drm/i915: Update ring->emit_bb_start() to take a request structure
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138
139 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143 #define RING_EXECLIST_QFULL (1 << 0x2)
144 #define RING_EXECLIST1_VALID (1 << 0x3)
145 #define RING_EXECLIST0_VALID (1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
149
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
156
157 #define CTX_LRI_HEADER_0 0x01
158 #define CTX_CONTEXT_CONTROL 0x02
159 #define CTX_RING_HEAD 0x04
160 #define CTX_RING_TAIL 0x06
161 #define CTX_RING_BUFFER_START 0x08
162 #define CTX_RING_BUFFER_CONTROL 0x0a
163 #define CTX_BB_HEAD_U 0x0c
164 #define CTX_BB_HEAD_L 0x0e
165 #define CTX_BB_STATE 0x10
166 #define CTX_SECOND_BB_HEAD_U 0x12
167 #define CTX_SECOND_BB_HEAD_L 0x14
168 #define CTX_SECOND_BB_STATE 0x16
169 #define CTX_BB_PER_CTX_PTR 0x18
170 #define CTX_RCS_INDIRECT_CTX 0x1a
171 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
172 #define CTX_LRI_HEADER_1 0x21
173 #define CTX_CTX_TIMESTAMP 0x22
174 #define CTX_PDP3_UDW 0x24
175 #define CTX_PDP3_LDW 0x26
176 #define CTX_PDP2_UDW 0x28
177 #define CTX_PDP2_LDW 0x2a
178 #define CTX_PDP1_UDW 0x2c
179 #define CTX_PDP1_LDW 0x2e
180 #define CTX_PDP0_UDW 0x30
181 #define CTX_PDP0_LDW 0x32
182 #define CTX_LRI_HEADER_2 0x41
183 #define CTX_R_PWR_CLK_STATE 0x42
184 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
185
186 #define GEN8_CTX_VALID (1<<0)
187 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188 #define GEN8_CTX_FORCE_RESTORE (1<<2)
189 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
190 #define GEN8_CTX_PRIVILEGE (1<<8)
191
192 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
193 const u64 _addr = test_bit(n, ppgtt->pdp.used_pdpes) ? \
194 ppgtt->pdp.page_directory[n]->daddr : \
195 ppgtt->scratch_pd->daddr; \
196 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198 }
199
200 enum {
201 ADVANCED_CONTEXT = 0,
202 LEGACY_CONTEXT,
203 ADVANCED_AD_CONTEXT,
204 LEGACY_64B_CONTEXT
205 };
206 #define GEN8_CTX_MODE_SHIFT 3
207 enum {
208 FAULT_AND_HANG = 0,
209 FAULT_AND_HALT, /* Debug only */
210 FAULT_AND_STREAM,
211 FAULT_AND_CONTINUE /* Unsupported */
212 };
213 #define GEN8_CTX_ID_SHIFT 32
214 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
215
216 static int intel_lr_context_pin(struct intel_engine_cs *ring,
217 struct intel_context *ctx);
218
219 /**
220 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
221 * @dev: DRM device.
222 * @enable_execlists: value of i915.enable_execlists module parameter.
223 *
224 * Only certain platforms support Execlists (the prerequisites being
225 * support for Logical Ring Contexts and Aliasing PPGTT or better).
226 *
227 * Return: 1 if Execlists is supported and has to be enabled.
228 */
229 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
230 {
231 WARN_ON(i915.enable_ppgtt == -1);
232
233 if (INTEL_INFO(dev)->gen >= 9)
234 return 1;
235
236 if (enable_execlists == 0)
237 return 0;
238
239 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
240 i915.use_mmio_flip >= 0)
241 return 1;
242
243 return 0;
244 }
245
246 /**
247 * intel_execlists_ctx_id() - get the Execlists Context ID
248 * @ctx_obj: Logical Ring Context backing object.
249 *
250 * Do not confuse with ctx->id! Unfortunately we have a name overload
251 * here: the old context ID we pass to userspace as a handler so that
252 * they can refer to a context, and the new context ID we pass to the
253 * ELSP so that the GPU can inform us of the context status via
254 * interrupts.
255 *
256 * Return: 20-bits globally unique context ID.
257 */
258 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
259 {
260 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
261
262 /* LRCA is required to be 4K aligned so the more significant 20 bits
263 * are globally unique */
264 return lrca >> 12;
265 }
266
267 static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
268 struct drm_i915_gem_object *ctx_obj)
269 {
270 struct drm_device *dev = ring->dev;
271 uint64_t desc;
272 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
273
274 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
275
276 desc = GEN8_CTX_VALID;
277 desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
278 if (IS_GEN8(ctx_obj->base.dev))
279 desc |= GEN8_CTX_L3LLC_COHERENT;
280 desc |= GEN8_CTX_PRIVILEGE;
281 desc |= lrca;
282 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
283
284 /* TODO: WaDisableLiteRestore when we start using semaphore
285 * signalling between Command Streamers */
286 /* desc |= GEN8_CTX_FORCE_RESTORE; */
287
288 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
289 if (IS_GEN9(dev) &&
290 INTEL_REVID(dev) <= SKL_REVID_B0 &&
291 (ring->id == BCS || ring->id == VCS ||
292 ring->id == VECS || ring->id == VCS2))
293 desc |= GEN8_CTX_FORCE_RESTORE;
294
295 return desc;
296 }
297
298 static void execlists_elsp_write(struct intel_engine_cs *ring,
299 struct drm_i915_gem_object *ctx_obj0,
300 struct drm_i915_gem_object *ctx_obj1)
301 {
302 struct drm_device *dev = ring->dev;
303 struct drm_i915_private *dev_priv = dev->dev_private;
304 uint64_t temp = 0;
305 uint32_t desc[4];
306
307 /* XXX: You must always write both descriptors in the order below. */
308 if (ctx_obj1)
309 temp = execlists_ctx_descriptor(ring, ctx_obj1);
310 else
311 temp = 0;
312 desc[1] = (u32)(temp >> 32);
313 desc[0] = (u32)temp;
314
315 temp = execlists_ctx_descriptor(ring, ctx_obj0);
316 desc[3] = (u32)(temp >> 32);
317 desc[2] = (u32)temp;
318
319 spin_lock(&dev_priv->uncore.lock);
320 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
321 I915_WRITE_FW(RING_ELSP(ring), desc[1]);
322 I915_WRITE_FW(RING_ELSP(ring), desc[0]);
323 I915_WRITE_FW(RING_ELSP(ring), desc[3]);
324
325 /* The context is automatically loaded after the following */
326 I915_WRITE_FW(RING_ELSP(ring), desc[2]);
327
328 /* ELSP is a wo register, so use another nearby reg for posting instead */
329 POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
330 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
331 spin_unlock(&dev_priv->uncore.lock);
332 }
333
334 static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
335 struct drm_i915_gem_object *ring_obj,
336 struct i915_hw_ppgtt *ppgtt,
337 u32 tail)
338 {
339 struct page *page;
340 uint32_t *reg_state;
341
342 page = i915_gem_object_get_page(ctx_obj, 1);
343 reg_state = kmap_atomic(page);
344
345 reg_state[CTX_RING_TAIL+1] = tail;
346 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
347
348 /* True PPGTT with dynamic page allocation: update PDP registers and
349 * point the unallocated PDPs to the scratch page
350 */
351 if (ppgtt) {
352 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
353 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
354 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
355 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
356 }
357
358 kunmap_atomic(reg_state);
359
360 return 0;
361 }
362
363 static void execlists_submit_contexts(struct intel_engine_cs *ring,
364 struct intel_context *to0, u32 tail0,
365 struct intel_context *to1, u32 tail1)
366 {
367 struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
368 struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
369 struct drm_i915_gem_object *ctx_obj1 = NULL;
370 struct intel_ringbuffer *ringbuf1 = NULL;
371
372 BUG_ON(!ctx_obj0);
373 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
374 WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
375
376 execlists_update_context(ctx_obj0, ringbuf0->obj, to0->ppgtt, tail0);
377
378 if (to1) {
379 ringbuf1 = to1->engine[ring->id].ringbuf;
380 ctx_obj1 = to1->engine[ring->id].state;
381 BUG_ON(!ctx_obj1);
382 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
383 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
384
385 execlists_update_context(ctx_obj1, ringbuf1->obj, to1->ppgtt, tail1);
386 }
387
388 execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
389 }
390
391 static void execlists_context_unqueue(struct intel_engine_cs *ring)
392 {
393 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
394 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
395
396 assert_spin_locked(&ring->execlist_lock);
397
398 /*
399 * If irqs are not active generate a warning as batches that finish
400 * without the irqs may get lost and a GPU Hang may occur.
401 */
402 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
403
404 if (list_empty(&ring->execlist_queue))
405 return;
406
407 /* Try to read in pairs */
408 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
409 execlist_link) {
410 if (!req0) {
411 req0 = cursor;
412 } else if (req0->ctx == cursor->ctx) {
413 /* Same ctx: ignore first request, as second request
414 * will update tail past first request's workload */
415 cursor->elsp_submitted = req0->elsp_submitted;
416 list_del(&req0->execlist_link);
417 list_add_tail(&req0->execlist_link,
418 &ring->execlist_retired_req_list);
419 req0 = cursor;
420 } else {
421 req1 = cursor;
422 break;
423 }
424 }
425
426 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
427 /*
428 * WaIdleLiteRestore: make sure we never cause a lite
429 * restore with HEAD==TAIL
430 */
431 if (req0->elsp_submitted) {
432 /*
433 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
434 * as we resubmit the request. See gen8_emit_request()
435 * for where we prepare the padding after the end of the
436 * request.
437 */
438 struct intel_ringbuffer *ringbuf;
439
440 ringbuf = req0->ctx->engine[ring->id].ringbuf;
441 req0->tail += 8;
442 req0->tail &= ringbuf->size - 1;
443 }
444 }
445
446 WARN_ON(req1 && req1->elsp_submitted);
447
448 execlists_submit_contexts(ring, req0->ctx, req0->tail,
449 req1 ? req1->ctx : NULL,
450 req1 ? req1->tail : 0);
451
452 req0->elsp_submitted++;
453 if (req1)
454 req1->elsp_submitted++;
455 }
456
457 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
458 u32 request_id)
459 {
460 struct drm_i915_gem_request *head_req;
461
462 assert_spin_locked(&ring->execlist_lock);
463
464 head_req = list_first_entry_or_null(&ring->execlist_queue,
465 struct drm_i915_gem_request,
466 execlist_link);
467
468 if (head_req != NULL) {
469 struct drm_i915_gem_object *ctx_obj =
470 head_req->ctx->engine[ring->id].state;
471 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
472 WARN(head_req->elsp_submitted == 0,
473 "Never submitted head request\n");
474
475 if (--head_req->elsp_submitted <= 0) {
476 list_del(&head_req->execlist_link);
477 list_add_tail(&head_req->execlist_link,
478 &ring->execlist_retired_req_list);
479 return true;
480 }
481 }
482 }
483
484 return false;
485 }
486
487 /**
488 * intel_lrc_irq_handler() - handle Context Switch interrupts
489 * @ring: Engine Command Streamer to handle.
490 *
491 * Check the unread Context Status Buffers and manage the submission of new
492 * contexts to the ELSP accordingly.
493 */
494 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
495 {
496 struct drm_i915_private *dev_priv = ring->dev->dev_private;
497 u32 status_pointer;
498 u8 read_pointer;
499 u8 write_pointer;
500 u32 status;
501 u32 status_id;
502 u32 submit_contexts = 0;
503
504 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
505
506 read_pointer = ring->next_context_status_buffer;
507 write_pointer = status_pointer & 0x07;
508 if (read_pointer > write_pointer)
509 write_pointer += 6;
510
511 spin_lock(&ring->execlist_lock);
512
513 while (read_pointer < write_pointer) {
514 read_pointer++;
515 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
516 (read_pointer % 6) * 8);
517 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
518 (read_pointer % 6) * 8 + 4);
519
520 if (status & GEN8_CTX_STATUS_PREEMPTED) {
521 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
522 if (execlists_check_remove_request(ring, status_id))
523 WARN(1, "Lite Restored request removed from queue\n");
524 } else
525 WARN(1, "Preemption without Lite Restore\n");
526 }
527
528 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
529 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
530 if (execlists_check_remove_request(ring, status_id))
531 submit_contexts++;
532 }
533 }
534
535 if (submit_contexts != 0)
536 execlists_context_unqueue(ring);
537
538 spin_unlock(&ring->execlist_lock);
539
540 WARN(submit_contexts > 2, "More than two context complete events?\n");
541 ring->next_context_status_buffer = write_pointer % 6;
542
543 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
544 ((u32)ring->next_context_status_buffer & 0x07) << 8);
545 }
546
547 static int execlists_context_queue(struct intel_engine_cs *ring,
548 struct intel_context *to,
549 u32 tail,
550 struct drm_i915_gem_request *request)
551 {
552 struct drm_i915_gem_request *cursor;
553 int num_elements = 0;
554
555 if (to != ring->default_context)
556 intel_lr_context_pin(ring, to);
557
558 if (!request) {
559 /*
560 * If there isn't a request associated with this submission,
561 * create one as a temporary holder.
562 */
563 request = kzalloc(sizeof(*request), GFP_KERNEL);
564 if (request == NULL)
565 return -ENOMEM;
566 request->ring = ring;
567 request->ctx = to;
568 kref_init(&request->ref);
569 i915_gem_context_reference(request->ctx);
570 } else {
571 i915_gem_request_reference(request);
572 WARN_ON(to != request->ctx);
573 }
574 request->tail = tail;
575
576 spin_lock_irq(&ring->execlist_lock);
577
578 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
579 if (++num_elements > 2)
580 break;
581
582 if (num_elements > 2) {
583 struct drm_i915_gem_request *tail_req;
584
585 tail_req = list_last_entry(&ring->execlist_queue,
586 struct drm_i915_gem_request,
587 execlist_link);
588
589 if (to == tail_req->ctx) {
590 WARN(tail_req->elsp_submitted != 0,
591 "More than 2 already-submitted reqs queued\n");
592 list_del(&tail_req->execlist_link);
593 list_add_tail(&tail_req->execlist_link,
594 &ring->execlist_retired_req_list);
595 }
596 }
597
598 list_add_tail(&request->execlist_link, &ring->execlist_queue);
599 if (num_elements == 0)
600 execlists_context_unqueue(ring);
601
602 spin_unlock_irq(&ring->execlist_lock);
603
604 return 0;
605 }
606
607 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
608 {
609 struct intel_engine_cs *ring = req->ring;
610 uint32_t flush_domains;
611 int ret;
612
613 flush_domains = 0;
614 if (ring->gpu_caches_dirty)
615 flush_domains = I915_GEM_GPU_DOMAINS;
616
617 ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
618 if (ret)
619 return ret;
620
621 ring->gpu_caches_dirty = false;
622 return 0;
623 }
624
625 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
626 struct list_head *vmas)
627 {
628 const unsigned other_rings = ~intel_ring_flag(req->ring);
629 struct i915_vma *vma;
630 uint32_t flush_domains = 0;
631 bool flush_chipset = false;
632 int ret;
633
634 list_for_each_entry(vma, vmas, exec_list) {
635 struct drm_i915_gem_object *obj = vma->obj;
636
637 if (obj->active & other_rings) {
638 ret = i915_gem_object_sync(obj, req->ring, &req);
639 if (ret)
640 return ret;
641 }
642
643 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
644 flush_chipset |= i915_gem_clflush_object(obj, false);
645
646 flush_domains |= obj->base.write_domain;
647 }
648
649 if (flush_domains & I915_GEM_DOMAIN_GTT)
650 wmb();
651
652 /* Unconditionally invalidate gpu caches and ensure that we do flush
653 * any residual writes from the previous batch.
654 */
655 return logical_ring_invalidate_all_caches(req);
656 }
657
658 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
659 {
660 int ret;
661
662 if (request->ctx != request->ring->default_context) {
663 ret = intel_lr_context_pin(request->ring, request->ctx);
664 if (ret)
665 return ret;
666 }
667
668 request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
669
670 return 0;
671 }
672
673 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
674 struct intel_context *ctx,
675 int bytes)
676 {
677 struct intel_engine_cs *ring = ringbuf->ring;
678 struct drm_i915_gem_request *request;
679 unsigned space;
680 int ret;
681
682 /* The whole point of reserving space is to not wait! */
683 WARN_ON(ringbuf->reserved_in_use);
684
685 if (intel_ring_space(ringbuf) >= bytes)
686 return 0;
687
688 list_for_each_entry(request, &ring->request_list, list) {
689 /*
690 * The request queue is per-engine, so can contain requests
691 * from multiple ringbuffers. Here, we must ignore any that
692 * aren't from the ringbuffer we're considering.
693 */
694 if (request->ringbuf != ringbuf)
695 continue;
696
697 /* Would completion of this request free enough space? */
698 space = __intel_ring_space(request->postfix, ringbuf->tail,
699 ringbuf->size);
700 if (space >= bytes)
701 break;
702 }
703
704 if (WARN_ON(&request->list == &ring->request_list))
705 return -ENOSPC;
706
707 ret = i915_wait_request(request);
708 if (ret)
709 return ret;
710
711 ringbuf->space = space;
712 return 0;
713 }
714
715 /*
716 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
717 * @ringbuf: Logical Ringbuffer to advance.
718 *
719 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
720 * really happens during submission is that the context and current tail will be placed
721 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
722 * point, the tail *inside* the context is updated and the ELSP written to.
723 */
724 static void
725 intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
726 struct intel_context *ctx,
727 struct drm_i915_gem_request *request)
728 {
729 struct intel_engine_cs *ring = ringbuf->ring;
730
731 intel_logical_ring_advance(ringbuf);
732
733 if (intel_ring_stopped(ring))
734 return;
735
736 execlists_context_queue(ring, ctx, ringbuf->tail, request);
737 }
738
739 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
740 struct intel_context *ctx)
741 {
742 uint32_t __iomem *virt;
743 int rem = ringbuf->size - ringbuf->tail;
744
745 /* Can't wrap if space has already been reserved! */
746 WARN_ON(ringbuf->reserved_in_use);
747
748 if (ringbuf->space < rem) {
749 int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
750
751 if (ret)
752 return ret;
753 }
754
755 virt = ringbuf->virtual_start + ringbuf->tail;
756 rem /= 4;
757 while (rem--)
758 iowrite32(MI_NOOP, virt++);
759
760 ringbuf->tail = 0;
761 intel_ring_update_space(ringbuf);
762
763 return 0;
764 }
765
766 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
767 struct intel_context *ctx, int bytes)
768 {
769 int ret;
770
771 /*
772 * Add on the reserved size to the request to make sure that after
773 * the intended commands have been emitted, there is guaranteed to
774 * still be enough free space to send them to the hardware.
775 */
776 if (!ringbuf->reserved_in_use)
777 bytes += ringbuf->reserved_size;
778
779 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
780 ret = logical_ring_wrap_buffer(ringbuf, ctx);
781 if (unlikely(ret))
782 return ret;
783
784 if(ringbuf->reserved_size) {
785 uint32_t size = ringbuf->reserved_size;
786
787 intel_ring_reserved_space_cancel(ringbuf);
788 intel_ring_reserved_space_reserve(ringbuf, size);
789 }
790 }
791
792 if (unlikely(ringbuf->space < bytes)) {
793 ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
794 if (unlikely(ret))
795 return ret;
796 }
797
798 return 0;
799 }
800
801 /**
802 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
803 *
804 * @ringbuf: Logical ringbuffer.
805 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
806 *
807 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
808 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
809 * and also preallocates a request (every workload submission is still mediated through
810 * requests, same as it did with legacy ringbuffer submission).
811 *
812 * Return: non-zero if the ringbuffer is not ready to be written to.
813 */
814 static int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
815 struct intel_context *ctx, int num_dwords)
816 {
817 struct drm_i915_gem_request *req;
818 struct intel_engine_cs *ring = ringbuf->ring;
819 struct drm_device *dev = ring->dev;
820 struct drm_i915_private *dev_priv = dev->dev_private;
821 int ret;
822
823 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
824 dev_priv->mm.interruptible);
825 if (ret)
826 return ret;
827
828 ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
829 if (ret)
830 return ret;
831
832 /* Preallocate the olr before touching the ring */
833 ret = i915_gem_request_alloc(ring, ctx, &req);
834 if (ret)
835 return ret;
836
837 ringbuf->space -= num_dwords * sizeof(uint32_t);
838 return 0;
839 }
840
841 /**
842 * execlists_submission() - submit a batchbuffer for execution, Execlists style
843 * @dev: DRM device.
844 * @file: DRM file.
845 * @ring: Engine Command Streamer to submit to.
846 * @ctx: Context to employ for this submission.
847 * @args: execbuffer call arguments.
848 * @vmas: list of vmas.
849 * @batch_obj: the batchbuffer to submit.
850 * @exec_start: batchbuffer start virtual address pointer.
851 * @dispatch_flags: translated execbuffer call flags.
852 *
853 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
854 * away the submission details of the execbuffer ioctl call.
855 *
856 * Return: non-zero if the submission fails.
857 */
858 int intel_execlists_submission(struct i915_execbuffer_params *params,
859 struct drm_i915_gem_execbuffer2 *args,
860 struct list_head *vmas)
861 {
862 struct drm_device *dev = params->dev;
863 struct intel_engine_cs *ring = params->ring;
864 struct drm_i915_private *dev_priv = dev->dev_private;
865 struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
866 u64 exec_start;
867 int instp_mode;
868 u32 instp_mask;
869 int ret;
870
871 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
872 instp_mask = I915_EXEC_CONSTANTS_MASK;
873 switch (instp_mode) {
874 case I915_EXEC_CONSTANTS_REL_GENERAL:
875 case I915_EXEC_CONSTANTS_ABSOLUTE:
876 case I915_EXEC_CONSTANTS_REL_SURFACE:
877 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
878 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
879 return -EINVAL;
880 }
881
882 if (instp_mode != dev_priv->relative_constants_mode) {
883 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
884 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
885 return -EINVAL;
886 }
887
888 /* The HW changed the meaning on this bit on gen6 */
889 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
890 }
891 break;
892 default:
893 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
894 return -EINVAL;
895 }
896
897 if (args->num_cliprects != 0) {
898 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
899 return -EINVAL;
900 } else {
901 if (args->DR4 == 0xffffffff) {
902 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
903 args->DR4 = 0;
904 }
905
906 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
907 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
908 return -EINVAL;
909 }
910 }
911
912 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
913 DRM_DEBUG("sol reset is gen7 only\n");
914 return -EINVAL;
915 }
916
917 ret = execlists_move_to_gpu(params->request, vmas);
918 if (ret)
919 return ret;
920
921 if (ring == &dev_priv->ring[RCS] &&
922 instp_mode != dev_priv->relative_constants_mode) {
923 ret = intel_logical_ring_begin(ringbuf, params->ctx, 4);
924 if (ret)
925 return ret;
926
927 intel_logical_ring_emit(ringbuf, MI_NOOP);
928 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
929 intel_logical_ring_emit(ringbuf, INSTPM);
930 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
931 intel_logical_ring_advance(ringbuf);
932
933 dev_priv->relative_constants_mode = instp_mode;
934 }
935
936 exec_start = params->batch_obj_vm_offset +
937 args->batch_start_offset;
938
939 ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
940 if (ret)
941 return ret;
942
943 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
944
945 i915_gem_execbuffer_move_to_active(vmas, params->request);
946 i915_gem_execbuffer_retire_commands(params);
947
948 return 0;
949 }
950
951 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
952 {
953 struct drm_i915_gem_request *req, *tmp;
954 struct list_head retired_list;
955
956 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
957 if (list_empty(&ring->execlist_retired_req_list))
958 return;
959
960 INIT_LIST_HEAD(&retired_list);
961 spin_lock_irq(&ring->execlist_lock);
962 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
963 spin_unlock_irq(&ring->execlist_lock);
964
965 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
966 struct intel_context *ctx = req->ctx;
967 struct drm_i915_gem_object *ctx_obj =
968 ctx->engine[ring->id].state;
969
970 if (ctx_obj && (ctx != ring->default_context))
971 intel_lr_context_unpin(ring, ctx);
972 list_del(&req->execlist_link);
973 i915_gem_request_unreference(req);
974 }
975 }
976
977 void intel_logical_ring_stop(struct intel_engine_cs *ring)
978 {
979 struct drm_i915_private *dev_priv = ring->dev->dev_private;
980 int ret;
981
982 if (!intel_ring_initialized(ring))
983 return;
984
985 ret = intel_ring_idle(ring);
986 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
987 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
988 ring->name, ret);
989
990 /* TODO: Is this correct with Execlists enabled? */
991 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
992 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
993 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
994 return;
995 }
996 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
997 }
998
999 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1000 {
1001 struct intel_engine_cs *ring = req->ring;
1002 int ret;
1003
1004 if (!ring->gpu_caches_dirty)
1005 return 0;
1006
1007 ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1008 if (ret)
1009 return ret;
1010
1011 ring->gpu_caches_dirty = false;
1012 return 0;
1013 }
1014
1015 static int intel_lr_context_pin(struct intel_engine_cs *ring,
1016 struct intel_context *ctx)
1017 {
1018 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1019 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1020 int ret = 0;
1021
1022 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1023 if (ctx->engine[ring->id].pin_count++ == 0) {
1024 ret = i915_gem_obj_ggtt_pin(ctx_obj,
1025 GEN8_LR_CONTEXT_ALIGN, 0);
1026 if (ret)
1027 goto reset_pin_count;
1028
1029 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1030 if (ret)
1031 goto unpin_ctx_obj;
1032 }
1033
1034 return ret;
1035
1036 unpin_ctx_obj:
1037 i915_gem_object_ggtt_unpin(ctx_obj);
1038 reset_pin_count:
1039 ctx->engine[ring->id].pin_count = 0;
1040
1041 return ret;
1042 }
1043
1044 void intel_lr_context_unpin(struct intel_engine_cs *ring,
1045 struct intel_context *ctx)
1046 {
1047 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1048 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1049
1050 if (ctx_obj) {
1051 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1052 if (--ctx->engine[ring->id].pin_count == 0) {
1053 intel_unpin_ringbuffer_obj(ringbuf);
1054 i915_gem_object_ggtt_unpin(ctx_obj);
1055 }
1056 }
1057 }
1058
1059 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1060 {
1061 int ret, i;
1062 struct intel_engine_cs *ring = req->ring;
1063 struct intel_ringbuffer *ringbuf = req->ringbuf;
1064 struct drm_device *dev = ring->dev;
1065 struct drm_i915_private *dev_priv = dev->dev_private;
1066 struct i915_workarounds *w = &dev_priv->workarounds;
1067
1068 if (WARN_ON_ONCE(w->count == 0))
1069 return 0;
1070
1071 ring->gpu_caches_dirty = true;
1072 ret = logical_ring_flush_all_caches(req);
1073 if (ret)
1074 return ret;
1075
1076 ret = intel_logical_ring_begin(ringbuf, req->ctx, w->count * 2 + 2);
1077 if (ret)
1078 return ret;
1079
1080 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1081 for (i = 0; i < w->count; i++) {
1082 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1083 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1084 }
1085 intel_logical_ring_emit(ringbuf, MI_NOOP);
1086
1087 intel_logical_ring_advance(ringbuf);
1088
1089 ring->gpu_caches_dirty = true;
1090 ret = logical_ring_flush_all_caches(req);
1091 if (ret)
1092 return ret;
1093
1094 return 0;
1095 }
1096
1097 #define wa_ctx_emit(batch, cmd) \
1098 do { \
1099 if (WARN_ON(index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1100 return -ENOSPC; \
1101 } \
1102 batch[index++] = (cmd); \
1103 } while (0)
1104
1105 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1106 uint32_t offset,
1107 uint32_t start_alignment)
1108 {
1109 return wa_ctx->offset = ALIGN(offset, start_alignment);
1110 }
1111
1112 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1113 uint32_t offset,
1114 uint32_t size_alignment)
1115 {
1116 wa_ctx->size = offset - wa_ctx->offset;
1117
1118 WARN(wa_ctx->size % size_alignment,
1119 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1120 wa_ctx->size, size_alignment);
1121 return 0;
1122 }
1123
1124 /**
1125 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1126 *
1127 * @ring: only applicable for RCS
1128 * @wa_ctx: structure representing wa_ctx
1129 * offset: specifies start of the batch, should be cache-aligned. This is updated
1130 * with the offset value received as input.
1131 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1132 * @batch: page in which WA are loaded
1133 * @offset: This field specifies the start of the batch, it should be
1134 * cache-aligned otherwise it is adjusted accordingly.
1135 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1136 * initialized at the beginning and shared across all contexts but this field
1137 * helps us to have multiple batches at different offsets and select them based
1138 * on a criteria. At the moment this batch always start at the beginning of the page
1139 * and at this point we don't have multiple wa_ctx batch buffers.
1140 *
1141 * The number of WA applied are not known at the beginning; we use this field
1142 * to return the no of DWORDS written.
1143
1144 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1145 * so it adds NOOPs as padding to make it cacheline aligned.
1146 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1147 * makes a complete batch buffer.
1148 *
1149 * Return: non-zero if we exceed the PAGE_SIZE limit.
1150 */
1151
1152 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1153 struct i915_wa_ctx_bb *wa_ctx,
1154 uint32_t *const batch,
1155 uint32_t *offset)
1156 {
1157 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1158
1159 /* WaDisableCtxRestoreArbitration:bdw,chv */
1160 wa_ctx_emit(batch, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1161
1162 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1163 if (IS_BROADWELL(ring->dev)) {
1164 struct drm_i915_private *dev_priv = to_i915(ring->dev);
1165 uint32_t l3sqc4_flush = (I915_READ(GEN8_L3SQCREG4) |
1166 GEN8_LQSC_FLUSH_COHERENT_LINES);
1167
1168 wa_ctx_emit(batch, MI_LOAD_REGISTER_IMM(1));
1169 wa_ctx_emit(batch, GEN8_L3SQCREG4);
1170 wa_ctx_emit(batch, l3sqc4_flush);
1171
1172 wa_ctx_emit(batch, GFX_OP_PIPE_CONTROL(6));
1173 wa_ctx_emit(batch, (PIPE_CONTROL_CS_STALL |
1174 PIPE_CONTROL_DC_FLUSH_ENABLE));
1175 wa_ctx_emit(batch, 0);
1176 wa_ctx_emit(batch, 0);
1177 wa_ctx_emit(batch, 0);
1178 wa_ctx_emit(batch, 0);
1179
1180 wa_ctx_emit(batch, MI_LOAD_REGISTER_IMM(1));
1181 wa_ctx_emit(batch, GEN8_L3SQCREG4);
1182 wa_ctx_emit(batch, l3sqc4_flush & ~GEN8_LQSC_FLUSH_COHERENT_LINES);
1183 }
1184
1185 /* Pad to end of cacheline */
1186 while (index % CACHELINE_DWORDS)
1187 wa_ctx_emit(batch, MI_NOOP);
1188
1189 /*
1190 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1191 * execution depends on the length specified in terms of cache lines
1192 * in the register CTX_RCS_INDIRECT_CTX
1193 */
1194
1195 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1196 }
1197
1198 /**
1199 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1200 *
1201 * @ring: only applicable for RCS
1202 * @wa_ctx: structure representing wa_ctx
1203 * offset: specifies start of the batch, should be cache-aligned.
1204 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1205 * @offset: This field specifies the start of this batch.
1206 * This batch is started immediately after indirect_ctx batch. Since we ensure
1207 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1208 *
1209 * The number of DWORDS written are returned using this field.
1210 *
1211 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1212 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1213 */
1214 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1215 struct i915_wa_ctx_bb *wa_ctx,
1216 uint32_t *const batch,
1217 uint32_t *offset)
1218 {
1219 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1220
1221 /* WaDisableCtxRestoreArbitration:bdw,chv */
1222 wa_ctx_emit(batch, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1223
1224 wa_ctx_emit(batch, MI_BATCH_BUFFER_END);
1225
1226 return wa_ctx_end(wa_ctx, *offset = index, 1);
1227 }
1228
1229 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1230 {
1231 int ret;
1232
1233 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1234 if (!ring->wa_ctx.obj) {
1235 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1236 return -ENOMEM;
1237 }
1238
1239 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1240 if (ret) {
1241 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1242 ret);
1243 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1244 return ret;
1245 }
1246
1247 return 0;
1248 }
1249
1250 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1251 {
1252 if (ring->wa_ctx.obj) {
1253 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1254 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1255 ring->wa_ctx.obj = NULL;
1256 }
1257 }
1258
1259 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1260 {
1261 int ret;
1262 uint32_t *batch;
1263 uint32_t offset;
1264 struct page *page;
1265 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1266
1267 WARN_ON(ring->id != RCS);
1268
1269 /* some WA perform writes to scratch page, ensure it is valid */
1270 if (ring->scratch.obj == NULL) {
1271 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1272 return -EINVAL;
1273 }
1274
1275 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1276 if (ret) {
1277 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1278 return ret;
1279 }
1280
1281 page = i915_gem_object_get_page(wa_ctx->obj, 0);
1282 batch = kmap_atomic(page);
1283 offset = 0;
1284
1285 if (INTEL_INFO(ring->dev)->gen == 8) {
1286 ret = gen8_init_indirectctx_bb(ring,
1287 &wa_ctx->indirect_ctx,
1288 batch,
1289 &offset);
1290 if (ret)
1291 goto out;
1292
1293 ret = gen8_init_perctx_bb(ring,
1294 &wa_ctx->per_ctx,
1295 batch,
1296 &offset);
1297 if (ret)
1298 goto out;
1299 } else {
1300 WARN(INTEL_INFO(ring->dev)->gen >= 8,
1301 "WA batch buffer is not initialized for Gen%d\n",
1302 INTEL_INFO(ring->dev)->gen);
1303 lrc_destroy_wa_ctx_obj(ring);
1304 }
1305
1306 out:
1307 kunmap_atomic(batch);
1308 if (ret)
1309 lrc_destroy_wa_ctx_obj(ring);
1310
1311 return ret;
1312 }
1313
1314 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1315 {
1316 struct drm_device *dev = ring->dev;
1317 struct drm_i915_private *dev_priv = dev->dev_private;
1318
1319 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1320 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1321
1322 I915_WRITE(RING_MODE_GEN7(ring),
1323 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1324 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1325 POSTING_READ(RING_MODE_GEN7(ring));
1326 ring->next_context_status_buffer = 0;
1327 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1328
1329 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1330
1331 return 0;
1332 }
1333
1334 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1335 {
1336 struct drm_device *dev = ring->dev;
1337 struct drm_i915_private *dev_priv = dev->dev_private;
1338 int ret;
1339
1340 ret = gen8_init_common_ring(ring);
1341 if (ret)
1342 return ret;
1343
1344 /* We need to disable the AsyncFlip performance optimisations in order
1345 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1346 * programmed to '1' on all products.
1347 *
1348 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1349 */
1350 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1351
1352 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1353
1354 return init_workarounds_ring(ring);
1355 }
1356
1357 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1358 {
1359 int ret;
1360
1361 ret = gen8_init_common_ring(ring);
1362 if (ret)
1363 return ret;
1364
1365 return init_workarounds_ring(ring);
1366 }
1367
1368 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1369 u64 offset, unsigned dispatch_flags)
1370 {
1371 struct intel_ringbuffer *ringbuf = req->ringbuf;
1372 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1373 int ret;
1374
1375 ret = intel_logical_ring_begin(ringbuf, req->ctx, 4);
1376 if (ret)
1377 return ret;
1378
1379 /* FIXME(BDW): Address space and security selectors. */
1380 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1381 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1382 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1383 intel_logical_ring_emit(ringbuf, MI_NOOP);
1384 intel_logical_ring_advance(ringbuf);
1385
1386 return 0;
1387 }
1388
1389 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1390 {
1391 struct drm_device *dev = ring->dev;
1392 struct drm_i915_private *dev_priv = dev->dev_private;
1393 unsigned long flags;
1394
1395 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1396 return false;
1397
1398 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1399 if (ring->irq_refcount++ == 0) {
1400 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1401 POSTING_READ(RING_IMR(ring->mmio_base));
1402 }
1403 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1404
1405 return true;
1406 }
1407
1408 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1409 {
1410 struct drm_device *dev = ring->dev;
1411 struct drm_i915_private *dev_priv = dev->dev_private;
1412 unsigned long flags;
1413
1414 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1415 if (--ring->irq_refcount == 0) {
1416 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1417 POSTING_READ(RING_IMR(ring->mmio_base));
1418 }
1419 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1420 }
1421
1422 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1423 u32 invalidate_domains,
1424 u32 unused)
1425 {
1426 struct intel_ringbuffer *ringbuf = request->ringbuf;
1427 struct intel_engine_cs *ring = ringbuf->ring;
1428 struct drm_device *dev = ring->dev;
1429 struct drm_i915_private *dev_priv = dev->dev_private;
1430 uint32_t cmd;
1431 int ret;
1432
1433 ret = intel_logical_ring_begin(ringbuf, request->ctx, 4);
1434 if (ret)
1435 return ret;
1436
1437 cmd = MI_FLUSH_DW + 1;
1438
1439 /* We always require a command barrier so that subsequent
1440 * commands, such as breadcrumb interrupts, are strictly ordered
1441 * wrt the contents of the write cache being flushed to memory
1442 * (and thus being coherent from the CPU).
1443 */
1444 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1445
1446 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1447 cmd |= MI_INVALIDATE_TLB;
1448 if (ring == &dev_priv->ring[VCS])
1449 cmd |= MI_INVALIDATE_BSD;
1450 }
1451
1452 intel_logical_ring_emit(ringbuf, cmd);
1453 intel_logical_ring_emit(ringbuf,
1454 I915_GEM_HWS_SCRATCH_ADDR |
1455 MI_FLUSH_DW_USE_GTT);
1456 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1457 intel_logical_ring_emit(ringbuf, 0); /* value */
1458 intel_logical_ring_advance(ringbuf);
1459
1460 return 0;
1461 }
1462
1463 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1464 u32 invalidate_domains,
1465 u32 flush_domains)
1466 {
1467 struct intel_ringbuffer *ringbuf = request->ringbuf;
1468 struct intel_engine_cs *ring = ringbuf->ring;
1469 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1470 bool vf_flush_wa;
1471 u32 flags = 0;
1472 int ret;
1473
1474 flags |= PIPE_CONTROL_CS_STALL;
1475
1476 if (flush_domains) {
1477 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1478 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1479 }
1480
1481 if (invalidate_domains) {
1482 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1483 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1484 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1485 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1486 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1487 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1488 flags |= PIPE_CONTROL_QW_WRITE;
1489 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1490 }
1491
1492 /*
1493 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1494 * control.
1495 */
1496 vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1497 flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1498
1499 ret = intel_logical_ring_begin(ringbuf, request->ctx, vf_flush_wa ? 12 : 6);
1500 if (ret)
1501 return ret;
1502
1503 if (vf_flush_wa) {
1504 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1505 intel_logical_ring_emit(ringbuf, 0);
1506 intel_logical_ring_emit(ringbuf, 0);
1507 intel_logical_ring_emit(ringbuf, 0);
1508 intel_logical_ring_emit(ringbuf, 0);
1509 intel_logical_ring_emit(ringbuf, 0);
1510 }
1511
1512 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1513 intel_logical_ring_emit(ringbuf, flags);
1514 intel_logical_ring_emit(ringbuf, scratch_addr);
1515 intel_logical_ring_emit(ringbuf, 0);
1516 intel_logical_ring_emit(ringbuf, 0);
1517 intel_logical_ring_emit(ringbuf, 0);
1518 intel_logical_ring_advance(ringbuf);
1519
1520 return 0;
1521 }
1522
1523 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1524 {
1525 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1526 }
1527
1528 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1529 {
1530 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1531 }
1532
1533 static int gen8_emit_request(struct drm_i915_gem_request *request)
1534 {
1535 struct intel_ringbuffer *ringbuf = request->ringbuf;
1536 struct intel_engine_cs *ring = ringbuf->ring;
1537 u32 cmd;
1538 int ret;
1539
1540 /*
1541 * Reserve space for 2 NOOPs at the end of each request to be
1542 * used as a workaround for not being allowed to do lite
1543 * restore with HEAD==TAIL (WaIdleLiteRestore).
1544 */
1545 ret = intel_logical_ring_begin(ringbuf, request->ctx, 8);
1546 if (ret)
1547 return ret;
1548
1549 cmd = MI_STORE_DWORD_IMM_GEN4;
1550 cmd |= MI_GLOBAL_GTT;
1551
1552 intel_logical_ring_emit(ringbuf, cmd);
1553 intel_logical_ring_emit(ringbuf,
1554 (ring->status_page.gfx_addr +
1555 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1556 intel_logical_ring_emit(ringbuf, 0);
1557 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1558 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1559 intel_logical_ring_emit(ringbuf, MI_NOOP);
1560 intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
1561
1562 /*
1563 * Here we add two extra NOOPs as padding to avoid
1564 * lite restore of a context with HEAD==TAIL.
1565 */
1566 intel_logical_ring_emit(ringbuf, MI_NOOP);
1567 intel_logical_ring_emit(ringbuf, MI_NOOP);
1568 intel_logical_ring_advance(ringbuf);
1569
1570 return 0;
1571 }
1572
1573 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1574 {
1575 struct render_state so;
1576 int ret;
1577
1578 ret = i915_gem_render_state_prepare(req->ring, &so);
1579 if (ret)
1580 return ret;
1581
1582 if (so.rodata == NULL)
1583 return 0;
1584
1585 ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1586 I915_DISPATCH_SECURE);
1587 if (ret)
1588 goto out;
1589
1590 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1591
1592 out:
1593 i915_gem_render_state_fini(&so);
1594 return ret;
1595 }
1596
1597 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1598 {
1599 int ret;
1600
1601 ret = intel_logical_ring_workarounds_emit(req);
1602 if (ret)
1603 return ret;
1604
1605 return intel_lr_context_render_state_init(req);
1606 }
1607
1608 /**
1609 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1610 *
1611 * @ring: Engine Command Streamer.
1612 *
1613 */
1614 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1615 {
1616 struct drm_i915_private *dev_priv;
1617
1618 if (!intel_ring_initialized(ring))
1619 return;
1620
1621 dev_priv = ring->dev->dev_private;
1622
1623 intel_logical_ring_stop(ring);
1624 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1625 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1626
1627 if (ring->cleanup)
1628 ring->cleanup(ring);
1629
1630 i915_cmd_parser_fini_ring(ring);
1631 i915_gem_batch_pool_fini(&ring->batch_pool);
1632
1633 if (ring->status_page.obj) {
1634 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1635 ring->status_page.obj = NULL;
1636 }
1637
1638 lrc_destroy_wa_ctx_obj(ring);
1639 }
1640
1641 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1642 {
1643 int ret;
1644
1645 /* Intentionally left blank. */
1646 ring->buffer = NULL;
1647
1648 ring->dev = dev;
1649 INIT_LIST_HEAD(&ring->active_list);
1650 INIT_LIST_HEAD(&ring->request_list);
1651 i915_gem_batch_pool_init(dev, &ring->batch_pool);
1652 init_waitqueue_head(&ring->irq_queue);
1653
1654 INIT_LIST_HEAD(&ring->execlist_queue);
1655 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1656 spin_lock_init(&ring->execlist_lock);
1657
1658 ret = i915_cmd_parser_init_ring(ring);
1659 if (ret)
1660 return ret;
1661
1662 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1663
1664 return ret;
1665 }
1666
1667 static int logical_render_ring_init(struct drm_device *dev)
1668 {
1669 struct drm_i915_private *dev_priv = dev->dev_private;
1670 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1671 int ret;
1672
1673 ring->name = "render ring";
1674 ring->id = RCS;
1675 ring->mmio_base = RENDER_RING_BASE;
1676 ring->irq_enable_mask =
1677 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1678 ring->irq_keep_mask =
1679 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1680 if (HAS_L3_DPF(dev))
1681 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1682
1683 if (INTEL_INFO(dev)->gen >= 9)
1684 ring->init_hw = gen9_init_render_ring;
1685 else
1686 ring->init_hw = gen8_init_render_ring;
1687 ring->init_context = gen8_init_rcs_context;
1688 ring->cleanup = intel_fini_pipe_control;
1689 ring->get_seqno = gen8_get_seqno;
1690 ring->set_seqno = gen8_set_seqno;
1691 ring->emit_request = gen8_emit_request;
1692 ring->emit_flush = gen8_emit_flush_render;
1693 ring->irq_get = gen8_logical_ring_get_irq;
1694 ring->irq_put = gen8_logical_ring_put_irq;
1695 ring->emit_bb_start = gen8_emit_bb_start;
1696
1697 ring->dev = dev;
1698
1699 ret = intel_init_pipe_control(ring);
1700 if (ret)
1701 return ret;
1702
1703 ret = intel_init_workaround_bb(ring);
1704 if (ret) {
1705 /*
1706 * We continue even if we fail to initialize WA batch
1707 * because we only expect rare glitches but nothing
1708 * critical to prevent us from using GPU
1709 */
1710 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1711 ret);
1712 }
1713
1714 ret = logical_ring_init(dev, ring);
1715 if (ret) {
1716 lrc_destroy_wa_ctx_obj(ring);
1717 }
1718
1719 return ret;
1720 }
1721
1722 static int logical_bsd_ring_init(struct drm_device *dev)
1723 {
1724 struct drm_i915_private *dev_priv = dev->dev_private;
1725 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1726
1727 ring->name = "bsd ring";
1728 ring->id = VCS;
1729 ring->mmio_base = GEN6_BSD_RING_BASE;
1730 ring->irq_enable_mask =
1731 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1732 ring->irq_keep_mask =
1733 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1734
1735 ring->init_hw = gen8_init_common_ring;
1736 ring->get_seqno = gen8_get_seqno;
1737 ring->set_seqno = gen8_set_seqno;
1738 ring->emit_request = gen8_emit_request;
1739 ring->emit_flush = gen8_emit_flush;
1740 ring->irq_get = gen8_logical_ring_get_irq;
1741 ring->irq_put = gen8_logical_ring_put_irq;
1742 ring->emit_bb_start = gen8_emit_bb_start;
1743
1744 return logical_ring_init(dev, ring);
1745 }
1746
1747 static int logical_bsd2_ring_init(struct drm_device *dev)
1748 {
1749 struct drm_i915_private *dev_priv = dev->dev_private;
1750 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1751
1752 ring->name = "bds2 ring";
1753 ring->id = VCS2;
1754 ring->mmio_base = GEN8_BSD2_RING_BASE;
1755 ring->irq_enable_mask =
1756 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1757 ring->irq_keep_mask =
1758 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1759
1760 ring->init_hw = gen8_init_common_ring;
1761 ring->get_seqno = gen8_get_seqno;
1762 ring->set_seqno = gen8_set_seqno;
1763 ring->emit_request = gen8_emit_request;
1764 ring->emit_flush = gen8_emit_flush;
1765 ring->irq_get = gen8_logical_ring_get_irq;
1766 ring->irq_put = gen8_logical_ring_put_irq;
1767 ring->emit_bb_start = gen8_emit_bb_start;
1768
1769 return logical_ring_init(dev, ring);
1770 }
1771
1772 static int logical_blt_ring_init(struct drm_device *dev)
1773 {
1774 struct drm_i915_private *dev_priv = dev->dev_private;
1775 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1776
1777 ring->name = "blitter ring";
1778 ring->id = BCS;
1779 ring->mmio_base = BLT_RING_BASE;
1780 ring->irq_enable_mask =
1781 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1782 ring->irq_keep_mask =
1783 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1784
1785 ring->init_hw = gen8_init_common_ring;
1786 ring->get_seqno = gen8_get_seqno;
1787 ring->set_seqno = gen8_set_seqno;
1788 ring->emit_request = gen8_emit_request;
1789 ring->emit_flush = gen8_emit_flush;
1790 ring->irq_get = gen8_logical_ring_get_irq;
1791 ring->irq_put = gen8_logical_ring_put_irq;
1792 ring->emit_bb_start = gen8_emit_bb_start;
1793
1794 return logical_ring_init(dev, ring);
1795 }
1796
1797 static int logical_vebox_ring_init(struct drm_device *dev)
1798 {
1799 struct drm_i915_private *dev_priv = dev->dev_private;
1800 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1801
1802 ring->name = "video enhancement ring";
1803 ring->id = VECS;
1804 ring->mmio_base = VEBOX_RING_BASE;
1805 ring->irq_enable_mask =
1806 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1807 ring->irq_keep_mask =
1808 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1809
1810 ring->init_hw = gen8_init_common_ring;
1811 ring->get_seqno = gen8_get_seqno;
1812 ring->set_seqno = gen8_set_seqno;
1813 ring->emit_request = gen8_emit_request;
1814 ring->emit_flush = gen8_emit_flush;
1815 ring->irq_get = gen8_logical_ring_get_irq;
1816 ring->irq_put = gen8_logical_ring_put_irq;
1817 ring->emit_bb_start = gen8_emit_bb_start;
1818
1819 return logical_ring_init(dev, ring);
1820 }
1821
1822 /**
1823 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1824 * @dev: DRM device.
1825 *
1826 * This function inits the engines for an Execlists submission style (the equivalent in the
1827 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1828 * those engines that are present in the hardware.
1829 *
1830 * Return: non-zero if the initialization failed.
1831 */
1832 int intel_logical_rings_init(struct drm_device *dev)
1833 {
1834 struct drm_i915_private *dev_priv = dev->dev_private;
1835 int ret;
1836
1837 ret = logical_render_ring_init(dev);
1838 if (ret)
1839 return ret;
1840
1841 if (HAS_BSD(dev)) {
1842 ret = logical_bsd_ring_init(dev);
1843 if (ret)
1844 goto cleanup_render_ring;
1845 }
1846
1847 if (HAS_BLT(dev)) {
1848 ret = logical_blt_ring_init(dev);
1849 if (ret)
1850 goto cleanup_bsd_ring;
1851 }
1852
1853 if (HAS_VEBOX(dev)) {
1854 ret = logical_vebox_ring_init(dev);
1855 if (ret)
1856 goto cleanup_blt_ring;
1857 }
1858
1859 if (HAS_BSD2(dev)) {
1860 ret = logical_bsd2_ring_init(dev);
1861 if (ret)
1862 goto cleanup_vebox_ring;
1863 }
1864
1865 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1866 if (ret)
1867 goto cleanup_bsd2_ring;
1868
1869 return 0;
1870
1871 cleanup_bsd2_ring:
1872 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1873 cleanup_vebox_ring:
1874 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1875 cleanup_blt_ring:
1876 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1877 cleanup_bsd_ring:
1878 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1879 cleanup_render_ring:
1880 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1881
1882 return ret;
1883 }
1884
1885 static u32
1886 make_rpcs(struct drm_device *dev)
1887 {
1888 u32 rpcs = 0;
1889
1890 /*
1891 * No explicit RPCS request is needed to ensure full
1892 * slice/subslice/EU enablement prior to Gen9.
1893 */
1894 if (INTEL_INFO(dev)->gen < 9)
1895 return 0;
1896
1897 /*
1898 * Starting in Gen9, render power gating can leave
1899 * slice/subslice/EU in a partially enabled state. We
1900 * must make an explicit request through RPCS for full
1901 * enablement.
1902 */
1903 if (INTEL_INFO(dev)->has_slice_pg) {
1904 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1905 rpcs |= INTEL_INFO(dev)->slice_total <<
1906 GEN8_RPCS_S_CNT_SHIFT;
1907 rpcs |= GEN8_RPCS_ENABLE;
1908 }
1909
1910 if (INTEL_INFO(dev)->has_subslice_pg) {
1911 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1912 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1913 GEN8_RPCS_SS_CNT_SHIFT;
1914 rpcs |= GEN8_RPCS_ENABLE;
1915 }
1916
1917 if (INTEL_INFO(dev)->has_eu_pg) {
1918 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1919 GEN8_RPCS_EU_MIN_SHIFT;
1920 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1921 GEN8_RPCS_EU_MAX_SHIFT;
1922 rpcs |= GEN8_RPCS_ENABLE;
1923 }
1924
1925 return rpcs;
1926 }
1927
1928 static int
1929 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1930 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1931 {
1932 struct drm_device *dev = ring->dev;
1933 struct drm_i915_private *dev_priv = dev->dev_private;
1934 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1935 struct page *page;
1936 uint32_t *reg_state;
1937 int ret;
1938
1939 if (!ppgtt)
1940 ppgtt = dev_priv->mm.aliasing_ppgtt;
1941
1942 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1943 if (ret) {
1944 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1945 return ret;
1946 }
1947
1948 ret = i915_gem_object_get_pages(ctx_obj);
1949 if (ret) {
1950 DRM_DEBUG_DRIVER("Could not get object pages\n");
1951 return ret;
1952 }
1953
1954 i915_gem_object_pin_pages(ctx_obj);
1955
1956 /* The second page of the context object contains some fields which must
1957 * be set up prior to the first execution. */
1958 page = i915_gem_object_get_page(ctx_obj, 1);
1959 reg_state = kmap_atomic(page);
1960
1961 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1962 * commands followed by (reg, value) pairs. The values we are setting here are
1963 * only for the first context restore: on a subsequent save, the GPU will
1964 * recreate this batchbuffer with new values (including all the missing
1965 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1966 if (ring->id == RCS)
1967 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1968 else
1969 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1970 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1971 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1972 reg_state[CTX_CONTEXT_CONTROL+1] =
1973 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1974 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
1975 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1976 reg_state[CTX_RING_HEAD+1] = 0;
1977 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1978 reg_state[CTX_RING_TAIL+1] = 0;
1979 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1980 /* Ring buffer start address is not known until the buffer is pinned.
1981 * It is written to the context image in execlists_update_context()
1982 */
1983 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1984 reg_state[CTX_RING_BUFFER_CONTROL+1] =
1985 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1986 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1987 reg_state[CTX_BB_HEAD_U+1] = 0;
1988 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1989 reg_state[CTX_BB_HEAD_L+1] = 0;
1990 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1991 reg_state[CTX_BB_STATE+1] = (1<<5);
1992 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1993 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1994 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1995 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1996 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1997 reg_state[CTX_SECOND_BB_STATE+1] = 0;
1998 if (ring->id == RCS) {
1999 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2000 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2001 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2002 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2003 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2004 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2005 if (ring->wa_ctx.obj) {
2006 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2007 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2008
2009 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2010 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2011 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2012
2013 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2014 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2015
2016 reg_state[CTX_BB_PER_CTX_PTR+1] =
2017 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2018 0x01;
2019 }
2020 }
2021 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2022 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2023 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2024 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2025 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2026 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2027 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2028 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2029 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2030 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2031 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2032 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2033
2034 /* With dynamic page allocation, PDPs may not be allocated at this point,
2035 * Point the unallocated PDPs to the scratch page
2036 */
2037 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2038 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2039 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2040 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2041 if (ring->id == RCS) {
2042 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2043 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2044 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2045 }
2046
2047 kunmap_atomic(reg_state);
2048
2049 ctx_obj->dirty = 1;
2050 set_page_dirty(page);
2051 i915_gem_object_unpin_pages(ctx_obj);
2052
2053 return 0;
2054 }
2055
2056 /**
2057 * intel_lr_context_free() - free the LRC specific bits of a context
2058 * @ctx: the LR context to free.
2059 *
2060 * The real context freeing is done in i915_gem_context_free: this only
2061 * takes care of the bits that are LRC related: the per-engine backing
2062 * objects and the logical ringbuffer.
2063 */
2064 void intel_lr_context_free(struct intel_context *ctx)
2065 {
2066 int i;
2067
2068 for (i = 0; i < I915_NUM_RINGS; i++) {
2069 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2070
2071 if (ctx_obj) {
2072 struct intel_ringbuffer *ringbuf =
2073 ctx->engine[i].ringbuf;
2074 struct intel_engine_cs *ring = ringbuf->ring;
2075
2076 if (ctx == ring->default_context) {
2077 intel_unpin_ringbuffer_obj(ringbuf);
2078 i915_gem_object_ggtt_unpin(ctx_obj);
2079 }
2080 WARN_ON(ctx->engine[ring->id].pin_count);
2081 intel_destroy_ringbuffer_obj(ringbuf);
2082 kfree(ringbuf);
2083 drm_gem_object_unreference(&ctx_obj->base);
2084 }
2085 }
2086 }
2087
2088 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2089 {
2090 int ret = 0;
2091
2092 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2093
2094 switch (ring->id) {
2095 case RCS:
2096 if (INTEL_INFO(ring->dev)->gen >= 9)
2097 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2098 else
2099 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2100 break;
2101 case VCS:
2102 case BCS:
2103 case VECS:
2104 case VCS2:
2105 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2106 break;
2107 }
2108
2109 return ret;
2110 }
2111
2112 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2113 struct drm_i915_gem_object *default_ctx_obj)
2114 {
2115 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2116
2117 /* The status page is offset 0 from the default context object
2118 * in LRC mode. */
2119 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
2120 ring->status_page.page_addr =
2121 kmap(sg_page(default_ctx_obj->pages->sgl));
2122 ring->status_page.obj = default_ctx_obj;
2123
2124 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2125 (u32)ring->status_page.gfx_addr);
2126 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2127 }
2128
2129 /**
2130 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
2131 * @ctx: LR context to create.
2132 * @ring: engine to be used with the context.
2133 *
2134 * This function can be called more than once, with different engines, if we plan
2135 * to use the context with them. The context backing objects and the ringbuffers
2136 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2137 * the creation is a deferred call: it's better to make sure first that we need to use
2138 * a given ring with the context.
2139 *
2140 * Return: non-zero on error.
2141 */
2142 int intel_lr_context_deferred_create(struct intel_context *ctx,
2143 struct intel_engine_cs *ring)
2144 {
2145 const bool is_global_default_ctx = (ctx == ring->default_context);
2146 struct drm_device *dev = ring->dev;
2147 struct drm_i915_gem_object *ctx_obj;
2148 uint32_t context_size;
2149 struct intel_ringbuffer *ringbuf;
2150 int ret;
2151
2152 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2153 WARN_ON(ctx->engine[ring->id].state);
2154
2155 context_size = round_up(get_lr_context_size(ring), 4096);
2156
2157 ctx_obj = i915_gem_alloc_object(dev, context_size);
2158 if (!ctx_obj) {
2159 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2160 return -ENOMEM;
2161 }
2162
2163 if (is_global_default_ctx) {
2164 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
2165 if (ret) {
2166 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
2167 ret);
2168 drm_gem_object_unreference(&ctx_obj->base);
2169 return ret;
2170 }
2171 }
2172
2173 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2174 if (!ringbuf) {
2175 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2176 ring->name);
2177 ret = -ENOMEM;
2178 goto error_unpin_ctx;
2179 }
2180
2181 ringbuf->ring = ring;
2182
2183 ringbuf->size = 32 * PAGE_SIZE;
2184 ringbuf->effective_size = ringbuf->size;
2185 ringbuf->head = 0;
2186 ringbuf->tail = 0;
2187 ringbuf->last_retired_head = -1;
2188 intel_ring_update_space(ringbuf);
2189
2190 if (ringbuf->obj == NULL) {
2191 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2192 if (ret) {
2193 DRM_DEBUG_DRIVER(
2194 "Failed to allocate ringbuffer obj %s: %d\n",
2195 ring->name, ret);
2196 goto error_free_rbuf;
2197 }
2198
2199 if (is_global_default_ctx) {
2200 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2201 if (ret) {
2202 DRM_ERROR(
2203 "Failed to pin and map ringbuffer %s: %d\n",
2204 ring->name, ret);
2205 goto error_destroy_rbuf;
2206 }
2207 }
2208
2209 }
2210
2211 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2212 if (ret) {
2213 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2214 goto error;
2215 }
2216
2217 ctx->engine[ring->id].ringbuf = ringbuf;
2218 ctx->engine[ring->id].state = ctx_obj;
2219
2220 if (ctx == ring->default_context)
2221 lrc_setup_hardware_status_page(ring, ctx_obj);
2222 else if (ring->id == RCS && !ctx->rcs_initialized) {
2223 if (ring->init_context) {
2224 struct drm_i915_gem_request *req;
2225
2226 ret = i915_gem_request_alloc(ring, ctx, &req);
2227 if (ret)
2228 return ret;
2229
2230 ret = ring->init_context(req);
2231 if (ret) {
2232 DRM_ERROR("ring init context: %d\n", ret);
2233 i915_gem_request_cancel(req);
2234 ctx->engine[ring->id].ringbuf = NULL;
2235 ctx->engine[ring->id].state = NULL;
2236 goto error;
2237 }
2238
2239 i915_add_request_no_flush(req);
2240 }
2241
2242 ctx->rcs_initialized = true;
2243 }
2244
2245 return 0;
2246
2247 error:
2248 if (is_global_default_ctx)
2249 intel_unpin_ringbuffer_obj(ringbuf);
2250 error_destroy_rbuf:
2251 intel_destroy_ringbuffer_obj(ringbuf);
2252 error_free_rbuf:
2253 kfree(ringbuf);
2254 error_unpin_ctx:
2255 if (is_global_default_ctx)
2256 i915_gem_object_ggtt_unpin(ctx_obj);
2257 drm_gem_object_unreference(&ctx_obj->base);
2258 return ret;
2259 }
2260
2261 void intel_lr_context_reset(struct drm_device *dev,
2262 struct intel_context *ctx)
2263 {
2264 struct drm_i915_private *dev_priv = dev->dev_private;
2265 struct intel_engine_cs *ring;
2266 int i;
2267
2268 for_each_ring(ring, dev_priv, i) {
2269 struct drm_i915_gem_object *ctx_obj =
2270 ctx->engine[ring->id].state;
2271 struct intel_ringbuffer *ringbuf =
2272 ctx->engine[ring->id].ringbuf;
2273 uint32_t *reg_state;
2274 struct page *page;
2275
2276 if (!ctx_obj)
2277 continue;
2278
2279 if (i915_gem_object_get_pages(ctx_obj)) {
2280 WARN(1, "Failed get_pages for context obj\n");
2281 continue;
2282 }
2283 page = i915_gem_object_get_page(ctx_obj, 1);
2284 reg_state = kmap_atomic(page);
2285
2286 reg_state[CTX_RING_HEAD+1] = 0;
2287 reg_state[CTX_RING_TAIL+1] = 0;
2288
2289 kunmap_atomic(reg_state);
2290
2291 ringbuf->head = 0;
2292 ringbuf->tail = 0;
2293 }
2294 }
This page took 0.079898 seconds and 6 git commands to generate.