drm/i915: get/put runtime PM when we get/put a power domain
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <linux/vgaarb.h>
34 #include <drm/i915_powerwell.h>
35 #include <linux/pm_runtime.h>
36
37 /**
38 * RC6 is a special power stage which allows the GPU to enter an very
39 * low-voltage mode when idle, using down to 0V while at this stage. This
40 * stage is entered automatically when the GPU is idle when RC6 support is
41 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42 *
43 * There are different RC6 modes available in Intel GPU, which differentiate
44 * among each other with the latency required to enter and leave RC6 and
45 * voltage consumed by the GPU in different states.
46 *
47 * The combination of the following flags define which states GPU is allowed
48 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49 * RC6pp is deepest RC6. Their support by hardware varies according to the
50 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51 * which brings the most power savings; deeper states save more power, but
52 * require higher latency to switch to and wake up.
53 */
54 #define INTEL_RC6_ENABLE (1<<0)
55 #define INTEL_RC6p_ENABLE (1<<1)
56 #define INTEL_RC6pp_ENABLE (1<<2)
57
58 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
59 * framebuffer contents in-memory, aiming at reducing the required bandwidth
60 * during in-memory transfers and, therefore, reduce the power packet.
61 *
62 * The benefits of FBC are mostly visible with solid backgrounds and
63 * variation-less patterns.
64 *
65 * FBC-related functionality can be enabled by the means of the
66 * i915.i915_enable_fbc parameter
67 */
68
69 static void i8xx_disable_fbc(struct drm_device *dev)
70 {
71 struct drm_i915_private *dev_priv = dev->dev_private;
72 u32 fbc_ctl;
73
74 /* Disable compression */
75 fbc_ctl = I915_READ(FBC_CONTROL);
76 if ((fbc_ctl & FBC_CTL_EN) == 0)
77 return;
78
79 fbc_ctl &= ~FBC_CTL_EN;
80 I915_WRITE(FBC_CONTROL, fbc_ctl);
81
82 /* Wait for compressing bit to clear */
83 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
84 DRM_DEBUG_KMS("FBC idle timed out\n");
85 return;
86 }
87
88 DRM_DEBUG_KMS("disabled FBC\n");
89 }
90
91 static void i8xx_enable_fbc(struct drm_crtc *crtc)
92 {
93 struct drm_device *dev = crtc->dev;
94 struct drm_i915_private *dev_priv = dev->dev_private;
95 struct drm_framebuffer *fb = crtc->fb;
96 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
97 struct drm_i915_gem_object *obj = intel_fb->obj;
98 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
99 int cfb_pitch;
100 int i;
101 u32 fbc_ctl;
102
103 cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
104 if (fb->pitches[0] < cfb_pitch)
105 cfb_pitch = fb->pitches[0];
106
107 /* FBC_CTL wants 32B or 64B units */
108 if (IS_GEN2(dev))
109 cfb_pitch = (cfb_pitch / 32) - 1;
110 else
111 cfb_pitch = (cfb_pitch / 64) - 1;
112
113 /* Clear old tags */
114 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
115 I915_WRITE(FBC_TAG + (i * 4), 0);
116
117 if (IS_GEN4(dev)) {
118 u32 fbc_ctl2;
119
120 /* Set it up... */
121 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
122 fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
123 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
124 I915_WRITE(FBC_FENCE_OFF, crtc->y);
125 }
126
127 /* enable it... */
128 fbc_ctl = I915_READ(FBC_CONTROL);
129 fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
130 fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
131 if (IS_I945GM(dev))
132 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
133 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
134 fbc_ctl |= obj->fence_reg;
135 I915_WRITE(FBC_CONTROL, fbc_ctl);
136
137 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
138 cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
139 }
140
141 static bool i8xx_fbc_enabled(struct drm_device *dev)
142 {
143 struct drm_i915_private *dev_priv = dev->dev_private;
144
145 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
146 }
147
148 static void g4x_enable_fbc(struct drm_crtc *crtc)
149 {
150 struct drm_device *dev = crtc->dev;
151 struct drm_i915_private *dev_priv = dev->dev_private;
152 struct drm_framebuffer *fb = crtc->fb;
153 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
154 struct drm_i915_gem_object *obj = intel_fb->obj;
155 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
156 u32 dpfc_ctl;
157
158 dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
159 if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
160 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
161 else
162 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
163 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
164
165 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
166
167 /* enable it... */
168 I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
169
170 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
171 }
172
173 static void g4x_disable_fbc(struct drm_device *dev)
174 {
175 struct drm_i915_private *dev_priv = dev->dev_private;
176 u32 dpfc_ctl;
177
178 /* Disable compression */
179 dpfc_ctl = I915_READ(DPFC_CONTROL);
180 if (dpfc_ctl & DPFC_CTL_EN) {
181 dpfc_ctl &= ~DPFC_CTL_EN;
182 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
183
184 DRM_DEBUG_KMS("disabled FBC\n");
185 }
186 }
187
188 static bool g4x_fbc_enabled(struct drm_device *dev)
189 {
190 struct drm_i915_private *dev_priv = dev->dev_private;
191
192 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
193 }
194
195 static void sandybridge_blit_fbc_update(struct drm_device *dev)
196 {
197 struct drm_i915_private *dev_priv = dev->dev_private;
198 u32 blt_ecoskpd;
199
200 /* Make sure blitter notifies FBC of writes */
201
202 /* Blitter is part of Media powerwell on VLV. No impact of
203 * his param in other platforms for now */
204 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
205
206 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
207 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
208 GEN6_BLITTER_LOCK_SHIFT;
209 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
210 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
211 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
212 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
213 GEN6_BLITTER_LOCK_SHIFT);
214 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
215 POSTING_READ(GEN6_BLITTER_ECOSKPD);
216
217 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
218 }
219
220 static void ironlake_enable_fbc(struct drm_crtc *crtc)
221 {
222 struct drm_device *dev = crtc->dev;
223 struct drm_i915_private *dev_priv = dev->dev_private;
224 struct drm_framebuffer *fb = crtc->fb;
225 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
226 struct drm_i915_gem_object *obj = intel_fb->obj;
227 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
228 u32 dpfc_ctl;
229
230 dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
231 if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
232 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
233 else
234 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
235 dpfc_ctl |= DPFC_CTL_FENCE_EN;
236 if (IS_GEN5(dev))
237 dpfc_ctl |= obj->fence_reg;
238
239 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
240 I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
241 /* enable it... */
242 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
243
244 if (IS_GEN6(dev)) {
245 I915_WRITE(SNB_DPFC_CTL_SA,
246 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
247 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
248 sandybridge_blit_fbc_update(dev);
249 }
250
251 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
252 }
253
254 static void ironlake_disable_fbc(struct drm_device *dev)
255 {
256 struct drm_i915_private *dev_priv = dev->dev_private;
257 u32 dpfc_ctl;
258
259 /* Disable compression */
260 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
261 if (dpfc_ctl & DPFC_CTL_EN) {
262 dpfc_ctl &= ~DPFC_CTL_EN;
263 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
264
265 DRM_DEBUG_KMS("disabled FBC\n");
266 }
267 }
268
269 static bool ironlake_fbc_enabled(struct drm_device *dev)
270 {
271 struct drm_i915_private *dev_priv = dev->dev_private;
272
273 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
274 }
275
276 static void gen7_enable_fbc(struct drm_crtc *crtc)
277 {
278 struct drm_device *dev = crtc->dev;
279 struct drm_i915_private *dev_priv = dev->dev_private;
280 struct drm_framebuffer *fb = crtc->fb;
281 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
282 struct drm_i915_gem_object *obj = intel_fb->obj;
283 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
284 u32 dpfc_ctl;
285
286 dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
287 if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
288 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
289 else
290 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
291 dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
292
293 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
294
295 if (IS_IVYBRIDGE(dev)) {
296 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
297 I915_WRITE(ILK_DISPLAY_CHICKEN1,
298 I915_READ(ILK_DISPLAY_CHICKEN1) |
299 ILK_FBCQ_DIS);
300 } else {
301 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
302 I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
303 I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
304 HSW_FBCQ_DIS);
305 }
306
307 I915_WRITE(SNB_DPFC_CTL_SA,
308 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
309 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
310
311 sandybridge_blit_fbc_update(dev);
312
313 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
314 }
315
316 bool intel_fbc_enabled(struct drm_device *dev)
317 {
318 struct drm_i915_private *dev_priv = dev->dev_private;
319
320 if (!dev_priv->display.fbc_enabled)
321 return false;
322
323 return dev_priv->display.fbc_enabled(dev);
324 }
325
326 static void intel_fbc_work_fn(struct work_struct *__work)
327 {
328 struct intel_fbc_work *work =
329 container_of(to_delayed_work(__work),
330 struct intel_fbc_work, work);
331 struct drm_device *dev = work->crtc->dev;
332 struct drm_i915_private *dev_priv = dev->dev_private;
333
334 mutex_lock(&dev->struct_mutex);
335 if (work == dev_priv->fbc.fbc_work) {
336 /* Double check that we haven't switched fb without cancelling
337 * the prior work.
338 */
339 if (work->crtc->fb == work->fb) {
340 dev_priv->display.enable_fbc(work->crtc);
341
342 dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
343 dev_priv->fbc.fb_id = work->crtc->fb->base.id;
344 dev_priv->fbc.y = work->crtc->y;
345 }
346
347 dev_priv->fbc.fbc_work = NULL;
348 }
349 mutex_unlock(&dev->struct_mutex);
350
351 kfree(work);
352 }
353
354 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
355 {
356 if (dev_priv->fbc.fbc_work == NULL)
357 return;
358
359 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
360
361 /* Synchronisation is provided by struct_mutex and checking of
362 * dev_priv->fbc.fbc_work, so we can perform the cancellation
363 * entirely asynchronously.
364 */
365 if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
366 /* tasklet was killed before being run, clean up */
367 kfree(dev_priv->fbc.fbc_work);
368
369 /* Mark the work as no longer wanted so that if it does
370 * wake-up (because the work was already running and waiting
371 * for our mutex), it will discover that is no longer
372 * necessary to run.
373 */
374 dev_priv->fbc.fbc_work = NULL;
375 }
376
377 static void intel_enable_fbc(struct drm_crtc *crtc)
378 {
379 struct intel_fbc_work *work;
380 struct drm_device *dev = crtc->dev;
381 struct drm_i915_private *dev_priv = dev->dev_private;
382
383 if (!dev_priv->display.enable_fbc)
384 return;
385
386 intel_cancel_fbc_work(dev_priv);
387
388 work = kzalloc(sizeof(*work), GFP_KERNEL);
389 if (work == NULL) {
390 DRM_ERROR("Failed to allocate FBC work structure\n");
391 dev_priv->display.enable_fbc(crtc);
392 return;
393 }
394
395 work->crtc = crtc;
396 work->fb = crtc->fb;
397 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
398
399 dev_priv->fbc.fbc_work = work;
400
401 /* Delay the actual enabling to let pageflipping cease and the
402 * display to settle before starting the compression. Note that
403 * this delay also serves a second purpose: it allows for a
404 * vblank to pass after disabling the FBC before we attempt
405 * to modify the control registers.
406 *
407 * A more complicated solution would involve tracking vblanks
408 * following the termination of the page-flipping sequence
409 * and indeed performing the enable as a co-routine and not
410 * waiting synchronously upon the vblank.
411 *
412 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
413 */
414 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
415 }
416
417 void intel_disable_fbc(struct drm_device *dev)
418 {
419 struct drm_i915_private *dev_priv = dev->dev_private;
420
421 intel_cancel_fbc_work(dev_priv);
422
423 if (!dev_priv->display.disable_fbc)
424 return;
425
426 dev_priv->display.disable_fbc(dev);
427 dev_priv->fbc.plane = -1;
428 }
429
430 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
431 enum no_fbc_reason reason)
432 {
433 if (dev_priv->fbc.no_fbc_reason == reason)
434 return false;
435
436 dev_priv->fbc.no_fbc_reason = reason;
437 return true;
438 }
439
440 /**
441 * intel_update_fbc - enable/disable FBC as needed
442 * @dev: the drm_device
443 *
444 * Set up the framebuffer compression hardware at mode set time. We
445 * enable it if possible:
446 * - plane A only (on pre-965)
447 * - no pixel mulitply/line duplication
448 * - no alpha buffer discard
449 * - no dual wide
450 * - framebuffer <= max_hdisplay in width, max_vdisplay in height
451 *
452 * We can't assume that any compression will take place (worst case),
453 * so the compressed buffer has to be the same size as the uncompressed
454 * one. It also must reside (along with the line length buffer) in
455 * stolen memory.
456 *
457 * We need to enable/disable FBC on a global basis.
458 */
459 void intel_update_fbc(struct drm_device *dev)
460 {
461 struct drm_i915_private *dev_priv = dev->dev_private;
462 struct drm_crtc *crtc = NULL, *tmp_crtc;
463 struct intel_crtc *intel_crtc;
464 struct drm_framebuffer *fb;
465 struct intel_framebuffer *intel_fb;
466 struct drm_i915_gem_object *obj;
467 const struct drm_display_mode *adjusted_mode;
468 unsigned int max_width, max_height;
469
470 if (!HAS_FBC(dev)) {
471 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
472 return;
473 }
474
475 if (!i915.powersave) {
476 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
477 DRM_DEBUG_KMS("fbc disabled per module param\n");
478 return;
479 }
480
481 /*
482 * If FBC is already on, we just have to verify that we can
483 * keep it that way...
484 * Need to disable if:
485 * - more than one pipe is active
486 * - changing FBC params (stride, fence, mode)
487 * - new fb is too large to fit in compressed buffer
488 * - going to an unsupported config (interlace, pixel multiply, etc.)
489 */
490 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
491 if (intel_crtc_active(tmp_crtc) &&
492 to_intel_crtc(tmp_crtc)->primary_enabled) {
493 if (crtc) {
494 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
495 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
496 goto out_disable;
497 }
498 crtc = tmp_crtc;
499 }
500 }
501
502 if (!crtc || crtc->fb == NULL) {
503 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
504 DRM_DEBUG_KMS("no output, disabling\n");
505 goto out_disable;
506 }
507
508 intel_crtc = to_intel_crtc(crtc);
509 fb = crtc->fb;
510 intel_fb = to_intel_framebuffer(fb);
511 obj = intel_fb->obj;
512 adjusted_mode = &intel_crtc->config.adjusted_mode;
513
514 if (i915.enable_fbc < 0 &&
515 INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
516 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
517 DRM_DEBUG_KMS("disabled per chip default\n");
518 goto out_disable;
519 }
520 if (!i915.enable_fbc) {
521 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
522 DRM_DEBUG_KMS("fbc disabled per module param\n");
523 goto out_disable;
524 }
525 if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
526 (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
527 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
528 DRM_DEBUG_KMS("mode incompatible with compression, "
529 "disabling\n");
530 goto out_disable;
531 }
532
533 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
534 max_width = 4096;
535 max_height = 2048;
536 } else {
537 max_width = 2048;
538 max_height = 1536;
539 }
540 if (intel_crtc->config.pipe_src_w > max_width ||
541 intel_crtc->config.pipe_src_h > max_height) {
542 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
543 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
544 goto out_disable;
545 }
546 if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
547 intel_crtc->plane != PLANE_A) {
548 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
549 DRM_DEBUG_KMS("plane not A, disabling compression\n");
550 goto out_disable;
551 }
552
553 /* The use of a CPU fence is mandatory in order to detect writes
554 * by the CPU to the scanout and trigger updates to the FBC.
555 */
556 if (obj->tiling_mode != I915_TILING_X ||
557 obj->fence_reg == I915_FENCE_REG_NONE) {
558 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
559 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
560 goto out_disable;
561 }
562
563 /* If the kernel debugger is active, always disable compression */
564 if (in_dbg_master())
565 goto out_disable;
566
567 if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
568 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
569 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
570 goto out_disable;
571 }
572
573 /* If the scanout has not changed, don't modify the FBC settings.
574 * Note that we make the fundamental assumption that the fb->obj
575 * cannot be unpinned (and have its GTT offset and fence revoked)
576 * without first being decoupled from the scanout and FBC disabled.
577 */
578 if (dev_priv->fbc.plane == intel_crtc->plane &&
579 dev_priv->fbc.fb_id == fb->base.id &&
580 dev_priv->fbc.y == crtc->y)
581 return;
582
583 if (intel_fbc_enabled(dev)) {
584 /* We update FBC along two paths, after changing fb/crtc
585 * configuration (modeswitching) and after page-flipping
586 * finishes. For the latter, we know that not only did
587 * we disable the FBC at the start of the page-flip
588 * sequence, but also more than one vblank has passed.
589 *
590 * For the former case of modeswitching, it is possible
591 * to switch between two FBC valid configurations
592 * instantaneously so we do need to disable the FBC
593 * before we can modify its control registers. We also
594 * have to wait for the next vblank for that to take
595 * effect. However, since we delay enabling FBC we can
596 * assume that a vblank has passed since disabling and
597 * that we can safely alter the registers in the deferred
598 * callback.
599 *
600 * In the scenario that we go from a valid to invalid
601 * and then back to valid FBC configuration we have
602 * no strict enforcement that a vblank occurred since
603 * disabling the FBC. However, along all current pipe
604 * disabling paths we do need to wait for a vblank at
605 * some point. And we wait before enabling FBC anyway.
606 */
607 DRM_DEBUG_KMS("disabling active FBC for update\n");
608 intel_disable_fbc(dev);
609 }
610
611 intel_enable_fbc(crtc);
612 dev_priv->fbc.no_fbc_reason = FBC_OK;
613 return;
614
615 out_disable:
616 /* Multiple disables should be harmless */
617 if (intel_fbc_enabled(dev)) {
618 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
619 intel_disable_fbc(dev);
620 }
621 i915_gem_stolen_cleanup_compression(dev);
622 }
623
624 static void i915_pineview_get_mem_freq(struct drm_device *dev)
625 {
626 drm_i915_private_t *dev_priv = dev->dev_private;
627 u32 tmp;
628
629 tmp = I915_READ(CLKCFG);
630
631 switch (tmp & CLKCFG_FSB_MASK) {
632 case CLKCFG_FSB_533:
633 dev_priv->fsb_freq = 533; /* 133*4 */
634 break;
635 case CLKCFG_FSB_800:
636 dev_priv->fsb_freq = 800; /* 200*4 */
637 break;
638 case CLKCFG_FSB_667:
639 dev_priv->fsb_freq = 667; /* 167*4 */
640 break;
641 case CLKCFG_FSB_400:
642 dev_priv->fsb_freq = 400; /* 100*4 */
643 break;
644 }
645
646 switch (tmp & CLKCFG_MEM_MASK) {
647 case CLKCFG_MEM_533:
648 dev_priv->mem_freq = 533;
649 break;
650 case CLKCFG_MEM_667:
651 dev_priv->mem_freq = 667;
652 break;
653 case CLKCFG_MEM_800:
654 dev_priv->mem_freq = 800;
655 break;
656 }
657
658 /* detect pineview DDR3 setting */
659 tmp = I915_READ(CSHRDDR3CTL);
660 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
661 }
662
663 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
664 {
665 drm_i915_private_t *dev_priv = dev->dev_private;
666 u16 ddrpll, csipll;
667
668 ddrpll = I915_READ16(DDRMPLL1);
669 csipll = I915_READ16(CSIPLL0);
670
671 switch (ddrpll & 0xff) {
672 case 0xc:
673 dev_priv->mem_freq = 800;
674 break;
675 case 0x10:
676 dev_priv->mem_freq = 1066;
677 break;
678 case 0x14:
679 dev_priv->mem_freq = 1333;
680 break;
681 case 0x18:
682 dev_priv->mem_freq = 1600;
683 break;
684 default:
685 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
686 ddrpll & 0xff);
687 dev_priv->mem_freq = 0;
688 break;
689 }
690
691 dev_priv->ips.r_t = dev_priv->mem_freq;
692
693 switch (csipll & 0x3ff) {
694 case 0x00c:
695 dev_priv->fsb_freq = 3200;
696 break;
697 case 0x00e:
698 dev_priv->fsb_freq = 3733;
699 break;
700 case 0x010:
701 dev_priv->fsb_freq = 4266;
702 break;
703 case 0x012:
704 dev_priv->fsb_freq = 4800;
705 break;
706 case 0x014:
707 dev_priv->fsb_freq = 5333;
708 break;
709 case 0x016:
710 dev_priv->fsb_freq = 5866;
711 break;
712 case 0x018:
713 dev_priv->fsb_freq = 6400;
714 break;
715 default:
716 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
717 csipll & 0x3ff);
718 dev_priv->fsb_freq = 0;
719 break;
720 }
721
722 if (dev_priv->fsb_freq == 3200) {
723 dev_priv->ips.c_m = 0;
724 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
725 dev_priv->ips.c_m = 1;
726 } else {
727 dev_priv->ips.c_m = 2;
728 }
729 }
730
731 static const struct cxsr_latency cxsr_latency_table[] = {
732 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
733 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
734 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
735 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
736 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
737
738 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
739 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
740 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
741 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
742 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
743
744 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
745 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
746 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
747 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
748 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
749
750 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
751 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
752 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
753 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
754 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
755
756 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
757 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
758 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
759 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
760 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
761
762 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
763 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
764 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
765 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
766 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
767 };
768
769 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
770 int is_ddr3,
771 int fsb,
772 int mem)
773 {
774 const struct cxsr_latency *latency;
775 int i;
776
777 if (fsb == 0 || mem == 0)
778 return NULL;
779
780 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
781 latency = &cxsr_latency_table[i];
782 if (is_desktop == latency->is_desktop &&
783 is_ddr3 == latency->is_ddr3 &&
784 fsb == latency->fsb_freq && mem == latency->mem_freq)
785 return latency;
786 }
787
788 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
789
790 return NULL;
791 }
792
793 static void pineview_disable_cxsr(struct drm_device *dev)
794 {
795 struct drm_i915_private *dev_priv = dev->dev_private;
796
797 /* deactivate cxsr */
798 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
799 }
800
801 /*
802 * Latency for FIFO fetches is dependent on several factors:
803 * - memory configuration (speed, channels)
804 * - chipset
805 * - current MCH state
806 * It can be fairly high in some situations, so here we assume a fairly
807 * pessimal value. It's a tradeoff between extra memory fetches (if we
808 * set this value too high, the FIFO will fetch frequently to stay full)
809 * and power consumption (set it too low to save power and we might see
810 * FIFO underruns and display "flicker").
811 *
812 * A value of 5us seems to be a good balance; safe for very low end
813 * platforms but not overly aggressive on lower latency configs.
814 */
815 static const int latency_ns = 5000;
816
817 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
818 {
819 struct drm_i915_private *dev_priv = dev->dev_private;
820 uint32_t dsparb = I915_READ(DSPARB);
821 int size;
822
823 size = dsparb & 0x7f;
824 if (plane)
825 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
826
827 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
828 plane ? "B" : "A", size);
829
830 return size;
831 }
832
833 static int i830_get_fifo_size(struct drm_device *dev, int plane)
834 {
835 struct drm_i915_private *dev_priv = dev->dev_private;
836 uint32_t dsparb = I915_READ(DSPARB);
837 int size;
838
839 size = dsparb & 0x1ff;
840 if (plane)
841 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
842 size >>= 1; /* Convert to cachelines */
843
844 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
845 plane ? "B" : "A", size);
846
847 return size;
848 }
849
850 static int i845_get_fifo_size(struct drm_device *dev, int plane)
851 {
852 struct drm_i915_private *dev_priv = dev->dev_private;
853 uint32_t dsparb = I915_READ(DSPARB);
854 int size;
855
856 size = dsparb & 0x7f;
857 size >>= 2; /* Convert to cachelines */
858
859 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
860 plane ? "B" : "A",
861 size);
862
863 return size;
864 }
865
866 /* Pineview has different values for various configs */
867 static const struct intel_watermark_params pineview_display_wm = {
868 PINEVIEW_DISPLAY_FIFO,
869 PINEVIEW_MAX_WM,
870 PINEVIEW_DFT_WM,
871 PINEVIEW_GUARD_WM,
872 PINEVIEW_FIFO_LINE_SIZE
873 };
874 static const struct intel_watermark_params pineview_display_hplloff_wm = {
875 PINEVIEW_DISPLAY_FIFO,
876 PINEVIEW_MAX_WM,
877 PINEVIEW_DFT_HPLLOFF_WM,
878 PINEVIEW_GUARD_WM,
879 PINEVIEW_FIFO_LINE_SIZE
880 };
881 static const struct intel_watermark_params pineview_cursor_wm = {
882 PINEVIEW_CURSOR_FIFO,
883 PINEVIEW_CURSOR_MAX_WM,
884 PINEVIEW_CURSOR_DFT_WM,
885 PINEVIEW_CURSOR_GUARD_WM,
886 PINEVIEW_FIFO_LINE_SIZE,
887 };
888 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
889 PINEVIEW_CURSOR_FIFO,
890 PINEVIEW_CURSOR_MAX_WM,
891 PINEVIEW_CURSOR_DFT_WM,
892 PINEVIEW_CURSOR_GUARD_WM,
893 PINEVIEW_FIFO_LINE_SIZE
894 };
895 static const struct intel_watermark_params g4x_wm_info = {
896 G4X_FIFO_SIZE,
897 G4X_MAX_WM,
898 G4X_MAX_WM,
899 2,
900 G4X_FIFO_LINE_SIZE,
901 };
902 static const struct intel_watermark_params g4x_cursor_wm_info = {
903 I965_CURSOR_FIFO,
904 I965_CURSOR_MAX_WM,
905 I965_CURSOR_DFT_WM,
906 2,
907 G4X_FIFO_LINE_SIZE,
908 };
909 static const struct intel_watermark_params valleyview_wm_info = {
910 VALLEYVIEW_FIFO_SIZE,
911 VALLEYVIEW_MAX_WM,
912 VALLEYVIEW_MAX_WM,
913 2,
914 G4X_FIFO_LINE_SIZE,
915 };
916 static const struct intel_watermark_params valleyview_cursor_wm_info = {
917 I965_CURSOR_FIFO,
918 VALLEYVIEW_CURSOR_MAX_WM,
919 I965_CURSOR_DFT_WM,
920 2,
921 G4X_FIFO_LINE_SIZE,
922 };
923 static const struct intel_watermark_params i965_cursor_wm_info = {
924 I965_CURSOR_FIFO,
925 I965_CURSOR_MAX_WM,
926 I965_CURSOR_DFT_WM,
927 2,
928 I915_FIFO_LINE_SIZE,
929 };
930 static const struct intel_watermark_params i945_wm_info = {
931 I945_FIFO_SIZE,
932 I915_MAX_WM,
933 1,
934 2,
935 I915_FIFO_LINE_SIZE
936 };
937 static const struct intel_watermark_params i915_wm_info = {
938 I915_FIFO_SIZE,
939 I915_MAX_WM,
940 1,
941 2,
942 I915_FIFO_LINE_SIZE
943 };
944 static const struct intel_watermark_params i830_wm_info = {
945 I855GM_FIFO_SIZE,
946 I915_MAX_WM,
947 1,
948 2,
949 I830_FIFO_LINE_SIZE
950 };
951 static const struct intel_watermark_params i845_wm_info = {
952 I830_FIFO_SIZE,
953 I915_MAX_WM,
954 1,
955 2,
956 I830_FIFO_LINE_SIZE
957 };
958
959 /**
960 * intel_calculate_wm - calculate watermark level
961 * @clock_in_khz: pixel clock
962 * @wm: chip FIFO params
963 * @pixel_size: display pixel size
964 * @latency_ns: memory latency for the platform
965 *
966 * Calculate the watermark level (the level at which the display plane will
967 * start fetching from memory again). Each chip has a different display
968 * FIFO size and allocation, so the caller needs to figure that out and pass
969 * in the correct intel_watermark_params structure.
970 *
971 * As the pixel clock runs, the FIFO will be drained at a rate that depends
972 * on the pixel size. When it reaches the watermark level, it'll start
973 * fetching FIFO line sized based chunks from memory until the FIFO fills
974 * past the watermark point. If the FIFO drains completely, a FIFO underrun
975 * will occur, and a display engine hang could result.
976 */
977 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
978 const struct intel_watermark_params *wm,
979 int fifo_size,
980 int pixel_size,
981 unsigned long latency_ns)
982 {
983 long entries_required, wm_size;
984
985 /*
986 * Note: we need to make sure we don't overflow for various clock &
987 * latency values.
988 * clocks go from a few thousand to several hundred thousand.
989 * latency is usually a few thousand
990 */
991 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
992 1000;
993 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
994
995 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
996
997 wm_size = fifo_size - (entries_required + wm->guard_size);
998
999 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1000
1001 /* Don't promote wm_size to unsigned... */
1002 if (wm_size > (long)wm->max_wm)
1003 wm_size = wm->max_wm;
1004 if (wm_size <= 0)
1005 wm_size = wm->default_wm;
1006 return wm_size;
1007 }
1008
1009 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1010 {
1011 struct drm_crtc *crtc, *enabled = NULL;
1012
1013 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1014 if (intel_crtc_active(crtc)) {
1015 if (enabled)
1016 return NULL;
1017 enabled = crtc;
1018 }
1019 }
1020
1021 return enabled;
1022 }
1023
1024 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1025 {
1026 struct drm_device *dev = unused_crtc->dev;
1027 struct drm_i915_private *dev_priv = dev->dev_private;
1028 struct drm_crtc *crtc;
1029 const struct cxsr_latency *latency;
1030 u32 reg;
1031 unsigned long wm;
1032
1033 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1034 dev_priv->fsb_freq, dev_priv->mem_freq);
1035 if (!latency) {
1036 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1037 pineview_disable_cxsr(dev);
1038 return;
1039 }
1040
1041 crtc = single_enabled_crtc(dev);
1042 if (crtc) {
1043 const struct drm_display_mode *adjusted_mode;
1044 int pixel_size = crtc->fb->bits_per_pixel / 8;
1045 int clock;
1046
1047 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1048 clock = adjusted_mode->crtc_clock;
1049
1050 /* Display SR */
1051 wm = intel_calculate_wm(clock, &pineview_display_wm,
1052 pineview_display_wm.fifo_size,
1053 pixel_size, latency->display_sr);
1054 reg = I915_READ(DSPFW1);
1055 reg &= ~DSPFW_SR_MASK;
1056 reg |= wm << DSPFW_SR_SHIFT;
1057 I915_WRITE(DSPFW1, reg);
1058 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1059
1060 /* cursor SR */
1061 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1062 pineview_display_wm.fifo_size,
1063 pixel_size, latency->cursor_sr);
1064 reg = I915_READ(DSPFW3);
1065 reg &= ~DSPFW_CURSOR_SR_MASK;
1066 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1067 I915_WRITE(DSPFW3, reg);
1068
1069 /* Display HPLL off SR */
1070 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1071 pineview_display_hplloff_wm.fifo_size,
1072 pixel_size, latency->display_hpll_disable);
1073 reg = I915_READ(DSPFW3);
1074 reg &= ~DSPFW_HPLL_SR_MASK;
1075 reg |= wm & DSPFW_HPLL_SR_MASK;
1076 I915_WRITE(DSPFW3, reg);
1077
1078 /* cursor HPLL off SR */
1079 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1080 pineview_display_hplloff_wm.fifo_size,
1081 pixel_size, latency->cursor_hpll_disable);
1082 reg = I915_READ(DSPFW3);
1083 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1084 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1085 I915_WRITE(DSPFW3, reg);
1086 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1087
1088 /* activate cxsr */
1089 I915_WRITE(DSPFW3,
1090 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1091 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1092 } else {
1093 pineview_disable_cxsr(dev);
1094 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1095 }
1096 }
1097
1098 static bool g4x_compute_wm0(struct drm_device *dev,
1099 int plane,
1100 const struct intel_watermark_params *display,
1101 int display_latency_ns,
1102 const struct intel_watermark_params *cursor,
1103 int cursor_latency_ns,
1104 int *plane_wm,
1105 int *cursor_wm)
1106 {
1107 struct drm_crtc *crtc;
1108 const struct drm_display_mode *adjusted_mode;
1109 int htotal, hdisplay, clock, pixel_size;
1110 int line_time_us, line_count;
1111 int entries, tlb_miss;
1112
1113 crtc = intel_get_crtc_for_plane(dev, plane);
1114 if (!intel_crtc_active(crtc)) {
1115 *cursor_wm = cursor->guard_size;
1116 *plane_wm = display->guard_size;
1117 return false;
1118 }
1119
1120 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1121 clock = adjusted_mode->crtc_clock;
1122 htotal = adjusted_mode->crtc_htotal;
1123 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1124 pixel_size = crtc->fb->bits_per_pixel / 8;
1125
1126 /* Use the small buffer method to calculate plane watermark */
1127 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1128 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1129 if (tlb_miss > 0)
1130 entries += tlb_miss;
1131 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1132 *plane_wm = entries + display->guard_size;
1133 if (*plane_wm > (int)display->max_wm)
1134 *plane_wm = display->max_wm;
1135
1136 /* Use the large buffer method to calculate cursor watermark */
1137 line_time_us = max(htotal * 1000 / clock, 1);
1138 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1139 entries = line_count * 64 * pixel_size;
1140 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1141 if (tlb_miss > 0)
1142 entries += tlb_miss;
1143 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1144 *cursor_wm = entries + cursor->guard_size;
1145 if (*cursor_wm > (int)cursor->max_wm)
1146 *cursor_wm = (int)cursor->max_wm;
1147
1148 return true;
1149 }
1150
1151 /*
1152 * Check the wm result.
1153 *
1154 * If any calculated watermark values is larger than the maximum value that
1155 * can be programmed into the associated watermark register, that watermark
1156 * must be disabled.
1157 */
1158 static bool g4x_check_srwm(struct drm_device *dev,
1159 int display_wm, int cursor_wm,
1160 const struct intel_watermark_params *display,
1161 const struct intel_watermark_params *cursor)
1162 {
1163 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1164 display_wm, cursor_wm);
1165
1166 if (display_wm > display->max_wm) {
1167 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1168 display_wm, display->max_wm);
1169 return false;
1170 }
1171
1172 if (cursor_wm > cursor->max_wm) {
1173 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1174 cursor_wm, cursor->max_wm);
1175 return false;
1176 }
1177
1178 if (!(display_wm || cursor_wm)) {
1179 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1180 return false;
1181 }
1182
1183 return true;
1184 }
1185
1186 static bool g4x_compute_srwm(struct drm_device *dev,
1187 int plane,
1188 int latency_ns,
1189 const struct intel_watermark_params *display,
1190 const struct intel_watermark_params *cursor,
1191 int *display_wm, int *cursor_wm)
1192 {
1193 struct drm_crtc *crtc;
1194 const struct drm_display_mode *adjusted_mode;
1195 int hdisplay, htotal, pixel_size, clock;
1196 unsigned long line_time_us;
1197 int line_count, line_size;
1198 int small, large;
1199 int entries;
1200
1201 if (!latency_ns) {
1202 *display_wm = *cursor_wm = 0;
1203 return false;
1204 }
1205
1206 crtc = intel_get_crtc_for_plane(dev, plane);
1207 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1208 clock = adjusted_mode->crtc_clock;
1209 htotal = adjusted_mode->crtc_htotal;
1210 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1211 pixel_size = crtc->fb->bits_per_pixel / 8;
1212
1213 line_time_us = max(htotal * 1000 / clock, 1);
1214 line_count = (latency_ns / line_time_us + 1000) / 1000;
1215 line_size = hdisplay * pixel_size;
1216
1217 /* Use the minimum of the small and large buffer method for primary */
1218 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1219 large = line_count * line_size;
1220
1221 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1222 *display_wm = entries + display->guard_size;
1223
1224 /* calculate the self-refresh watermark for display cursor */
1225 entries = line_count * pixel_size * 64;
1226 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1227 *cursor_wm = entries + cursor->guard_size;
1228
1229 return g4x_check_srwm(dev,
1230 *display_wm, *cursor_wm,
1231 display, cursor);
1232 }
1233
1234 static bool vlv_compute_drain_latency(struct drm_device *dev,
1235 int plane,
1236 int *plane_prec_mult,
1237 int *plane_dl,
1238 int *cursor_prec_mult,
1239 int *cursor_dl)
1240 {
1241 struct drm_crtc *crtc;
1242 int clock, pixel_size;
1243 int entries;
1244
1245 crtc = intel_get_crtc_for_plane(dev, plane);
1246 if (!intel_crtc_active(crtc))
1247 return false;
1248
1249 clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1250 pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
1251
1252 entries = (clock / 1000) * pixel_size;
1253 *plane_prec_mult = (entries > 256) ?
1254 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1255 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1256 pixel_size);
1257
1258 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
1259 *cursor_prec_mult = (entries > 256) ?
1260 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1261 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1262
1263 return true;
1264 }
1265
1266 /*
1267 * Update drain latency registers of memory arbiter
1268 *
1269 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1270 * to be programmed. Each plane has a drain latency multiplier and a drain
1271 * latency value.
1272 */
1273
1274 static void vlv_update_drain_latency(struct drm_device *dev)
1275 {
1276 struct drm_i915_private *dev_priv = dev->dev_private;
1277 int planea_prec, planea_dl, planeb_prec, planeb_dl;
1278 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1279 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1280 either 16 or 32 */
1281
1282 /* For plane A, Cursor A */
1283 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1284 &cursor_prec_mult, &cursora_dl)) {
1285 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1286 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1287 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1288 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1289
1290 I915_WRITE(VLV_DDL1, cursora_prec |
1291 (cursora_dl << DDL_CURSORA_SHIFT) |
1292 planea_prec | planea_dl);
1293 }
1294
1295 /* For plane B, Cursor B */
1296 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1297 &cursor_prec_mult, &cursorb_dl)) {
1298 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1299 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1300 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1301 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1302
1303 I915_WRITE(VLV_DDL2, cursorb_prec |
1304 (cursorb_dl << DDL_CURSORB_SHIFT) |
1305 planeb_prec | planeb_dl);
1306 }
1307 }
1308
1309 #define single_plane_enabled(mask) is_power_of_2(mask)
1310
1311 static void valleyview_update_wm(struct drm_crtc *crtc)
1312 {
1313 struct drm_device *dev = crtc->dev;
1314 static const int sr_latency_ns = 12000;
1315 struct drm_i915_private *dev_priv = dev->dev_private;
1316 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1317 int plane_sr, cursor_sr;
1318 int ignore_plane_sr, ignore_cursor_sr;
1319 unsigned int enabled = 0;
1320
1321 vlv_update_drain_latency(dev);
1322
1323 if (g4x_compute_wm0(dev, PIPE_A,
1324 &valleyview_wm_info, latency_ns,
1325 &valleyview_cursor_wm_info, latency_ns,
1326 &planea_wm, &cursora_wm))
1327 enabled |= 1 << PIPE_A;
1328
1329 if (g4x_compute_wm0(dev, PIPE_B,
1330 &valleyview_wm_info, latency_ns,
1331 &valleyview_cursor_wm_info, latency_ns,
1332 &planeb_wm, &cursorb_wm))
1333 enabled |= 1 << PIPE_B;
1334
1335 if (single_plane_enabled(enabled) &&
1336 g4x_compute_srwm(dev, ffs(enabled) - 1,
1337 sr_latency_ns,
1338 &valleyview_wm_info,
1339 &valleyview_cursor_wm_info,
1340 &plane_sr, &ignore_cursor_sr) &&
1341 g4x_compute_srwm(dev, ffs(enabled) - 1,
1342 2*sr_latency_ns,
1343 &valleyview_wm_info,
1344 &valleyview_cursor_wm_info,
1345 &ignore_plane_sr, &cursor_sr)) {
1346 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1347 } else {
1348 I915_WRITE(FW_BLC_SELF_VLV,
1349 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1350 plane_sr = cursor_sr = 0;
1351 }
1352
1353 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1354 planea_wm, cursora_wm,
1355 planeb_wm, cursorb_wm,
1356 plane_sr, cursor_sr);
1357
1358 I915_WRITE(DSPFW1,
1359 (plane_sr << DSPFW_SR_SHIFT) |
1360 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1361 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1362 planea_wm);
1363 I915_WRITE(DSPFW2,
1364 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1365 (cursora_wm << DSPFW_CURSORA_SHIFT));
1366 I915_WRITE(DSPFW3,
1367 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1368 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1369 }
1370
1371 static void g4x_update_wm(struct drm_crtc *crtc)
1372 {
1373 struct drm_device *dev = crtc->dev;
1374 static const int sr_latency_ns = 12000;
1375 struct drm_i915_private *dev_priv = dev->dev_private;
1376 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1377 int plane_sr, cursor_sr;
1378 unsigned int enabled = 0;
1379
1380 if (g4x_compute_wm0(dev, PIPE_A,
1381 &g4x_wm_info, latency_ns,
1382 &g4x_cursor_wm_info, latency_ns,
1383 &planea_wm, &cursora_wm))
1384 enabled |= 1 << PIPE_A;
1385
1386 if (g4x_compute_wm0(dev, PIPE_B,
1387 &g4x_wm_info, latency_ns,
1388 &g4x_cursor_wm_info, latency_ns,
1389 &planeb_wm, &cursorb_wm))
1390 enabled |= 1 << PIPE_B;
1391
1392 if (single_plane_enabled(enabled) &&
1393 g4x_compute_srwm(dev, ffs(enabled) - 1,
1394 sr_latency_ns,
1395 &g4x_wm_info,
1396 &g4x_cursor_wm_info,
1397 &plane_sr, &cursor_sr)) {
1398 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1399 } else {
1400 I915_WRITE(FW_BLC_SELF,
1401 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1402 plane_sr = cursor_sr = 0;
1403 }
1404
1405 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1406 planea_wm, cursora_wm,
1407 planeb_wm, cursorb_wm,
1408 plane_sr, cursor_sr);
1409
1410 I915_WRITE(DSPFW1,
1411 (plane_sr << DSPFW_SR_SHIFT) |
1412 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1413 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1414 planea_wm);
1415 I915_WRITE(DSPFW2,
1416 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1417 (cursora_wm << DSPFW_CURSORA_SHIFT));
1418 /* HPLL off in SR has some issues on G4x... disable it */
1419 I915_WRITE(DSPFW3,
1420 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1421 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1422 }
1423
1424 static void i965_update_wm(struct drm_crtc *unused_crtc)
1425 {
1426 struct drm_device *dev = unused_crtc->dev;
1427 struct drm_i915_private *dev_priv = dev->dev_private;
1428 struct drm_crtc *crtc;
1429 int srwm = 1;
1430 int cursor_sr = 16;
1431
1432 /* Calc sr entries for one plane configs */
1433 crtc = single_enabled_crtc(dev);
1434 if (crtc) {
1435 /* self-refresh has much higher latency */
1436 static const int sr_latency_ns = 12000;
1437 const struct drm_display_mode *adjusted_mode =
1438 &to_intel_crtc(crtc)->config.adjusted_mode;
1439 int clock = adjusted_mode->crtc_clock;
1440 int htotal = adjusted_mode->crtc_htotal;
1441 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1442 int pixel_size = crtc->fb->bits_per_pixel / 8;
1443 unsigned long line_time_us;
1444 int entries;
1445
1446 line_time_us = max(htotal * 1000 / clock, 1);
1447
1448 /* Use ns/us then divide to preserve precision */
1449 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1450 pixel_size * hdisplay;
1451 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1452 srwm = I965_FIFO_SIZE - entries;
1453 if (srwm < 0)
1454 srwm = 1;
1455 srwm &= 0x1ff;
1456 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1457 entries, srwm);
1458
1459 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1460 pixel_size * 64;
1461 entries = DIV_ROUND_UP(entries,
1462 i965_cursor_wm_info.cacheline_size);
1463 cursor_sr = i965_cursor_wm_info.fifo_size -
1464 (entries + i965_cursor_wm_info.guard_size);
1465
1466 if (cursor_sr > i965_cursor_wm_info.max_wm)
1467 cursor_sr = i965_cursor_wm_info.max_wm;
1468
1469 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1470 "cursor %d\n", srwm, cursor_sr);
1471
1472 if (IS_CRESTLINE(dev))
1473 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1474 } else {
1475 /* Turn off self refresh if both pipes are enabled */
1476 if (IS_CRESTLINE(dev))
1477 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1478 & ~FW_BLC_SELF_EN);
1479 }
1480
1481 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1482 srwm);
1483
1484 /* 965 has limitations... */
1485 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1486 (8 << 16) | (8 << 8) | (8 << 0));
1487 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1488 /* update cursor SR watermark */
1489 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1490 }
1491
1492 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1493 {
1494 struct drm_device *dev = unused_crtc->dev;
1495 struct drm_i915_private *dev_priv = dev->dev_private;
1496 const struct intel_watermark_params *wm_info;
1497 uint32_t fwater_lo;
1498 uint32_t fwater_hi;
1499 int cwm, srwm = 1;
1500 int fifo_size;
1501 int planea_wm, planeb_wm;
1502 struct drm_crtc *crtc, *enabled = NULL;
1503
1504 if (IS_I945GM(dev))
1505 wm_info = &i945_wm_info;
1506 else if (!IS_GEN2(dev))
1507 wm_info = &i915_wm_info;
1508 else
1509 wm_info = &i830_wm_info;
1510
1511 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1512 crtc = intel_get_crtc_for_plane(dev, 0);
1513 if (intel_crtc_active(crtc)) {
1514 const struct drm_display_mode *adjusted_mode;
1515 int cpp = crtc->fb->bits_per_pixel / 8;
1516 if (IS_GEN2(dev))
1517 cpp = 4;
1518
1519 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1520 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1521 wm_info, fifo_size, cpp,
1522 latency_ns);
1523 enabled = crtc;
1524 } else
1525 planea_wm = fifo_size - wm_info->guard_size;
1526
1527 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1528 crtc = intel_get_crtc_for_plane(dev, 1);
1529 if (intel_crtc_active(crtc)) {
1530 const struct drm_display_mode *adjusted_mode;
1531 int cpp = crtc->fb->bits_per_pixel / 8;
1532 if (IS_GEN2(dev))
1533 cpp = 4;
1534
1535 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1536 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1537 wm_info, fifo_size, cpp,
1538 latency_ns);
1539 if (enabled == NULL)
1540 enabled = crtc;
1541 else
1542 enabled = NULL;
1543 } else
1544 planeb_wm = fifo_size - wm_info->guard_size;
1545
1546 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1547
1548 /*
1549 * Overlay gets an aggressive default since video jitter is bad.
1550 */
1551 cwm = 2;
1552
1553 /* Play safe and disable self-refresh before adjusting watermarks. */
1554 if (IS_I945G(dev) || IS_I945GM(dev))
1555 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1556 else if (IS_I915GM(dev))
1557 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_SELF_EN));
1558
1559 /* Calc sr entries for one plane configs */
1560 if (HAS_FW_BLC(dev) && enabled) {
1561 /* self-refresh has much higher latency */
1562 static const int sr_latency_ns = 6000;
1563 const struct drm_display_mode *adjusted_mode =
1564 &to_intel_crtc(enabled)->config.adjusted_mode;
1565 int clock = adjusted_mode->crtc_clock;
1566 int htotal = adjusted_mode->crtc_htotal;
1567 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1568 int pixel_size = enabled->fb->bits_per_pixel / 8;
1569 unsigned long line_time_us;
1570 int entries;
1571
1572 line_time_us = max(htotal * 1000 / clock, 1);
1573
1574 /* Use ns/us then divide to preserve precision */
1575 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1576 pixel_size * hdisplay;
1577 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1578 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1579 srwm = wm_info->fifo_size - entries;
1580 if (srwm < 0)
1581 srwm = 1;
1582
1583 if (IS_I945G(dev) || IS_I945GM(dev))
1584 I915_WRITE(FW_BLC_SELF,
1585 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1586 else if (IS_I915GM(dev))
1587 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1588 }
1589
1590 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1591 planea_wm, planeb_wm, cwm, srwm);
1592
1593 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1594 fwater_hi = (cwm & 0x1f);
1595
1596 /* Set request length to 8 cachelines per fetch */
1597 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1598 fwater_hi = fwater_hi | (1 << 8);
1599
1600 I915_WRITE(FW_BLC, fwater_lo);
1601 I915_WRITE(FW_BLC2, fwater_hi);
1602
1603 if (HAS_FW_BLC(dev)) {
1604 if (enabled) {
1605 if (IS_I945G(dev) || IS_I945GM(dev))
1606 I915_WRITE(FW_BLC_SELF,
1607 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1608 else if (IS_I915GM(dev))
1609 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_SELF_EN));
1610 DRM_DEBUG_KMS("memory self refresh enabled\n");
1611 } else
1612 DRM_DEBUG_KMS("memory self refresh disabled\n");
1613 }
1614 }
1615
1616 static void i845_update_wm(struct drm_crtc *unused_crtc)
1617 {
1618 struct drm_device *dev = unused_crtc->dev;
1619 struct drm_i915_private *dev_priv = dev->dev_private;
1620 struct drm_crtc *crtc;
1621 const struct drm_display_mode *adjusted_mode;
1622 uint32_t fwater_lo;
1623 int planea_wm;
1624
1625 crtc = single_enabled_crtc(dev);
1626 if (crtc == NULL)
1627 return;
1628
1629 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1630 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1631 &i845_wm_info,
1632 dev_priv->display.get_fifo_size(dev, 0),
1633 4, latency_ns);
1634 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1635 fwater_lo |= (3<<8) | planea_wm;
1636
1637 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1638
1639 I915_WRITE(FW_BLC, fwater_lo);
1640 }
1641
1642 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1643 struct drm_crtc *crtc)
1644 {
1645 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1646 uint32_t pixel_rate;
1647
1648 pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1649
1650 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1651 * adjust the pixel_rate here. */
1652
1653 if (intel_crtc->config.pch_pfit.enabled) {
1654 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1655 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1656
1657 pipe_w = intel_crtc->config.pipe_src_w;
1658 pipe_h = intel_crtc->config.pipe_src_h;
1659 pfit_w = (pfit_size >> 16) & 0xFFFF;
1660 pfit_h = pfit_size & 0xFFFF;
1661 if (pipe_w < pfit_w)
1662 pipe_w = pfit_w;
1663 if (pipe_h < pfit_h)
1664 pipe_h = pfit_h;
1665
1666 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1667 pfit_w * pfit_h);
1668 }
1669
1670 return pixel_rate;
1671 }
1672
1673 /* latency must be in 0.1us units. */
1674 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1675 uint32_t latency)
1676 {
1677 uint64_t ret;
1678
1679 if (WARN(latency == 0, "Latency value missing\n"))
1680 return UINT_MAX;
1681
1682 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1683 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1684
1685 return ret;
1686 }
1687
1688 /* latency must be in 0.1us units. */
1689 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1690 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1691 uint32_t latency)
1692 {
1693 uint32_t ret;
1694
1695 if (WARN(latency == 0, "Latency value missing\n"))
1696 return UINT_MAX;
1697
1698 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1699 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1700 ret = DIV_ROUND_UP(ret, 64) + 2;
1701 return ret;
1702 }
1703
1704 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1705 uint8_t bytes_per_pixel)
1706 {
1707 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1708 }
1709
1710 struct ilk_pipe_wm_parameters {
1711 bool active;
1712 uint32_t pipe_htotal;
1713 uint32_t pixel_rate;
1714 struct intel_plane_wm_parameters pri;
1715 struct intel_plane_wm_parameters spr;
1716 struct intel_plane_wm_parameters cur;
1717 };
1718
1719 struct ilk_wm_maximums {
1720 uint16_t pri;
1721 uint16_t spr;
1722 uint16_t cur;
1723 uint16_t fbc;
1724 };
1725
1726 /* used in computing the new watermarks state */
1727 struct intel_wm_config {
1728 unsigned int num_pipes_active;
1729 bool sprites_enabled;
1730 bool sprites_scaled;
1731 };
1732
1733 /*
1734 * For both WM_PIPE and WM_LP.
1735 * mem_value must be in 0.1us units.
1736 */
1737 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1738 uint32_t mem_value,
1739 bool is_lp)
1740 {
1741 uint32_t method1, method2;
1742
1743 if (!params->active || !params->pri.enabled)
1744 return 0;
1745
1746 method1 = ilk_wm_method1(params->pixel_rate,
1747 params->pri.bytes_per_pixel,
1748 mem_value);
1749
1750 if (!is_lp)
1751 return method1;
1752
1753 method2 = ilk_wm_method2(params->pixel_rate,
1754 params->pipe_htotal,
1755 params->pri.horiz_pixels,
1756 params->pri.bytes_per_pixel,
1757 mem_value);
1758
1759 return min(method1, method2);
1760 }
1761
1762 /*
1763 * For both WM_PIPE and WM_LP.
1764 * mem_value must be in 0.1us units.
1765 */
1766 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1767 uint32_t mem_value)
1768 {
1769 uint32_t method1, method2;
1770
1771 if (!params->active || !params->spr.enabled)
1772 return 0;
1773
1774 method1 = ilk_wm_method1(params->pixel_rate,
1775 params->spr.bytes_per_pixel,
1776 mem_value);
1777 method2 = ilk_wm_method2(params->pixel_rate,
1778 params->pipe_htotal,
1779 params->spr.horiz_pixels,
1780 params->spr.bytes_per_pixel,
1781 mem_value);
1782 return min(method1, method2);
1783 }
1784
1785 /*
1786 * For both WM_PIPE and WM_LP.
1787 * mem_value must be in 0.1us units.
1788 */
1789 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1790 uint32_t mem_value)
1791 {
1792 if (!params->active || !params->cur.enabled)
1793 return 0;
1794
1795 return ilk_wm_method2(params->pixel_rate,
1796 params->pipe_htotal,
1797 params->cur.horiz_pixels,
1798 params->cur.bytes_per_pixel,
1799 mem_value);
1800 }
1801
1802 /* Only for WM_LP. */
1803 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1804 uint32_t pri_val)
1805 {
1806 if (!params->active || !params->pri.enabled)
1807 return 0;
1808
1809 return ilk_wm_fbc(pri_val,
1810 params->pri.horiz_pixels,
1811 params->pri.bytes_per_pixel);
1812 }
1813
1814 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1815 {
1816 if (INTEL_INFO(dev)->gen >= 8)
1817 return 3072;
1818 else if (INTEL_INFO(dev)->gen >= 7)
1819 return 768;
1820 else
1821 return 512;
1822 }
1823
1824 /* Calculate the maximum primary/sprite plane watermark */
1825 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1826 int level,
1827 const struct intel_wm_config *config,
1828 enum intel_ddb_partitioning ddb_partitioning,
1829 bool is_sprite)
1830 {
1831 unsigned int fifo_size = ilk_display_fifo_size(dev);
1832 unsigned int max;
1833
1834 /* if sprites aren't enabled, sprites get nothing */
1835 if (is_sprite && !config->sprites_enabled)
1836 return 0;
1837
1838 /* HSW allows LP1+ watermarks even with multiple pipes */
1839 if (level == 0 || config->num_pipes_active > 1) {
1840 fifo_size /= INTEL_INFO(dev)->num_pipes;
1841
1842 /*
1843 * For some reason the non self refresh
1844 * FIFO size is only half of the self
1845 * refresh FIFO size on ILK/SNB.
1846 */
1847 if (INTEL_INFO(dev)->gen <= 6)
1848 fifo_size /= 2;
1849 }
1850
1851 if (config->sprites_enabled) {
1852 /* level 0 is always calculated with 1:1 split */
1853 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1854 if (is_sprite)
1855 fifo_size *= 5;
1856 fifo_size /= 6;
1857 } else {
1858 fifo_size /= 2;
1859 }
1860 }
1861
1862 /* clamp to max that the registers can hold */
1863 if (INTEL_INFO(dev)->gen >= 8)
1864 max = level == 0 ? 255 : 2047;
1865 else if (INTEL_INFO(dev)->gen >= 7)
1866 /* IVB/HSW primary/sprite plane watermarks */
1867 max = level == 0 ? 127 : 1023;
1868 else if (!is_sprite)
1869 /* ILK/SNB primary plane watermarks */
1870 max = level == 0 ? 127 : 511;
1871 else
1872 /* ILK/SNB sprite plane watermarks */
1873 max = level == 0 ? 63 : 255;
1874
1875 return min(fifo_size, max);
1876 }
1877
1878 /* Calculate the maximum cursor plane watermark */
1879 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1880 int level,
1881 const struct intel_wm_config *config)
1882 {
1883 /* HSW LP1+ watermarks w/ multiple pipes */
1884 if (level > 0 && config->num_pipes_active > 1)
1885 return 64;
1886
1887 /* otherwise just report max that registers can hold */
1888 if (INTEL_INFO(dev)->gen >= 7)
1889 return level == 0 ? 63 : 255;
1890 else
1891 return level == 0 ? 31 : 63;
1892 }
1893
1894 /* Calculate the maximum FBC watermark */
1895 static unsigned int ilk_fbc_wm_max(const struct drm_device *dev)
1896 {
1897 /* max that registers can hold */
1898 if (INTEL_INFO(dev)->gen >= 8)
1899 return 31;
1900 else
1901 return 15;
1902 }
1903
1904 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1905 int level,
1906 const struct intel_wm_config *config,
1907 enum intel_ddb_partitioning ddb_partitioning,
1908 struct ilk_wm_maximums *max)
1909 {
1910 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1911 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1912 max->cur = ilk_cursor_wm_max(dev, level, config);
1913 max->fbc = ilk_fbc_wm_max(dev);
1914 }
1915
1916 static bool ilk_validate_wm_level(int level,
1917 const struct ilk_wm_maximums *max,
1918 struct intel_wm_level *result)
1919 {
1920 bool ret;
1921
1922 /* already determined to be invalid? */
1923 if (!result->enable)
1924 return false;
1925
1926 result->enable = result->pri_val <= max->pri &&
1927 result->spr_val <= max->spr &&
1928 result->cur_val <= max->cur;
1929
1930 ret = result->enable;
1931
1932 /*
1933 * HACK until we can pre-compute everything,
1934 * and thus fail gracefully if LP0 watermarks
1935 * are exceeded...
1936 */
1937 if (level == 0 && !result->enable) {
1938 if (result->pri_val > max->pri)
1939 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1940 level, result->pri_val, max->pri);
1941 if (result->spr_val > max->spr)
1942 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1943 level, result->spr_val, max->spr);
1944 if (result->cur_val > max->cur)
1945 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1946 level, result->cur_val, max->cur);
1947
1948 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1949 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1950 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1951 result->enable = true;
1952 }
1953
1954 return ret;
1955 }
1956
1957 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1958 int level,
1959 const struct ilk_pipe_wm_parameters *p,
1960 struct intel_wm_level *result)
1961 {
1962 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1963 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1964 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1965
1966 /* WM1+ latency values stored in 0.5us units */
1967 if (level > 0) {
1968 pri_latency *= 5;
1969 spr_latency *= 5;
1970 cur_latency *= 5;
1971 }
1972
1973 result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
1974 result->spr_val = ilk_compute_spr_wm(p, spr_latency);
1975 result->cur_val = ilk_compute_cur_wm(p, cur_latency);
1976 result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
1977 result->enable = true;
1978 }
1979
1980 static uint32_t
1981 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1982 {
1983 struct drm_i915_private *dev_priv = dev->dev_private;
1984 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1985 struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
1986 u32 linetime, ips_linetime;
1987
1988 if (!intel_crtc_active(crtc))
1989 return 0;
1990
1991 /* The WM are computed with base on how long it takes to fill a single
1992 * row at the given clock rate, multiplied by 8.
1993 * */
1994 linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1995 mode->crtc_clock);
1996 ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1997 intel_ddi_get_cdclk_freq(dev_priv));
1998
1999 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2000 PIPE_WM_LINETIME_TIME(linetime);
2001 }
2002
2003 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2004 {
2005 struct drm_i915_private *dev_priv = dev->dev_private;
2006
2007 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2008 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2009
2010 wm[0] = (sskpd >> 56) & 0xFF;
2011 if (wm[0] == 0)
2012 wm[0] = sskpd & 0xF;
2013 wm[1] = (sskpd >> 4) & 0xFF;
2014 wm[2] = (sskpd >> 12) & 0xFF;
2015 wm[3] = (sskpd >> 20) & 0x1FF;
2016 wm[4] = (sskpd >> 32) & 0x1FF;
2017 } else if (INTEL_INFO(dev)->gen >= 6) {
2018 uint32_t sskpd = I915_READ(MCH_SSKPD);
2019
2020 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2021 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2022 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2023 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2024 } else if (INTEL_INFO(dev)->gen >= 5) {
2025 uint32_t mltr = I915_READ(MLTR_ILK);
2026
2027 /* ILK primary LP0 latency is 700 ns */
2028 wm[0] = 7;
2029 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2030 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2031 }
2032 }
2033
2034 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2035 {
2036 /* ILK sprite LP0 latency is 1300 ns */
2037 if (INTEL_INFO(dev)->gen == 5)
2038 wm[0] = 13;
2039 }
2040
2041 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2042 {
2043 /* ILK cursor LP0 latency is 1300 ns */
2044 if (INTEL_INFO(dev)->gen == 5)
2045 wm[0] = 13;
2046
2047 /* WaDoubleCursorLP3Latency:ivb */
2048 if (IS_IVYBRIDGE(dev))
2049 wm[3] *= 2;
2050 }
2051
2052 static int ilk_wm_max_level(const struct drm_device *dev)
2053 {
2054 /* how many WM levels are we expecting */
2055 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2056 return 4;
2057 else if (INTEL_INFO(dev)->gen >= 6)
2058 return 3;
2059 else
2060 return 2;
2061 }
2062
2063 static void intel_print_wm_latency(struct drm_device *dev,
2064 const char *name,
2065 const uint16_t wm[5])
2066 {
2067 int level, max_level = ilk_wm_max_level(dev);
2068
2069 for (level = 0; level <= max_level; level++) {
2070 unsigned int latency = wm[level];
2071
2072 if (latency == 0) {
2073 DRM_ERROR("%s WM%d latency not provided\n",
2074 name, level);
2075 continue;
2076 }
2077
2078 /* WM1+ latency values in 0.5us units */
2079 if (level > 0)
2080 latency *= 5;
2081
2082 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2083 name, level, wm[level],
2084 latency / 10, latency % 10);
2085 }
2086 }
2087
2088 static void ilk_setup_wm_latency(struct drm_device *dev)
2089 {
2090 struct drm_i915_private *dev_priv = dev->dev_private;
2091
2092 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2093
2094 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2095 sizeof(dev_priv->wm.pri_latency));
2096 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2097 sizeof(dev_priv->wm.pri_latency));
2098
2099 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2100 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2101
2102 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2103 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2104 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2105 }
2106
2107 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2108 struct ilk_pipe_wm_parameters *p,
2109 struct intel_wm_config *config)
2110 {
2111 struct drm_device *dev = crtc->dev;
2112 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2113 enum pipe pipe = intel_crtc->pipe;
2114 struct drm_plane *plane;
2115
2116 p->active = intel_crtc_active(crtc);
2117 if (p->active) {
2118 p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2119 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2120 p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2121 p->cur.bytes_per_pixel = 4;
2122 p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2123 p->cur.horiz_pixels = 64;
2124 /* TODO: for now, assume primary and cursor planes are always enabled. */
2125 p->pri.enabled = true;
2126 p->cur.enabled = true;
2127 }
2128
2129 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2130 config->num_pipes_active += intel_crtc_active(crtc);
2131
2132 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2133 struct intel_plane *intel_plane = to_intel_plane(plane);
2134
2135 if (intel_plane->pipe == pipe)
2136 p->spr = intel_plane->wm;
2137
2138 config->sprites_enabled |= intel_plane->wm.enabled;
2139 config->sprites_scaled |= intel_plane->wm.scaled;
2140 }
2141 }
2142
2143 /* Compute new watermarks for the pipe */
2144 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2145 const struct ilk_pipe_wm_parameters *params,
2146 struct intel_pipe_wm *pipe_wm)
2147 {
2148 struct drm_device *dev = crtc->dev;
2149 const struct drm_i915_private *dev_priv = dev->dev_private;
2150 int level, max_level = ilk_wm_max_level(dev);
2151 /* LP0 watermark maximums depend on this pipe alone */
2152 struct intel_wm_config config = {
2153 .num_pipes_active = 1,
2154 .sprites_enabled = params->spr.enabled,
2155 .sprites_scaled = params->spr.scaled,
2156 };
2157 struct ilk_wm_maximums max;
2158
2159 /* LP0 watermarks always use 1/2 DDB partitioning */
2160 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2161
2162 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2163 if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2164 max_level = 1;
2165
2166 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2167 if (params->spr.scaled)
2168 max_level = 0;
2169
2170 for (level = 0; level <= max_level; level++)
2171 ilk_compute_wm_level(dev_priv, level, params,
2172 &pipe_wm->wm[level]);
2173
2174 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2175 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2176
2177 /* At least LP0 must be valid */
2178 return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
2179 }
2180
2181 /*
2182 * Merge the watermarks from all active pipes for a specific level.
2183 */
2184 static void ilk_merge_wm_level(struct drm_device *dev,
2185 int level,
2186 struct intel_wm_level *ret_wm)
2187 {
2188 const struct intel_crtc *intel_crtc;
2189
2190 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2191 const struct intel_wm_level *wm =
2192 &intel_crtc->wm.active.wm[level];
2193
2194 if (!wm->enable)
2195 return;
2196
2197 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2198 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2199 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2200 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2201 }
2202
2203 ret_wm->enable = true;
2204 }
2205
2206 /*
2207 * Merge all low power watermarks for all active pipes.
2208 */
2209 static void ilk_wm_merge(struct drm_device *dev,
2210 const struct intel_wm_config *config,
2211 const struct ilk_wm_maximums *max,
2212 struct intel_pipe_wm *merged)
2213 {
2214 int level, max_level = ilk_wm_max_level(dev);
2215
2216 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2217 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2218 config->num_pipes_active > 1)
2219 return;
2220
2221 /* ILK: FBC WM must be disabled always */
2222 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2223
2224 /* merge each WM1+ level */
2225 for (level = 1; level <= max_level; level++) {
2226 struct intel_wm_level *wm = &merged->wm[level];
2227
2228 ilk_merge_wm_level(dev, level, wm);
2229
2230 if (!ilk_validate_wm_level(level, max, wm))
2231 break;
2232
2233 /*
2234 * The spec says it is preferred to disable
2235 * FBC WMs instead of disabling a WM level.
2236 */
2237 if (wm->fbc_val > max->fbc) {
2238 merged->fbc_wm_enabled = false;
2239 wm->fbc_val = 0;
2240 }
2241 }
2242
2243 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2244 /*
2245 * FIXME this is racy. FBC might get enabled later.
2246 * What we should check here is whether FBC can be
2247 * enabled sometime later.
2248 */
2249 if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2250 for (level = 2; level <= max_level; level++) {
2251 struct intel_wm_level *wm = &merged->wm[level];
2252
2253 wm->enable = false;
2254 }
2255 }
2256 }
2257
2258 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2259 {
2260 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2261 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2262 }
2263
2264 /* The value we need to program into the WM_LPx latency field */
2265 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2266 {
2267 struct drm_i915_private *dev_priv = dev->dev_private;
2268
2269 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2270 return 2 * level;
2271 else
2272 return dev_priv->wm.pri_latency[level];
2273 }
2274
2275 static void ilk_compute_wm_results(struct drm_device *dev,
2276 const struct intel_pipe_wm *merged,
2277 enum intel_ddb_partitioning partitioning,
2278 struct ilk_wm_values *results)
2279 {
2280 struct intel_crtc *intel_crtc;
2281 int level, wm_lp;
2282
2283 results->enable_fbc_wm = merged->fbc_wm_enabled;
2284 results->partitioning = partitioning;
2285
2286 /* LP1+ register values */
2287 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2288 const struct intel_wm_level *r;
2289
2290 level = ilk_wm_lp_to_level(wm_lp, merged);
2291
2292 r = &merged->wm[level];
2293 if (!r->enable)
2294 break;
2295
2296 results->wm_lp[wm_lp - 1] = WM3_LP_EN |
2297 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2298 (r->pri_val << WM1_LP_SR_SHIFT) |
2299 r->cur_val;
2300
2301 if (INTEL_INFO(dev)->gen >= 8)
2302 results->wm_lp[wm_lp - 1] |=
2303 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2304 else
2305 results->wm_lp[wm_lp - 1] |=
2306 r->fbc_val << WM1_LP_FBC_SHIFT;
2307
2308 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2309 WARN_ON(wm_lp != 1);
2310 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2311 } else
2312 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2313 }
2314
2315 /* LP0 register values */
2316 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2317 enum pipe pipe = intel_crtc->pipe;
2318 const struct intel_wm_level *r =
2319 &intel_crtc->wm.active.wm[0];
2320
2321 if (WARN_ON(!r->enable))
2322 continue;
2323
2324 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2325
2326 results->wm_pipe[pipe] =
2327 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2328 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2329 r->cur_val;
2330 }
2331 }
2332
2333 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2334 * case both are at the same level. Prefer r1 in case they're the same. */
2335 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2336 struct intel_pipe_wm *r1,
2337 struct intel_pipe_wm *r2)
2338 {
2339 int level, max_level = ilk_wm_max_level(dev);
2340 int level1 = 0, level2 = 0;
2341
2342 for (level = 1; level <= max_level; level++) {
2343 if (r1->wm[level].enable)
2344 level1 = level;
2345 if (r2->wm[level].enable)
2346 level2 = level;
2347 }
2348
2349 if (level1 == level2) {
2350 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2351 return r2;
2352 else
2353 return r1;
2354 } else if (level1 > level2) {
2355 return r1;
2356 } else {
2357 return r2;
2358 }
2359 }
2360
2361 /* dirty bits used to track which watermarks need changes */
2362 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2363 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2364 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2365 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2366 #define WM_DIRTY_FBC (1 << 24)
2367 #define WM_DIRTY_DDB (1 << 25)
2368
2369 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2370 const struct ilk_wm_values *old,
2371 const struct ilk_wm_values *new)
2372 {
2373 unsigned int dirty = 0;
2374 enum pipe pipe;
2375 int wm_lp;
2376
2377 for_each_pipe(pipe) {
2378 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2379 dirty |= WM_DIRTY_LINETIME(pipe);
2380 /* Must disable LP1+ watermarks too */
2381 dirty |= WM_DIRTY_LP_ALL;
2382 }
2383
2384 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2385 dirty |= WM_DIRTY_PIPE(pipe);
2386 /* Must disable LP1+ watermarks too */
2387 dirty |= WM_DIRTY_LP_ALL;
2388 }
2389 }
2390
2391 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2392 dirty |= WM_DIRTY_FBC;
2393 /* Must disable LP1+ watermarks too */
2394 dirty |= WM_DIRTY_LP_ALL;
2395 }
2396
2397 if (old->partitioning != new->partitioning) {
2398 dirty |= WM_DIRTY_DDB;
2399 /* Must disable LP1+ watermarks too */
2400 dirty |= WM_DIRTY_LP_ALL;
2401 }
2402
2403 /* LP1+ watermarks already deemed dirty, no need to continue */
2404 if (dirty & WM_DIRTY_LP_ALL)
2405 return dirty;
2406
2407 /* Find the lowest numbered LP1+ watermark in need of an update... */
2408 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2409 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2410 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2411 break;
2412 }
2413
2414 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2415 for (; wm_lp <= 3; wm_lp++)
2416 dirty |= WM_DIRTY_LP(wm_lp);
2417
2418 return dirty;
2419 }
2420
2421 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2422 unsigned int dirty)
2423 {
2424 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2425 bool changed = false;
2426
2427 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2428 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2429 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2430 changed = true;
2431 }
2432 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2433 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2434 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2435 changed = true;
2436 }
2437 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2438 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2439 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2440 changed = true;
2441 }
2442
2443 /*
2444 * Don't touch WM1S_LP_EN here.
2445 * Doing so could cause underruns.
2446 */
2447
2448 return changed;
2449 }
2450
2451 /*
2452 * The spec says we shouldn't write when we don't need, because every write
2453 * causes WMs to be re-evaluated, expending some power.
2454 */
2455 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2456 struct ilk_wm_values *results)
2457 {
2458 struct drm_device *dev = dev_priv->dev;
2459 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2460 unsigned int dirty;
2461 uint32_t val;
2462
2463 dirty = ilk_compute_wm_dirty(dev, previous, results);
2464 if (!dirty)
2465 return;
2466
2467 _ilk_disable_lp_wm(dev_priv, dirty);
2468
2469 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2470 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2471 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2472 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2473 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2474 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2475
2476 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2477 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2478 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2479 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2480 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2481 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2482
2483 if (dirty & WM_DIRTY_DDB) {
2484 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2485 val = I915_READ(WM_MISC);
2486 if (results->partitioning == INTEL_DDB_PART_1_2)
2487 val &= ~WM_MISC_DATA_PARTITION_5_6;
2488 else
2489 val |= WM_MISC_DATA_PARTITION_5_6;
2490 I915_WRITE(WM_MISC, val);
2491 } else {
2492 val = I915_READ(DISP_ARB_CTL2);
2493 if (results->partitioning == INTEL_DDB_PART_1_2)
2494 val &= ~DISP_DATA_PARTITION_5_6;
2495 else
2496 val |= DISP_DATA_PARTITION_5_6;
2497 I915_WRITE(DISP_ARB_CTL2, val);
2498 }
2499 }
2500
2501 if (dirty & WM_DIRTY_FBC) {
2502 val = I915_READ(DISP_ARB_CTL);
2503 if (results->enable_fbc_wm)
2504 val &= ~DISP_FBC_WM_DIS;
2505 else
2506 val |= DISP_FBC_WM_DIS;
2507 I915_WRITE(DISP_ARB_CTL, val);
2508 }
2509
2510 if (dirty & WM_DIRTY_LP(1) &&
2511 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2512 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2513
2514 if (INTEL_INFO(dev)->gen >= 7) {
2515 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2516 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2517 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2518 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2519 }
2520
2521 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2522 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2523 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2524 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2525 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2526 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2527
2528 dev_priv->wm.hw = *results;
2529 }
2530
2531 static bool ilk_disable_lp_wm(struct drm_device *dev)
2532 {
2533 struct drm_i915_private *dev_priv = dev->dev_private;
2534
2535 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2536 }
2537
2538 static void ilk_update_wm(struct drm_crtc *crtc)
2539 {
2540 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2541 struct drm_device *dev = crtc->dev;
2542 struct drm_i915_private *dev_priv = dev->dev_private;
2543 struct ilk_wm_maximums max;
2544 struct ilk_pipe_wm_parameters params = {};
2545 struct ilk_wm_values results = {};
2546 enum intel_ddb_partitioning partitioning;
2547 struct intel_pipe_wm pipe_wm = {};
2548 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2549 struct intel_wm_config config = {};
2550
2551 ilk_compute_wm_parameters(crtc, &params, &config);
2552
2553 intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2554
2555 if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2556 return;
2557
2558 intel_crtc->wm.active = pipe_wm;
2559
2560 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2561 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2562
2563 /* 5/6 split only in single pipe config on IVB+ */
2564 if (INTEL_INFO(dev)->gen >= 7 &&
2565 config.num_pipes_active == 1 && config.sprites_enabled) {
2566 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2567 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2568
2569 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2570 } else {
2571 best_lp_wm = &lp_wm_1_2;
2572 }
2573
2574 partitioning = (best_lp_wm == &lp_wm_1_2) ?
2575 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2576
2577 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2578
2579 ilk_write_wm_values(dev_priv, &results);
2580 }
2581
2582 static void ilk_update_sprite_wm(struct drm_plane *plane,
2583 struct drm_crtc *crtc,
2584 uint32_t sprite_width, int pixel_size,
2585 bool enabled, bool scaled)
2586 {
2587 struct drm_device *dev = plane->dev;
2588 struct intel_plane *intel_plane = to_intel_plane(plane);
2589
2590 intel_plane->wm.enabled = enabled;
2591 intel_plane->wm.scaled = scaled;
2592 intel_plane->wm.horiz_pixels = sprite_width;
2593 intel_plane->wm.bytes_per_pixel = pixel_size;
2594
2595 /*
2596 * IVB workaround: must disable low power watermarks for at least
2597 * one frame before enabling scaling. LP watermarks can be re-enabled
2598 * when scaling is disabled.
2599 *
2600 * WaCxSRDisabledForSpriteScaling:ivb
2601 */
2602 if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2603 intel_wait_for_vblank(dev, intel_plane->pipe);
2604
2605 ilk_update_wm(crtc);
2606 }
2607
2608 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2609 {
2610 struct drm_device *dev = crtc->dev;
2611 struct drm_i915_private *dev_priv = dev->dev_private;
2612 struct ilk_wm_values *hw = &dev_priv->wm.hw;
2613 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2614 struct intel_pipe_wm *active = &intel_crtc->wm.active;
2615 enum pipe pipe = intel_crtc->pipe;
2616 static const unsigned int wm0_pipe_reg[] = {
2617 [PIPE_A] = WM0_PIPEA_ILK,
2618 [PIPE_B] = WM0_PIPEB_ILK,
2619 [PIPE_C] = WM0_PIPEC_IVB,
2620 };
2621
2622 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2623 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2624 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2625
2626 if (intel_crtc_active(crtc)) {
2627 u32 tmp = hw->wm_pipe[pipe];
2628
2629 /*
2630 * For active pipes LP0 watermark is marked as
2631 * enabled, and LP1+ watermaks as disabled since
2632 * we can't really reverse compute them in case
2633 * multiple pipes are active.
2634 */
2635 active->wm[0].enable = true;
2636 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2637 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2638 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2639 active->linetime = hw->wm_linetime[pipe];
2640 } else {
2641 int level, max_level = ilk_wm_max_level(dev);
2642
2643 /*
2644 * For inactive pipes, all watermark levels
2645 * should be marked as enabled but zeroed,
2646 * which is what we'd compute them to.
2647 */
2648 for (level = 0; level <= max_level; level++)
2649 active->wm[level].enable = true;
2650 }
2651 }
2652
2653 void ilk_wm_get_hw_state(struct drm_device *dev)
2654 {
2655 struct drm_i915_private *dev_priv = dev->dev_private;
2656 struct ilk_wm_values *hw = &dev_priv->wm.hw;
2657 struct drm_crtc *crtc;
2658
2659 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2660 ilk_pipe_wm_get_hw_state(crtc);
2661
2662 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2663 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2664 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2665
2666 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2667 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2668 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2669
2670 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2671 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2672 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2673 else if (IS_IVYBRIDGE(dev))
2674 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2675 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2676
2677 hw->enable_fbc_wm =
2678 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2679 }
2680
2681 /**
2682 * intel_update_watermarks - update FIFO watermark values based on current modes
2683 *
2684 * Calculate watermark values for the various WM regs based on current mode
2685 * and plane configuration.
2686 *
2687 * There are several cases to deal with here:
2688 * - normal (i.e. non-self-refresh)
2689 * - self-refresh (SR) mode
2690 * - lines are large relative to FIFO size (buffer can hold up to 2)
2691 * - lines are small relative to FIFO size (buffer can hold more than 2
2692 * lines), so need to account for TLB latency
2693 *
2694 * The normal calculation is:
2695 * watermark = dotclock * bytes per pixel * latency
2696 * where latency is platform & configuration dependent (we assume pessimal
2697 * values here).
2698 *
2699 * The SR calculation is:
2700 * watermark = (trunc(latency/line time)+1) * surface width *
2701 * bytes per pixel
2702 * where
2703 * line time = htotal / dotclock
2704 * surface width = hdisplay for normal plane and 64 for cursor
2705 * and latency is assumed to be high, as above.
2706 *
2707 * The final value programmed to the register should always be rounded up,
2708 * and include an extra 2 entries to account for clock crossings.
2709 *
2710 * We don't use the sprite, so we can ignore that. And on Crestline we have
2711 * to set the non-SR watermarks to 8.
2712 */
2713 void intel_update_watermarks(struct drm_crtc *crtc)
2714 {
2715 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2716
2717 if (dev_priv->display.update_wm)
2718 dev_priv->display.update_wm(crtc);
2719 }
2720
2721 void intel_update_sprite_watermarks(struct drm_plane *plane,
2722 struct drm_crtc *crtc,
2723 uint32_t sprite_width, int pixel_size,
2724 bool enabled, bool scaled)
2725 {
2726 struct drm_i915_private *dev_priv = plane->dev->dev_private;
2727
2728 if (dev_priv->display.update_sprite_wm)
2729 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
2730 pixel_size, enabled, scaled);
2731 }
2732
2733 static struct drm_i915_gem_object *
2734 intel_alloc_context_page(struct drm_device *dev)
2735 {
2736 struct drm_i915_gem_object *ctx;
2737 int ret;
2738
2739 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2740
2741 ctx = i915_gem_alloc_object(dev, 4096);
2742 if (!ctx) {
2743 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2744 return NULL;
2745 }
2746
2747 ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
2748 if (ret) {
2749 DRM_ERROR("failed to pin power context: %d\n", ret);
2750 goto err_unref;
2751 }
2752
2753 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2754 if (ret) {
2755 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2756 goto err_unpin;
2757 }
2758
2759 return ctx;
2760
2761 err_unpin:
2762 i915_gem_object_ggtt_unpin(ctx);
2763 err_unref:
2764 drm_gem_object_unreference(&ctx->base);
2765 return NULL;
2766 }
2767
2768 /**
2769 * Lock protecting IPS related data structures
2770 */
2771 DEFINE_SPINLOCK(mchdev_lock);
2772
2773 /* Global for IPS driver to get at the current i915 device. Protected by
2774 * mchdev_lock. */
2775 static struct drm_i915_private *i915_mch_dev;
2776
2777 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2778 {
2779 struct drm_i915_private *dev_priv = dev->dev_private;
2780 u16 rgvswctl;
2781
2782 assert_spin_locked(&mchdev_lock);
2783
2784 rgvswctl = I915_READ16(MEMSWCTL);
2785 if (rgvswctl & MEMCTL_CMD_STS) {
2786 DRM_DEBUG("gpu busy, RCS change rejected\n");
2787 return false; /* still busy with another command */
2788 }
2789
2790 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2791 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2792 I915_WRITE16(MEMSWCTL, rgvswctl);
2793 POSTING_READ16(MEMSWCTL);
2794
2795 rgvswctl |= MEMCTL_CMD_STS;
2796 I915_WRITE16(MEMSWCTL, rgvswctl);
2797
2798 return true;
2799 }
2800
2801 static void ironlake_enable_drps(struct drm_device *dev)
2802 {
2803 struct drm_i915_private *dev_priv = dev->dev_private;
2804 u32 rgvmodectl = I915_READ(MEMMODECTL);
2805 u8 fmax, fmin, fstart, vstart;
2806
2807 spin_lock_irq(&mchdev_lock);
2808
2809 /* Enable temp reporting */
2810 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2811 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2812
2813 /* 100ms RC evaluation intervals */
2814 I915_WRITE(RCUPEI, 100000);
2815 I915_WRITE(RCDNEI, 100000);
2816
2817 /* Set max/min thresholds to 90ms and 80ms respectively */
2818 I915_WRITE(RCBMAXAVG, 90000);
2819 I915_WRITE(RCBMINAVG, 80000);
2820
2821 I915_WRITE(MEMIHYST, 1);
2822
2823 /* Set up min, max, and cur for interrupt handling */
2824 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2825 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2826 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2827 MEMMODE_FSTART_SHIFT;
2828
2829 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2830 PXVFREQ_PX_SHIFT;
2831
2832 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2833 dev_priv->ips.fstart = fstart;
2834
2835 dev_priv->ips.max_delay = fstart;
2836 dev_priv->ips.min_delay = fmin;
2837 dev_priv->ips.cur_delay = fstart;
2838
2839 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2840 fmax, fmin, fstart);
2841
2842 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2843
2844 /*
2845 * Interrupts will be enabled in ironlake_irq_postinstall
2846 */
2847
2848 I915_WRITE(VIDSTART, vstart);
2849 POSTING_READ(VIDSTART);
2850
2851 rgvmodectl |= MEMMODE_SWMODE_EN;
2852 I915_WRITE(MEMMODECTL, rgvmodectl);
2853
2854 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2855 DRM_ERROR("stuck trying to change perf mode\n");
2856 mdelay(1);
2857
2858 ironlake_set_drps(dev, fstart);
2859
2860 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2861 I915_READ(0x112e0);
2862 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2863 dev_priv->ips.last_count2 = I915_READ(0x112f4);
2864 getrawmonotonic(&dev_priv->ips.last_time2);
2865
2866 spin_unlock_irq(&mchdev_lock);
2867 }
2868
2869 static void ironlake_disable_drps(struct drm_device *dev)
2870 {
2871 struct drm_i915_private *dev_priv = dev->dev_private;
2872 u16 rgvswctl;
2873
2874 spin_lock_irq(&mchdev_lock);
2875
2876 rgvswctl = I915_READ16(MEMSWCTL);
2877
2878 /* Ack interrupts, disable EFC interrupt */
2879 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2880 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2881 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2882 I915_WRITE(DEIIR, DE_PCU_EVENT);
2883 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2884
2885 /* Go back to the starting frequency */
2886 ironlake_set_drps(dev, dev_priv->ips.fstart);
2887 mdelay(1);
2888 rgvswctl |= MEMCTL_CMD_STS;
2889 I915_WRITE(MEMSWCTL, rgvswctl);
2890 mdelay(1);
2891
2892 spin_unlock_irq(&mchdev_lock);
2893 }
2894
2895 /* There's a funny hw issue where the hw returns all 0 when reading from
2896 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2897 * ourselves, instead of doing a rmw cycle (which might result in us clearing
2898 * all limits and the gpu stuck at whatever frequency it is at atm).
2899 */
2900 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
2901 {
2902 u32 limits;
2903
2904 /* Only set the down limit when we've reached the lowest level to avoid
2905 * getting more interrupts, otherwise leave this clear. This prevents a
2906 * race in the hw when coming out of rc6: There's a tiny window where
2907 * the hw runs at the minimal clock before selecting the desired
2908 * frequency, if the down threshold expires in that window we will not
2909 * receive a down interrupt. */
2910 limits = dev_priv->rps.max_delay << 24;
2911 if (val <= dev_priv->rps.min_delay)
2912 limits |= dev_priv->rps.min_delay << 16;
2913
2914 return limits;
2915 }
2916
2917 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
2918 {
2919 int new_power;
2920
2921 new_power = dev_priv->rps.power;
2922 switch (dev_priv->rps.power) {
2923 case LOW_POWER:
2924 if (val > dev_priv->rps.rpe_delay + 1 && val > dev_priv->rps.cur_delay)
2925 new_power = BETWEEN;
2926 break;
2927
2928 case BETWEEN:
2929 if (val <= dev_priv->rps.rpe_delay && val < dev_priv->rps.cur_delay)
2930 new_power = LOW_POWER;
2931 else if (val >= dev_priv->rps.rp0_delay && val > dev_priv->rps.cur_delay)
2932 new_power = HIGH_POWER;
2933 break;
2934
2935 case HIGH_POWER:
2936 if (val < (dev_priv->rps.rp1_delay + dev_priv->rps.rp0_delay) >> 1 && val < dev_priv->rps.cur_delay)
2937 new_power = BETWEEN;
2938 break;
2939 }
2940 /* Max/min bins are special */
2941 if (val == dev_priv->rps.min_delay)
2942 new_power = LOW_POWER;
2943 if (val == dev_priv->rps.max_delay)
2944 new_power = HIGH_POWER;
2945 if (new_power == dev_priv->rps.power)
2946 return;
2947
2948 /* Note the units here are not exactly 1us, but 1280ns. */
2949 switch (new_power) {
2950 case LOW_POWER:
2951 /* Upclock if more than 95% busy over 16ms */
2952 I915_WRITE(GEN6_RP_UP_EI, 12500);
2953 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
2954
2955 /* Downclock if less than 85% busy over 32ms */
2956 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
2957 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
2958
2959 I915_WRITE(GEN6_RP_CONTROL,
2960 GEN6_RP_MEDIA_TURBO |
2961 GEN6_RP_MEDIA_HW_NORMAL_MODE |
2962 GEN6_RP_MEDIA_IS_GFX |
2963 GEN6_RP_ENABLE |
2964 GEN6_RP_UP_BUSY_AVG |
2965 GEN6_RP_DOWN_IDLE_AVG);
2966 break;
2967
2968 case BETWEEN:
2969 /* Upclock if more than 90% busy over 13ms */
2970 I915_WRITE(GEN6_RP_UP_EI, 10250);
2971 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
2972
2973 /* Downclock if less than 75% busy over 32ms */
2974 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
2975 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
2976
2977 I915_WRITE(GEN6_RP_CONTROL,
2978 GEN6_RP_MEDIA_TURBO |
2979 GEN6_RP_MEDIA_HW_NORMAL_MODE |
2980 GEN6_RP_MEDIA_IS_GFX |
2981 GEN6_RP_ENABLE |
2982 GEN6_RP_UP_BUSY_AVG |
2983 GEN6_RP_DOWN_IDLE_AVG);
2984 break;
2985
2986 case HIGH_POWER:
2987 /* Upclock if more than 85% busy over 10ms */
2988 I915_WRITE(GEN6_RP_UP_EI, 8000);
2989 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
2990
2991 /* Downclock if less than 60% busy over 32ms */
2992 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
2993 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
2994
2995 I915_WRITE(GEN6_RP_CONTROL,
2996 GEN6_RP_MEDIA_TURBO |
2997 GEN6_RP_MEDIA_HW_NORMAL_MODE |
2998 GEN6_RP_MEDIA_IS_GFX |
2999 GEN6_RP_ENABLE |
3000 GEN6_RP_UP_BUSY_AVG |
3001 GEN6_RP_DOWN_IDLE_AVG);
3002 break;
3003 }
3004
3005 dev_priv->rps.power = new_power;
3006 dev_priv->rps.last_adj = 0;
3007 }
3008
3009 /* gen6_set_rps is called to update the frequency request, but should also be
3010 * called when the range (min_delay and max_delay) is modified so that we can
3011 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3012 void gen6_set_rps(struct drm_device *dev, u8 val)
3013 {
3014 struct drm_i915_private *dev_priv = dev->dev_private;
3015
3016 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3017 WARN_ON(val > dev_priv->rps.max_delay);
3018 WARN_ON(val < dev_priv->rps.min_delay);
3019
3020 if (val == dev_priv->rps.cur_delay) {
3021 /* min/max delay may still have been modified so be sure to
3022 * write the limits value */
3023 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3024 gen6_rps_limits(dev_priv, val));
3025
3026 return;
3027 }
3028
3029 gen6_set_rps_thresholds(dev_priv, val);
3030
3031 if (IS_HASWELL(dev))
3032 I915_WRITE(GEN6_RPNSWREQ,
3033 HSW_FREQUENCY(val));
3034 else
3035 I915_WRITE(GEN6_RPNSWREQ,
3036 GEN6_FREQUENCY(val) |
3037 GEN6_OFFSET(0) |
3038 GEN6_AGGRESSIVE_TURBO);
3039
3040 /* Make sure we continue to get interrupts
3041 * until we hit the minimum or maximum frequencies.
3042 */
3043 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3044 gen6_rps_limits(dev_priv, val));
3045
3046 POSTING_READ(GEN6_RPNSWREQ);
3047
3048 dev_priv->rps.cur_delay = val;
3049
3050 trace_intel_gpu_freq_change(val * 50);
3051 }
3052
3053 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3054 *
3055 * * If Gfx is Idle, then
3056 * 1. Mask Turbo interrupts
3057 * 2. Bring up Gfx clock
3058 * 3. Change the freq to Rpn and wait till P-Unit updates freq
3059 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3060 * 5. Unmask Turbo interrupts
3061 */
3062 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3063 {
3064 /*
3065 * When we are idle. Drop to min voltage state.
3066 */
3067
3068 if (dev_priv->rps.cur_delay <= dev_priv->rps.min_delay)
3069 return;
3070
3071 /* Mask turbo interrupt so that they will not come in between */
3072 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3073
3074 /* Bring up the Gfx clock */
3075 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG,
3076 I915_READ(VLV_GTLC_SURVIVABILITY_REG) |
3077 VLV_GFX_CLK_FORCE_ON_BIT);
3078
3079 if (wait_for(((VLV_GFX_CLK_STATUS_BIT &
3080 I915_READ(VLV_GTLC_SURVIVABILITY_REG)) != 0), 5)) {
3081 DRM_ERROR("GFX_CLK_ON request timed out\n");
3082 return;
3083 }
3084
3085 dev_priv->rps.cur_delay = dev_priv->rps.min_delay;
3086
3087 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3088 dev_priv->rps.min_delay);
3089
3090 if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3091 & GENFREQSTATUS) == 0, 5))
3092 DRM_ERROR("timed out waiting for Punit\n");
3093
3094 /* Release the Gfx clock */
3095 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG,
3096 I915_READ(VLV_GTLC_SURVIVABILITY_REG) &
3097 ~VLV_GFX_CLK_FORCE_ON_BIT);
3098
3099 /* Unmask Up interrupts */
3100 dev_priv->rps.rp_up_masked = true;
3101 gen6_set_pm_mask(dev_priv, GEN6_PM_RP_DOWN_THRESHOLD,
3102 dev_priv->rps.min_delay);
3103 }
3104
3105 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3106 {
3107 struct drm_device *dev = dev_priv->dev;
3108
3109 mutex_lock(&dev_priv->rps.hw_lock);
3110 if (dev_priv->rps.enabled) {
3111 if (IS_VALLEYVIEW(dev))
3112 vlv_set_rps_idle(dev_priv);
3113 else
3114 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3115 dev_priv->rps.last_adj = 0;
3116 }
3117 mutex_unlock(&dev_priv->rps.hw_lock);
3118 }
3119
3120 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3121 {
3122 struct drm_device *dev = dev_priv->dev;
3123
3124 mutex_lock(&dev_priv->rps.hw_lock);
3125 if (dev_priv->rps.enabled) {
3126 if (IS_VALLEYVIEW(dev))
3127 valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
3128 else
3129 gen6_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
3130 dev_priv->rps.last_adj = 0;
3131 }
3132 mutex_unlock(&dev_priv->rps.hw_lock);
3133 }
3134
3135 void valleyview_set_rps(struct drm_device *dev, u8 val)
3136 {
3137 struct drm_i915_private *dev_priv = dev->dev_private;
3138
3139 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3140 WARN_ON(val > dev_priv->rps.max_delay);
3141 WARN_ON(val < dev_priv->rps.min_delay);
3142
3143 DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3144 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
3145 dev_priv->rps.cur_delay,
3146 vlv_gpu_freq(dev_priv, val), val);
3147
3148 if (val == dev_priv->rps.cur_delay)
3149 return;
3150
3151 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3152
3153 dev_priv->rps.cur_delay = val;
3154
3155 trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3156 }
3157
3158 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3159 {
3160 struct drm_i915_private *dev_priv = dev->dev_private;
3161
3162 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3163 I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3164 /* Complete PM interrupt masking here doesn't race with the rps work
3165 * item again unmasking PM interrupts because that is using a different
3166 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3167 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3168
3169 spin_lock_irq(&dev_priv->irq_lock);
3170 dev_priv->rps.pm_iir = 0;
3171 spin_unlock_irq(&dev_priv->irq_lock);
3172
3173 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3174 }
3175
3176 static void gen6_disable_rps(struct drm_device *dev)
3177 {
3178 struct drm_i915_private *dev_priv = dev->dev_private;
3179
3180 I915_WRITE(GEN6_RC_CONTROL, 0);
3181 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3182
3183 gen6_disable_rps_interrupts(dev);
3184 }
3185
3186 static void valleyview_disable_rps(struct drm_device *dev)
3187 {
3188 struct drm_i915_private *dev_priv = dev->dev_private;
3189
3190 I915_WRITE(GEN6_RC_CONTROL, 0);
3191
3192 gen6_disable_rps_interrupts(dev);
3193
3194 if (dev_priv->vlv_pctx) {
3195 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3196 dev_priv->vlv_pctx = NULL;
3197 }
3198 }
3199
3200 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3201 {
3202 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3203 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3204 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3205 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3206 }
3207
3208 int intel_enable_rc6(const struct drm_device *dev)
3209 {
3210 /* No RC6 before Ironlake */
3211 if (INTEL_INFO(dev)->gen < 5)
3212 return 0;
3213
3214 /* Respect the kernel parameter if it is set */
3215 if (i915.enable_rc6 >= 0)
3216 return i915.enable_rc6;
3217
3218 /* Disable RC6 on Ironlake */
3219 if (INTEL_INFO(dev)->gen == 5)
3220 return 0;
3221
3222 if (IS_IVYBRIDGE(dev))
3223 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3224
3225 return INTEL_RC6_ENABLE;
3226 }
3227
3228 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3229 {
3230 struct drm_i915_private *dev_priv = dev->dev_private;
3231 u32 enabled_intrs;
3232
3233 spin_lock_irq(&dev_priv->irq_lock);
3234 WARN_ON(dev_priv->rps.pm_iir);
3235 snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
3236 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3237 spin_unlock_irq(&dev_priv->irq_lock);
3238
3239 /* only unmask PM interrupts we need. Mask all others. */
3240 enabled_intrs = GEN6_PM_RPS_EVENTS;
3241
3242 /* IVB and SNB hard hangs on looping batchbuffer
3243 * if GEN6_PM_UP_EI_EXPIRED is masked.
3244 */
3245 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
3246 enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
3247
3248 I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
3249 }
3250
3251 static void gen8_enable_rps(struct drm_device *dev)
3252 {
3253 struct drm_i915_private *dev_priv = dev->dev_private;
3254 struct intel_ring_buffer *ring;
3255 uint32_t rc6_mask = 0, rp_state_cap;
3256 int unused;
3257
3258 /* 1a: Software RC state - RC0 */
3259 I915_WRITE(GEN6_RC_STATE, 0);
3260
3261 /* 1c & 1d: Get forcewake during program sequence. Although the driver
3262 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3263 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3264
3265 /* 2a: Disable RC states. */
3266 I915_WRITE(GEN6_RC_CONTROL, 0);
3267
3268 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3269
3270 /* 2b: Program RC6 thresholds.*/
3271 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3272 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3273 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3274 for_each_ring(ring, dev_priv, unused)
3275 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3276 I915_WRITE(GEN6_RC_SLEEP, 0);
3277 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3278
3279 /* 3: Enable RC6 */
3280 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3281 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3282 intel_print_rc6_info(dev, rc6_mask);
3283 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3284 GEN6_RC_CTL_EI_MODE(1) |
3285 rc6_mask);
3286
3287 /* 4 Program defaults and thresholds for RPS*/
3288 I915_WRITE(GEN6_RPNSWREQ, HSW_FREQUENCY(10)); /* Request 500 MHz */
3289 I915_WRITE(GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(12)); /* Request 600 MHz */
3290 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3291 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3292
3293 /* Docs recommend 900MHz, and 300 MHz respectively */
3294 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3295 dev_priv->rps.max_delay << 24 |
3296 dev_priv->rps.min_delay << 16);
3297
3298 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3299 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3300 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3301 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3302
3303 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3304
3305 /* 5: Enable RPS */
3306 I915_WRITE(GEN6_RP_CONTROL,
3307 GEN6_RP_MEDIA_TURBO |
3308 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3309 GEN6_RP_MEDIA_IS_GFX |
3310 GEN6_RP_ENABLE |
3311 GEN6_RP_UP_BUSY_AVG |
3312 GEN6_RP_DOWN_IDLE_AVG);
3313
3314 /* 6: Ring frequency + overclocking (our driver does this later */
3315
3316 gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3317
3318 gen6_enable_rps_interrupts(dev);
3319
3320 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3321 }
3322
3323 static void gen6_enable_rps(struct drm_device *dev)
3324 {
3325 struct drm_i915_private *dev_priv = dev->dev_private;
3326 struct intel_ring_buffer *ring;
3327 u32 rp_state_cap, hw_max, hw_min;
3328 u32 gt_perf_status;
3329 u32 rc6vids, pcu_mbox, rc6_mask = 0;
3330 u32 gtfifodbg;
3331 int rc6_mode;
3332 int i, ret;
3333
3334 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3335
3336 /* Here begins a magic sequence of register writes to enable
3337 * auto-downclocking.
3338 *
3339 * Perhaps there might be some value in exposing these to
3340 * userspace...
3341 */
3342 I915_WRITE(GEN6_RC_STATE, 0);
3343
3344 /* Clear the DBG now so we don't confuse earlier errors */
3345 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3346 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3347 I915_WRITE(GTFIFODBG, gtfifodbg);
3348 }
3349
3350 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3351
3352 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3353 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3354
3355 /* In units of 50MHz */
3356 dev_priv->rps.hw_max = hw_max = rp_state_cap & 0xff;
3357 hw_min = (rp_state_cap >> 16) & 0xff;
3358 dev_priv->rps.rp1_delay = (rp_state_cap >> 8) & 0xff;
3359 dev_priv->rps.rp0_delay = (rp_state_cap >> 0) & 0xff;
3360 dev_priv->rps.rpe_delay = dev_priv->rps.rp1_delay;
3361 dev_priv->rps.cur_delay = 0;
3362
3363 /* Preserve min/max settings in case of re-init */
3364 if (dev_priv->rps.max_delay == 0)
3365 dev_priv->rps.max_delay = hw_max;
3366
3367 if (dev_priv->rps.min_delay == 0)
3368 dev_priv->rps.min_delay = hw_min;
3369
3370 /* disable the counters and set deterministic thresholds */
3371 I915_WRITE(GEN6_RC_CONTROL, 0);
3372
3373 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3374 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3375 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3376 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3377 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3378
3379 for_each_ring(ring, dev_priv, i)
3380 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3381
3382 I915_WRITE(GEN6_RC_SLEEP, 0);
3383 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3384 if (IS_IVYBRIDGE(dev))
3385 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3386 else
3387 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3388 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3389 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3390
3391 /* Check if we are enabling RC6 */
3392 rc6_mode = intel_enable_rc6(dev_priv->dev);
3393 if (rc6_mode & INTEL_RC6_ENABLE)
3394 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3395
3396 /* We don't use those on Haswell */
3397 if (!IS_HASWELL(dev)) {
3398 if (rc6_mode & INTEL_RC6p_ENABLE)
3399 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3400
3401 if (rc6_mode & INTEL_RC6pp_ENABLE)
3402 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3403 }
3404
3405 intel_print_rc6_info(dev, rc6_mask);
3406
3407 I915_WRITE(GEN6_RC_CONTROL,
3408 rc6_mask |
3409 GEN6_RC_CTL_EI_MODE(1) |
3410 GEN6_RC_CTL_HW_ENABLE);
3411
3412 /* Power down if completely idle for over 50ms */
3413 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3414 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3415
3416 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3417 if (!ret) {
3418 pcu_mbox = 0;
3419 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3420 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3421 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3422 (dev_priv->rps.max_delay & 0xff) * 50,
3423 (pcu_mbox & 0xff) * 50);
3424 dev_priv->rps.hw_max = pcu_mbox & 0xff;
3425 }
3426 } else {
3427 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3428 }
3429
3430 dev_priv->rps.power = HIGH_POWER; /* force a reset */
3431 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3432
3433 gen6_enable_rps_interrupts(dev);
3434
3435 rc6vids = 0;
3436 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3437 if (IS_GEN6(dev) && ret) {
3438 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3439 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3440 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3441 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3442 rc6vids &= 0xffff00;
3443 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3444 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3445 if (ret)
3446 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3447 }
3448
3449 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3450 }
3451
3452 void gen6_update_ring_freq(struct drm_device *dev)
3453 {
3454 struct drm_i915_private *dev_priv = dev->dev_private;
3455 int min_freq = 15;
3456 unsigned int gpu_freq;
3457 unsigned int max_ia_freq, min_ring_freq;
3458 int scaling_factor = 180;
3459 struct cpufreq_policy *policy;
3460
3461 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3462
3463 policy = cpufreq_cpu_get(0);
3464 if (policy) {
3465 max_ia_freq = policy->cpuinfo.max_freq;
3466 cpufreq_cpu_put(policy);
3467 } else {
3468 /*
3469 * Default to measured freq if none found, PCU will ensure we
3470 * don't go over
3471 */
3472 max_ia_freq = tsc_khz;
3473 }
3474
3475 /* Convert from kHz to MHz */
3476 max_ia_freq /= 1000;
3477
3478 min_ring_freq = I915_READ(DCLK) & 0xf;
3479 /* convert DDR frequency from units of 266.6MHz to bandwidth */
3480 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3481
3482 /*
3483 * For each potential GPU frequency, load a ring frequency we'd like
3484 * to use for memory access. We do this by specifying the IA frequency
3485 * the PCU should use as a reference to determine the ring frequency.
3486 */
3487 for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3488 gpu_freq--) {
3489 int diff = dev_priv->rps.max_delay - gpu_freq;
3490 unsigned int ia_freq = 0, ring_freq = 0;
3491
3492 if (INTEL_INFO(dev)->gen >= 8) {
3493 /* max(2 * GT, DDR). NB: GT is 50MHz units */
3494 ring_freq = max(min_ring_freq, gpu_freq);
3495 } else if (IS_HASWELL(dev)) {
3496 ring_freq = mult_frac(gpu_freq, 5, 4);
3497 ring_freq = max(min_ring_freq, ring_freq);
3498 /* leave ia_freq as the default, chosen by cpufreq */
3499 } else {
3500 /* On older processors, there is no separate ring
3501 * clock domain, so in order to boost the bandwidth
3502 * of the ring, we need to upclock the CPU (ia_freq).
3503 *
3504 * For GPU frequencies less than 750MHz,
3505 * just use the lowest ring freq.
3506 */
3507 if (gpu_freq < min_freq)
3508 ia_freq = 800;
3509 else
3510 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3511 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3512 }
3513
3514 sandybridge_pcode_write(dev_priv,
3515 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3516 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3517 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3518 gpu_freq);
3519 }
3520 }
3521
3522 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3523 {
3524 u32 val, rp0;
3525
3526 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3527
3528 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3529 /* Clamp to max */
3530 rp0 = min_t(u32, rp0, 0xea);
3531
3532 return rp0;
3533 }
3534
3535 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3536 {
3537 u32 val, rpe;
3538
3539 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3540 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3541 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3542 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3543
3544 return rpe;
3545 }
3546
3547 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3548 {
3549 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3550 }
3551
3552 static void valleyview_setup_pctx(struct drm_device *dev)
3553 {
3554 struct drm_i915_private *dev_priv = dev->dev_private;
3555 struct drm_i915_gem_object *pctx;
3556 unsigned long pctx_paddr;
3557 u32 pcbr;
3558 int pctx_size = 24*1024;
3559
3560 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3561
3562 pcbr = I915_READ(VLV_PCBR);
3563 if (pcbr) {
3564 /* BIOS set it up already, grab the pre-alloc'd space */
3565 int pcbr_offset;
3566
3567 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3568 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3569 pcbr_offset,
3570 I915_GTT_OFFSET_NONE,
3571 pctx_size);
3572 goto out;
3573 }
3574
3575 /*
3576 * From the Gunit register HAS:
3577 * The Gfx driver is expected to program this register and ensure
3578 * proper allocation within Gfx stolen memory. For example, this
3579 * register should be programmed such than the PCBR range does not
3580 * overlap with other ranges, such as the frame buffer, protected
3581 * memory, or any other relevant ranges.
3582 */
3583 pctx = i915_gem_object_create_stolen(dev, pctx_size);
3584 if (!pctx) {
3585 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3586 return;
3587 }
3588
3589 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3590 I915_WRITE(VLV_PCBR, pctx_paddr);
3591
3592 out:
3593 dev_priv->vlv_pctx = pctx;
3594 }
3595
3596 static void valleyview_enable_rps(struct drm_device *dev)
3597 {
3598 struct drm_i915_private *dev_priv = dev->dev_private;
3599 struct intel_ring_buffer *ring;
3600 u32 gtfifodbg, val, hw_max, hw_min, rc6_mode = 0;
3601 int i;
3602
3603 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3604
3605 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3606 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
3607 gtfifodbg);
3608 I915_WRITE(GTFIFODBG, gtfifodbg);
3609 }
3610
3611 /* If VLV, Forcewake all wells, else re-direct to regular path */
3612 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3613
3614 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3615 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3616 I915_WRITE(GEN6_RP_UP_EI, 66000);
3617 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3618
3619 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3620
3621 I915_WRITE(GEN6_RP_CONTROL,
3622 GEN6_RP_MEDIA_TURBO |
3623 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3624 GEN6_RP_MEDIA_IS_GFX |
3625 GEN6_RP_ENABLE |
3626 GEN6_RP_UP_BUSY_AVG |
3627 GEN6_RP_DOWN_IDLE_CONT);
3628
3629 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3630 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3631 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3632
3633 for_each_ring(ring, dev_priv, i)
3634 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3635
3636 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
3637
3638 /* allows RC6 residency counter to work */
3639 I915_WRITE(VLV_COUNTER_CONTROL,
3640 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
3641 VLV_MEDIA_RC6_COUNT_EN |
3642 VLV_RENDER_RC6_COUNT_EN));
3643 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3644 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
3645
3646 intel_print_rc6_info(dev, rc6_mode);
3647
3648 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
3649
3650 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3651
3652 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3653 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3654
3655 dev_priv->rps.cur_delay = (val >> 8) & 0xff;
3656 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3657 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
3658 dev_priv->rps.cur_delay);
3659
3660 dev_priv->rps.hw_max = hw_max = valleyview_rps_max_freq(dev_priv);
3661 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3662 vlv_gpu_freq(dev_priv, hw_max),
3663 hw_max);
3664
3665 dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
3666 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3667 vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
3668 dev_priv->rps.rpe_delay);
3669
3670 hw_min = valleyview_rps_min_freq(dev_priv);
3671 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3672 vlv_gpu_freq(dev_priv, hw_min),
3673 hw_min);
3674
3675 /* Preserve min/max settings in case of re-init */
3676 if (dev_priv->rps.max_delay == 0)
3677 dev_priv->rps.max_delay = hw_max;
3678
3679 if (dev_priv->rps.min_delay == 0)
3680 dev_priv->rps.min_delay = hw_min;
3681
3682 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3683 vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
3684 dev_priv->rps.rpe_delay);
3685
3686 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3687
3688 dev_priv->rps.rp_up_masked = false;
3689 dev_priv->rps.rp_down_masked = false;
3690
3691 gen6_enable_rps_interrupts(dev);
3692
3693 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3694 }
3695
3696 void ironlake_teardown_rc6(struct drm_device *dev)
3697 {
3698 struct drm_i915_private *dev_priv = dev->dev_private;
3699
3700 if (dev_priv->ips.renderctx) {
3701 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
3702 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3703 dev_priv->ips.renderctx = NULL;
3704 }
3705
3706 if (dev_priv->ips.pwrctx) {
3707 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
3708 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3709 dev_priv->ips.pwrctx = NULL;
3710 }
3711 }
3712
3713 static void ironlake_disable_rc6(struct drm_device *dev)
3714 {
3715 struct drm_i915_private *dev_priv = dev->dev_private;
3716
3717 if (I915_READ(PWRCTXA)) {
3718 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3719 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3720 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3721 50);
3722
3723 I915_WRITE(PWRCTXA, 0);
3724 POSTING_READ(PWRCTXA);
3725
3726 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3727 POSTING_READ(RSTDBYCTL);
3728 }
3729 }
3730
3731 static int ironlake_setup_rc6(struct drm_device *dev)
3732 {
3733 struct drm_i915_private *dev_priv = dev->dev_private;
3734
3735 if (dev_priv->ips.renderctx == NULL)
3736 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3737 if (!dev_priv->ips.renderctx)
3738 return -ENOMEM;
3739
3740 if (dev_priv->ips.pwrctx == NULL)
3741 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3742 if (!dev_priv->ips.pwrctx) {
3743 ironlake_teardown_rc6(dev);
3744 return -ENOMEM;
3745 }
3746
3747 return 0;
3748 }
3749
3750 static void ironlake_enable_rc6(struct drm_device *dev)
3751 {
3752 struct drm_i915_private *dev_priv = dev->dev_private;
3753 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3754 bool was_interruptible;
3755 int ret;
3756
3757 /* rc6 disabled by default due to repeated reports of hanging during
3758 * boot and resume.
3759 */
3760 if (!intel_enable_rc6(dev))
3761 return;
3762
3763 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3764
3765 ret = ironlake_setup_rc6(dev);
3766 if (ret)
3767 return;
3768
3769 was_interruptible = dev_priv->mm.interruptible;
3770 dev_priv->mm.interruptible = false;
3771
3772 /*
3773 * GPU can automatically power down the render unit if given a page
3774 * to save state.
3775 */
3776 ret = intel_ring_begin(ring, 6);
3777 if (ret) {
3778 ironlake_teardown_rc6(dev);
3779 dev_priv->mm.interruptible = was_interruptible;
3780 return;
3781 }
3782
3783 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3784 intel_ring_emit(ring, MI_SET_CONTEXT);
3785 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
3786 MI_MM_SPACE_GTT |
3787 MI_SAVE_EXT_STATE_EN |
3788 MI_RESTORE_EXT_STATE_EN |
3789 MI_RESTORE_INHIBIT);
3790 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3791 intel_ring_emit(ring, MI_NOOP);
3792 intel_ring_emit(ring, MI_FLUSH);
3793 intel_ring_advance(ring);
3794
3795 /*
3796 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3797 * does an implicit flush, combined with MI_FLUSH above, it should be
3798 * safe to assume that renderctx is valid
3799 */
3800 ret = intel_ring_idle(ring);
3801 dev_priv->mm.interruptible = was_interruptible;
3802 if (ret) {
3803 DRM_ERROR("failed to enable ironlake power savings\n");
3804 ironlake_teardown_rc6(dev);
3805 return;
3806 }
3807
3808 I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
3809 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3810
3811 intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
3812 }
3813
3814 static unsigned long intel_pxfreq(u32 vidfreq)
3815 {
3816 unsigned long freq;
3817 int div = (vidfreq & 0x3f0000) >> 16;
3818 int post = (vidfreq & 0x3000) >> 12;
3819 int pre = (vidfreq & 0x7);
3820
3821 if (!pre)
3822 return 0;
3823
3824 freq = ((div * 133333) / ((1<<post) * pre));
3825
3826 return freq;
3827 }
3828
3829 static const struct cparams {
3830 u16 i;
3831 u16 t;
3832 u16 m;
3833 u16 c;
3834 } cparams[] = {
3835 { 1, 1333, 301, 28664 },
3836 { 1, 1066, 294, 24460 },
3837 { 1, 800, 294, 25192 },
3838 { 0, 1333, 276, 27605 },
3839 { 0, 1066, 276, 27605 },
3840 { 0, 800, 231, 23784 },
3841 };
3842
3843 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
3844 {
3845 u64 total_count, diff, ret;
3846 u32 count1, count2, count3, m = 0, c = 0;
3847 unsigned long now = jiffies_to_msecs(jiffies), diff1;
3848 int i;
3849
3850 assert_spin_locked(&mchdev_lock);
3851
3852 diff1 = now - dev_priv->ips.last_time1;
3853
3854 /* Prevent division-by-zero if we are asking too fast.
3855 * Also, we don't get interesting results if we are polling
3856 * faster than once in 10ms, so just return the saved value
3857 * in such cases.
3858 */
3859 if (diff1 <= 10)
3860 return dev_priv->ips.chipset_power;
3861
3862 count1 = I915_READ(DMIEC);
3863 count2 = I915_READ(DDREC);
3864 count3 = I915_READ(CSIEC);
3865
3866 total_count = count1 + count2 + count3;
3867
3868 /* FIXME: handle per-counter overflow */
3869 if (total_count < dev_priv->ips.last_count1) {
3870 diff = ~0UL - dev_priv->ips.last_count1;
3871 diff += total_count;
3872 } else {
3873 diff = total_count - dev_priv->ips.last_count1;
3874 }
3875
3876 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
3877 if (cparams[i].i == dev_priv->ips.c_m &&
3878 cparams[i].t == dev_priv->ips.r_t) {
3879 m = cparams[i].m;
3880 c = cparams[i].c;
3881 break;
3882 }
3883 }
3884
3885 diff = div_u64(diff, diff1);
3886 ret = ((m * diff) + c);
3887 ret = div_u64(ret, 10);
3888
3889 dev_priv->ips.last_count1 = total_count;
3890 dev_priv->ips.last_time1 = now;
3891
3892 dev_priv->ips.chipset_power = ret;
3893
3894 return ret;
3895 }
3896
3897 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
3898 {
3899 struct drm_device *dev = dev_priv->dev;
3900 unsigned long val;
3901
3902 if (INTEL_INFO(dev)->gen != 5)
3903 return 0;
3904
3905 spin_lock_irq(&mchdev_lock);
3906
3907 val = __i915_chipset_val(dev_priv);
3908
3909 spin_unlock_irq(&mchdev_lock);
3910
3911 return val;
3912 }
3913
3914 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
3915 {
3916 unsigned long m, x, b;
3917 u32 tsfs;
3918
3919 tsfs = I915_READ(TSFS);
3920
3921 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
3922 x = I915_READ8(TR1);
3923
3924 b = tsfs & TSFS_INTR_MASK;
3925
3926 return ((m * x) / 127) - b;
3927 }
3928
3929 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
3930 {
3931 struct drm_device *dev = dev_priv->dev;
3932 static const struct v_table {
3933 u16 vd; /* in .1 mil */
3934 u16 vm; /* in .1 mil */
3935 } v_table[] = {
3936 { 0, 0, },
3937 { 375, 0, },
3938 { 500, 0, },
3939 { 625, 0, },
3940 { 750, 0, },
3941 { 875, 0, },
3942 { 1000, 0, },
3943 { 1125, 0, },
3944 { 4125, 3000, },
3945 { 4125, 3000, },
3946 { 4125, 3000, },
3947 { 4125, 3000, },
3948 { 4125, 3000, },
3949 { 4125, 3000, },
3950 { 4125, 3000, },
3951 { 4125, 3000, },
3952 { 4125, 3000, },
3953 { 4125, 3000, },
3954 { 4125, 3000, },
3955 { 4125, 3000, },
3956 { 4125, 3000, },
3957 { 4125, 3000, },
3958 { 4125, 3000, },
3959 { 4125, 3000, },
3960 { 4125, 3000, },
3961 { 4125, 3000, },
3962 { 4125, 3000, },
3963 { 4125, 3000, },
3964 { 4125, 3000, },
3965 { 4125, 3000, },
3966 { 4125, 3000, },
3967 { 4125, 3000, },
3968 { 4250, 3125, },
3969 { 4375, 3250, },
3970 { 4500, 3375, },
3971 { 4625, 3500, },
3972 { 4750, 3625, },
3973 { 4875, 3750, },
3974 { 5000, 3875, },
3975 { 5125, 4000, },
3976 { 5250, 4125, },
3977 { 5375, 4250, },
3978 { 5500, 4375, },
3979 { 5625, 4500, },
3980 { 5750, 4625, },
3981 { 5875, 4750, },
3982 { 6000, 4875, },
3983 { 6125, 5000, },
3984 { 6250, 5125, },
3985 { 6375, 5250, },
3986 { 6500, 5375, },
3987 { 6625, 5500, },
3988 { 6750, 5625, },
3989 { 6875, 5750, },
3990 { 7000, 5875, },
3991 { 7125, 6000, },
3992 { 7250, 6125, },
3993 { 7375, 6250, },
3994 { 7500, 6375, },
3995 { 7625, 6500, },
3996 { 7750, 6625, },
3997 { 7875, 6750, },
3998 { 8000, 6875, },
3999 { 8125, 7000, },
4000 { 8250, 7125, },
4001 { 8375, 7250, },
4002 { 8500, 7375, },
4003 { 8625, 7500, },
4004 { 8750, 7625, },
4005 { 8875, 7750, },
4006 { 9000, 7875, },
4007 { 9125, 8000, },
4008 { 9250, 8125, },
4009 { 9375, 8250, },
4010 { 9500, 8375, },
4011 { 9625, 8500, },
4012 { 9750, 8625, },
4013 { 9875, 8750, },
4014 { 10000, 8875, },
4015 { 10125, 9000, },
4016 { 10250, 9125, },
4017 { 10375, 9250, },
4018 { 10500, 9375, },
4019 { 10625, 9500, },
4020 { 10750, 9625, },
4021 { 10875, 9750, },
4022 { 11000, 9875, },
4023 { 11125, 10000, },
4024 { 11250, 10125, },
4025 { 11375, 10250, },
4026 { 11500, 10375, },
4027 { 11625, 10500, },
4028 { 11750, 10625, },
4029 { 11875, 10750, },
4030 { 12000, 10875, },
4031 { 12125, 11000, },
4032 { 12250, 11125, },
4033 { 12375, 11250, },
4034 { 12500, 11375, },
4035 { 12625, 11500, },
4036 { 12750, 11625, },
4037 { 12875, 11750, },
4038 { 13000, 11875, },
4039 { 13125, 12000, },
4040 { 13250, 12125, },
4041 { 13375, 12250, },
4042 { 13500, 12375, },
4043 { 13625, 12500, },
4044 { 13750, 12625, },
4045 { 13875, 12750, },
4046 { 14000, 12875, },
4047 { 14125, 13000, },
4048 { 14250, 13125, },
4049 { 14375, 13250, },
4050 { 14500, 13375, },
4051 { 14625, 13500, },
4052 { 14750, 13625, },
4053 { 14875, 13750, },
4054 { 15000, 13875, },
4055 { 15125, 14000, },
4056 { 15250, 14125, },
4057 { 15375, 14250, },
4058 { 15500, 14375, },
4059 { 15625, 14500, },
4060 { 15750, 14625, },
4061 { 15875, 14750, },
4062 { 16000, 14875, },
4063 { 16125, 15000, },
4064 };
4065 if (INTEL_INFO(dev)->is_mobile)
4066 return v_table[pxvid].vm;
4067 else
4068 return v_table[pxvid].vd;
4069 }
4070
4071 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4072 {
4073 struct timespec now, diff1;
4074 u64 diff;
4075 unsigned long diffms;
4076 u32 count;
4077
4078 assert_spin_locked(&mchdev_lock);
4079
4080 getrawmonotonic(&now);
4081 diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4082
4083 /* Don't divide by 0 */
4084 diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4085 if (!diffms)
4086 return;
4087
4088 count = I915_READ(GFXEC);
4089
4090 if (count < dev_priv->ips.last_count2) {
4091 diff = ~0UL - dev_priv->ips.last_count2;
4092 diff += count;
4093 } else {
4094 diff = count - dev_priv->ips.last_count2;
4095 }
4096
4097 dev_priv->ips.last_count2 = count;
4098 dev_priv->ips.last_time2 = now;
4099
4100 /* More magic constants... */
4101 diff = diff * 1181;
4102 diff = div_u64(diff, diffms * 10);
4103 dev_priv->ips.gfx_power = diff;
4104 }
4105
4106 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4107 {
4108 struct drm_device *dev = dev_priv->dev;
4109
4110 if (INTEL_INFO(dev)->gen != 5)
4111 return;
4112
4113 spin_lock_irq(&mchdev_lock);
4114
4115 __i915_update_gfx_val(dev_priv);
4116
4117 spin_unlock_irq(&mchdev_lock);
4118 }
4119
4120 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4121 {
4122 unsigned long t, corr, state1, corr2, state2;
4123 u32 pxvid, ext_v;
4124
4125 assert_spin_locked(&mchdev_lock);
4126
4127 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4128 pxvid = (pxvid >> 24) & 0x7f;
4129 ext_v = pvid_to_extvid(dev_priv, pxvid);
4130
4131 state1 = ext_v;
4132
4133 t = i915_mch_val(dev_priv);
4134
4135 /* Revel in the empirically derived constants */
4136
4137 /* Correction factor in 1/100000 units */
4138 if (t > 80)
4139 corr = ((t * 2349) + 135940);
4140 else if (t >= 50)
4141 corr = ((t * 964) + 29317);
4142 else /* < 50 */
4143 corr = ((t * 301) + 1004);
4144
4145 corr = corr * ((150142 * state1) / 10000 - 78642);
4146 corr /= 100000;
4147 corr2 = (corr * dev_priv->ips.corr);
4148
4149 state2 = (corr2 * state1) / 10000;
4150 state2 /= 100; /* convert to mW */
4151
4152 __i915_update_gfx_val(dev_priv);
4153
4154 return dev_priv->ips.gfx_power + state2;
4155 }
4156
4157 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4158 {
4159 struct drm_device *dev = dev_priv->dev;
4160 unsigned long val;
4161
4162 if (INTEL_INFO(dev)->gen != 5)
4163 return 0;
4164
4165 spin_lock_irq(&mchdev_lock);
4166
4167 val = __i915_gfx_val(dev_priv);
4168
4169 spin_unlock_irq(&mchdev_lock);
4170
4171 return val;
4172 }
4173
4174 /**
4175 * i915_read_mch_val - return value for IPS use
4176 *
4177 * Calculate and return a value for the IPS driver to use when deciding whether
4178 * we have thermal and power headroom to increase CPU or GPU power budget.
4179 */
4180 unsigned long i915_read_mch_val(void)
4181 {
4182 struct drm_i915_private *dev_priv;
4183 unsigned long chipset_val, graphics_val, ret = 0;
4184
4185 spin_lock_irq(&mchdev_lock);
4186 if (!i915_mch_dev)
4187 goto out_unlock;
4188 dev_priv = i915_mch_dev;
4189
4190 chipset_val = __i915_chipset_val(dev_priv);
4191 graphics_val = __i915_gfx_val(dev_priv);
4192
4193 ret = chipset_val + graphics_val;
4194
4195 out_unlock:
4196 spin_unlock_irq(&mchdev_lock);
4197
4198 return ret;
4199 }
4200 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4201
4202 /**
4203 * i915_gpu_raise - raise GPU frequency limit
4204 *
4205 * Raise the limit; IPS indicates we have thermal headroom.
4206 */
4207 bool i915_gpu_raise(void)
4208 {
4209 struct drm_i915_private *dev_priv;
4210 bool ret = true;
4211
4212 spin_lock_irq(&mchdev_lock);
4213 if (!i915_mch_dev) {
4214 ret = false;
4215 goto out_unlock;
4216 }
4217 dev_priv = i915_mch_dev;
4218
4219 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4220 dev_priv->ips.max_delay--;
4221
4222 out_unlock:
4223 spin_unlock_irq(&mchdev_lock);
4224
4225 return ret;
4226 }
4227 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4228
4229 /**
4230 * i915_gpu_lower - lower GPU frequency limit
4231 *
4232 * IPS indicates we're close to a thermal limit, so throttle back the GPU
4233 * frequency maximum.
4234 */
4235 bool i915_gpu_lower(void)
4236 {
4237 struct drm_i915_private *dev_priv;
4238 bool ret = true;
4239
4240 spin_lock_irq(&mchdev_lock);
4241 if (!i915_mch_dev) {
4242 ret = false;
4243 goto out_unlock;
4244 }
4245 dev_priv = i915_mch_dev;
4246
4247 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4248 dev_priv->ips.max_delay++;
4249
4250 out_unlock:
4251 spin_unlock_irq(&mchdev_lock);
4252
4253 return ret;
4254 }
4255 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4256
4257 /**
4258 * i915_gpu_busy - indicate GPU business to IPS
4259 *
4260 * Tell the IPS driver whether or not the GPU is busy.
4261 */
4262 bool i915_gpu_busy(void)
4263 {
4264 struct drm_i915_private *dev_priv;
4265 struct intel_ring_buffer *ring;
4266 bool ret = false;
4267 int i;
4268
4269 spin_lock_irq(&mchdev_lock);
4270 if (!i915_mch_dev)
4271 goto out_unlock;
4272 dev_priv = i915_mch_dev;
4273
4274 for_each_ring(ring, dev_priv, i)
4275 ret |= !list_empty(&ring->request_list);
4276
4277 out_unlock:
4278 spin_unlock_irq(&mchdev_lock);
4279
4280 return ret;
4281 }
4282 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4283
4284 /**
4285 * i915_gpu_turbo_disable - disable graphics turbo
4286 *
4287 * Disable graphics turbo by resetting the max frequency and setting the
4288 * current frequency to the default.
4289 */
4290 bool i915_gpu_turbo_disable(void)
4291 {
4292 struct drm_i915_private *dev_priv;
4293 bool ret = true;
4294
4295 spin_lock_irq(&mchdev_lock);
4296 if (!i915_mch_dev) {
4297 ret = false;
4298 goto out_unlock;
4299 }
4300 dev_priv = i915_mch_dev;
4301
4302 dev_priv->ips.max_delay = dev_priv->ips.fstart;
4303
4304 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4305 ret = false;
4306
4307 out_unlock:
4308 spin_unlock_irq(&mchdev_lock);
4309
4310 return ret;
4311 }
4312 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4313
4314 /**
4315 * Tells the intel_ips driver that the i915 driver is now loaded, if
4316 * IPS got loaded first.
4317 *
4318 * This awkward dance is so that neither module has to depend on the
4319 * other in order for IPS to do the appropriate communication of
4320 * GPU turbo limits to i915.
4321 */
4322 static void
4323 ips_ping_for_i915_load(void)
4324 {
4325 void (*link)(void);
4326
4327 link = symbol_get(ips_link_to_i915_driver);
4328 if (link) {
4329 link();
4330 symbol_put(ips_link_to_i915_driver);
4331 }
4332 }
4333
4334 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4335 {
4336 /* We only register the i915 ips part with intel-ips once everything is
4337 * set up, to avoid intel-ips sneaking in and reading bogus values. */
4338 spin_lock_irq(&mchdev_lock);
4339 i915_mch_dev = dev_priv;
4340 spin_unlock_irq(&mchdev_lock);
4341
4342 ips_ping_for_i915_load();
4343 }
4344
4345 void intel_gpu_ips_teardown(void)
4346 {
4347 spin_lock_irq(&mchdev_lock);
4348 i915_mch_dev = NULL;
4349 spin_unlock_irq(&mchdev_lock);
4350 }
4351
4352 static void intel_init_emon(struct drm_device *dev)
4353 {
4354 struct drm_i915_private *dev_priv = dev->dev_private;
4355 u32 lcfuse;
4356 u8 pxw[16];
4357 int i;
4358
4359 /* Disable to program */
4360 I915_WRITE(ECR, 0);
4361 POSTING_READ(ECR);
4362
4363 /* Program energy weights for various events */
4364 I915_WRITE(SDEW, 0x15040d00);
4365 I915_WRITE(CSIEW0, 0x007f0000);
4366 I915_WRITE(CSIEW1, 0x1e220004);
4367 I915_WRITE(CSIEW2, 0x04000004);
4368
4369 for (i = 0; i < 5; i++)
4370 I915_WRITE(PEW + (i * 4), 0);
4371 for (i = 0; i < 3; i++)
4372 I915_WRITE(DEW + (i * 4), 0);
4373
4374 /* Program P-state weights to account for frequency power adjustment */
4375 for (i = 0; i < 16; i++) {
4376 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4377 unsigned long freq = intel_pxfreq(pxvidfreq);
4378 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4379 PXVFREQ_PX_SHIFT;
4380 unsigned long val;
4381
4382 val = vid * vid;
4383 val *= (freq / 1000);
4384 val *= 255;
4385 val /= (127*127*900);
4386 if (val > 0xff)
4387 DRM_ERROR("bad pxval: %ld\n", val);
4388 pxw[i] = val;
4389 }
4390 /* Render standby states get 0 weight */
4391 pxw[14] = 0;
4392 pxw[15] = 0;
4393
4394 for (i = 0; i < 4; i++) {
4395 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4396 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4397 I915_WRITE(PXW + (i * 4), val);
4398 }
4399
4400 /* Adjust magic regs to magic values (more experimental results) */
4401 I915_WRITE(OGW0, 0);
4402 I915_WRITE(OGW1, 0);
4403 I915_WRITE(EG0, 0x00007f00);
4404 I915_WRITE(EG1, 0x0000000e);
4405 I915_WRITE(EG2, 0x000e0000);
4406 I915_WRITE(EG3, 0x68000300);
4407 I915_WRITE(EG4, 0x42000000);
4408 I915_WRITE(EG5, 0x00140031);
4409 I915_WRITE(EG6, 0);
4410 I915_WRITE(EG7, 0);
4411
4412 for (i = 0; i < 8; i++)
4413 I915_WRITE(PXWL + (i * 4), 0);
4414
4415 /* Enable PMON + select events */
4416 I915_WRITE(ECR, 0x80000019);
4417
4418 lcfuse = I915_READ(LCFUSE02);
4419
4420 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4421 }
4422
4423 void intel_disable_gt_powersave(struct drm_device *dev)
4424 {
4425 struct drm_i915_private *dev_priv = dev->dev_private;
4426
4427 /* Interrupts should be disabled already to avoid re-arming. */
4428 WARN_ON(dev->irq_enabled);
4429
4430 if (IS_IRONLAKE_M(dev)) {
4431 ironlake_disable_drps(dev);
4432 ironlake_disable_rc6(dev);
4433 } else if (INTEL_INFO(dev)->gen >= 6) {
4434 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4435 cancel_work_sync(&dev_priv->rps.work);
4436 mutex_lock(&dev_priv->rps.hw_lock);
4437 if (IS_VALLEYVIEW(dev))
4438 valleyview_disable_rps(dev);
4439 else
4440 gen6_disable_rps(dev);
4441 dev_priv->rps.enabled = false;
4442 mutex_unlock(&dev_priv->rps.hw_lock);
4443 }
4444 }
4445
4446 static void intel_gen6_powersave_work(struct work_struct *work)
4447 {
4448 struct drm_i915_private *dev_priv =
4449 container_of(work, struct drm_i915_private,
4450 rps.delayed_resume_work.work);
4451 struct drm_device *dev = dev_priv->dev;
4452
4453 mutex_lock(&dev_priv->rps.hw_lock);
4454
4455 if (IS_VALLEYVIEW(dev)) {
4456 valleyview_enable_rps(dev);
4457 } else if (IS_BROADWELL(dev)) {
4458 gen8_enable_rps(dev);
4459 gen6_update_ring_freq(dev);
4460 } else {
4461 gen6_enable_rps(dev);
4462 gen6_update_ring_freq(dev);
4463 }
4464 dev_priv->rps.enabled = true;
4465 mutex_unlock(&dev_priv->rps.hw_lock);
4466 }
4467
4468 void intel_enable_gt_powersave(struct drm_device *dev)
4469 {
4470 struct drm_i915_private *dev_priv = dev->dev_private;
4471
4472 if (IS_IRONLAKE_M(dev)) {
4473 ironlake_enable_drps(dev);
4474 ironlake_enable_rc6(dev);
4475 intel_init_emon(dev);
4476 } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4477 if (IS_VALLEYVIEW(dev))
4478 valleyview_setup_pctx(dev);
4479 /*
4480 * PCU communication is slow and this doesn't need to be
4481 * done at any specific time, so do this out of our fast path
4482 * to make resume and init faster.
4483 */
4484 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4485 round_jiffies_up_relative(HZ));
4486 }
4487 }
4488
4489 static void ibx_init_clock_gating(struct drm_device *dev)
4490 {
4491 struct drm_i915_private *dev_priv = dev->dev_private;
4492
4493 /*
4494 * On Ibex Peak and Cougar Point, we need to disable clock
4495 * gating for the panel power sequencer or it will fail to
4496 * start up when no ports are active.
4497 */
4498 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4499 }
4500
4501 static void g4x_disable_trickle_feed(struct drm_device *dev)
4502 {
4503 struct drm_i915_private *dev_priv = dev->dev_private;
4504 int pipe;
4505
4506 for_each_pipe(pipe) {
4507 I915_WRITE(DSPCNTR(pipe),
4508 I915_READ(DSPCNTR(pipe)) |
4509 DISPPLANE_TRICKLE_FEED_DISABLE);
4510 intel_flush_primary_plane(dev_priv, pipe);
4511 }
4512 }
4513
4514 static void ilk_init_lp_watermarks(struct drm_device *dev)
4515 {
4516 struct drm_i915_private *dev_priv = dev->dev_private;
4517
4518 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
4519 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
4520 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
4521
4522 /*
4523 * Don't touch WM1S_LP_EN here.
4524 * Doing so could cause underruns.
4525 */
4526 }
4527
4528 static void ironlake_init_clock_gating(struct drm_device *dev)
4529 {
4530 struct drm_i915_private *dev_priv = dev->dev_private;
4531 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4532
4533 /*
4534 * Required for FBC
4535 * WaFbcDisableDpfcClockGating:ilk
4536 */
4537 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4538 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4539 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4540
4541 I915_WRITE(PCH_3DCGDIS0,
4542 MARIUNIT_CLOCK_GATE_DISABLE |
4543 SVSMUNIT_CLOCK_GATE_DISABLE);
4544 I915_WRITE(PCH_3DCGDIS1,
4545 VFMUNIT_CLOCK_GATE_DISABLE);
4546
4547 /*
4548 * According to the spec the following bits should be set in
4549 * order to enable memory self-refresh
4550 * The bit 22/21 of 0x42004
4551 * The bit 5 of 0x42020
4552 * The bit 15 of 0x45000
4553 */
4554 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4555 (I915_READ(ILK_DISPLAY_CHICKEN2) |
4556 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4557 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4558 I915_WRITE(DISP_ARB_CTL,
4559 (I915_READ(DISP_ARB_CTL) |
4560 DISP_FBC_WM_DIS));
4561
4562 ilk_init_lp_watermarks(dev);
4563
4564 /*
4565 * Based on the document from hardware guys the following bits
4566 * should be set unconditionally in order to enable FBC.
4567 * The bit 22 of 0x42000
4568 * The bit 22 of 0x42004
4569 * The bit 7,8,9 of 0x42020.
4570 */
4571 if (IS_IRONLAKE_M(dev)) {
4572 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
4573 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4574 I915_READ(ILK_DISPLAY_CHICKEN1) |
4575 ILK_FBCQ_DIS);
4576 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4577 I915_READ(ILK_DISPLAY_CHICKEN2) |
4578 ILK_DPARB_GATE);
4579 }
4580
4581 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4582
4583 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4584 I915_READ(ILK_DISPLAY_CHICKEN2) |
4585 ILK_ELPIN_409_SELECT);
4586 I915_WRITE(_3D_CHICKEN2,
4587 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4588 _3D_CHICKEN2_WM_READ_PIPELINED);
4589
4590 /* WaDisableRenderCachePipelinedFlush:ilk */
4591 I915_WRITE(CACHE_MODE_0,
4592 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4593
4594 g4x_disable_trickle_feed(dev);
4595
4596 ibx_init_clock_gating(dev);
4597 }
4598
4599 static void cpt_init_clock_gating(struct drm_device *dev)
4600 {
4601 struct drm_i915_private *dev_priv = dev->dev_private;
4602 int pipe;
4603 uint32_t val;
4604
4605 /*
4606 * On Ibex Peak and Cougar Point, we need to disable clock
4607 * gating for the panel power sequencer or it will fail to
4608 * start up when no ports are active.
4609 */
4610 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
4611 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
4612 PCH_CPUNIT_CLOCK_GATE_DISABLE);
4613 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4614 DPLS_EDP_PPS_FIX_DIS);
4615 /* The below fixes the weird display corruption, a few pixels shifted
4616 * downward, on (only) LVDS of some HP laptops with IVY.
4617 */
4618 for_each_pipe(pipe) {
4619 val = I915_READ(TRANS_CHICKEN2(pipe));
4620 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4621 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4622 if (dev_priv->vbt.fdi_rx_polarity_inverted)
4623 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4624 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4625 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4626 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4627 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4628 }
4629 /* WADP0ClockGatingDisable */
4630 for_each_pipe(pipe) {
4631 I915_WRITE(TRANS_CHICKEN1(pipe),
4632 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4633 }
4634 }
4635
4636 static void gen6_check_mch_setup(struct drm_device *dev)
4637 {
4638 struct drm_i915_private *dev_priv = dev->dev_private;
4639 uint32_t tmp;
4640
4641 tmp = I915_READ(MCH_SSKPD);
4642 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4643 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4644 DRM_INFO("This can cause pipe underruns and display issues.\n");
4645 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4646 }
4647 }
4648
4649 static void gen6_init_clock_gating(struct drm_device *dev)
4650 {
4651 struct drm_i915_private *dev_priv = dev->dev_private;
4652 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4653
4654 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4655
4656 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4657 I915_READ(ILK_DISPLAY_CHICKEN2) |
4658 ILK_ELPIN_409_SELECT);
4659
4660 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4661 I915_WRITE(_3D_CHICKEN,
4662 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4663
4664 /* WaSetupGtModeTdRowDispatch:snb */
4665 if (IS_SNB_GT1(dev))
4666 I915_WRITE(GEN6_GT_MODE,
4667 _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4668
4669 /*
4670 * BSpec recoomends 8x4 when MSAA is used,
4671 * however in practice 16x4 seems fastest.
4672 *
4673 * Note that PS/WM thread counts depend on the WIZ hashing
4674 * disable bit, which we don't touch here, but it's good
4675 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
4676 */
4677 I915_WRITE(GEN6_GT_MODE,
4678 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
4679
4680 ilk_init_lp_watermarks(dev);
4681
4682 I915_WRITE(CACHE_MODE_0,
4683 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4684
4685 I915_WRITE(GEN6_UCGCTL1,
4686 I915_READ(GEN6_UCGCTL1) |
4687 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4688 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4689
4690 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4691 * gating disable must be set. Failure to set it results in
4692 * flickering pixels due to Z write ordering failures after
4693 * some amount of runtime in the Mesa "fire" demo, and Unigine
4694 * Sanctuary and Tropics, and apparently anything else with
4695 * alpha test or pixel discard.
4696 *
4697 * According to the spec, bit 11 (RCCUNIT) must also be set,
4698 * but we didn't debug actual testcases to find it out.
4699 *
4700 * WaDisableRCCUnitClockGating:snb
4701 * WaDisableRCPBUnitClockGating:snb
4702 */
4703 I915_WRITE(GEN6_UCGCTL2,
4704 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4705 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4706
4707 /* WaStripsFansDisableFastClipPerformanceFix:snb */
4708 I915_WRITE(_3D_CHICKEN3,
4709 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
4710
4711 /*
4712 * Bspec says:
4713 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
4714 * 3DSTATE_SF number of SF output attributes is more than 16."
4715 */
4716 I915_WRITE(_3D_CHICKEN3,
4717 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
4718
4719 /*
4720 * According to the spec the following bits should be
4721 * set in order to enable memory self-refresh and fbc:
4722 * The bit21 and bit22 of 0x42000
4723 * The bit21 and bit22 of 0x42004
4724 * The bit5 and bit7 of 0x42020
4725 * The bit14 of 0x70180
4726 * The bit14 of 0x71180
4727 *
4728 * WaFbcAsynchFlipDisableFbcQueue:snb
4729 */
4730 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4731 I915_READ(ILK_DISPLAY_CHICKEN1) |
4732 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4733 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4734 I915_READ(ILK_DISPLAY_CHICKEN2) |
4735 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4736 I915_WRITE(ILK_DSPCLK_GATE_D,
4737 I915_READ(ILK_DSPCLK_GATE_D) |
4738 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
4739 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4740
4741 g4x_disable_trickle_feed(dev);
4742
4743 cpt_init_clock_gating(dev);
4744
4745 gen6_check_mch_setup(dev);
4746 }
4747
4748 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4749 {
4750 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4751
4752 /*
4753 * WaVSThreadDispatchOverride:ivb,vlv
4754 *
4755 * This actually overrides the dispatch
4756 * mode for all thread types.
4757 */
4758 reg &= ~GEN7_FF_SCHED_MASK;
4759 reg |= GEN7_FF_TS_SCHED_HW;
4760 reg |= GEN7_FF_VS_SCHED_HW;
4761 reg |= GEN7_FF_DS_SCHED_HW;
4762
4763 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4764 }
4765
4766 static void lpt_init_clock_gating(struct drm_device *dev)
4767 {
4768 struct drm_i915_private *dev_priv = dev->dev_private;
4769
4770 /*
4771 * TODO: this bit should only be enabled when really needed, then
4772 * disabled when not needed anymore in order to save power.
4773 */
4774 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4775 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4776 I915_READ(SOUTH_DSPCLK_GATE_D) |
4777 PCH_LP_PARTITION_LEVEL_DISABLE);
4778
4779 /* WADPOClockGatingDisable:hsw */
4780 I915_WRITE(_TRANSA_CHICKEN1,
4781 I915_READ(_TRANSA_CHICKEN1) |
4782 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4783 }
4784
4785 static void lpt_suspend_hw(struct drm_device *dev)
4786 {
4787 struct drm_i915_private *dev_priv = dev->dev_private;
4788
4789 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4790 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4791
4792 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4793 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4794 }
4795 }
4796
4797 static void gen8_init_clock_gating(struct drm_device *dev)
4798 {
4799 struct drm_i915_private *dev_priv = dev->dev_private;
4800 enum pipe pipe;
4801
4802 I915_WRITE(WM3_LP_ILK, 0);
4803 I915_WRITE(WM2_LP_ILK, 0);
4804 I915_WRITE(WM1_LP_ILK, 0);
4805
4806 /* FIXME(BDW): Check all the w/a, some might only apply to
4807 * pre-production hw. */
4808
4809 /* WaDisablePartialInstShootdown:bdw */
4810 I915_WRITE(GEN8_ROW_CHICKEN,
4811 _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
4812
4813 /* WaDisableThreadStallDopClockGating:bdw */
4814 /* FIXME: Unclear whether we really need this on production bdw. */
4815 I915_WRITE(GEN8_ROW_CHICKEN,
4816 _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
4817
4818 /*
4819 * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
4820 * pre-production hardware
4821 */
4822 I915_WRITE(HALF_SLICE_CHICKEN3,
4823 _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
4824 I915_WRITE(HALF_SLICE_CHICKEN3,
4825 _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
4826 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
4827
4828 I915_WRITE(_3D_CHICKEN3,
4829 _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
4830
4831 I915_WRITE(COMMON_SLICE_CHICKEN2,
4832 _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
4833
4834 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4835 _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
4836
4837 /* WaSwitchSolVfFArbitrationPriority:bdw */
4838 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4839
4840 /* WaPsrDPAMaskVBlankInSRD:bdw */
4841 I915_WRITE(CHICKEN_PAR1_1,
4842 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
4843
4844 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
4845 for_each_pipe(pipe) {
4846 I915_WRITE(CHICKEN_PIPESL_1(pipe),
4847 I915_READ(CHICKEN_PIPESL_1(pipe)) |
4848 BDW_DPRS_MASK_VBLANK_SRD);
4849 }
4850
4851 /* Use Force Non-Coherent whenever executing a 3D context. This is a
4852 * workaround for for a possible hang in the unlikely event a TLB
4853 * invalidation occurs during a PSD flush.
4854 */
4855 I915_WRITE(HDC_CHICKEN0,
4856 I915_READ(HDC_CHICKEN0) |
4857 _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
4858
4859 /* WaVSRefCountFullforceMissDisable:bdw */
4860 /* WaDSRefCountFullforceMissDisable:bdw */
4861 I915_WRITE(GEN7_FF_THREAD_MODE,
4862 I915_READ(GEN7_FF_THREAD_MODE) &
4863 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
4864
4865 /*
4866 * BSpec recommends 8x4 when MSAA is used,
4867 * however in practice 16x4 seems fastest.
4868 *
4869 * Note that PS/WM thread counts depend on the WIZ hashing
4870 * disable bit, which we don't touch here, but it's good
4871 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
4872 */
4873 I915_WRITE(GEN7_GT_MODE,
4874 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
4875
4876 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
4877 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
4878
4879 /* WaDisableSDEUnitClockGating:bdw */
4880 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
4881 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
4882 }
4883
4884 static void haswell_init_clock_gating(struct drm_device *dev)
4885 {
4886 struct drm_i915_private *dev_priv = dev->dev_private;
4887
4888 ilk_init_lp_watermarks(dev);
4889
4890 /* L3 caching of data atomics doesn't work -- disable it. */
4891 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
4892 I915_WRITE(HSW_ROW_CHICKEN3,
4893 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
4894
4895 /* This is required by WaCatErrorRejectionIssue:hsw */
4896 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4897 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4898 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4899
4900 /* WaVSRefCountFullforceMissDisable:hsw */
4901 I915_WRITE(GEN7_FF_THREAD_MODE,
4902 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
4903
4904 /* enable HiZ Raw Stall Optimization */
4905 I915_WRITE(CACHE_MODE_0_GEN7,
4906 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
4907
4908 /* WaDisable4x2SubspanOptimization:hsw */
4909 I915_WRITE(CACHE_MODE_1,
4910 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4911
4912 /*
4913 * BSpec recommends 8x4 when MSAA is used,
4914 * however in practice 16x4 seems fastest.
4915 *
4916 * Note that PS/WM thread counts depend on the WIZ hashing
4917 * disable bit, which we don't touch here, but it's good
4918 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
4919 */
4920 I915_WRITE(GEN7_GT_MODE,
4921 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
4922
4923 /* WaSwitchSolVfFArbitrationPriority:hsw */
4924 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4925
4926 /* WaRsPkgCStateDisplayPMReq:hsw */
4927 I915_WRITE(CHICKEN_PAR1_1,
4928 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
4929
4930 lpt_init_clock_gating(dev);
4931 }
4932
4933 static void ivybridge_init_clock_gating(struct drm_device *dev)
4934 {
4935 struct drm_i915_private *dev_priv = dev->dev_private;
4936 uint32_t snpcr;
4937
4938 ilk_init_lp_watermarks(dev);
4939
4940 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4941
4942 /* WaDisableEarlyCull:ivb */
4943 I915_WRITE(_3D_CHICKEN3,
4944 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4945
4946 /* WaDisableBackToBackFlipFix:ivb */
4947 I915_WRITE(IVB_CHICKEN3,
4948 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4949 CHICKEN3_DGMG_DONE_FIX_DISABLE);
4950
4951 /* WaDisablePSDDualDispatchEnable:ivb */
4952 if (IS_IVB_GT1(dev))
4953 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4954 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4955
4956 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
4957 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4958 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4959
4960 /* WaApplyL3ControlAndL3ChickenMode:ivb */
4961 I915_WRITE(GEN7_L3CNTLREG1,
4962 GEN7_WA_FOR_GEN7_L3_CONTROL);
4963 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4964 GEN7_WA_L3_CHICKEN_MODE);
4965 if (IS_IVB_GT1(dev))
4966 I915_WRITE(GEN7_ROW_CHICKEN2,
4967 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4968 else {
4969 /* must write both registers */
4970 I915_WRITE(GEN7_ROW_CHICKEN2,
4971 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4972 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
4973 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4974 }
4975
4976 /* WaForceL3Serialization:ivb */
4977 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4978 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4979
4980 /*
4981 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4982 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
4983 */
4984 I915_WRITE(GEN6_UCGCTL2,
4985 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4986
4987 /* This is required by WaCatErrorRejectionIssue:ivb */
4988 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4989 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4990 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4991
4992 g4x_disable_trickle_feed(dev);
4993
4994 gen7_setup_fixed_func_scheduler(dev_priv);
4995
4996 if (0) { /* causes HiZ corruption on ivb:gt1 */
4997 /* enable HiZ Raw Stall Optimization */
4998 I915_WRITE(CACHE_MODE_0_GEN7,
4999 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5000 }
5001
5002 /* WaDisable4x2SubspanOptimization:ivb */
5003 I915_WRITE(CACHE_MODE_1,
5004 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5005
5006 /*
5007 * BSpec recommends 8x4 when MSAA is used,
5008 * however in practice 16x4 seems fastest.
5009 *
5010 * Note that PS/WM thread counts depend on the WIZ hashing
5011 * disable bit, which we don't touch here, but it's good
5012 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5013 */
5014 I915_WRITE(GEN7_GT_MODE,
5015 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5016
5017 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5018 snpcr &= ~GEN6_MBC_SNPCR_MASK;
5019 snpcr |= GEN6_MBC_SNPCR_MED;
5020 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5021
5022 if (!HAS_PCH_NOP(dev))
5023 cpt_init_clock_gating(dev);
5024
5025 gen6_check_mch_setup(dev);
5026 }
5027
5028 static void valleyview_init_clock_gating(struct drm_device *dev)
5029 {
5030 struct drm_i915_private *dev_priv = dev->dev_private;
5031 u32 val;
5032
5033 mutex_lock(&dev_priv->rps.hw_lock);
5034 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5035 mutex_unlock(&dev_priv->rps.hw_lock);
5036 switch ((val >> 6) & 3) {
5037 case 0:
5038 dev_priv->mem_freq = 800;
5039 break;
5040 case 1:
5041 dev_priv->mem_freq = 1066;
5042 break;
5043 case 2:
5044 dev_priv->mem_freq = 1333;
5045 break;
5046 case 3:
5047 dev_priv->mem_freq = 1333;
5048 break;
5049 }
5050 DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5051
5052 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5053
5054 /* WaDisableEarlyCull:vlv */
5055 I915_WRITE(_3D_CHICKEN3,
5056 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5057
5058 /* WaDisableBackToBackFlipFix:vlv */
5059 I915_WRITE(IVB_CHICKEN3,
5060 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5061 CHICKEN3_DGMG_DONE_FIX_DISABLE);
5062
5063 /* WaPsdDispatchEnable:vlv */
5064 /* WaDisablePSDDualDispatchEnable:vlv */
5065 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5066 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5067 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5068
5069 /* WaForceL3Serialization:vlv */
5070 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5071 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5072
5073 /* WaDisableDopClockGating:vlv */
5074 I915_WRITE(GEN7_ROW_CHICKEN2,
5075 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5076
5077 /* This is required by WaCatErrorRejectionIssue:vlv */
5078 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5079 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5080 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5081
5082 gen7_setup_fixed_func_scheduler(dev_priv);
5083
5084 /*
5085 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5086 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5087 */
5088 I915_WRITE(GEN6_UCGCTL2,
5089 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5090
5091 /* WaDisableL3Bank2xClockGate:vlv */
5092 I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5093
5094 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5095
5096 /*
5097 * BSpec says this must be set, even though
5098 * WaDisable4x2SubspanOptimization isn't listed for VLV.
5099 */
5100 I915_WRITE(CACHE_MODE_1,
5101 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5102
5103 /*
5104 * WaIncreaseL3CreditsForVLVB0:vlv
5105 * This is the hardware default actually.
5106 */
5107 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
5108
5109 /*
5110 * WaDisableVLVClockGating_VBIIssue:vlv
5111 * Disable clock gating on th GCFG unit to prevent a delay
5112 * in the reporting of vblank events.
5113 */
5114 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
5115 }
5116
5117 static void g4x_init_clock_gating(struct drm_device *dev)
5118 {
5119 struct drm_i915_private *dev_priv = dev->dev_private;
5120 uint32_t dspclk_gate;
5121
5122 I915_WRITE(RENCLK_GATE_D1, 0);
5123 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5124 GS_UNIT_CLOCK_GATE_DISABLE |
5125 CL_UNIT_CLOCK_GATE_DISABLE);
5126 I915_WRITE(RAMCLK_GATE_D, 0);
5127 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5128 OVRUNIT_CLOCK_GATE_DISABLE |
5129 OVCUNIT_CLOCK_GATE_DISABLE;
5130 if (IS_GM45(dev))
5131 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5132 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5133
5134 /* WaDisableRenderCachePipelinedFlush */
5135 I915_WRITE(CACHE_MODE_0,
5136 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5137
5138 g4x_disable_trickle_feed(dev);
5139 }
5140
5141 static void crestline_init_clock_gating(struct drm_device *dev)
5142 {
5143 struct drm_i915_private *dev_priv = dev->dev_private;
5144
5145 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5146 I915_WRITE(RENCLK_GATE_D2, 0);
5147 I915_WRITE(DSPCLK_GATE_D, 0);
5148 I915_WRITE(RAMCLK_GATE_D, 0);
5149 I915_WRITE16(DEUC, 0);
5150 I915_WRITE(MI_ARB_STATE,
5151 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5152 }
5153
5154 static void broadwater_init_clock_gating(struct drm_device *dev)
5155 {
5156 struct drm_i915_private *dev_priv = dev->dev_private;
5157
5158 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5159 I965_RCC_CLOCK_GATE_DISABLE |
5160 I965_RCPB_CLOCK_GATE_DISABLE |
5161 I965_ISC_CLOCK_GATE_DISABLE |
5162 I965_FBC_CLOCK_GATE_DISABLE);
5163 I915_WRITE(RENCLK_GATE_D2, 0);
5164 I915_WRITE(MI_ARB_STATE,
5165 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5166 }
5167
5168 static void gen3_init_clock_gating(struct drm_device *dev)
5169 {
5170 struct drm_i915_private *dev_priv = dev->dev_private;
5171 u32 dstate = I915_READ(D_STATE);
5172
5173 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5174 DSTATE_DOT_CLOCK_GATING;
5175 I915_WRITE(D_STATE, dstate);
5176
5177 if (IS_PINEVIEW(dev))
5178 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5179
5180 /* IIR "flip pending" means done if this bit is set */
5181 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5182 }
5183
5184 static void i85x_init_clock_gating(struct drm_device *dev)
5185 {
5186 struct drm_i915_private *dev_priv = dev->dev_private;
5187
5188 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5189 }
5190
5191 static void i830_init_clock_gating(struct drm_device *dev)
5192 {
5193 struct drm_i915_private *dev_priv = dev->dev_private;
5194
5195 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5196 }
5197
5198 void intel_init_clock_gating(struct drm_device *dev)
5199 {
5200 struct drm_i915_private *dev_priv = dev->dev_private;
5201
5202 dev_priv->display.init_clock_gating(dev);
5203 }
5204
5205 void intel_suspend_hw(struct drm_device *dev)
5206 {
5207 if (HAS_PCH_LPT(dev))
5208 lpt_suspend_hw(dev);
5209 }
5210
5211 #define for_each_power_well(i, power_well, domain_mask, power_domains) \
5212 for (i = 0; \
5213 i < (power_domains)->power_well_count && \
5214 ((power_well) = &(power_domains)->power_wells[i]); \
5215 i++) \
5216 if ((power_well)->domains & (domain_mask))
5217
5218 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
5219 for (i = (power_domains)->power_well_count - 1; \
5220 i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
5221 i--) \
5222 if ((power_well)->domains & (domain_mask))
5223
5224 /**
5225 * We should only use the power well if we explicitly asked the hardware to
5226 * enable it, so check if it's enabled and also check if we've requested it to
5227 * be enabled.
5228 */
5229 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
5230 struct i915_power_well *power_well)
5231 {
5232 return I915_READ(HSW_PWR_WELL_DRIVER) ==
5233 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5234 }
5235
5236 bool intel_display_power_enabled_sw(struct drm_i915_private *dev_priv,
5237 enum intel_display_power_domain domain)
5238 {
5239 struct i915_power_domains *power_domains;
5240
5241 power_domains = &dev_priv->power_domains;
5242
5243 return power_domains->domain_use_count[domain];
5244 }
5245
5246 bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
5247 enum intel_display_power_domain domain)
5248 {
5249 struct i915_power_domains *power_domains;
5250 struct i915_power_well *power_well;
5251 bool is_enabled;
5252 int i;
5253
5254 power_domains = &dev_priv->power_domains;
5255
5256 is_enabled = true;
5257
5258 mutex_lock(&power_domains->lock);
5259 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5260 if (power_well->always_on)
5261 continue;
5262
5263 if (!power_well->ops->is_enabled(dev_priv, power_well)) {
5264 is_enabled = false;
5265 break;
5266 }
5267 }
5268 mutex_unlock(&power_domains->lock);
5269
5270 return is_enabled;
5271 }
5272
5273 /*
5274 * Starting with Haswell, we have a "Power Down Well" that can be turned off
5275 * when not needed anymore. We have 4 registers that can request the power well
5276 * to be enabled, and it will only be disabled if none of the registers is
5277 * requesting it to be enabled.
5278 */
5279 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
5280 {
5281 struct drm_device *dev = dev_priv->dev;
5282 unsigned long irqflags;
5283
5284 /*
5285 * After we re-enable the power well, if we touch VGA register 0x3d5
5286 * we'll get unclaimed register interrupts. This stops after we write
5287 * anything to the VGA MSR register. The vgacon module uses this
5288 * register all the time, so if we unbind our driver and, as a
5289 * consequence, bind vgacon, we'll get stuck in an infinite loop at
5290 * console_unlock(). So make here we touch the VGA MSR register, making
5291 * sure vgacon can keep working normally without triggering interrupts
5292 * and error messages.
5293 */
5294 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
5295 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
5296 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
5297
5298 if (IS_BROADWELL(dev)) {
5299 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5300 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
5301 dev_priv->de_irq_mask[PIPE_B]);
5302 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
5303 ~dev_priv->de_irq_mask[PIPE_B] |
5304 GEN8_PIPE_VBLANK);
5305 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
5306 dev_priv->de_irq_mask[PIPE_C]);
5307 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
5308 ~dev_priv->de_irq_mask[PIPE_C] |
5309 GEN8_PIPE_VBLANK);
5310 POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
5311 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5312 }
5313 }
5314
5315 static void reset_vblank_counter(struct drm_device *dev, enum pipe pipe)
5316 {
5317 assert_spin_locked(&dev->vbl_lock);
5318
5319 dev->vblank[pipe].last = 0;
5320 }
5321
5322 static void hsw_power_well_post_disable(struct drm_i915_private *dev_priv)
5323 {
5324 struct drm_device *dev = dev_priv->dev;
5325 enum pipe pipe;
5326 unsigned long irqflags;
5327
5328 /*
5329 * After this, the registers on the pipes that are part of the power
5330 * well will become zero, so we have to adjust our counters according to
5331 * that.
5332 *
5333 * FIXME: Should we do this in general in drm_vblank_post_modeset?
5334 */
5335 spin_lock_irqsave(&dev->vbl_lock, irqflags);
5336 for_each_pipe(pipe)
5337 if (pipe != PIPE_A)
5338 reset_vblank_counter(dev, pipe);
5339 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
5340 }
5341
5342 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
5343 struct i915_power_well *power_well, bool enable)
5344 {
5345 bool is_enabled, enable_requested;
5346 uint32_t tmp;
5347
5348 WARN_ON(dev_priv->pc8.enabled);
5349
5350 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5351 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5352 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5353
5354 if (enable) {
5355 if (!enable_requested)
5356 I915_WRITE(HSW_PWR_WELL_DRIVER,
5357 HSW_PWR_WELL_ENABLE_REQUEST);
5358
5359 if (!is_enabled) {
5360 DRM_DEBUG_KMS("Enabling power well\n");
5361 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5362 HSW_PWR_WELL_STATE_ENABLED), 20))
5363 DRM_ERROR("Timeout enabling power well\n");
5364 }
5365
5366 hsw_power_well_post_enable(dev_priv);
5367 } else {
5368 if (enable_requested) {
5369 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5370 POSTING_READ(HSW_PWR_WELL_DRIVER);
5371 DRM_DEBUG_KMS("Requesting to disable the power well\n");
5372
5373 hsw_power_well_post_disable(dev_priv);
5374 }
5375 }
5376 }
5377
5378 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
5379 struct i915_power_well *power_well)
5380 {
5381 hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
5382
5383 /*
5384 * We're taking over the BIOS, so clear any requests made by it since
5385 * the driver is in charge now.
5386 */
5387 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5388 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5389 }
5390
5391 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
5392 struct i915_power_well *power_well)
5393 {
5394 hsw_disable_package_c8(dev_priv);
5395 hsw_set_power_well(dev_priv, power_well, true);
5396 }
5397
5398 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
5399 struct i915_power_well *power_well)
5400 {
5401 hsw_set_power_well(dev_priv, power_well, false);
5402 hsw_enable_package_c8(dev_priv);
5403 }
5404
5405 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
5406 struct i915_power_well *power_well)
5407 {
5408 }
5409
5410 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
5411 struct i915_power_well *power_well)
5412 {
5413 return true;
5414 }
5415
5416 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
5417 struct i915_power_well *power_well, bool enable)
5418 {
5419 enum punit_power_well power_well_id = power_well->data;
5420 u32 mask;
5421 u32 state;
5422 u32 ctrl;
5423
5424 mask = PUNIT_PWRGT_MASK(power_well_id);
5425 state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
5426 PUNIT_PWRGT_PWR_GATE(power_well_id);
5427
5428 mutex_lock(&dev_priv->rps.hw_lock);
5429
5430 #define COND \
5431 ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
5432
5433 if (COND)
5434 goto out;
5435
5436 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
5437 ctrl &= ~mask;
5438 ctrl |= state;
5439 vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
5440
5441 if (wait_for(COND, 100))
5442 DRM_ERROR("timout setting power well state %08x (%08x)\n",
5443 state,
5444 vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
5445
5446 #undef COND
5447
5448 out:
5449 mutex_unlock(&dev_priv->rps.hw_lock);
5450 }
5451
5452 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
5453 struct i915_power_well *power_well)
5454 {
5455 vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
5456 }
5457
5458 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
5459 struct i915_power_well *power_well)
5460 {
5461 vlv_set_power_well(dev_priv, power_well, true);
5462 }
5463
5464 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
5465 struct i915_power_well *power_well)
5466 {
5467 vlv_set_power_well(dev_priv, power_well, false);
5468 }
5469
5470 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
5471 struct i915_power_well *power_well)
5472 {
5473 int power_well_id = power_well->data;
5474 bool enabled = false;
5475 u32 mask;
5476 u32 state;
5477 u32 ctrl;
5478
5479 mask = PUNIT_PWRGT_MASK(power_well_id);
5480 ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
5481
5482 mutex_lock(&dev_priv->rps.hw_lock);
5483
5484 state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
5485 /*
5486 * We only ever set the power-on and power-gate states, anything
5487 * else is unexpected.
5488 */
5489 WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
5490 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
5491 if (state == ctrl)
5492 enabled = true;
5493
5494 /*
5495 * A transient state at this point would mean some unexpected party
5496 * is poking at the power controls too.
5497 */
5498 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
5499 WARN_ON(ctrl != state);
5500
5501 mutex_unlock(&dev_priv->rps.hw_lock);
5502
5503 return enabled;
5504 }
5505
5506 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
5507 struct i915_power_well *power_well)
5508 {
5509 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
5510
5511 vlv_set_power_well(dev_priv, power_well, true);
5512
5513 spin_lock_irq(&dev_priv->irq_lock);
5514 valleyview_enable_display_irqs(dev_priv);
5515 spin_unlock_irq(&dev_priv->irq_lock);
5516
5517 /*
5518 * During driver initialization we need to defer enabling hotplug
5519 * processing until fbdev is set up.
5520 */
5521 if (dev_priv->enable_hotplug_processing)
5522 intel_hpd_init(dev_priv->dev);
5523
5524 i915_redisable_vga_power_on(dev_priv->dev);
5525 }
5526
5527 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
5528 struct i915_power_well *power_well)
5529 {
5530 struct drm_device *dev = dev_priv->dev;
5531 enum pipe pipe;
5532
5533 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
5534
5535 spin_lock_irq(&dev_priv->irq_lock);
5536 for_each_pipe(pipe)
5537 __intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
5538
5539 valleyview_disable_display_irqs(dev_priv);
5540 spin_unlock_irq(&dev_priv->irq_lock);
5541
5542 spin_lock_irq(&dev->vbl_lock);
5543 for_each_pipe(pipe)
5544 reset_vblank_counter(dev, pipe);
5545 spin_unlock_irq(&dev->vbl_lock);
5546
5547 vlv_set_power_well(dev_priv, power_well, false);
5548 }
5549
5550 static void check_power_well_state(struct drm_i915_private *dev_priv,
5551 struct i915_power_well *power_well)
5552 {
5553 bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
5554
5555 if (power_well->always_on || !i915.disable_power_well) {
5556 if (!enabled)
5557 goto mismatch;
5558
5559 return;
5560 }
5561
5562 if (enabled != (power_well->count > 0))
5563 goto mismatch;
5564
5565 return;
5566
5567 mismatch:
5568 WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
5569 power_well->name, power_well->always_on, enabled,
5570 power_well->count, i915.disable_power_well);
5571 }
5572
5573 void intel_display_power_get(struct drm_i915_private *dev_priv,
5574 enum intel_display_power_domain domain)
5575 {
5576 struct i915_power_domains *power_domains;
5577 struct i915_power_well *power_well;
5578 int i;
5579
5580 intel_runtime_pm_get(dev_priv);
5581
5582 power_domains = &dev_priv->power_domains;
5583
5584 mutex_lock(&power_domains->lock);
5585
5586 for_each_power_well(i, power_well, BIT(domain), power_domains) {
5587 if (!power_well->count++) {
5588 DRM_DEBUG_KMS("enabling %s\n", power_well->name);
5589 power_well->ops->enable(dev_priv, power_well);
5590 }
5591
5592 check_power_well_state(dev_priv, power_well);
5593 }
5594
5595 power_domains->domain_use_count[domain]++;
5596
5597 mutex_unlock(&power_domains->lock);
5598 }
5599
5600 void intel_display_power_put(struct drm_i915_private *dev_priv,
5601 enum intel_display_power_domain domain)
5602 {
5603 struct i915_power_domains *power_domains;
5604 struct i915_power_well *power_well;
5605 int i;
5606
5607 power_domains = &dev_priv->power_domains;
5608
5609 mutex_lock(&power_domains->lock);
5610
5611 WARN_ON(!power_domains->domain_use_count[domain]);
5612 power_domains->domain_use_count[domain]--;
5613
5614 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5615 WARN_ON(!power_well->count);
5616
5617 if (!--power_well->count && i915.disable_power_well) {
5618 DRM_DEBUG_KMS("disabling %s\n", power_well->name);
5619 power_well->ops->disable(dev_priv, power_well);
5620 }
5621
5622 check_power_well_state(dev_priv, power_well);
5623 }
5624
5625 mutex_unlock(&power_domains->lock);
5626
5627 intel_runtime_pm_put(dev_priv);
5628 }
5629
5630 static struct i915_power_domains *hsw_pwr;
5631
5632 /* Display audio driver power well request */
5633 void i915_request_power_well(void)
5634 {
5635 struct drm_i915_private *dev_priv;
5636
5637 if (WARN_ON(!hsw_pwr))
5638 return;
5639
5640 dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5641 power_domains);
5642 intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
5643 }
5644 EXPORT_SYMBOL_GPL(i915_request_power_well);
5645
5646 /* Display audio driver power well release */
5647 void i915_release_power_well(void)
5648 {
5649 struct drm_i915_private *dev_priv;
5650
5651 if (WARN_ON(!hsw_pwr))
5652 return;
5653
5654 dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5655 power_domains);
5656 intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
5657 }
5658 EXPORT_SYMBOL_GPL(i915_release_power_well);
5659
5660 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
5661
5662 #define HSW_ALWAYS_ON_POWER_DOMAINS ( \
5663 BIT(POWER_DOMAIN_PIPE_A) | \
5664 BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
5665 BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \
5666 BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \
5667 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
5668 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
5669 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
5670 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
5671 BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
5672 BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
5673 BIT(POWER_DOMAIN_PORT_CRT) | \
5674 BIT(POWER_DOMAIN_INIT))
5675 #define HSW_DISPLAY_POWER_DOMAINS ( \
5676 (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) | \
5677 BIT(POWER_DOMAIN_INIT))
5678
5679 #define BDW_ALWAYS_ON_POWER_DOMAINS ( \
5680 HSW_ALWAYS_ON_POWER_DOMAINS | \
5681 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
5682 #define BDW_DISPLAY_POWER_DOMAINS ( \
5683 (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) | \
5684 BIT(POWER_DOMAIN_INIT))
5685
5686 #define VLV_ALWAYS_ON_POWER_DOMAINS BIT(POWER_DOMAIN_INIT)
5687 #define VLV_DISPLAY_POWER_DOMAINS POWER_DOMAIN_MASK
5688
5689 #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
5690 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
5691 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
5692 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
5693 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
5694 BIT(POWER_DOMAIN_PORT_CRT) | \
5695 BIT(POWER_DOMAIN_INIT))
5696
5697 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
5698 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
5699 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
5700 BIT(POWER_DOMAIN_INIT))
5701
5702 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
5703 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
5704 BIT(POWER_DOMAIN_INIT))
5705
5706 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
5707 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
5708 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
5709 BIT(POWER_DOMAIN_INIT))
5710
5711 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
5712 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
5713 BIT(POWER_DOMAIN_INIT))
5714
5715 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
5716 .sync_hw = i9xx_always_on_power_well_noop,
5717 .enable = i9xx_always_on_power_well_noop,
5718 .disable = i9xx_always_on_power_well_noop,
5719 .is_enabled = i9xx_always_on_power_well_enabled,
5720 };
5721
5722 static struct i915_power_well i9xx_always_on_power_well[] = {
5723 {
5724 .name = "always-on",
5725 .always_on = 1,
5726 .domains = POWER_DOMAIN_MASK,
5727 .ops = &i9xx_always_on_power_well_ops,
5728 },
5729 };
5730
5731 static const struct i915_power_well_ops hsw_power_well_ops = {
5732 .sync_hw = hsw_power_well_sync_hw,
5733 .enable = hsw_power_well_enable,
5734 .disable = hsw_power_well_disable,
5735 .is_enabled = hsw_power_well_enabled,
5736 };
5737
5738 static struct i915_power_well hsw_power_wells[] = {
5739 {
5740 .name = "always-on",
5741 .always_on = 1,
5742 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
5743 .ops = &i9xx_always_on_power_well_ops,
5744 },
5745 {
5746 .name = "display",
5747 .domains = HSW_DISPLAY_POWER_DOMAINS,
5748 .ops = &hsw_power_well_ops,
5749 },
5750 };
5751
5752 static struct i915_power_well bdw_power_wells[] = {
5753 {
5754 .name = "always-on",
5755 .always_on = 1,
5756 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
5757 .ops = &i9xx_always_on_power_well_ops,
5758 },
5759 {
5760 .name = "display",
5761 .domains = BDW_DISPLAY_POWER_DOMAINS,
5762 .ops = &hsw_power_well_ops,
5763 },
5764 };
5765
5766 static const struct i915_power_well_ops vlv_display_power_well_ops = {
5767 .sync_hw = vlv_power_well_sync_hw,
5768 .enable = vlv_display_power_well_enable,
5769 .disable = vlv_display_power_well_disable,
5770 .is_enabled = vlv_power_well_enabled,
5771 };
5772
5773 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
5774 .sync_hw = vlv_power_well_sync_hw,
5775 .enable = vlv_power_well_enable,
5776 .disable = vlv_power_well_disable,
5777 .is_enabled = vlv_power_well_enabled,
5778 };
5779
5780 static struct i915_power_well vlv_power_wells[] = {
5781 {
5782 .name = "always-on",
5783 .always_on = 1,
5784 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
5785 .ops = &i9xx_always_on_power_well_ops,
5786 },
5787 {
5788 .name = "display",
5789 .domains = VLV_DISPLAY_POWER_DOMAINS,
5790 .data = PUNIT_POWER_WELL_DISP2D,
5791 .ops = &vlv_display_power_well_ops,
5792 },
5793 {
5794 .name = "dpio-common",
5795 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
5796 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
5797 .ops = &vlv_dpio_power_well_ops,
5798 },
5799 {
5800 .name = "dpio-tx-b-01",
5801 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5802 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5803 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5804 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5805 .ops = &vlv_dpio_power_well_ops,
5806 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
5807 },
5808 {
5809 .name = "dpio-tx-b-23",
5810 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5811 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5812 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5813 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5814 .ops = &vlv_dpio_power_well_ops,
5815 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
5816 },
5817 {
5818 .name = "dpio-tx-c-01",
5819 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5820 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5821 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5822 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5823 .ops = &vlv_dpio_power_well_ops,
5824 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
5825 },
5826 {
5827 .name = "dpio-tx-c-23",
5828 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5829 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5830 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5831 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5832 .ops = &vlv_dpio_power_well_ops,
5833 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
5834 },
5835 };
5836
5837 #define set_power_wells(power_domains, __power_wells) ({ \
5838 (power_domains)->power_wells = (__power_wells); \
5839 (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
5840 })
5841
5842 int intel_power_domains_init(struct drm_i915_private *dev_priv)
5843 {
5844 struct i915_power_domains *power_domains = &dev_priv->power_domains;
5845
5846 mutex_init(&power_domains->lock);
5847
5848 /*
5849 * The enabling order will be from lower to higher indexed wells,
5850 * the disabling order is reversed.
5851 */
5852 if (IS_HASWELL(dev_priv->dev)) {
5853 set_power_wells(power_domains, hsw_power_wells);
5854 hsw_pwr = power_domains;
5855 } else if (IS_BROADWELL(dev_priv->dev)) {
5856 set_power_wells(power_domains, bdw_power_wells);
5857 hsw_pwr = power_domains;
5858 } else if (IS_VALLEYVIEW(dev_priv->dev)) {
5859 set_power_wells(power_domains, vlv_power_wells);
5860 } else {
5861 set_power_wells(power_domains, i9xx_always_on_power_well);
5862 }
5863
5864 return 0;
5865 }
5866
5867 void intel_power_domains_remove(struct drm_i915_private *dev_priv)
5868 {
5869 hsw_pwr = NULL;
5870 }
5871
5872 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
5873 {
5874 struct i915_power_domains *power_domains = &dev_priv->power_domains;
5875 struct i915_power_well *power_well;
5876 int i;
5877
5878 mutex_lock(&power_domains->lock);
5879 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains)
5880 power_well->ops->sync_hw(dev_priv, power_well);
5881 mutex_unlock(&power_domains->lock);
5882 }
5883
5884 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
5885 {
5886 /* For now, we need the power well to be always enabled. */
5887 intel_display_set_init_power(dev_priv, true);
5888 intel_power_domains_resume(dev_priv);
5889 }
5890
5891 /* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
5892 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
5893 {
5894 hsw_disable_package_c8(dev_priv);
5895 }
5896
5897 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
5898 {
5899 hsw_enable_package_c8(dev_priv);
5900 }
5901
5902 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
5903 {
5904 struct drm_device *dev = dev_priv->dev;
5905 struct device *device = &dev->pdev->dev;
5906
5907 if (!HAS_RUNTIME_PM(dev))
5908 return;
5909
5910 pm_runtime_get_sync(device);
5911 WARN(dev_priv->pm.suspended, "Device still suspended.\n");
5912 }
5913
5914 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
5915 {
5916 struct drm_device *dev = dev_priv->dev;
5917 struct device *device = &dev->pdev->dev;
5918
5919 if (!HAS_RUNTIME_PM(dev))
5920 return;
5921
5922 pm_runtime_mark_last_busy(device);
5923 pm_runtime_put_autosuspend(device);
5924 }
5925
5926 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
5927 {
5928 struct drm_device *dev = dev_priv->dev;
5929 struct device *device = &dev->pdev->dev;
5930
5931 dev_priv->pm.suspended = false;
5932
5933 if (!HAS_RUNTIME_PM(dev))
5934 return;
5935
5936 pm_runtime_set_active(device);
5937
5938 pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
5939 pm_runtime_mark_last_busy(device);
5940 pm_runtime_use_autosuspend(device);
5941 }
5942
5943 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
5944 {
5945 struct drm_device *dev = dev_priv->dev;
5946 struct device *device = &dev->pdev->dev;
5947
5948 if (!HAS_RUNTIME_PM(dev))
5949 return;
5950
5951 /* Make sure we're not suspended first. */
5952 pm_runtime_get_sync(device);
5953 pm_runtime_disable(device);
5954 }
5955
5956 /* Set up chip specific power management-related functions */
5957 void intel_init_pm(struct drm_device *dev)
5958 {
5959 struct drm_i915_private *dev_priv = dev->dev_private;
5960
5961 if (HAS_FBC(dev)) {
5962 if (INTEL_INFO(dev)->gen >= 7) {
5963 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5964 dev_priv->display.enable_fbc = gen7_enable_fbc;
5965 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5966 } else if (INTEL_INFO(dev)->gen >= 5) {
5967 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5968 dev_priv->display.enable_fbc = ironlake_enable_fbc;
5969 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5970 } else if (IS_GM45(dev)) {
5971 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5972 dev_priv->display.enable_fbc = g4x_enable_fbc;
5973 dev_priv->display.disable_fbc = g4x_disable_fbc;
5974 } else {
5975 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5976 dev_priv->display.enable_fbc = i8xx_enable_fbc;
5977 dev_priv->display.disable_fbc = i8xx_disable_fbc;
5978
5979 /* This value was pulled out of someone's hat */
5980 I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
5981 }
5982 }
5983
5984 /* For cxsr */
5985 if (IS_PINEVIEW(dev))
5986 i915_pineview_get_mem_freq(dev);
5987 else if (IS_GEN5(dev))
5988 i915_ironlake_get_mem_freq(dev);
5989
5990 /* For FIFO watermark updates */
5991 if (HAS_PCH_SPLIT(dev)) {
5992 ilk_setup_wm_latency(dev);
5993
5994 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
5995 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
5996 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
5997 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
5998 dev_priv->display.update_wm = ilk_update_wm;
5999 dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6000 } else {
6001 DRM_DEBUG_KMS("Failed to read display plane latency. "
6002 "Disable CxSR\n");
6003 }
6004
6005 if (IS_GEN5(dev))
6006 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6007 else if (IS_GEN6(dev))
6008 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6009 else if (IS_IVYBRIDGE(dev))
6010 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6011 else if (IS_HASWELL(dev))
6012 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6013 else if (INTEL_INFO(dev)->gen == 8)
6014 dev_priv->display.init_clock_gating = gen8_init_clock_gating;
6015 } else if (IS_VALLEYVIEW(dev)) {
6016 dev_priv->display.update_wm = valleyview_update_wm;
6017 dev_priv->display.init_clock_gating =
6018 valleyview_init_clock_gating;
6019 } else if (IS_PINEVIEW(dev)) {
6020 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6021 dev_priv->is_ddr3,
6022 dev_priv->fsb_freq,
6023 dev_priv->mem_freq)) {
6024 DRM_INFO("failed to find known CxSR latency "
6025 "(found ddr%s fsb freq %d, mem freq %d), "
6026 "disabling CxSR\n",
6027 (dev_priv->is_ddr3 == 1) ? "3" : "2",
6028 dev_priv->fsb_freq, dev_priv->mem_freq);
6029 /* Disable CxSR and never update its watermark again */
6030 pineview_disable_cxsr(dev);
6031 dev_priv->display.update_wm = NULL;
6032 } else
6033 dev_priv->display.update_wm = pineview_update_wm;
6034 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6035 } else if (IS_G4X(dev)) {
6036 dev_priv->display.update_wm = g4x_update_wm;
6037 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6038 } else if (IS_GEN4(dev)) {
6039 dev_priv->display.update_wm = i965_update_wm;
6040 if (IS_CRESTLINE(dev))
6041 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6042 else if (IS_BROADWATER(dev))
6043 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6044 } else if (IS_GEN3(dev)) {
6045 dev_priv->display.update_wm = i9xx_update_wm;
6046 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6047 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6048 } else if (IS_GEN2(dev)) {
6049 if (INTEL_INFO(dev)->num_pipes == 1) {
6050 dev_priv->display.update_wm = i845_update_wm;
6051 dev_priv->display.get_fifo_size = i845_get_fifo_size;
6052 } else {
6053 dev_priv->display.update_wm = i9xx_update_wm;
6054 dev_priv->display.get_fifo_size = i830_get_fifo_size;
6055 }
6056
6057 if (IS_I85X(dev) || IS_I865G(dev))
6058 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6059 else
6060 dev_priv->display.init_clock_gating = i830_init_clock_gating;
6061 } else {
6062 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6063 }
6064 }
6065
6066 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
6067 {
6068 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6069
6070 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6071 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6072 return -EAGAIN;
6073 }
6074
6075 I915_WRITE(GEN6_PCODE_DATA, *val);
6076 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6077
6078 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6079 500)) {
6080 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6081 return -ETIMEDOUT;
6082 }
6083
6084 *val = I915_READ(GEN6_PCODE_DATA);
6085 I915_WRITE(GEN6_PCODE_DATA, 0);
6086
6087 return 0;
6088 }
6089
6090 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
6091 {
6092 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6093
6094 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6095 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6096 return -EAGAIN;
6097 }
6098
6099 I915_WRITE(GEN6_PCODE_DATA, val);
6100 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6101
6102 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6103 500)) {
6104 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6105 return -ETIMEDOUT;
6106 }
6107
6108 I915_WRITE(GEN6_PCODE_DATA, 0);
6109
6110 return 0;
6111 }
6112
6113 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6114 {
6115 int div;
6116
6117 /* 4 x czclk */
6118 switch (dev_priv->mem_freq) {
6119 case 800:
6120 div = 10;
6121 break;
6122 case 1066:
6123 div = 12;
6124 break;
6125 case 1333:
6126 div = 16;
6127 break;
6128 default:
6129 return -1;
6130 }
6131
6132 return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
6133 }
6134
6135 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6136 {
6137 int mul;
6138
6139 /* 4 x czclk */
6140 switch (dev_priv->mem_freq) {
6141 case 800:
6142 mul = 10;
6143 break;
6144 case 1066:
6145 mul = 12;
6146 break;
6147 case 1333:
6148 mul = 16;
6149 break;
6150 default:
6151 return -1;
6152 }
6153
6154 return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
6155 }
6156
6157 void intel_pm_setup(struct drm_device *dev)
6158 {
6159 struct drm_i915_private *dev_priv = dev->dev_private;
6160
6161 mutex_init(&dev_priv->rps.hw_lock);
6162
6163 mutex_init(&dev_priv->pc8.lock);
6164 dev_priv->pc8.requirements_met = false;
6165 dev_priv->pc8.irqs_disabled = false;
6166 dev_priv->pc8.enabled = false;
6167 dev_priv->pc8.disable_count = 1; /* requirements_met */
6168 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6169 intel_gen6_powersave_work);
6170 }
This page took 0.412359 seconds and 5 git commands to generate.