel_engine_cs *ring,
217 struct intel_context *ctx);
218
219 /**
220 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
221 * @dev: DRM device.
222 * @enable_execlists: value of i915.enable_execlists module parameter.
223 *
224 * Only certain platforms support Execlists (the prerequisites being
225 * support for Logical Ring Contexts and Aliasing PPGTT or better).
226 *
227 * Return: 1 if Execlists is supported and has to be enabled.
228 */
229 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
230 {
231 WARN_ON(i915.enable_ppgtt == -1);
232
233 if (INTEL_INFO(dev)->gen >= 9)
234 return 1;
235
236 if (enable_execlists == 0)
237 return 0;
238
239 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
240 i915.use_mmio_flip >= 0)
241 return 1;
242
243 return 0;
244 }
245
246 /**
247 * intel_execlists_ctx_id() - get the Execlists Context ID
248 * @ctx_obj: Logical Ring Context backing object.
249 *
250 * Do not confuse with ctx->id! Unfortunately we have a name overload
251 * here: the old context ID we pass to userspace as a handler so that
252 * they can refer to a context, and the new context ID we pass to the
253 * ELSP so that the GPU can inform us of the context status via
254 * interrupts.
255 *
256 * Return: 20-bits globally unique context ID.
257 */
258 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
259 {
260 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
261
262 /* LRCA is required to be 4K aligned so the more significant 20 bits
263 * are globally unique */
264 return lrca >> 12;
265 }
266
267 static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
268 struct drm_i915_gem_object *ctx_obj)
269 {
270 struct drm_device *dev = ring->dev;
271 uint64_t desc;
272 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
273
274 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
275
276 desc = GEN8_CTX_VALID;
277 desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
278 if (IS_GEN8(ctx_obj->base.dev))
279 desc |= GEN8_CTX_L3LLC_COHERENT;
280 desc |= GEN8_CTX_PRIVILEGE;
281 desc |= lrca;
282 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
283
284 /* TODO: WaDisableLiteRestore when we start using semaphore
285 * signalling between Command Streamers */
286 /* desc |= GEN8_CTX_FORCE_RESTORE; */
287
288 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
289 if (IS_GEN9(dev) &&
290 INTEL_REVID(dev) <= SKL_REVID_B0 &&
291 (ring->id == BCS || ring->id == VCS ||
292 ring->id == VECS || ring->id == VCS2))
293 desc |= GEN8_CTX_FORCE_RESTORE;
294
295 return desc;
296 }
297
298 static void execlists_elsp_write(struct intel_engine_cs *ring,
299 struct drm_i915_gem_object *ctx_obj0,
300 struct drm_i915_gem_object *ctx_obj1)
301 {
302 struct drm_device *dev = ring->dev;
303 struct drm_i915_private *dev_priv = dev->dev_private;
304 uint64_t temp = 0;
305 uint32_t desc[4];
306
307 /* XXX: You must always write both descriptors in the order below. */
308 if (ctx_obj1)
309 temp = execlists_ctx_descriptor(ring, ctx_obj1);
310 else
311 temp = 0;
312 desc[1] = (u32)(temp >> 32);
313 desc[0] = (u32)temp;
314
315 temp = execlists_ctx_descriptor(ring, ctx_obj0);
316 desc[3] = (u32)(temp >> 32);
317 desc[2] = (u32)temp;
318
319 spin_lock(&dev_priv->uncore.lock);
320 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
321 I915_WRITE_FW(RING_ELSP(ring), desc[1]);
322 I915_WRITE_FW(RING_ELSP(ring), desc[0]);
323 I915_WRITE_FW(RING_ELSP(ring), desc[3]);
324
325 /* The context is automatically loaded after the following */
326 I915_WRITE_FW(RING_ELSP(ring), desc[2]);
327
328 /* ELSP is a wo register, so use another nearby reg for posting instead */
329 POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
330 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
331 spin_unlock(&dev_priv->uncore.lock);
332 }
333
334 static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
335 struct drm_i915_gem_object *ring_obj,
336 struct i915_hw_ppgtt *ppgtt,
337 u32 tail)
338 {
339 struct page *page;
340 uint32_t *reg_state;
341
342 page = i915_gem_object_get_page(ctx_obj, 1);
343 reg_state = kmap_atomic(page);
344
345 reg_state[CTX_RING_TAIL+1] = tail;
346 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
347
348 /* True PPGTT with dynamic page allocation: update PDP registers and
349 * point the unallocated PDPs to the scratch page
350 */
351 if (ppgtt) {
352 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
353 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
354 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
355 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
356 }
357
358 kunmap_atomic(reg_state);
359
360 return 0;
361 }
362
363 static void execlists_submit_contexts(struct intel_engine_cs *ring,
364 struct intel_context *to0, u32 tail0,
365 struct intel_context *to1, u32 tail1)
366 {
367 struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
368 struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
369 struct drm_i915_gem_object *ctx_obj1 = NULL;
370 struct intel_ringbuffer *ringbuf1 = NULL;
371
372 BUG_ON(!ctx_obj0);
373 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
374 WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
375
376 execlists_update_context(ctx_obj0, ringbuf0->obj, to0->ppgtt, tail0);
377
378 if (to1) {
379 ringbuf1 = to1->engine[ring->id].ringbuf;
380 ctx_obj1 = to1->engine[ring->id].state;
381 BUG_ON(!ctx_obj1);
382 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
383 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
384
385 execlists_update_context(ctx_obj1, ringbuf1->obj, to1->ppgtt, tail1);
386 }
387
388 execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
389 }
390
391 static void execlists_context_unqueue(struct intel_engine_cs *ring)
392 {
393 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
394 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
395
396 assert_spin_locked(&ring->execlist_lock);
397
398 /*
399 * If irqs are not active generate a warning as batches that finish
400 * without the irqs may get lost and a GPU Hang may occur.
401 */
402 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
403
404 if (list_empty(&ring->execlist_queue))
405 return;
406
407 /* Try to read in pairs */
408 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
409 execlist_link) {
410 if (!req0) {
411 req0 = cursor;
412 } else if (req0->ctx == cursor->ctx) {
413 /* Same ctx: ignore first request, as second request
414 * will update tail past first request's workload */
415 cursor->elsp_submitted = req0->elsp_submitted;
416 list_del(&req0->execlist_link);
417 list_add_tail(&req0->execlist_link,
418 &ring->execlist_retired_req_list);
419 req0 = cursor;
420 } else {
421 req1 = cursor;
422 break;
423 }
424 }
425
426 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
427 /*
428 * WaIdleLiteRestore: make sure we never cause a lite
429 * restore with HEAD==TAIL
430 */
431 if (req0->elsp_submitted) {
432 /*
433 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
434 * as we resubmit the request. See gen8_emit_request()
435 * for where we prepare the padding after the end of the
436 * request.
437 */
438 struct intel_ringbuffer *ringbuf;
439
440 ringbuf = req0->ctx->engine[ring->id].ringbuf;
441 req0->tail += 8;
442 req0->tail &= ringbuf->size - 1;
443 }
444 }
445
446 WARN_ON(req1 && req1->elsp_submitted);
447
448 execlists_submit_contexts(ring, req0->ctx, req0->tail,
449 req1 ? req1->ctx : NULL,
450 req1 ? req1->tail : 0);
451
452 req0->elsp_submitted++;
453 if (req1)
454 req1->elsp_submitted++;
455 }
456
457 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
458 u32 request_id)
459 {
460 struct drm_i915_gem_request *head_req;
461
462 assert_spin_locked(&ring->execlist_lock);
463
464 head_req = list_first_entry_or_null(&ring->execlist_queue,
465 struct drm_i915_gem_request,
466 execlist_link);
467
468 if (head_req != NULL) {
469 struct drm_i915_gem_object *ctx_obj =
470 head_req->ctx->engine[ring->id].state;
471 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
472 WARN(head_req->elsp_submitted == 0,
473 "Never submitted head request\n");
474
475 if (--head_req->elsp_submitted <= 0) {
476 list_del(&head_req->execlist_link);
477 list_add_tail(&head_req->execlist_link,
478 &ring->execlist_retired_req_list);
479 return true;
480 }
481 }
482 }
483
484 return false;
485 }
486
487 /**
488 * intel_lrc_irq_handler() - handle Context Switch interrupts
489 * @ring: Engine Command Streamer to handle.
490 *
491 * Check the unread Context Status Buffers and manage the submission of new
492 * contexts to the ELSP accordingly.
493 */
494 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
495 {
496 struct drm_i915_private *dev_priv = ring->dev->dev_private;
497 u32 status_pointer;
498 u8 read_pointer;
499 u8 write_pointer;
500 u32 status;
501 u32 status_id;
502 u32 submit_contexts = 0;
503
504 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
505
506 read_pointer = ring->next_context_status_buffer;
507 write_pointer = status_pointer & 0x07;
508 if (read_pointer > write_pointer)
509 write_pointer += 6;
510
511 spin_lock(&ring->execlist_lock);
512
513 while (read_pointer < write_pointer) {
514 read_pointer++;
515 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
516 (read_pointer % 6) * 8);
517 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
518 (read_pointer % 6) * 8 + 4);
519
520 if (status & GEN8_CTX_STATUS_PREEMPTED) {
521 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
522 if (execlists_check_remove_request(ring, status_id))
523 WARN(1, "Lite Restored request removed from queue\n");
524 } else
525 WARN(1, "Preemption without Lite Restore\n");
526 }
527
528 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
529 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
530 if (execlists_check_remove_request(ring, status_id))
531 submit_contexts++;
532 }
533 }
534
535 if (submit_contexts != 0)
536 execlists_context_unqueue(ring);
537
538 spin_unlock(&ring->execlist_lock);
539
540 WARN(submit_contexts > 2, "More than two context complete events?\n");
541 ring->next_context_status_buffer = write_pointer % 6;
542
543 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
544 ((u32)ring->next_context_status_buffer & 0x07) << 8);
545 }
546
547 static int execlists_context_queue(struct intel_engine_cs *ring,
548 struct intel_context *to,
549 u32 tail,
550 struct drm_i915_gem_request *request)
551 {
552 struct drm_i915_gem_request *cursor;
553 int num_elements = 0;
554
555 if (to != ring->default_context)
556 intel_lr_context_pin(ring, to);
557
558 if (!request) {
559 /*
560 * If there isn't a request associated with this submission,
561 * create one as a temporary holder.
562 */
563 request = kzalloc(sizeof(*request), GFP_KERNEL);
564 if (request == NULL)
565 return -ENOMEM;
566 request->ring = ring;
567 request->ctx = to;
568 kref_init(&request->ref);
569 i915_gem_context_reference(request->ctx);
570 } else {
571 i915_gem_request_reference(request);
572 WARN_ON(to != request->ctx);
573 }
574 request->tail = tail;
575
576 spin_lock_irq(&ring->execlist_lock);
577
578 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
579 if (++num_elements > 2)
580 break;
581
582 if (num_elements > 2) {
583 struct drm_i915_gem_request *tail_req;
584
585 tail_req = list_last_entry(&ring->execlist_queue,
586 struct drm_i915_gem_request,
587 execlist_link);
588
589 if (to == tail_req->ctx) {
590 WARN(tail_req->elsp_submitted != 0,
591 "More than 2 already-submitted reqs queued\n");
592 list_del(&tail_req->execlist_link);
593 list_add_tail(&tail_req->execlist_link,
594 &ring->execlist_retired_req_list);
595 }
596 }
597
598 list_add_tail(&request->execlist_link, &ring->execlist_queue);
599 if (num_elements == 0)
600 execlists_context_unqueue(ring);
601
602 spin_unlock_irq(&ring->execlist_lock);
603
604 return 0;
605 }
606
607 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
608 struct intel_context *ctx)
609 {
610 struct intel_engine_cs *ring = ringbuf->ring;
611 uint32_t flush_domains;
612 int ret;
613
614 flush_domains = 0;
615 if (ring->gpu_caches_dirty)
616 flush_domains = I915_GEM_GPU_DOMAINS;
617
618 ret = ring->emit_flush(ringbuf, ctx,
619 I915_GEM_GPU_DOMAINS, flush_domains);
620 if (ret)
621 return ret;
622
623 ring->gpu_caches_dirty = false;
624 return 0;
625 }
626
627 static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
628 struct intel_context *ctx,
629 struct list_head *vmas)
630 {
631 struct intel_engine_cs *ring = ringbuf->ring;
632 const unsigned other_rings = ~intel_ring_flag(ring);
633 struct i915_vma *vma;
634 uint32_t flush_domains = 0;
635 bool flush_chipset = false;
636 int ret;
637
638 list_for_each_entry(vma, vmas, exec_list) {
639 struct drm_i915_gem_object *obj = vma->obj;
640
641 if (obj->active & other_rings) {
642 ret = i915_gem_object_sync(obj, ring);
643 if (ret)
644 return ret;
645 }
646
647 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
648 flush_chipset |= i915_gem_clflush_object(obj, false);
649
650 flush_domains |= obj->base.write_domain;
651 }
652
653 if (flush_domains & I915_GEM_DOMAIN_GTT)
654 wmb();
655
656 /* Unconditionally invalidate gpu caches and ensure that we do flush
657 * any residual writes from the previous batch.
658 */
659 return logical_ring_invalidate_all_caches(ringbuf, ctx);
660 }
661
662 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
663 {
664 int ret;
665
666 if (request->ctx != request->ring->default_context) {
667 ret = intel_lr_context_pin(request->ring, request->ctx);
668 if (ret)
669 return ret;
670 }
671
672 request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
673
674 return 0;
675 }
676
677 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
678 struct intel_context *ctx,
679 int bytes)
680 {
681 struct intel_engine_cs *ring = ringbuf->ring;
682 struct drm_i915_gem_request *request;
683 unsigned space;
684 int ret;
685
686 /* The whole point of reserving space is to not wait! */
687 WARN_ON(ringbuf->reserved_in_use);
688
689 if (intel_ring_space(ringbuf) >= bytes)
690 return 0;
691
692 list_for_each_entry(request, &ring->request_list, list) {
693 /*
694 * The request queue is per-engine, so can contain requests
695 * from multiple ringbuffers. Here, we must ignore any that
696 * aren't from the ringbuffer we're considering.
697 */
698 if (request->ringbuf != ringbuf)
699 continue;
700
701 /* Would completion of this request free enough space? */
702 space = __intel_ring_space(request->postfix, ringbuf->tail,
703 ringbuf->size);
704 if (space >= bytes)
705 break;
706 }
707
708 if (WARN_ON(&request->list == &ring->request_list))
709 return -ENOSPC;
710
711 ret = i915_wait_request(request);
712 if (ret)
713 return ret;
714
715 ringbuf->space = space;
716 return 0;
717 }
718
719 /*
720 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
721 * @ringbuf: Logical Ringbuffer to advance.
722 *
723 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
724 * really happens during submission is that the context and current tail will be placed
725 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
726 * point, the tail *inside* the context is updated and the ELSP written to.
727 */
728 static void
729 intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
730 struct intel_context *ctx,
731 struct drm_i915_gem_request *request)
732 {
733 struct intel_engine_cs *ring = ringbuf->ring;
734
735 intel_logical_ring_advance(ringbuf);
736
737 if (intel_ring_stopped(ring))
738 return;
739
740 execlists_context_queue(ring, ctx, ringbuf->tail, request);
741 }
742
743 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
744 struct intel_context *ctx)
745 {
746 uint32_t __iomem *virt;
747 int rem = ringbuf->size - ringbuf->tail;
748
749 /* Can't wrap if space has already been reserved! */
750 WARN_ON(ringbuf->reserved_in_use);
751
752 if (ringbuf->space < rem) {
753 int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
754
755 if (ret)
756 return ret;
757 }
758
759 virt = ringbuf->virtual_start + ringbuf->tail;
760 rem /= 4;
761 while (rem--)
762 iowrite32(MI_NOOP, virt++);
763
764 ringbuf->tail = 0;
765 intel_ring_update_space(ringbuf);
766
767 return 0;
768 }
769
770 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
771 struct intel_context *ctx, int bytes)
772 {
773 int ret;
774
775 /*
776 * Add on the reserved size to the request to make sure that after
777 * the intended commands have been emitted, there is guaranteed to
778 * still be enough free space to send them to the hardware.
779 */
780 if (!ringbuf->reserved_in_use)
781 bytes += ringbuf->reserved_size;
782
783 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
784 ret = logical_ring_wrap_buffer(ringbuf, ctx);
785 if (unlikely(ret))
786 return ret;
787
788 if(ringbuf->reserved_size) {
789 uint32_t size = ringbuf->reserved_size;
790
791 intel_ring_reserved_space_cancel(ringbuf);
792 intel_ring_reserved_space_reserve(ringbuf, size);
793 }
794 }
795
796 if (unlikely(ringbuf->space < bytes)) {
797 ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
798 if (unlikely(ret))
799 return ret;
800 }
801
802 return 0;
803 }
804
805 /**
806 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
807 *
808 * @ringbuf: Logical ringbuffer.
809 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
810 *
811 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
812 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
813 * and also preallocates a request (every workload submission is still mediated through
814 * requests, same as it did with legacy ringbuffer submission).
815 *
816 * Return: non-zero if the ringbuffer is not ready to be written to.
817 */
818 static int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
819 struct intel_context *ctx, int num_dwords)
820 {
821 struct intel_engine_cs *ring = ringbuf->ring;
822 struct drm_device *dev = ring->dev;
823 struct drm_i915_private *dev_priv = dev->dev_private;
824 int ret;
825
826 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
827 dev_priv->mm.interruptible);
828 if (ret)
829 return ret;
830
831 ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
832 if (ret)
833 return ret;
834
835 /* Preallocate the olr before touching the ring */
836 ret = i915_gem_request_alloc(ring, ctx);
837 if (ret)
838 return ret;
839
840 ringbuf->space -= num_dwords * sizeof(uint32_t);
841 return 0;
842 }
843
844 /**
845 * execlists_submission() - submit a batchbuffer for execution, Execlists style
846 * @dev: DRM device.
847 * @file: DRM file.
848 * @ring: Engine Command Streamer to submit to.
849 * @ctx: Context to employ for this submission.
850 * @args: execbuffer call arguments.
851 * @vmas: list of vmas.
852 * @batch_obj: the batchbuffer to submit.
853 * @exec_start: batchbuffer start virtual address pointer.
854 * @dispatch_flags: translated execbuffer call flags.
855 *
856 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
857 * away the submission details of the execbuffer ioctl call.
858 *
859 * Return: non-zero if the submission fails.
860 */
861 int intel_execlists_submission(struct i915_execbuffer_params *params,
862 struct drm_i915_gem_execbuffer2 *args,
863 struct list_head *vmas)
864 {
865 struct drm_device *dev = params->dev;
866 struct intel_engine_cs *ring = params->ring;
867 struct drm_i915_private *dev_priv = dev->dev_private;
868 struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
869 u64 exec_start;
870 int instp_mode;
871 u32 instp_mask;
872 int ret;
873
874 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
875 instp_mask = I915_EXEC_CONSTANTS_MASK;
876 switch (instp_mode) {
877 case I915_EXEC_CONSTANTS_REL_GENERAL:
878 case I915_EXEC_CONSTANTS_ABSOLUTE:
879 case I915_EXEC_CONSTANTS_REL_SURFACE:
880 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
881 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
882 return -EINVAL;
883 }
884
885 if (instp_mode != dev_priv->relative_constants_mode) {
886 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
887 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
888 return -EINVAL;
889 }
890
891 /* The HW changed the meaning on this bit on gen6 */
892 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
893 }
894 break;
895 default:
896 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
897 return -EINVAL;
898 }
899
900 if (args->num_cliprects != 0) {
901 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
902 return -EINVAL;
903 } else {
904 if (args->DR4 == 0xffffffff) {
905 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
906 args->DR4 = 0;
907 }
908
909 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
910 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
911 return -EINVAL;
912 }
913 }
914
915 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
916 DRM_DEBUG("sol reset is gen7 only\n");
917 return -EINVAL;
918 }
919
920 ret = execlists_move_to_gpu(ringbuf, params->ctx, vmas);
921 if (ret)
922 return ret;
923
924 if (ring == &dev_priv->ring[RCS] &&
925 instp_mode != dev_priv->relative_constants_mode) {
926 ret = intel_logical_ring_begin(ringbuf, params->ctx, 4);
927 if (ret)
928 return ret;
929
930 intel_logical_ring_emit(ringbuf, MI_NOOP);
931 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
932 intel_logical_ring_emit(ringbuf, INSTPM);
933 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
934 intel_logical_ring_advance(ringbuf);
935
936 dev_priv->relative_constants_mode = instp_mode;
937 }
938
939 exec_start = params->batch_obj_vm_offset +
940 args->batch_start_offset;
941
942 ret = ring->emit_bb_start(ringbuf, params->ctx, exec_start, params->dispatch_flags);
943 if (ret)
944 return ret;
945
946 trace_i915_gem_ring_dispatch(intel_ring_get_request(ring), params->dispatch_flags);
947
948 i915_gem_execbuffer_move_to_active(vmas, ring);
949 i915_gem_execbuffer_retire_commands(params);
950
951 return 0;
952 }
953
954 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
955 {
956 struct drm_i915_gem_request *req, *tmp;
957 struct list_head retired_list;
958
959 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
960 if (list_empty(&ring->execlist_retired_req_list))
961 return;
962
963 INIT_LIST_HEAD(&retired_list);
964 spin_lock_irq(&ring->execlist_lock);
965 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
966 spin_unlock_irq(&ring->execlist_lock);
967
968 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
969 struct intel_context *ctx = req->ctx;
970 struct drm_i915_gem_object *ctx_obj =
971 ctx->engine[ring->id].state;
972
973 if (ctx_obj && (ctx != ring->default_context))
974 intel_lr_context_unpin(ring, ctx);
975 list_del(&req->execlist_link);
976 i915_gem_request_unreference(req);
977 }
978 }
979
980 void intel_logical_ring_stop(struct intel_engine_cs *ring)
981 {
982 struct drm_i915_private *dev_priv = ring->dev->dev_private;
983 int ret;
984
985 if (!intel_ring_initialized(ring))
986 return;
987
988 ret = intel_ring_idle(ring);
989 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
990 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
991 ring->name, ret);
992
993 /* TODO: Is this correct with Execlists enabled? */
994 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
995 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
996 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
997 return;
998 }
999 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
1000 }
1001
1002 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
1003 struct intel_context *ctx)
1004 {
1005 struct intel_engine_cs *ring = ringbuf->ring;
1006 int ret;
1007
1008 if (!ring->gpu_caches_dirty)
1009 return 0;
1010
1011 ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
1012 if (ret)
1013 return ret;
1014
1015 ring->gpu_caches_dirty = false;
1016 return 0;
1017 }
1018
1019 static int intel_lr_context_pin(struct intel_engine_cs *ring,
1020 struct intel_context *ctx)
1021 {
1022 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1023 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1024 int ret = 0;
1025
1026 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1027 if (ctx->engine[ring->id].pin_count++ == 0) {
1028 ret = i915_gem_obj_ggtt_pin(ctx_obj,
1029 GEN8_LR_CONTEXT_ALIGN, 0);
1030 if (ret)
1031 goto reset_pin_count;
1032
1033 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1034 if (ret)
1035 goto unpin_ctx_obj;
1036 }
1037
1038 return ret;
1039
1040 unpin_ctx_obj:
1041 i915_gem_object_ggtt_unpin(ctx_obj);
1042 reset_pin_count:
1043 ctx->engine[ring->id].pin_count = 0;
1044
1045 return ret;
1046 }
1047
1048 void intel_lr_context_unpin(struct intel_engine_cs *ring,
1049 struct intel_context *ctx)
1050 {
1051 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1052 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1053
1054 if (ctx_obj) {
1055 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1056 if (--ctx->engine[ring->id].pin_count == 0) {
1057 intel_unpin_ringbuffer_obj(ringbuf);
1058 i915_gem_object_ggtt_unpin(ctx_obj);
1059 }
1060 }
1061 }
1062
1063 static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1064 struct intel_context *ctx)
1065 {
1066 int ret, i;
1067 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1068 struct drm_device *dev = ring->dev;
1069 struct drm_i915_private *dev_priv = dev->dev_private;
1070 struct i915_workarounds *w = &dev_priv->workarounds;
1071
1072 if (WARN_ON_ONCE(w->count == 0))
1073 return 0;
1074
1075 ring->gpu_caches_dirty = true;
1076 ret = logical_ring_flush_all_caches(ringbuf, ctx);
1077 if (ret)
1078 return ret;
1079
1080 ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
1081 if (ret)
1082 return ret;
1083
1084 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1085 for (i = 0; i < w->count; i++) {
1086 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1087 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1088 }
1089 intel_logical_ring_emit(ringbuf, MI_NOOP);
1090
1091 intel_logical_ring_advance(ringbuf);
1092
1093 ring->gpu_caches_dirty = true;
1094 ret = logical_ring_flush_all_caches(ringbuf, ctx);
1095 if (ret)
1096 return ret;
1097
1098 return 0;
1099 }
1100
1101 #define wa_ctx_emit(batch, cmd) \
1102 do { \
1103 if (WARN_ON(index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1104 return -ENOSPC; \
1105 } \
1106 batch[index++] = (cmd); \
1107 } while (0)
1108
1109 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1110 uint32_t offset,
1111 uint32_t start_alignment)
1112 {
1113 return wa_ctx->offset = ALIGN(offset, start_alignment);
1114 }
1115
1116 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1117 uint32_t offset,
1118 uint32_t size_alignment)
1119 {
1120 wa_ctx->size = offset - wa_ctx->offset;
1121
1122 WARN(wa_ctx->size % size_alignment,
1123 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1124 wa_ctx->size, size_alignment);
1125 return 0;
1126 }
1127
1128 /**
1129 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1130 *
1131 * @ring: only applicable for RCS
1132 * @wa_ctx: structure representing wa_ctx
1133 * offset: specifies start of the batch, should be cache-aligned. This is updated
1134 * with the offset value received as input.
1135 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1136 * @batch: page in which WA are loaded
1137 * @offset: This field specifies the start of the batch, it should be
1138 * cache-aligned otherwise it is adjusted accordingly.
1139 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1140 * initialized at the beginning and shared across all contexts but this field
1141 * helps us to have multiple batches at different offsets and select them based
1142 * on a criteria. At the moment this batch always start at the beginning of the page
1143 * and at this point we don't have multiple wa_ctx batch buffers.
1144 *
1145 * The number of WA applied are not known at the beginning; we use this field
1146 * to return the no of DWORDS written.
1147
1148 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1149 * so it adds NOOPs as padding to make it cacheline aligned.
1150 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1151 * makes a complete batch buffer.
1152 *
1153 * Return: non-zero if we exceed the PAGE_SIZE limit.
1154 */
1155
1156 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1157 struct i915_wa_ctx_bb *wa_ctx,
1158 uint32_t *const batch,
1159 uint32_t *offset)
1160 {
1161 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1162
1163 /* WaDisableCtxRestoreArbitration:bdw,chv */
1164 wa_ctx_emit(batch, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1165
1166 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1167 if (IS_BROADWELL(ring->dev)) {
1168 struct drm_i915_private *dev_priv = to_i915(ring->dev);
1169 uint32_t l3sqc4_flush = (I915_READ(GEN8_L3SQCREG4) |
1170 GEN8_LQSC_FLUSH_COHERENT_LINES);
1171
1172 wa_ctx_emit(batch, MI_LOAD_REGISTER_IMM(1));
1173 wa_ctx_emit(batch, GEN8_L3SQCREG4);
1174 wa_ctx_emit(batch, l3sqc4_flush);
1175
1176 wa_ctx_emit(batch, GFX_OP_PIPE_CONTROL(6));
1177 wa_ctx_emit(batch, (PIPE_CONTROL_CS_STALL |
1178 PIPE_CONTROL_DC_FLUSH_ENABLE));
1179 wa_ctx_emit(batch, 0);
1180 wa_ctx_emit(batch, 0);
1181 wa_ctx_emit(batch, 0);
1182 wa_ctx_emit(batch, 0);
1183
1184 wa_ctx_emit(batch, MI_LOAD_REGISTER_IMM(1));
1185 wa_ctx_emit(batch, GEN8_L3SQCREG4);
1186 wa_ctx_emit(batch, l3sqc4_flush & ~GEN8_LQSC_FLUSH_COHERENT_LINES);
1187 }
1188
1189 /* Pad to end of cacheline */
1190 while (index % CACHELINE_DWORDS)
1191 wa_ctx_emit(batch, MI_NOOP);
1192
1193 /*
1194 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1195 * execution depends on the length specified in terms of cache lines
1196 * in the register CTX_RCS_INDIRECT_CTX
1197 */
1198
1199 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1200 }
1201
1202 /**
1203 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1204 *
1205 * @ring: only applicable for RCS
1206 * @wa_ctx: structure representing wa_ctx
1207 * offset: specifies start of the batch, should be cache-aligned.
1208 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1209 * @offset: This field specifies the start of this batch.
1210 * This batch is started immediately after indirect_ctx batch. Since we ensure
1211 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1212 *
1213 * The number of DWORDS written are returned using this field.
1214 *
1215 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1216 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1217 */
1218 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1219 struct i915_wa_ctx_bb *wa_ctx,
1220 uint32_t *const batch,
1221 uint32_t *offset)
1222 {
1223 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1224
1225 /* WaDisableCtxRestoreArbitration:bdw,chv */
1226 wa_ctx_emit(batch, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1227
1228 wa_ctx_emit(batch, MI_BATCH_BUFFER_END);
1229
1230 return wa_ctx_end(wa_ctx, *offset = index, 1);
1231 }
1232
1233 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1234 {
1235 int ret;
1236
1237 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1238 if (!ring->wa_ctx.obj) {
1239 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1240 return -ENOMEM;
1241 }
1242
1243 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1244 if (ret) {
1245 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1246 ret);
1247 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1248 return ret;
1249 }
1250
1251 return 0;
1252 }
1253
1254 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1255 {
1256 if (ring->wa_ctx.obj) {
1257 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1258 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1259 ring->wa_ctx.obj = NULL;
1260 }
1261 }
1262
1263 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1264 {
1265 int ret;
1266 uint32_t *batch;
1267 uint32_t offset;
1268 struct page *page;
1269 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1270
1271 WARN_ON(ring->id != RCS);
1272
1273 /* some WA perform writes to scratch page, ensure it is valid */
1274 if (ring->scratch.obj == NULL) {
1275 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1276 return -EINVAL;
1277 }
1278
1279 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1280 if (ret) {
1281 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1282 return ret;
1283 }
1284
1285 page = i915_gem_object_get_page(wa_ctx->obj, 0);
1286 batch = kmap_atomic(page);
1287 offset = 0;
1288
1289 if (INTEL_INFO(ring->dev)->gen == 8) {
1290 ret = gen8_init_indirectctx_bb(ring,
1291 &wa_ctx->indirect_ctx,
1292 batch,
1293 &offset);
1294 if (ret)
1295 goto out;
1296
1297 ret = gen8_init_perctx_bb(ring,
1298 &wa_ctx->per_ctx,
1299 batch,
1300 &offset);
1301 if (ret)
1302 goto out;
1303 } else {
1304 WARN(INTEL_INFO(ring->dev)->gen >= 8,
1305 "WA batch buffer is not initialized for Gen%d\n",
1306 INTEL_INFO(ring->dev)->gen);
1307 lrc_destroy_wa_ctx_obj(ring);
1308 }
1309
1310 out:
1311 kunmap_atomic(batch);
1312 if (ret)
1313 lrc_destroy_wa_ctx_obj(ring);
1314
1315 return ret;
1316 }
1317
1318 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1319 {
1320 struct drm_device *dev = ring->dev;
1321 struct drm_i915_private *dev_priv = dev->dev_private;
1322
1323 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1324 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1325
1326 I915_WRITE(RING_MODE_GEN7(ring),
1327 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1328 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1329 POSTING_READ(RING_MODE_GEN7(ring));
1330 ring->next_context_status_buffer = 0;
1331 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1332
1333 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1334
1335 return 0;
1336 }
1337
1338 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1339 {
1340 struct drm_device *dev = ring->dev;
1341 struct drm_i915_private *dev_priv = dev->dev_private;
1342 int ret;
1343
1344 ret = gen8_init_common_ring(ring);
1345 if (ret)
1346 return ret;
1347
1348 /* We need to disable the AsyncFlip performance optimisations in order
1349 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1350 * programmed to '1' on all products.
1351 *
1352 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1353 */
1354 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1355
1356 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1357
1358 return init_workarounds_ring(ring);
1359 }
1360
1361 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1362 {
1363 int ret;
1364
1365 ret = gen8_init_common_ring(ring);
1366 if (ret)
1367 return ret;
1368
1369 return init_workarounds_ring(ring);
1370 }
1371
1372 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1373 struct intel_context *ctx,
1374 u64 offset, unsigned dispatch_flags)
1375 {
1376 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1377 int ret;
1378
1379 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1380 if (ret)
1381 return ret;
1382
1383 /* FIXME(BDW): Address space and security selectors. */
1384 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1385 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1386 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1387 intel_logical_ring_emit(ringbuf, MI_NOOP);
1388 intel_logical_ring_advance(ringbuf);
1389
1390 return 0;
1391 }
1392
1393 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1394 {
1395 struct drm_device *dev = ring->dev;
1396 struct drm_i915_private *dev_priv = dev->dev_private;
1397 unsigned long flags;
1398
1399 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1400 return false;
1401
1402 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1403 if (ring->irq_refcount++ == 0) {
1404 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1405 POSTING_READ(RING_IMR(ring->mmio_base));
1406 }
1407 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1408
1409 return true;
1410 }
1411
1412 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1413 {
1414 struct drm_device *dev = ring->dev;
1415 struct drm_i915_private *dev_priv = dev->dev_private;
1416 unsigned long flags;
1417
1418 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1419 if (--ring->irq_refcount == 0) {
1420 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1421 POSTING_READ(RING_IMR(ring->mmio_base));
1422 }
1423 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1424 }
1425
1426 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1427 struct intel_context *ctx,
1428 u32 invalidate_domains,
1429 u32 unused)
1430 {
1431 struct intel_engine_cs *ring = ringbuf->ring;
1432 struct drm_device *dev = ring->dev;
1433 struct drm_i915_private *dev_priv = dev->dev_private;
1434 uint32_t cmd;
1435 int ret;
1436
1437 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1438 if (ret)
1439 return ret;
1440
1441 cmd = MI_FLUSH_DW + 1;
1442
1443 /* We always require a command barrier so that subsequent
1444 * commands, such as breadcrumb interrupts, are strictly ordered
1445 * wrt the contents of the write cache being flushed to memory
1446 * (and thus being coherent from the CPU).
1447 */
1448 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1449
1450 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1451 cmd |= MI_INVALIDATE_TLB;
1452 if (ring == &dev_priv->ring[VCS])
1453 cmd |= MI_INVALIDATE_BSD;
1454 }
1455
1456 intel_logical_ring_emit(ringbuf, cmd);
1457 intel_logical_ring_emit(ringbuf,
1458 I915_GEM_HWS_SCRATCH_ADDR |
1459 MI_FLUSH_DW_USE_GTT);
1460 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1461 intel_logical_ring_emit(ringbuf, 0); /* value */
1462 intel_logical_ring_advance(ringbuf);
1463
1464 return 0;
1465 }
1466
1467 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1468 struct intel_context *ctx,
1469 u32 invalidate_domains,
1470 u32 flush_domains)
1471 {
1472 struct intel_engine_cs *ring = ringbuf->ring;
1473 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1474 bool vf_flush_wa;
1475 u32 flags = 0;
1476 int ret;
1477
1478 flags |= PIPE_CONTROL_CS_STALL;
1479
1480 if (flush_domains) {
1481 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1482 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1483 }
1484
1485 if (invalidate_domains) {
1486 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1487 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1488 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1489 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1490 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1491 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1492 flags |= PIPE_CONTROL_QW_WRITE;
1493 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1494 }
1495
1496 /*
1497 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1498 * control.
1499 */
1500 vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1501 flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1502
1503 ret = intel_logical_ring_begin(ringbuf, ctx, vf_flush_wa ? 12 : 6);
1504 if (ret)
1505 return ret;
1506
1507 if (vf_flush_wa) {
1508 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1509 intel_logical_ring_emit(ringbuf, 0);
1510 intel_logical_ring_emit(ringbuf, 0);
1511 intel_logical_ring_emit(ringbuf, 0);
1512 intel_logical_ring_emit(ringbuf, 0);
1513 intel_logical_ring_emit(ringbuf, 0);
1514 }
1515
1516 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1517 intel_logical_ring_emit(ringbuf, flags);
1518 intel_logical_ring_emit(ringbuf, scratch_addr);
1519 intel_logical_ring_emit(ringbuf, 0);
1520 intel_logical_ring_emit(ringbuf, 0);
1521 intel_logical_ring_emit(ringbuf, 0);
1522 intel_logical_ring_advance(ringbuf);
1523
1524 return 0;
1525 }
1526
1527 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1528 {
1529 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1530 }
1531
1532 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1533 {
1534 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1535 }
1536
1537 static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
1538 struct drm_i915_gem_request *request)
1539 {
1540 struct intel_engine_cs *ring = ringbuf->ring;
1541 u32 cmd;
1542 int ret;
1543
1544 /*
1545 * Reserve space for 2 NOOPs at the end of each request to be
1546 * used as a workaround for not being allowed to do lite
1547 * restore with HEAD==TAIL (WaIdleLiteRestore).
1548 */
1549 ret = intel_logical_ring_begin(ringbuf, request->ctx, 8);
1550 if (ret)
1551 return ret;
1552
1553 cmd = MI_STORE_DWORD_IMM_GEN4;
1554 cmd |= MI_GLOBAL_GTT;
1555
1556 intel_logical_ring_emit(ringbuf, cmd);
1557 intel_logical_ring_emit(ringbuf,
1558 (ring->status_page.gfx_addr +
1559 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1560 intel_logical_ring_emit(ringbuf, 0);
1561 intel_logical_ring_emit(ringbuf,
1562 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1563 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1564 intel_logical_ring_emit(ringbuf, MI_NOOP);
1565 intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
1566
1567 /*
1568 * Here we add two extra NOOPs as padding to avoid
1569 * lite restore of a context with HEAD==TAIL.
1570 */
1571 intel_logical_ring_emit(ringbuf, MI_NOOP);
1572 intel_logical_ring_emit(ringbuf, MI_NOOP);
1573 intel_logical_ring_advance(ringbuf);
1574
1575 return 0;
1576 }
1577
1578 static int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1579 struct intel_context *ctx)
1580 {
1581 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1582 struct render_state so;
1583 struct drm_i915_file_private *file_priv = ctx->file_priv;
1584 struct drm_file *file = file_priv ? file_priv->file : NULL;
1585 int ret;
1586
1587 ret = i915_gem_render_state_prepare(ring, &so);
1588 if (ret)
1589 return ret;
1590
1591 if (so.rodata == NULL)
1592 return 0;
1593
1594 ret = ring->emit_bb_start(ringbuf,
1595 ctx,
1596 so.ggtt_offset,
1597 I915_DISPATCH_SECURE);
1598 if (ret)
1599 goto out;
1600
1601 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1602
1603 __i915_add_request(ring, file, so.obj);
1604 /* intel_logical_ring_add_request moves object to inactive if it
1605 * fails */
1606 out:
1607 i915_gem_render_state_fini(&so);
1608 return ret;
1609 }
1610
1611 static int gen8_init_rcs_context(struct intel_engine_cs *ring,
1612 struct intel_context *ctx)
1613 {
1614 int ret;
1615
1616 ret = intel_logical_ring_workarounds_emit(ring, ctx);
1617 if (ret)
1618 return ret;
1619
1620 return intel_lr_context_render_state_init(ring, ctx);
1621 }
1622
1623 /**
1624 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1625 *
1626 * @ring: Engine Command Streamer.
1627 *
1628 */
1629 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1630 {
1631 struct drm_i915_private *dev_priv;
1632
1633 if (!intel_ring_initialized(ring))
1634 return;
1635
1636 dev_priv = ring->dev->dev_private;
1637
1638 intel_logical_ring_stop(ring);
1639 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1640 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1641
1642 if (ring->cleanup)
1643 ring->cleanup(ring);
1644
1645 i915_cmd_parser_fini_ring(ring);
1646 i915_gem_batch_pool_fini(&ring->batch_pool);
1647
1648 if (ring->status_page.obj) {
1649 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1650 ring->status_page.obj = NULL;
1651 }
1652
1653 lrc_destroy_wa_ctx_obj(ring);
1654 }
1655
1656 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1657 {
1658 int ret;
1659
1660 /* Intentionally left blank. */
1661 ring->buffer = NULL;
1662
1663 ring->dev = dev;
1664 INIT_LIST_HEAD(&ring->active_list);
1665 INIT_LIST_HEAD(&ring->request_list);
1666 i915_gem_batch_pool_init(dev, &ring->batch_pool);
1667 init_waitqueue_head(&ring->irq_queue);
1668
1669 INIT_LIST_HEAD(&ring->execlist_queue);
1670 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1671 spin_lock_init(&ring->execlist_lock);
1672
1673 ret = i915_cmd_parser_init_ring(ring);
1674 if (ret)
1675 return ret;
1676
1677 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1678
1679 return ret;
1680 }
1681
1682 static int logical_render_ring_init(struct drm_device *dev)
1683 {
1684 struct drm_i915_private *dev_priv = dev->dev_private;
1685 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1686 int ret;
1687
1688 ring->name = "render ring";
1689 ring->id = RCS;
1690 ring->mmio_base = RENDER_RING_BASE;
1691 ring->irq_enable_mask =
1692 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1693 ring->irq_keep_mask =
1694 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1695 if (HAS_L3_DPF(dev))
1696 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1697
1698 if (INTEL_INFO(dev)->gen >= 9)
1699 ring->init_hw = gen9_init_render_ring;
1700 else
1701 ring->init_hw = gen8_init_render_ring;
1702 ring->init_context = gen8_init_rcs_context;
1703 ring->cleanup = intel_fini_pipe_control;
1704 ring->get_seqno = gen8_get_seqno;
1705 ring->set_seqno = gen8_set_seqno;
1706 ring->emit_request = gen8_emit_request;
1707 ring->emit_flush = gen8_emit_flush_render;
1708 ring->irq_get = gen8_logical_ring_get_irq;
1709 ring->irq_put = gen8_logical_ring_put_irq;
1710 ring->emit_bb_start = gen8_emit_bb_start;
1711
1712 ring->dev = dev;
1713
1714 ret = intel_init_pipe_control(ring);
1715 if (ret)
1716 return ret;
1717
1718 ret = intel_init_workaround_bb(ring);
1719 if (ret) {
1720 /*
1721 * We continue even if we fail to initialize WA batch
1722 * because we only expect rare glitches but nothing
1723 * critical to prevent us from using GPU
1724 */
1725 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1726 ret);
1727 }
1728
1729 ret = logical_ring_init(dev, ring);
1730 if (ret) {
1731 lrc_destroy_wa_ctx_obj(ring);
1732 }
1733
1734 return ret;
1735 }
1736
1737 static int logical_bsd_ring_init(struct drm_device *dev)
1738 {
1739 struct drm_i915_private *dev_priv = dev->dev_private;
1740 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1741
1742 ring->name = "bsd ring";
1743 ring->id = VCS;
1744 ring->mmio_base = GEN6_BSD_RING_BASE;
1745 ring->irq_enable_mask =
1746 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1747 ring->irq_keep_mask =
1748 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1749
1750 ring->init_hw = gen8_init_common_ring;
1751 ring->get_seqno = gen8_get_seqno;
1752 ring->set_seqno = gen8_set_seqno;
1753 ring->emit_request = gen8_emit_request;
1754 ring->emit_flush = gen8_emit_flush;
1755 ring->irq_get = gen8_logical_ring_get_irq;
1756 ring->irq_put = gen8_logical_ring_put_irq;
1757 ring->emit_bb_start = gen8_emit_bb_start;
1758
1759 return logical_ring_init(dev, ring);
1760 }
1761
1762 static int logical_bsd2_ring_init(struct drm_device *dev)
1763 {
1764 struct drm_i915_private *dev_priv = dev->dev_private;
1765 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1766
1767 ring->name = "bds2 ring";
1768 ring->id = VCS2;
1769 ring->mmio_base = GEN8_BSD2_RING_BASE;
1770 ring->irq_enable_mask =
1771 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1772 ring->irq_keep_mask =
1773 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1774
1775 ring->init_hw = gen8_init_common_ring;
1776 ring->get_seqno = gen8_get_seqno;
1777 ring->set_seqno = gen8_set_seqno;
1778 ring->emit_request = gen8_emit_request;
1779 ring->emit_flush = gen8_emit_flush;
1780 ring->irq_get = gen8_logical_ring_get_irq;
1781 ring->irq_put = gen8_logical_ring_put_irq;
1782 ring->emit_bb_start = gen8_emit_bb_start;
1783
1784 return logical_ring_init(dev, ring);
1785 }
1786
1787 static int logical_blt_ring_init(struct drm_device *dev)
1788 {
1789 struct drm_i915_private *dev_priv = dev->dev_private;
1790 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1791
1792 ring->name = "blitter ring";
1793 ring->id = BCS;
1794 ring->mmio_base = BLT_RING_BASE;
1795 ring->irq_enable_mask =
1796 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1797 ring->irq_keep_mask =
1798 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1799
1800 ring->init_hw = gen8_init_common_ring;
1801 ring->get_seqno = gen8_get_seqno;
1802 ring->set_seqno = gen8_set_seqno;
1803 ring->emit_request = gen8_emit_request;
1804 ring->emit_flush = gen8_emit_flush;
1805 ring->irq_get = gen8_logical_ring_get_irq;
1806 ring->irq_put = gen8_logical_ring_put_irq;
1807 ring->emit_bb_start = gen8_emit_bb_start;
1808
1809 return logical_ring_init(dev, ring);
1810 }
1811
1812 static int logical_vebox_ring_init(struct drm_device *dev)
1813 {
1814 struct drm_i915_private *dev_priv = dev->dev_private;
1815 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1816
1817 ring->name = "video enhancement ring";
1818 ring->id = VECS;
1819 ring->mmio_base = VEBOX_RING_BASE;
1820 ring->irq_enable_mask =
1821 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1822 ring->irq_keep_mask =
1823 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1824
1825 ring->init_hw = gen8_init_common_ring;
1826 ring->get_seqno = gen8_get_seqno;
1827 ring->set_seqno = gen8_set_seqno;
1828 ring->emit_request = gen8_emit_request;
1829 ring->emit_flush = gen8_emit_flush;
1830 ring->irq_get = gen8_logical_ring_get_irq;
1831 ring->irq_put = gen8_logical_ring_put_irq;
1832 ring->emit_bb_start = gen8_emit_bb_start;
1833
1834 return logical_ring_init(dev, ring);
1835 }
1836
1837 /**
1838 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1839 * @dev: DRM device.
1840 *
1841 * This function inits the engines for an Execlists submission style (the equivalent in the
1842 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1843 * those engines that are present in the hardware.
1844 *
1845 * Return: non-zero if the initialization failed.
1846 */
1847 int intel_logical_rings_init(struct drm_device *dev)
1848 {
1849 struct drm_i915_private *dev_priv = dev->dev_private;
1850 int ret;
1851
1852 ret = logical_render_ring_init(dev);
1853 if (ret)
1854 return ret;
1855
1856 if (HAS_BSD(dev)) {
1857 ret = logical_bsd_ring_init(dev);
1858 if (ret)
1859 goto cleanup_render_ring;
1860 }
1861
1862 if (HAS_BLT(dev)) {
1863 ret = logical_blt_ring_init(dev);
1864 if (ret)
1865 goto cleanup_bsd_ring;
1866 }
1867
1868 if (HAS_VEBOX(dev)) {
1869 ret = logical_vebox_ring_init(dev);
1870 if (ret)
1871 goto cleanup_blt_ring;
1872 }
1873
1874 if (HAS_BSD2(dev)) {
1875 ret = logical_bsd2_ring_init(dev);
1876 if (ret)
1877 goto cleanup_vebox_ring;
1878 }
1879
1880 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1881 if (ret)
1882 goto cleanup_bsd2_ring;
1883
1884 return 0;
1885
1886 cleanup_bsd2_ring:
1887 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1888 cleanup_vebox_ring:
1889 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1890 cleanup_blt_ring:
1891 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1892 cleanup_bsd_ring:
1893 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1894 cleanup_render_ring:
1895 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1896
1897 return ret;
1898 }
1899
1900 static u32
1901 make_rpcs(struct drm_device *dev)
1902 {
1903 u32 rpcs = 0;
1904
1905 /*
1906 * No explicit RPCS request is needed to ensure full
1907 * slice/subslice/EU enablement prior to Gen9.
1908 */
1909 if (INTEL_INFO(dev)->gen < 9)
1910 return 0;
1911
1912 /*
1913 * Starting in Gen9, render power gating can leave
1914 * slice/subslice/EU in a partially enabled state. We
1915 * must make an explicit request through RPCS for full
1916 * enablement.
1917 */
1918 if (INTEL_INFO(dev)->has_slice_pg) {
1919 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1920 rpcs |= INTEL_INFO(dev)->slice_total <<
1921 GEN8_RPCS_S_CNT_SHIFT;
1922 rpcs |= GEN8_RPCS_ENABLE;
1923 }
1924
1925 if (INTEL_INFO(dev)->has_subslice_pg) {
1926 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1927 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1928 GEN8_RPCS_SS_CNT_SHIFT;
1929 rpcs |= GEN8_RPCS_ENABLE;
1930 }
1931
1932 if (INTEL_INFO(dev)->has_eu_pg) {
1933 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1934 GEN8_RPCS_EU_MIN_SHIFT;
1935 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1936 GEN8_RPCS_EU_MAX_SHIFT;
1937 rpcs |= GEN8_RPCS_ENABLE;
1938 }
1939
1940 return rpcs;
1941 }
1942
1943 static int
1944 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1945 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1946 {
1947 struct drm_device *dev = ring->dev;
1948 struct drm_i915_private *dev_priv = dev->dev_private;
1949 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1950 struct page *page;
1951 uint32_t *reg_state;
1952 int ret;
1953
1954 if (!ppgtt)
1955 ppgtt = dev_priv->mm.aliasing_ppgtt;
1956
1957 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1958 if (ret) {
1959 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1960 return ret;
1961 }
1962
1963 ret = i915_gem_object_get_pages(ctx_obj);
1964 if (ret) {
1965 DRM_DEBUG_DRIVER("Could not get object pages\n");
1966 return ret;
1967 }
1968
1969 i915_gem_object_pin_pages(ctx_obj);
1970
1971 /* The second page of the context object contains some fields which must
1972 * be set up prior to the first execution. */
1973 page = i915_gem_object_get_page(ctx_obj, 1);
1974 reg_state = kmap_atomic(page);
1975
1976 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1977 * commands followed by (reg, value) pairs. The values we are setting here are
1978 * only for the first context restore: on a subsequent save, the GPU will
1979 * recreate this batchbuffer with new values (including all the missing
1980 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1981 if (ring->id == RCS)
1982 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1983 else
1984 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1985 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1986 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1987 reg_state[CTX_CONTEXT_CONTROL+1] =
1988 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1989 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
1990 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1991 reg_state[CTX_RING_HEAD+1] = 0;
1992 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1993 reg_state[CTX_RING_TAIL+1] = 0;
1994 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1995 /* Ring buffer start address is not known until the buffer is pinned.
1996 * It is written to the context image in execlists_update_context()
1997 */
1998 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1999 reg_state[CTX_RING_BUFFER_CONTROL+1] =
2000 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
2001 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
2002 reg_state[CTX_BB_HEAD_U+1] = 0;
2003 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
2004 reg_state[CTX_BB_HEAD_L+1] = 0;
2005 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
2006 reg_state[CTX_BB_STATE+1] = (1<<5);
2007 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
2008 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2009 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2010 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2011 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2012 reg_state[CTX_SECOND_BB_STATE+1] = 0;
2013 if (ring->id == RCS) {
2014 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2015 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2016 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2017 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2018 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2019 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2020 if (ring->wa_ctx.obj) {
2021 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2022 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2023
2024 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2025 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2026 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2027
2028 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2029 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2030
2031 reg_state[CTX_BB_PER_CTX_PTR+1] =
2032 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2033 0x01;
2034 }
2035 }
2036 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2037 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2038 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2039 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2040 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2041 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2042 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2043 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2044 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2045 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2046 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2047 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2048
2049 /* With dynamic page allocation, PDPs may not be allocated at this point,
2050 * Point the unallocated PDPs to the scratch page
2051 */
2052 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2053 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2054 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2055 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2056 if (ring->id == RCS) {
2057 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2058 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2059 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2060 }
2061
2062 kunmap_atomic(reg_state);
2063
2064 ctx_obj->dirty = 1;
2065 set_page_dirty(page);
2066 i915_gem_object_unpin_pages(ctx_obj);
2067
2068 return 0;
2069 }
2070
2071 /**
2072 * intel_lr_context_free() - free the LRC specific bits of a context
2073 * @ctx: the LR context to free.
2074 *
2075 * The real context freeing is done in i915_gem_context_free: this only
2076 * takes care of the bits that are LRC related: the per-engine backing
2077 * objects and the logical ringbuffer.
2078 */
2079 void intel_lr_context_free(struct intel_context *ctx)
2080 {
2081 int i;
2082
2083 for (i = 0; i < I915_NUM_RINGS; i++) {
2084 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2085
2086 if (ctx_obj) {
2087 struct intel_ringbuffer *ringbuf =
2088 ctx->engine[i].ringbuf;
2089 struct intel_engine_cs *ring = ringbuf->ring;
2090
2091 if (ctx == ring->default_context) {
2092 intel_unpin_ringbuffer_obj(ringbuf);
2093 i915_gem_object_ggtt_unpin(ctx_obj);
2094 }
2095 WARN_ON(ctx->engine[ring->id].pin_count);
2096 intel_destroy_ringbuffer_obj(ringbuf);
2097 kfree(ringbuf);
2098 drm_gem_object_unreference(&ctx_obj->base);
2099 }
2100 }
2101 }
2102
2103 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2104 {
2105 int ret = 0;
2106
2107 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2108
2109 switch (ring->id) {
2110 case RCS:
2111 if (INTEL_INFO(ring->dev)->gen >= 9)
2112 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2113 else
2114 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2115 break;
2116 case VCS:
2117 case BCS:
2118 case VECS:
2119 case VCS2:
2120 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2121 break;
2122 }
2123
2124 return ret;
2125 }
2126
2127 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2128 struct drm_i915_gem_object *default_ctx_obj)
2129 {
2130 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2131
2132 /* The status page is offset 0 from the default context object
2133 * in LRC mode. */
2134 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
2135 ring->status_page.page_addr =
2136 kmap(sg_page(default_ctx_obj->pages->sgl));
2137 ring->status_page.obj = default_ctx_obj;
2138
2139 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2140 (u32)ring->status_page.gfx_addr);
2141 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2142 }
2143
2144 /**
2145 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
2146 * @ctx: LR context to create.
2147 * @ring: engine to be used with the context.
2148 *
2149 * This function can be called more than once, with different engines, if we plan
2150 * to use the context with them. The context backing objects and the ringbuffers
2151 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2152 * the creation is a deferred call: it's better to make sure first that we need to use
2153 * a given ring with the context.
2154 *
2155 * Return: non-zero on error.
2156 */
2157 int intel_lr_context_deferred_create(struct intel_context *ctx,
2158 struct intel_engine_cs *ring)
2159 {
2160 const bool is_global_default_ctx = (ctx == ring->default_context);
2161 struct drm_device *dev = ring->dev;
2162 struct drm_i915_gem_object *ctx_obj;
2163 uint32_t context_size;
2164 struct intel_ringbuffer *ringbuf;
2165 int ret;
2166
2167 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2168 WARN_ON(ctx->engine[ring->id].state);
2169
2170 context_size = round_up(get_lr_context_size(ring), 4096);
2171
2172 ctx_obj = i915_gem_alloc_object(dev, context_size);
2173 if (!ctx_obj) {
2174 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2175 return -ENOMEM;
2176 }
2177
2178 if (is_global_default_ctx) {
2179 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
2180 if (ret) {
2181 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
2182 ret);
2183 drm_gem_object_unreference(&ctx_obj->base);
2184 return ret;
2185 }
2186 }
2187
2188 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2189 if (!ringbuf) {
2190 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2191 ring->name);
2192 ret = -ENOMEM;
2193 goto error_unpin_ctx;
2194 }
2195
2196 ringbuf->ring = ring;
2197
2198 ringbuf->size = 32 * PAGE_SIZE;
2199 ringbuf->effective_size = ringbuf->size;
2200 ringbuf->head = 0;
2201 ringbuf->tail = 0;
2202 ringbuf->last_retired_head = -1;
2203 intel_ring_update_space(ringbuf);
2204
2205 if (ringbuf->obj == NULL) {
2206 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2207 if (ret) {
2208 DRM_DEBUG_DRIVER(
2209 "Failed to allocate ringbuffer obj %s: %d\n",
2210 ring->name, ret);
2211 goto error_free_rbuf;
2212 }
2213
2214 if (is_global_default_ctx) {
2215 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2216 if (ret) {
2217 DRM_ERROR(
2218 "Failed to pin and map ringbuffer %s: %d\n",
2219 ring->name, ret);
2220 goto error_destroy_rbuf;
2221 }
2222 }
2223
2224 }
2225
2226 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2227 if (ret) {
2228 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2229 goto error;
2230 }
2231
2232 ctx->engine[ring->id].ringbuf = ringbuf;
2233 ctx->engine[ring->id].state = ctx_obj;
2234
2235 if (ctx == ring->default_context)
2236 lrc_setup_hardware_status_page(ring, ctx_obj);
2237 else if (ring->id == RCS && !ctx->rcs_initialized) {
2238 if (ring->init_context) {
2239 ret = ring->init_context(ring, ctx);
2240 if (ret) {
2241 DRM_ERROR("ring init context: %d\n", ret);
2242 ctx->engine[ring->id].ringbuf = NULL;
2243 ctx->engine[ring->id].state = NULL;
2244 goto error;
2245 }
2246 }
2247
2248 ctx->rcs_initialized = true;
2249 }
2250
2251 return 0;
2252
2253 error:
2254 if (is_global_default_ctx)
2255 intel_unpin_ringbuffer_obj(ringbuf);
2256 error_destroy_rbuf:
2257 intel_destroy_ringbuffer_obj(ringbuf);
2258 error_free_rbuf:
2259 kfree(ringbuf);
2260 error_unpin_ctx:
2261 if (is_global_default_ctx)
2262 i915_gem_object_ggtt_unpin(ctx_obj);
2263 drm_gem_object_unreference(&ctx_obj->base);
2264 return ret;
2265 }
2266
2267 void intel_lr_context_reset(struct drm_device *dev,
2268 struct intel_context *ctx)
2269 {
2270 struct drm_i915_private *dev_priv = dev->dev_private;
2271 struct intel_engine_cs *ring;
2272 int i;
2273
2274 for_each_ring(ring, dev_priv, i) {
2275 struct drm_i915_gem_object *ctx_obj =
2276 ctx->engine[ring->id].state;
2277 struct intel_ringbuffer *ringbuf =
2278 ctx->engine[ring->id].ringbuf;
2279 uint32_t *reg_state;
2280 struct page *page;
2281
2282 if (!ctx_obj)
2283 continue;
2284
2285 if (i915_gem_object_get_pages(ctx_obj)) {
2286 WARN(1, "Failed get_pages for context obj\n");
2287 continue;
2288 }
2289 page = i915_gem_object_get_page(ctx_obj, 1);
2290 reg_state = kmap_atomic(page);
2291
2292 reg_state[CTX_RING_HEAD+1] = 0;
2293 reg_state[CTX_RING_TAIL+1] = 0;
2294
2295 kunmap_atomic(reg_state);
2296
2297 ringbuf->head = 0;
2298 ringbuf->tail = 0;
2299 }
2300 }
This page took 0.080292 seconds and 6 git commands to generate.