drm/i915: extract hsw_power_well_post_{enable, disable}
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <drm/i915_powerwell.h>
34 #include <linux/pm_runtime.h>
35
36 /**
37 * RC6 is a special power stage which allows the GPU to enter an very
38 * low-voltage mode when idle, using down to 0V while at this stage. This
39 * stage is entered automatically when the GPU is idle when RC6 support is
40 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
41 *
42 * There are different RC6 modes available in Intel GPU, which differentiate
43 * among each other with the latency required to enter and leave RC6 and
44 * voltage consumed by the GPU in different states.
45 *
46 * The combination of the following flags define which states GPU is allowed
47 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
48 * RC6pp is deepest RC6. Their support by hardware varies according to the
49 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
50 * which brings the most power savings; deeper states save more power, but
51 * require higher latency to switch to and wake up.
52 */
53 #define INTEL_RC6_ENABLE (1<<0)
54 #define INTEL_RC6p_ENABLE (1<<1)
55 #define INTEL_RC6pp_ENABLE (1<<2)
56
57 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
58 * framebuffer contents in-memory, aiming at reducing the required bandwidth
59 * during in-memory transfers and, therefore, reduce the power packet.
60 *
61 * The benefits of FBC are mostly visible with solid backgrounds and
62 * variation-less patterns.
63 *
64 * FBC-related functionality can be enabled by the means of the
65 * i915.i915_enable_fbc parameter
66 */
67
68 static void i8xx_disable_fbc(struct drm_device *dev)
69 {
70 struct drm_i915_private *dev_priv = dev->dev_private;
71 u32 fbc_ctl;
72
73 /* Disable compression */
74 fbc_ctl = I915_READ(FBC_CONTROL);
75 if ((fbc_ctl & FBC_CTL_EN) == 0)
76 return;
77
78 fbc_ctl &= ~FBC_CTL_EN;
79 I915_WRITE(FBC_CONTROL, fbc_ctl);
80
81 /* Wait for compressing bit to clear */
82 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
83 DRM_DEBUG_KMS("FBC idle timed out\n");
84 return;
85 }
86
87 DRM_DEBUG_KMS("disabled FBC\n");
88 }
89
90 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
91 {
92 struct drm_device *dev = crtc->dev;
93 struct drm_i915_private *dev_priv = dev->dev_private;
94 struct drm_framebuffer *fb = crtc->fb;
95 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
96 struct drm_i915_gem_object *obj = intel_fb->obj;
97 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
98 int cfb_pitch;
99 int plane, i;
100 u32 fbc_ctl, fbc_ctl2;
101
102 cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
103 if (fb->pitches[0] < cfb_pitch)
104 cfb_pitch = fb->pitches[0];
105
106 /* FBC_CTL wants 64B units */
107 cfb_pitch = (cfb_pitch / 64) - 1;
108 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
109
110 /* Clear old tags */
111 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
112 I915_WRITE(FBC_TAG + (i * 4), 0);
113
114 /* Set it up... */
115 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
116 fbc_ctl2 |= plane;
117 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
118 I915_WRITE(FBC_FENCE_OFF, crtc->y);
119
120 /* enable it... */
121 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
122 if (IS_I945GM(dev))
123 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
124 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
125 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
126 fbc_ctl |= obj->fence_reg;
127 I915_WRITE(FBC_CONTROL, fbc_ctl);
128
129 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
130 cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
131 }
132
133 static bool i8xx_fbc_enabled(struct drm_device *dev)
134 {
135 struct drm_i915_private *dev_priv = dev->dev_private;
136
137 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
138 }
139
140 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
141 {
142 struct drm_device *dev = crtc->dev;
143 struct drm_i915_private *dev_priv = dev->dev_private;
144 struct drm_framebuffer *fb = crtc->fb;
145 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
146 struct drm_i915_gem_object *obj = intel_fb->obj;
147 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
148 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
149 unsigned long stall_watermark = 200;
150 u32 dpfc_ctl;
151
152 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
153 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
154 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
155
156 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
157 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
158 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
159 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
160
161 /* enable it... */
162 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
163
164 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
165 }
166
167 static void g4x_disable_fbc(struct drm_device *dev)
168 {
169 struct drm_i915_private *dev_priv = dev->dev_private;
170 u32 dpfc_ctl;
171
172 /* Disable compression */
173 dpfc_ctl = I915_READ(DPFC_CONTROL);
174 if (dpfc_ctl & DPFC_CTL_EN) {
175 dpfc_ctl &= ~DPFC_CTL_EN;
176 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
177
178 DRM_DEBUG_KMS("disabled FBC\n");
179 }
180 }
181
182 static bool g4x_fbc_enabled(struct drm_device *dev)
183 {
184 struct drm_i915_private *dev_priv = dev->dev_private;
185
186 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
187 }
188
189 static void sandybridge_blit_fbc_update(struct drm_device *dev)
190 {
191 struct drm_i915_private *dev_priv = dev->dev_private;
192 u32 blt_ecoskpd;
193
194 /* Make sure blitter notifies FBC of writes */
195
196 /* Blitter is part of Media powerwell on VLV. No impact of
197 * his param in other platforms for now */
198 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
199
200 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
201 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
202 GEN6_BLITTER_LOCK_SHIFT;
203 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
204 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
205 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
206 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
207 GEN6_BLITTER_LOCK_SHIFT);
208 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
209 POSTING_READ(GEN6_BLITTER_ECOSKPD);
210
211 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
212 }
213
214 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
215 {
216 struct drm_device *dev = crtc->dev;
217 struct drm_i915_private *dev_priv = dev->dev_private;
218 struct drm_framebuffer *fb = crtc->fb;
219 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
220 struct drm_i915_gem_object *obj = intel_fb->obj;
221 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
222 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
223 unsigned long stall_watermark = 200;
224 u32 dpfc_ctl;
225
226 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
227 dpfc_ctl &= DPFC_RESERVED;
228 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
229 /* Set persistent mode for front-buffer rendering, ala X. */
230 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
231 dpfc_ctl |= DPFC_CTL_FENCE_EN;
232 if (IS_GEN5(dev))
233 dpfc_ctl |= obj->fence_reg;
234 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
235
236 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
237 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
238 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
239 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
240 I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
241 /* enable it... */
242 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
243
244 if (IS_GEN6(dev)) {
245 I915_WRITE(SNB_DPFC_CTL_SA,
246 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
247 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
248 sandybridge_blit_fbc_update(dev);
249 }
250
251 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
252 }
253
254 static void ironlake_disable_fbc(struct drm_device *dev)
255 {
256 struct drm_i915_private *dev_priv = dev->dev_private;
257 u32 dpfc_ctl;
258
259 /* Disable compression */
260 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
261 if (dpfc_ctl & DPFC_CTL_EN) {
262 dpfc_ctl &= ~DPFC_CTL_EN;
263 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
264
265 DRM_DEBUG_KMS("disabled FBC\n");
266 }
267 }
268
269 static bool ironlake_fbc_enabled(struct drm_device *dev)
270 {
271 struct drm_i915_private *dev_priv = dev->dev_private;
272
273 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
274 }
275
276 static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
277 {
278 struct drm_device *dev = crtc->dev;
279 struct drm_i915_private *dev_priv = dev->dev_private;
280 struct drm_framebuffer *fb = crtc->fb;
281 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
282 struct drm_i915_gem_object *obj = intel_fb->obj;
283 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
284
285 I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
286
287 I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
288 IVB_DPFC_CTL_FENCE_EN |
289 intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
290
291 if (IS_IVYBRIDGE(dev)) {
292 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
293 I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
294 } else {
295 /* WaFbcAsynchFlipDisableFbcQueue:hsw */
296 I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
297 HSW_BYPASS_FBC_QUEUE);
298 }
299
300 I915_WRITE(SNB_DPFC_CTL_SA,
301 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
302 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
303
304 sandybridge_blit_fbc_update(dev);
305
306 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
307 }
308
309 bool intel_fbc_enabled(struct drm_device *dev)
310 {
311 struct drm_i915_private *dev_priv = dev->dev_private;
312
313 if (!dev_priv->display.fbc_enabled)
314 return false;
315
316 return dev_priv->display.fbc_enabled(dev);
317 }
318
319 static void intel_fbc_work_fn(struct work_struct *__work)
320 {
321 struct intel_fbc_work *work =
322 container_of(to_delayed_work(__work),
323 struct intel_fbc_work, work);
324 struct drm_device *dev = work->crtc->dev;
325 struct drm_i915_private *dev_priv = dev->dev_private;
326
327 mutex_lock(&dev->struct_mutex);
328 if (work == dev_priv->fbc.fbc_work) {
329 /* Double check that we haven't switched fb without cancelling
330 * the prior work.
331 */
332 if (work->crtc->fb == work->fb) {
333 dev_priv->display.enable_fbc(work->crtc,
334 work->interval);
335
336 dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
337 dev_priv->fbc.fb_id = work->crtc->fb->base.id;
338 dev_priv->fbc.y = work->crtc->y;
339 }
340
341 dev_priv->fbc.fbc_work = NULL;
342 }
343 mutex_unlock(&dev->struct_mutex);
344
345 kfree(work);
346 }
347
348 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
349 {
350 if (dev_priv->fbc.fbc_work == NULL)
351 return;
352
353 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
354
355 /* Synchronisation is provided by struct_mutex and checking of
356 * dev_priv->fbc.fbc_work, so we can perform the cancellation
357 * entirely asynchronously.
358 */
359 if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
360 /* tasklet was killed before being run, clean up */
361 kfree(dev_priv->fbc.fbc_work);
362
363 /* Mark the work as no longer wanted so that if it does
364 * wake-up (because the work was already running and waiting
365 * for our mutex), it will discover that is no longer
366 * necessary to run.
367 */
368 dev_priv->fbc.fbc_work = NULL;
369 }
370
371 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
372 {
373 struct intel_fbc_work *work;
374 struct drm_device *dev = crtc->dev;
375 struct drm_i915_private *dev_priv = dev->dev_private;
376
377 if (!dev_priv->display.enable_fbc)
378 return;
379
380 intel_cancel_fbc_work(dev_priv);
381
382 work = kzalloc(sizeof(*work), GFP_KERNEL);
383 if (work == NULL) {
384 DRM_ERROR("Failed to allocate FBC work structure\n");
385 dev_priv->display.enable_fbc(crtc, interval);
386 return;
387 }
388
389 work->crtc = crtc;
390 work->fb = crtc->fb;
391 work->interval = interval;
392 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
393
394 dev_priv->fbc.fbc_work = work;
395
396 /* Delay the actual enabling to let pageflipping cease and the
397 * display to settle before starting the compression. Note that
398 * this delay also serves a second purpose: it allows for a
399 * vblank to pass after disabling the FBC before we attempt
400 * to modify the control registers.
401 *
402 * A more complicated solution would involve tracking vblanks
403 * following the termination of the page-flipping sequence
404 * and indeed performing the enable as a co-routine and not
405 * waiting synchronously upon the vblank.
406 *
407 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
408 */
409 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
410 }
411
412 void intel_disable_fbc(struct drm_device *dev)
413 {
414 struct drm_i915_private *dev_priv = dev->dev_private;
415
416 intel_cancel_fbc_work(dev_priv);
417
418 if (!dev_priv->display.disable_fbc)
419 return;
420
421 dev_priv->display.disable_fbc(dev);
422 dev_priv->fbc.plane = -1;
423 }
424
425 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
426 enum no_fbc_reason reason)
427 {
428 if (dev_priv->fbc.no_fbc_reason == reason)
429 return false;
430
431 dev_priv->fbc.no_fbc_reason = reason;
432 return true;
433 }
434
435 /**
436 * intel_update_fbc - enable/disable FBC as needed
437 * @dev: the drm_device
438 *
439 * Set up the framebuffer compression hardware at mode set time. We
440 * enable it if possible:
441 * - plane A only (on pre-965)
442 * - no pixel mulitply/line duplication
443 * - no alpha buffer discard
444 * - no dual wide
445 * - framebuffer <= max_hdisplay in width, max_vdisplay in height
446 *
447 * We can't assume that any compression will take place (worst case),
448 * so the compressed buffer has to be the same size as the uncompressed
449 * one. It also must reside (along with the line length buffer) in
450 * stolen memory.
451 *
452 * We need to enable/disable FBC on a global basis.
453 */
454 void intel_update_fbc(struct drm_device *dev)
455 {
456 struct drm_i915_private *dev_priv = dev->dev_private;
457 struct drm_crtc *crtc = NULL, *tmp_crtc;
458 struct intel_crtc *intel_crtc;
459 struct drm_framebuffer *fb;
460 struct intel_framebuffer *intel_fb;
461 struct drm_i915_gem_object *obj;
462 const struct drm_display_mode *adjusted_mode;
463 unsigned int max_width, max_height;
464
465 if (!I915_HAS_FBC(dev)) {
466 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
467 return;
468 }
469
470 if (!i915_powersave) {
471 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
472 DRM_DEBUG_KMS("fbc disabled per module param\n");
473 return;
474 }
475
476 /*
477 * If FBC is already on, we just have to verify that we can
478 * keep it that way...
479 * Need to disable if:
480 * - more than one pipe is active
481 * - changing FBC params (stride, fence, mode)
482 * - new fb is too large to fit in compressed buffer
483 * - going to an unsupported config (interlace, pixel multiply, etc.)
484 */
485 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
486 if (intel_crtc_active(tmp_crtc) &&
487 to_intel_crtc(tmp_crtc)->primary_enabled) {
488 if (crtc) {
489 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
490 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
491 goto out_disable;
492 }
493 crtc = tmp_crtc;
494 }
495 }
496
497 if (!crtc || crtc->fb == NULL) {
498 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
499 DRM_DEBUG_KMS("no output, disabling\n");
500 goto out_disable;
501 }
502
503 intel_crtc = to_intel_crtc(crtc);
504 fb = crtc->fb;
505 intel_fb = to_intel_framebuffer(fb);
506 obj = intel_fb->obj;
507 adjusted_mode = &intel_crtc->config.adjusted_mode;
508
509 if (i915_enable_fbc < 0 &&
510 INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
511 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
512 DRM_DEBUG_KMS("disabled per chip default\n");
513 goto out_disable;
514 }
515 if (!i915_enable_fbc) {
516 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
517 DRM_DEBUG_KMS("fbc disabled per module param\n");
518 goto out_disable;
519 }
520 if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
521 (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
522 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
523 DRM_DEBUG_KMS("mode incompatible with compression, "
524 "disabling\n");
525 goto out_disable;
526 }
527
528 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
529 max_width = 4096;
530 max_height = 2048;
531 } else {
532 max_width = 2048;
533 max_height = 1536;
534 }
535 if (intel_crtc->config.pipe_src_w > max_width ||
536 intel_crtc->config.pipe_src_h > max_height) {
537 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
538 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
539 goto out_disable;
540 }
541 if ((INTEL_INFO(dev)->gen < 4 || IS_HASWELL(dev)) &&
542 intel_crtc->plane != PLANE_A) {
543 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
544 DRM_DEBUG_KMS("plane not A, disabling compression\n");
545 goto out_disable;
546 }
547
548 /* The use of a CPU fence is mandatory in order to detect writes
549 * by the CPU to the scanout and trigger updates to the FBC.
550 */
551 if (obj->tiling_mode != I915_TILING_X ||
552 obj->fence_reg == I915_FENCE_REG_NONE) {
553 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
554 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
555 goto out_disable;
556 }
557
558 /* If the kernel debugger is active, always disable compression */
559 if (in_dbg_master())
560 goto out_disable;
561
562 if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
563 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
564 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
565 goto out_disable;
566 }
567
568 /* If the scanout has not changed, don't modify the FBC settings.
569 * Note that we make the fundamental assumption that the fb->obj
570 * cannot be unpinned (and have its GTT offset and fence revoked)
571 * without first being decoupled from the scanout and FBC disabled.
572 */
573 if (dev_priv->fbc.plane == intel_crtc->plane &&
574 dev_priv->fbc.fb_id == fb->base.id &&
575 dev_priv->fbc.y == crtc->y)
576 return;
577
578 if (intel_fbc_enabled(dev)) {
579 /* We update FBC along two paths, after changing fb/crtc
580 * configuration (modeswitching) and after page-flipping
581 * finishes. For the latter, we know that not only did
582 * we disable the FBC at the start of the page-flip
583 * sequence, but also more than one vblank has passed.
584 *
585 * For the former case of modeswitching, it is possible
586 * to switch between two FBC valid configurations
587 * instantaneously so we do need to disable the FBC
588 * before we can modify its control registers. We also
589 * have to wait for the next vblank for that to take
590 * effect. However, since we delay enabling FBC we can
591 * assume that a vblank has passed since disabling and
592 * that we can safely alter the registers in the deferred
593 * callback.
594 *
595 * In the scenario that we go from a valid to invalid
596 * and then back to valid FBC configuration we have
597 * no strict enforcement that a vblank occurred since
598 * disabling the FBC. However, along all current pipe
599 * disabling paths we do need to wait for a vblank at
600 * some point. And we wait before enabling FBC anyway.
601 */
602 DRM_DEBUG_KMS("disabling active FBC for update\n");
603 intel_disable_fbc(dev);
604 }
605
606 intel_enable_fbc(crtc, 500);
607 dev_priv->fbc.no_fbc_reason = FBC_OK;
608 return;
609
610 out_disable:
611 /* Multiple disables should be harmless */
612 if (intel_fbc_enabled(dev)) {
613 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
614 intel_disable_fbc(dev);
615 }
616 i915_gem_stolen_cleanup_compression(dev);
617 }
618
619 static void i915_pineview_get_mem_freq(struct drm_device *dev)
620 {
621 drm_i915_private_t *dev_priv = dev->dev_private;
622 u32 tmp;
623
624 tmp = I915_READ(CLKCFG);
625
626 switch (tmp & CLKCFG_FSB_MASK) {
627 case CLKCFG_FSB_533:
628 dev_priv->fsb_freq = 533; /* 133*4 */
629 break;
630 case CLKCFG_FSB_800:
631 dev_priv->fsb_freq = 800; /* 200*4 */
632 break;
633 case CLKCFG_FSB_667:
634 dev_priv->fsb_freq = 667; /* 167*4 */
635 break;
636 case CLKCFG_FSB_400:
637 dev_priv->fsb_freq = 400; /* 100*4 */
638 break;
639 }
640
641 switch (tmp & CLKCFG_MEM_MASK) {
642 case CLKCFG_MEM_533:
643 dev_priv->mem_freq = 533;
644 break;
645 case CLKCFG_MEM_667:
646 dev_priv->mem_freq = 667;
647 break;
648 case CLKCFG_MEM_800:
649 dev_priv->mem_freq = 800;
650 break;
651 }
652
653 /* detect pineview DDR3 setting */
654 tmp = I915_READ(CSHRDDR3CTL);
655 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
656 }
657
658 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
659 {
660 drm_i915_private_t *dev_priv = dev->dev_private;
661 u16 ddrpll, csipll;
662
663 ddrpll = I915_READ16(DDRMPLL1);
664 csipll = I915_READ16(CSIPLL0);
665
666 switch (ddrpll & 0xff) {
667 case 0xc:
668 dev_priv->mem_freq = 800;
669 break;
670 case 0x10:
671 dev_priv->mem_freq = 1066;
672 break;
673 case 0x14:
674 dev_priv->mem_freq = 1333;
675 break;
676 case 0x18:
677 dev_priv->mem_freq = 1600;
678 break;
679 default:
680 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
681 ddrpll & 0xff);
682 dev_priv->mem_freq = 0;
683 break;
684 }
685
686 dev_priv->ips.r_t = dev_priv->mem_freq;
687
688 switch (csipll & 0x3ff) {
689 case 0x00c:
690 dev_priv->fsb_freq = 3200;
691 break;
692 case 0x00e:
693 dev_priv->fsb_freq = 3733;
694 break;
695 case 0x010:
696 dev_priv->fsb_freq = 4266;
697 break;
698 case 0x012:
699 dev_priv->fsb_freq = 4800;
700 break;
701 case 0x014:
702 dev_priv->fsb_freq = 5333;
703 break;
704 case 0x016:
705 dev_priv->fsb_freq = 5866;
706 break;
707 case 0x018:
708 dev_priv->fsb_freq = 6400;
709 break;
710 default:
711 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
712 csipll & 0x3ff);
713 dev_priv->fsb_freq = 0;
714 break;
715 }
716
717 if (dev_priv->fsb_freq == 3200) {
718 dev_priv->ips.c_m = 0;
719 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
720 dev_priv->ips.c_m = 1;
721 } else {
722 dev_priv->ips.c_m = 2;
723 }
724 }
725
726 static const struct cxsr_latency cxsr_latency_table[] = {
727 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
728 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
729 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
730 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
731 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
732
733 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
734 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
735 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
736 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
737 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
738
739 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
740 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
741 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
742 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
743 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
744
745 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
746 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
747 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
748 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
749 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
750
751 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
752 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
753 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
754 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
755 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
756
757 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
758 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
759 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
760 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
761 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
762 };
763
764 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
765 int is_ddr3,
766 int fsb,
767 int mem)
768 {
769 const struct cxsr_latency *latency;
770 int i;
771
772 if (fsb == 0 || mem == 0)
773 return NULL;
774
775 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
776 latency = &cxsr_latency_table[i];
777 if (is_desktop == latency->is_desktop &&
778 is_ddr3 == latency->is_ddr3 &&
779 fsb == latency->fsb_freq && mem == latency->mem_freq)
780 return latency;
781 }
782
783 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
784
785 return NULL;
786 }
787
788 static void pineview_disable_cxsr(struct drm_device *dev)
789 {
790 struct drm_i915_private *dev_priv = dev->dev_private;
791
792 /* deactivate cxsr */
793 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
794 }
795
796 /*
797 * Latency for FIFO fetches is dependent on several factors:
798 * - memory configuration (speed, channels)
799 * - chipset
800 * - current MCH state
801 * It can be fairly high in some situations, so here we assume a fairly
802 * pessimal value. It's a tradeoff between extra memory fetches (if we
803 * set this value too high, the FIFO will fetch frequently to stay full)
804 * and power consumption (set it too low to save power and we might see
805 * FIFO underruns and display "flicker").
806 *
807 * A value of 5us seems to be a good balance; safe for very low end
808 * platforms but not overly aggressive on lower latency configs.
809 */
810 static const int latency_ns = 5000;
811
812 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
813 {
814 struct drm_i915_private *dev_priv = dev->dev_private;
815 uint32_t dsparb = I915_READ(DSPARB);
816 int size;
817
818 size = dsparb & 0x7f;
819 if (plane)
820 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
821
822 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
823 plane ? "B" : "A", size);
824
825 return size;
826 }
827
828 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
829 {
830 struct drm_i915_private *dev_priv = dev->dev_private;
831 uint32_t dsparb = I915_READ(DSPARB);
832 int size;
833
834 size = dsparb & 0x1ff;
835 if (plane)
836 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
837 size >>= 1; /* Convert to cachelines */
838
839 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
840 plane ? "B" : "A", size);
841
842 return size;
843 }
844
845 static int i845_get_fifo_size(struct drm_device *dev, int plane)
846 {
847 struct drm_i915_private *dev_priv = dev->dev_private;
848 uint32_t dsparb = I915_READ(DSPARB);
849 int size;
850
851 size = dsparb & 0x7f;
852 size >>= 2; /* Convert to cachelines */
853
854 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
855 plane ? "B" : "A",
856 size);
857
858 return size;
859 }
860
861 static int i830_get_fifo_size(struct drm_device *dev, int plane)
862 {
863 struct drm_i915_private *dev_priv = dev->dev_private;
864 uint32_t dsparb = I915_READ(DSPARB);
865 int size;
866
867 size = dsparb & 0x7f;
868 size >>= 1; /* Convert to cachelines */
869
870 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
871 plane ? "B" : "A", size);
872
873 return size;
874 }
875
876 /* Pineview has different values for various configs */
877 static const struct intel_watermark_params pineview_display_wm = {
878 PINEVIEW_DISPLAY_FIFO,
879 PINEVIEW_MAX_WM,
880 PINEVIEW_DFT_WM,
881 PINEVIEW_GUARD_WM,
882 PINEVIEW_FIFO_LINE_SIZE
883 };
884 static const struct intel_watermark_params pineview_display_hplloff_wm = {
885 PINEVIEW_DISPLAY_FIFO,
886 PINEVIEW_MAX_WM,
887 PINEVIEW_DFT_HPLLOFF_WM,
888 PINEVIEW_GUARD_WM,
889 PINEVIEW_FIFO_LINE_SIZE
890 };
891 static const struct intel_watermark_params pineview_cursor_wm = {
892 PINEVIEW_CURSOR_FIFO,
893 PINEVIEW_CURSOR_MAX_WM,
894 PINEVIEW_CURSOR_DFT_WM,
895 PINEVIEW_CURSOR_GUARD_WM,
896 PINEVIEW_FIFO_LINE_SIZE,
897 };
898 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
899 PINEVIEW_CURSOR_FIFO,
900 PINEVIEW_CURSOR_MAX_WM,
901 PINEVIEW_CURSOR_DFT_WM,
902 PINEVIEW_CURSOR_GUARD_WM,
903 PINEVIEW_FIFO_LINE_SIZE
904 };
905 static const struct intel_watermark_params g4x_wm_info = {
906 G4X_FIFO_SIZE,
907 G4X_MAX_WM,
908 G4X_MAX_WM,
909 2,
910 G4X_FIFO_LINE_SIZE,
911 };
912 static const struct intel_watermark_params g4x_cursor_wm_info = {
913 I965_CURSOR_FIFO,
914 I965_CURSOR_MAX_WM,
915 I965_CURSOR_DFT_WM,
916 2,
917 G4X_FIFO_LINE_SIZE,
918 };
919 static const struct intel_watermark_params valleyview_wm_info = {
920 VALLEYVIEW_FIFO_SIZE,
921 VALLEYVIEW_MAX_WM,
922 VALLEYVIEW_MAX_WM,
923 2,
924 G4X_FIFO_LINE_SIZE,
925 };
926 static const struct intel_watermark_params valleyview_cursor_wm_info = {
927 I965_CURSOR_FIFO,
928 VALLEYVIEW_CURSOR_MAX_WM,
929 I965_CURSOR_DFT_WM,
930 2,
931 G4X_FIFO_LINE_SIZE,
932 };
933 static const struct intel_watermark_params i965_cursor_wm_info = {
934 I965_CURSOR_FIFO,
935 I965_CURSOR_MAX_WM,
936 I965_CURSOR_DFT_WM,
937 2,
938 I915_FIFO_LINE_SIZE,
939 };
940 static const struct intel_watermark_params i945_wm_info = {
941 I945_FIFO_SIZE,
942 I915_MAX_WM,
943 1,
944 2,
945 I915_FIFO_LINE_SIZE
946 };
947 static const struct intel_watermark_params i915_wm_info = {
948 I915_FIFO_SIZE,
949 I915_MAX_WM,
950 1,
951 2,
952 I915_FIFO_LINE_SIZE
953 };
954 static const struct intel_watermark_params i855_wm_info = {
955 I855GM_FIFO_SIZE,
956 I915_MAX_WM,
957 1,
958 2,
959 I830_FIFO_LINE_SIZE
960 };
961 static const struct intel_watermark_params i830_wm_info = {
962 I830_FIFO_SIZE,
963 I915_MAX_WM,
964 1,
965 2,
966 I830_FIFO_LINE_SIZE
967 };
968
969 static const struct intel_watermark_params ironlake_display_wm_info = {
970 ILK_DISPLAY_FIFO,
971 ILK_DISPLAY_MAXWM,
972 ILK_DISPLAY_DFTWM,
973 2,
974 ILK_FIFO_LINE_SIZE
975 };
976 static const struct intel_watermark_params ironlake_cursor_wm_info = {
977 ILK_CURSOR_FIFO,
978 ILK_CURSOR_MAXWM,
979 ILK_CURSOR_DFTWM,
980 2,
981 ILK_FIFO_LINE_SIZE
982 };
983 static const struct intel_watermark_params ironlake_display_srwm_info = {
984 ILK_DISPLAY_SR_FIFO,
985 ILK_DISPLAY_MAX_SRWM,
986 ILK_DISPLAY_DFT_SRWM,
987 2,
988 ILK_FIFO_LINE_SIZE
989 };
990 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
991 ILK_CURSOR_SR_FIFO,
992 ILK_CURSOR_MAX_SRWM,
993 ILK_CURSOR_DFT_SRWM,
994 2,
995 ILK_FIFO_LINE_SIZE
996 };
997
998 static const struct intel_watermark_params sandybridge_display_wm_info = {
999 SNB_DISPLAY_FIFO,
1000 SNB_DISPLAY_MAXWM,
1001 SNB_DISPLAY_DFTWM,
1002 2,
1003 SNB_FIFO_LINE_SIZE
1004 };
1005 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
1006 SNB_CURSOR_FIFO,
1007 SNB_CURSOR_MAXWM,
1008 SNB_CURSOR_DFTWM,
1009 2,
1010 SNB_FIFO_LINE_SIZE
1011 };
1012 static const struct intel_watermark_params sandybridge_display_srwm_info = {
1013 SNB_DISPLAY_SR_FIFO,
1014 SNB_DISPLAY_MAX_SRWM,
1015 SNB_DISPLAY_DFT_SRWM,
1016 2,
1017 SNB_FIFO_LINE_SIZE
1018 };
1019 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
1020 SNB_CURSOR_SR_FIFO,
1021 SNB_CURSOR_MAX_SRWM,
1022 SNB_CURSOR_DFT_SRWM,
1023 2,
1024 SNB_FIFO_LINE_SIZE
1025 };
1026
1027
1028 /**
1029 * intel_calculate_wm - calculate watermark level
1030 * @clock_in_khz: pixel clock
1031 * @wm: chip FIFO params
1032 * @pixel_size: display pixel size
1033 * @latency_ns: memory latency for the platform
1034 *
1035 * Calculate the watermark level (the level at which the display plane will
1036 * start fetching from memory again). Each chip has a different display
1037 * FIFO size and allocation, so the caller needs to figure that out and pass
1038 * in the correct intel_watermark_params structure.
1039 *
1040 * As the pixel clock runs, the FIFO will be drained at a rate that depends
1041 * on the pixel size. When it reaches the watermark level, it'll start
1042 * fetching FIFO line sized based chunks from memory until the FIFO fills
1043 * past the watermark point. If the FIFO drains completely, a FIFO underrun
1044 * will occur, and a display engine hang could result.
1045 */
1046 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1047 const struct intel_watermark_params *wm,
1048 int fifo_size,
1049 int pixel_size,
1050 unsigned long latency_ns)
1051 {
1052 long entries_required, wm_size;
1053
1054 /*
1055 * Note: we need to make sure we don't overflow for various clock &
1056 * latency values.
1057 * clocks go from a few thousand to several hundred thousand.
1058 * latency is usually a few thousand
1059 */
1060 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1061 1000;
1062 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1063
1064 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1065
1066 wm_size = fifo_size - (entries_required + wm->guard_size);
1067
1068 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1069
1070 /* Don't promote wm_size to unsigned... */
1071 if (wm_size > (long)wm->max_wm)
1072 wm_size = wm->max_wm;
1073 if (wm_size <= 0)
1074 wm_size = wm->default_wm;
1075 return wm_size;
1076 }
1077
1078 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1079 {
1080 struct drm_crtc *crtc, *enabled = NULL;
1081
1082 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1083 if (intel_crtc_active(crtc)) {
1084 if (enabled)
1085 return NULL;
1086 enabled = crtc;
1087 }
1088 }
1089
1090 return enabled;
1091 }
1092
1093 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1094 {
1095 struct drm_device *dev = unused_crtc->dev;
1096 struct drm_i915_private *dev_priv = dev->dev_private;
1097 struct drm_crtc *crtc;
1098 const struct cxsr_latency *latency;
1099 u32 reg;
1100 unsigned long wm;
1101
1102 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1103 dev_priv->fsb_freq, dev_priv->mem_freq);
1104 if (!latency) {
1105 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1106 pineview_disable_cxsr(dev);
1107 return;
1108 }
1109
1110 crtc = single_enabled_crtc(dev);
1111 if (crtc) {
1112 const struct drm_display_mode *adjusted_mode;
1113 int pixel_size = crtc->fb->bits_per_pixel / 8;
1114 int clock;
1115
1116 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1117 clock = adjusted_mode->crtc_clock;
1118
1119 /* Display SR */
1120 wm = intel_calculate_wm(clock, &pineview_display_wm,
1121 pineview_display_wm.fifo_size,
1122 pixel_size, latency->display_sr);
1123 reg = I915_READ(DSPFW1);
1124 reg &= ~DSPFW_SR_MASK;
1125 reg |= wm << DSPFW_SR_SHIFT;
1126 I915_WRITE(DSPFW1, reg);
1127 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1128
1129 /* cursor SR */
1130 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1131 pineview_display_wm.fifo_size,
1132 pixel_size, latency->cursor_sr);
1133 reg = I915_READ(DSPFW3);
1134 reg &= ~DSPFW_CURSOR_SR_MASK;
1135 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1136 I915_WRITE(DSPFW3, reg);
1137
1138 /* Display HPLL off SR */
1139 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1140 pineview_display_hplloff_wm.fifo_size,
1141 pixel_size, latency->display_hpll_disable);
1142 reg = I915_READ(DSPFW3);
1143 reg &= ~DSPFW_HPLL_SR_MASK;
1144 reg |= wm & DSPFW_HPLL_SR_MASK;
1145 I915_WRITE(DSPFW3, reg);
1146
1147 /* cursor HPLL off SR */
1148 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1149 pineview_display_hplloff_wm.fifo_size,
1150 pixel_size, latency->cursor_hpll_disable);
1151 reg = I915_READ(DSPFW3);
1152 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1153 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1154 I915_WRITE(DSPFW3, reg);
1155 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1156
1157 /* activate cxsr */
1158 I915_WRITE(DSPFW3,
1159 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1160 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1161 } else {
1162 pineview_disable_cxsr(dev);
1163 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1164 }
1165 }
1166
1167 static bool g4x_compute_wm0(struct drm_device *dev,
1168 int plane,
1169 const struct intel_watermark_params *display,
1170 int display_latency_ns,
1171 const struct intel_watermark_params *cursor,
1172 int cursor_latency_ns,
1173 int *plane_wm,
1174 int *cursor_wm)
1175 {
1176 struct drm_crtc *crtc;
1177 const struct drm_display_mode *adjusted_mode;
1178 int htotal, hdisplay, clock, pixel_size;
1179 int line_time_us, line_count;
1180 int entries, tlb_miss;
1181
1182 crtc = intel_get_crtc_for_plane(dev, plane);
1183 if (!intel_crtc_active(crtc)) {
1184 *cursor_wm = cursor->guard_size;
1185 *plane_wm = display->guard_size;
1186 return false;
1187 }
1188
1189 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1190 clock = adjusted_mode->crtc_clock;
1191 htotal = adjusted_mode->htotal;
1192 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1193 pixel_size = crtc->fb->bits_per_pixel / 8;
1194
1195 /* Use the small buffer method to calculate plane watermark */
1196 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1197 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1198 if (tlb_miss > 0)
1199 entries += tlb_miss;
1200 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1201 *plane_wm = entries + display->guard_size;
1202 if (*plane_wm > (int)display->max_wm)
1203 *plane_wm = display->max_wm;
1204
1205 /* Use the large buffer method to calculate cursor watermark */
1206 line_time_us = ((htotal * 1000) / clock);
1207 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1208 entries = line_count * 64 * pixel_size;
1209 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1210 if (tlb_miss > 0)
1211 entries += tlb_miss;
1212 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1213 *cursor_wm = entries + cursor->guard_size;
1214 if (*cursor_wm > (int)cursor->max_wm)
1215 *cursor_wm = (int)cursor->max_wm;
1216
1217 return true;
1218 }
1219
1220 /*
1221 * Check the wm result.
1222 *
1223 * If any calculated watermark values is larger than the maximum value that
1224 * can be programmed into the associated watermark register, that watermark
1225 * must be disabled.
1226 */
1227 static bool g4x_check_srwm(struct drm_device *dev,
1228 int display_wm, int cursor_wm,
1229 const struct intel_watermark_params *display,
1230 const struct intel_watermark_params *cursor)
1231 {
1232 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1233 display_wm, cursor_wm);
1234
1235 if (display_wm > display->max_wm) {
1236 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1237 display_wm, display->max_wm);
1238 return false;
1239 }
1240
1241 if (cursor_wm > cursor->max_wm) {
1242 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1243 cursor_wm, cursor->max_wm);
1244 return false;
1245 }
1246
1247 if (!(display_wm || cursor_wm)) {
1248 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1249 return false;
1250 }
1251
1252 return true;
1253 }
1254
1255 static bool g4x_compute_srwm(struct drm_device *dev,
1256 int plane,
1257 int latency_ns,
1258 const struct intel_watermark_params *display,
1259 const struct intel_watermark_params *cursor,
1260 int *display_wm, int *cursor_wm)
1261 {
1262 struct drm_crtc *crtc;
1263 const struct drm_display_mode *adjusted_mode;
1264 int hdisplay, htotal, pixel_size, clock;
1265 unsigned long line_time_us;
1266 int line_count, line_size;
1267 int small, large;
1268 int entries;
1269
1270 if (!latency_ns) {
1271 *display_wm = *cursor_wm = 0;
1272 return false;
1273 }
1274
1275 crtc = intel_get_crtc_for_plane(dev, plane);
1276 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1277 clock = adjusted_mode->crtc_clock;
1278 htotal = adjusted_mode->htotal;
1279 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1280 pixel_size = crtc->fb->bits_per_pixel / 8;
1281
1282 line_time_us = (htotal * 1000) / clock;
1283 line_count = (latency_ns / line_time_us + 1000) / 1000;
1284 line_size = hdisplay * pixel_size;
1285
1286 /* Use the minimum of the small and large buffer method for primary */
1287 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1288 large = line_count * line_size;
1289
1290 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1291 *display_wm = entries + display->guard_size;
1292
1293 /* calculate the self-refresh watermark for display cursor */
1294 entries = line_count * pixel_size * 64;
1295 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1296 *cursor_wm = entries + cursor->guard_size;
1297
1298 return g4x_check_srwm(dev,
1299 *display_wm, *cursor_wm,
1300 display, cursor);
1301 }
1302
1303 static bool vlv_compute_drain_latency(struct drm_device *dev,
1304 int plane,
1305 int *plane_prec_mult,
1306 int *plane_dl,
1307 int *cursor_prec_mult,
1308 int *cursor_dl)
1309 {
1310 struct drm_crtc *crtc;
1311 int clock, pixel_size;
1312 int entries;
1313
1314 crtc = intel_get_crtc_for_plane(dev, plane);
1315 if (!intel_crtc_active(crtc))
1316 return false;
1317
1318 clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1319 pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
1320
1321 entries = (clock / 1000) * pixel_size;
1322 *plane_prec_mult = (entries > 256) ?
1323 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1324 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1325 pixel_size);
1326
1327 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
1328 *cursor_prec_mult = (entries > 256) ?
1329 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1330 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1331
1332 return true;
1333 }
1334
1335 /*
1336 * Update drain latency registers of memory arbiter
1337 *
1338 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1339 * to be programmed. Each plane has a drain latency multiplier and a drain
1340 * latency value.
1341 */
1342
1343 static void vlv_update_drain_latency(struct drm_device *dev)
1344 {
1345 struct drm_i915_private *dev_priv = dev->dev_private;
1346 int planea_prec, planea_dl, planeb_prec, planeb_dl;
1347 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1348 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1349 either 16 or 32 */
1350
1351 /* For plane A, Cursor A */
1352 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1353 &cursor_prec_mult, &cursora_dl)) {
1354 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1355 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1356 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1357 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1358
1359 I915_WRITE(VLV_DDL1, cursora_prec |
1360 (cursora_dl << DDL_CURSORA_SHIFT) |
1361 planea_prec | planea_dl);
1362 }
1363
1364 /* For plane B, Cursor B */
1365 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1366 &cursor_prec_mult, &cursorb_dl)) {
1367 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1368 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1369 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1370 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1371
1372 I915_WRITE(VLV_DDL2, cursorb_prec |
1373 (cursorb_dl << DDL_CURSORB_SHIFT) |
1374 planeb_prec | planeb_dl);
1375 }
1376 }
1377
1378 #define single_plane_enabled(mask) is_power_of_2(mask)
1379
1380 static void valleyview_update_wm(struct drm_crtc *crtc)
1381 {
1382 struct drm_device *dev = crtc->dev;
1383 static const int sr_latency_ns = 12000;
1384 struct drm_i915_private *dev_priv = dev->dev_private;
1385 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1386 int plane_sr, cursor_sr;
1387 int ignore_plane_sr, ignore_cursor_sr;
1388 unsigned int enabled = 0;
1389
1390 vlv_update_drain_latency(dev);
1391
1392 if (g4x_compute_wm0(dev, PIPE_A,
1393 &valleyview_wm_info, latency_ns,
1394 &valleyview_cursor_wm_info, latency_ns,
1395 &planea_wm, &cursora_wm))
1396 enabled |= 1 << PIPE_A;
1397
1398 if (g4x_compute_wm0(dev, PIPE_B,
1399 &valleyview_wm_info, latency_ns,
1400 &valleyview_cursor_wm_info, latency_ns,
1401 &planeb_wm, &cursorb_wm))
1402 enabled |= 1 << PIPE_B;
1403
1404 if (single_plane_enabled(enabled) &&
1405 g4x_compute_srwm(dev, ffs(enabled) - 1,
1406 sr_latency_ns,
1407 &valleyview_wm_info,
1408 &valleyview_cursor_wm_info,
1409 &plane_sr, &ignore_cursor_sr) &&
1410 g4x_compute_srwm(dev, ffs(enabled) - 1,
1411 2*sr_latency_ns,
1412 &valleyview_wm_info,
1413 &valleyview_cursor_wm_info,
1414 &ignore_plane_sr, &cursor_sr)) {
1415 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1416 } else {
1417 I915_WRITE(FW_BLC_SELF_VLV,
1418 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1419 plane_sr = cursor_sr = 0;
1420 }
1421
1422 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1423 planea_wm, cursora_wm,
1424 planeb_wm, cursorb_wm,
1425 plane_sr, cursor_sr);
1426
1427 I915_WRITE(DSPFW1,
1428 (plane_sr << DSPFW_SR_SHIFT) |
1429 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1430 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1431 planea_wm);
1432 I915_WRITE(DSPFW2,
1433 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1434 (cursora_wm << DSPFW_CURSORA_SHIFT));
1435 I915_WRITE(DSPFW3,
1436 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1437 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1438 }
1439
1440 static void g4x_update_wm(struct drm_crtc *crtc)
1441 {
1442 struct drm_device *dev = crtc->dev;
1443 static const int sr_latency_ns = 12000;
1444 struct drm_i915_private *dev_priv = dev->dev_private;
1445 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1446 int plane_sr, cursor_sr;
1447 unsigned int enabled = 0;
1448
1449 if (g4x_compute_wm0(dev, PIPE_A,
1450 &g4x_wm_info, latency_ns,
1451 &g4x_cursor_wm_info, latency_ns,
1452 &planea_wm, &cursora_wm))
1453 enabled |= 1 << PIPE_A;
1454
1455 if (g4x_compute_wm0(dev, PIPE_B,
1456 &g4x_wm_info, latency_ns,
1457 &g4x_cursor_wm_info, latency_ns,
1458 &planeb_wm, &cursorb_wm))
1459 enabled |= 1 << PIPE_B;
1460
1461 if (single_plane_enabled(enabled) &&
1462 g4x_compute_srwm(dev, ffs(enabled) - 1,
1463 sr_latency_ns,
1464 &g4x_wm_info,
1465 &g4x_cursor_wm_info,
1466 &plane_sr, &cursor_sr)) {
1467 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1468 } else {
1469 I915_WRITE(FW_BLC_SELF,
1470 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1471 plane_sr = cursor_sr = 0;
1472 }
1473
1474 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1475 planea_wm, cursora_wm,
1476 planeb_wm, cursorb_wm,
1477 plane_sr, cursor_sr);
1478
1479 I915_WRITE(DSPFW1,
1480 (plane_sr << DSPFW_SR_SHIFT) |
1481 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1482 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1483 planea_wm);
1484 I915_WRITE(DSPFW2,
1485 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1486 (cursora_wm << DSPFW_CURSORA_SHIFT));
1487 /* HPLL off in SR has some issues on G4x... disable it */
1488 I915_WRITE(DSPFW3,
1489 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1490 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1491 }
1492
1493 static void i965_update_wm(struct drm_crtc *unused_crtc)
1494 {
1495 struct drm_device *dev = unused_crtc->dev;
1496 struct drm_i915_private *dev_priv = dev->dev_private;
1497 struct drm_crtc *crtc;
1498 int srwm = 1;
1499 int cursor_sr = 16;
1500
1501 /* Calc sr entries for one plane configs */
1502 crtc = single_enabled_crtc(dev);
1503 if (crtc) {
1504 /* self-refresh has much higher latency */
1505 static const int sr_latency_ns = 12000;
1506 const struct drm_display_mode *adjusted_mode =
1507 &to_intel_crtc(crtc)->config.adjusted_mode;
1508 int clock = adjusted_mode->crtc_clock;
1509 int htotal = adjusted_mode->htotal;
1510 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1511 int pixel_size = crtc->fb->bits_per_pixel / 8;
1512 unsigned long line_time_us;
1513 int entries;
1514
1515 line_time_us = ((htotal * 1000) / clock);
1516
1517 /* Use ns/us then divide to preserve precision */
1518 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1519 pixel_size * hdisplay;
1520 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1521 srwm = I965_FIFO_SIZE - entries;
1522 if (srwm < 0)
1523 srwm = 1;
1524 srwm &= 0x1ff;
1525 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1526 entries, srwm);
1527
1528 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1529 pixel_size * 64;
1530 entries = DIV_ROUND_UP(entries,
1531 i965_cursor_wm_info.cacheline_size);
1532 cursor_sr = i965_cursor_wm_info.fifo_size -
1533 (entries + i965_cursor_wm_info.guard_size);
1534
1535 if (cursor_sr > i965_cursor_wm_info.max_wm)
1536 cursor_sr = i965_cursor_wm_info.max_wm;
1537
1538 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1539 "cursor %d\n", srwm, cursor_sr);
1540
1541 if (IS_CRESTLINE(dev))
1542 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1543 } else {
1544 /* Turn off self refresh if both pipes are enabled */
1545 if (IS_CRESTLINE(dev))
1546 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1547 & ~FW_BLC_SELF_EN);
1548 }
1549
1550 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1551 srwm);
1552
1553 /* 965 has limitations... */
1554 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1555 (8 << 16) | (8 << 8) | (8 << 0));
1556 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1557 /* update cursor SR watermark */
1558 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1559 }
1560
1561 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1562 {
1563 struct drm_device *dev = unused_crtc->dev;
1564 struct drm_i915_private *dev_priv = dev->dev_private;
1565 const struct intel_watermark_params *wm_info;
1566 uint32_t fwater_lo;
1567 uint32_t fwater_hi;
1568 int cwm, srwm = 1;
1569 int fifo_size;
1570 int planea_wm, planeb_wm;
1571 struct drm_crtc *crtc, *enabled = NULL;
1572
1573 if (IS_I945GM(dev))
1574 wm_info = &i945_wm_info;
1575 else if (!IS_GEN2(dev))
1576 wm_info = &i915_wm_info;
1577 else
1578 wm_info = &i855_wm_info;
1579
1580 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1581 crtc = intel_get_crtc_for_plane(dev, 0);
1582 if (intel_crtc_active(crtc)) {
1583 const struct drm_display_mode *adjusted_mode;
1584 int cpp = crtc->fb->bits_per_pixel / 8;
1585 if (IS_GEN2(dev))
1586 cpp = 4;
1587
1588 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1589 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1590 wm_info, fifo_size, cpp,
1591 latency_ns);
1592 enabled = crtc;
1593 } else
1594 planea_wm = fifo_size - wm_info->guard_size;
1595
1596 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1597 crtc = intel_get_crtc_for_plane(dev, 1);
1598 if (intel_crtc_active(crtc)) {
1599 const struct drm_display_mode *adjusted_mode;
1600 int cpp = crtc->fb->bits_per_pixel / 8;
1601 if (IS_GEN2(dev))
1602 cpp = 4;
1603
1604 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1605 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1606 wm_info, fifo_size, cpp,
1607 latency_ns);
1608 if (enabled == NULL)
1609 enabled = crtc;
1610 else
1611 enabled = NULL;
1612 } else
1613 planeb_wm = fifo_size - wm_info->guard_size;
1614
1615 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1616
1617 /*
1618 * Overlay gets an aggressive default since video jitter is bad.
1619 */
1620 cwm = 2;
1621
1622 /* Play safe and disable self-refresh before adjusting watermarks. */
1623 if (IS_I945G(dev) || IS_I945GM(dev))
1624 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1625 else if (IS_I915GM(dev))
1626 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1627
1628 /* Calc sr entries for one plane configs */
1629 if (HAS_FW_BLC(dev) && enabled) {
1630 /* self-refresh has much higher latency */
1631 static const int sr_latency_ns = 6000;
1632 const struct drm_display_mode *adjusted_mode =
1633 &to_intel_crtc(enabled)->config.adjusted_mode;
1634 int clock = adjusted_mode->crtc_clock;
1635 int htotal = adjusted_mode->htotal;
1636 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1637 int pixel_size = enabled->fb->bits_per_pixel / 8;
1638 unsigned long line_time_us;
1639 int entries;
1640
1641 line_time_us = (htotal * 1000) / clock;
1642
1643 /* Use ns/us then divide to preserve precision */
1644 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1645 pixel_size * hdisplay;
1646 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1647 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1648 srwm = wm_info->fifo_size - entries;
1649 if (srwm < 0)
1650 srwm = 1;
1651
1652 if (IS_I945G(dev) || IS_I945GM(dev))
1653 I915_WRITE(FW_BLC_SELF,
1654 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1655 else if (IS_I915GM(dev))
1656 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1657 }
1658
1659 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1660 planea_wm, planeb_wm, cwm, srwm);
1661
1662 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1663 fwater_hi = (cwm & 0x1f);
1664
1665 /* Set request length to 8 cachelines per fetch */
1666 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1667 fwater_hi = fwater_hi | (1 << 8);
1668
1669 I915_WRITE(FW_BLC, fwater_lo);
1670 I915_WRITE(FW_BLC2, fwater_hi);
1671
1672 if (HAS_FW_BLC(dev)) {
1673 if (enabled) {
1674 if (IS_I945G(dev) || IS_I945GM(dev))
1675 I915_WRITE(FW_BLC_SELF,
1676 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1677 else if (IS_I915GM(dev))
1678 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1679 DRM_DEBUG_KMS("memory self refresh enabled\n");
1680 } else
1681 DRM_DEBUG_KMS("memory self refresh disabled\n");
1682 }
1683 }
1684
1685 static void i830_update_wm(struct drm_crtc *unused_crtc)
1686 {
1687 struct drm_device *dev = unused_crtc->dev;
1688 struct drm_i915_private *dev_priv = dev->dev_private;
1689 struct drm_crtc *crtc;
1690 const struct drm_display_mode *adjusted_mode;
1691 uint32_t fwater_lo;
1692 int planea_wm;
1693
1694 crtc = single_enabled_crtc(dev);
1695 if (crtc == NULL)
1696 return;
1697
1698 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1699 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1700 &i830_wm_info,
1701 dev_priv->display.get_fifo_size(dev, 0),
1702 4, latency_ns);
1703 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1704 fwater_lo |= (3<<8) | planea_wm;
1705
1706 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1707
1708 I915_WRITE(FW_BLC, fwater_lo);
1709 }
1710
1711 /*
1712 * Check the wm result.
1713 *
1714 * If any calculated watermark values is larger than the maximum value that
1715 * can be programmed into the associated watermark register, that watermark
1716 * must be disabled.
1717 */
1718 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1719 int fbc_wm, int display_wm, int cursor_wm,
1720 const struct intel_watermark_params *display,
1721 const struct intel_watermark_params *cursor)
1722 {
1723 struct drm_i915_private *dev_priv = dev->dev_private;
1724
1725 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1726 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1727
1728 if (fbc_wm > SNB_FBC_MAX_SRWM) {
1729 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1730 fbc_wm, SNB_FBC_MAX_SRWM, level);
1731
1732 /* fbc has it's own way to disable FBC WM */
1733 I915_WRITE(DISP_ARB_CTL,
1734 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1735 return false;
1736 } else if (INTEL_INFO(dev)->gen >= 6) {
1737 /* enable FBC WM (except on ILK, where it must remain off) */
1738 I915_WRITE(DISP_ARB_CTL,
1739 I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
1740 }
1741
1742 if (display_wm > display->max_wm) {
1743 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1744 display_wm, SNB_DISPLAY_MAX_SRWM, level);
1745 return false;
1746 }
1747
1748 if (cursor_wm > cursor->max_wm) {
1749 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1750 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1751 return false;
1752 }
1753
1754 if (!(fbc_wm || display_wm || cursor_wm)) {
1755 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1756 return false;
1757 }
1758
1759 return true;
1760 }
1761
1762 /*
1763 * Compute watermark values of WM[1-3],
1764 */
1765 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1766 int latency_ns,
1767 const struct intel_watermark_params *display,
1768 const struct intel_watermark_params *cursor,
1769 int *fbc_wm, int *display_wm, int *cursor_wm)
1770 {
1771 struct drm_crtc *crtc;
1772 const struct drm_display_mode *adjusted_mode;
1773 unsigned long line_time_us;
1774 int hdisplay, htotal, pixel_size, clock;
1775 int line_count, line_size;
1776 int small, large;
1777 int entries;
1778
1779 if (!latency_ns) {
1780 *fbc_wm = *display_wm = *cursor_wm = 0;
1781 return false;
1782 }
1783
1784 crtc = intel_get_crtc_for_plane(dev, plane);
1785 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1786 clock = adjusted_mode->crtc_clock;
1787 htotal = adjusted_mode->htotal;
1788 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1789 pixel_size = crtc->fb->bits_per_pixel / 8;
1790
1791 line_time_us = (htotal * 1000) / clock;
1792 line_count = (latency_ns / line_time_us + 1000) / 1000;
1793 line_size = hdisplay * pixel_size;
1794
1795 /* Use the minimum of the small and large buffer method for primary */
1796 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1797 large = line_count * line_size;
1798
1799 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1800 *display_wm = entries + display->guard_size;
1801
1802 /*
1803 * Spec says:
1804 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1805 */
1806 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1807
1808 /* calculate the self-refresh watermark for display cursor */
1809 entries = line_count * pixel_size * 64;
1810 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1811 *cursor_wm = entries + cursor->guard_size;
1812
1813 return ironlake_check_srwm(dev, level,
1814 *fbc_wm, *display_wm, *cursor_wm,
1815 display, cursor);
1816 }
1817
1818 static void ironlake_update_wm(struct drm_crtc *crtc)
1819 {
1820 struct drm_device *dev = crtc->dev;
1821 struct drm_i915_private *dev_priv = dev->dev_private;
1822 int fbc_wm, plane_wm, cursor_wm;
1823 unsigned int enabled;
1824
1825 enabled = 0;
1826 if (g4x_compute_wm0(dev, PIPE_A,
1827 &ironlake_display_wm_info,
1828 dev_priv->wm.pri_latency[0] * 100,
1829 &ironlake_cursor_wm_info,
1830 dev_priv->wm.cur_latency[0] * 100,
1831 &plane_wm, &cursor_wm)) {
1832 I915_WRITE(WM0_PIPEA_ILK,
1833 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1834 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1835 " plane %d, " "cursor: %d\n",
1836 plane_wm, cursor_wm);
1837 enabled |= 1 << PIPE_A;
1838 }
1839
1840 if (g4x_compute_wm0(dev, PIPE_B,
1841 &ironlake_display_wm_info,
1842 dev_priv->wm.pri_latency[0] * 100,
1843 &ironlake_cursor_wm_info,
1844 dev_priv->wm.cur_latency[0] * 100,
1845 &plane_wm, &cursor_wm)) {
1846 I915_WRITE(WM0_PIPEB_ILK,
1847 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1848 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1849 " plane %d, cursor: %d\n",
1850 plane_wm, cursor_wm);
1851 enabled |= 1 << PIPE_B;
1852 }
1853
1854 /*
1855 * Calculate and update the self-refresh watermark only when one
1856 * display plane is used.
1857 */
1858 I915_WRITE(WM3_LP_ILK, 0);
1859 I915_WRITE(WM2_LP_ILK, 0);
1860 I915_WRITE(WM1_LP_ILK, 0);
1861
1862 if (!single_plane_enabled(enabled))
1863 return;
1864 enabled = ffs(enabled) - 1;
1865
1866 /* WM1 */
1867 if (!ironlake_compute_srwm(dev, 1, enabled,
1868 dev_priv->wm.pri_latency[1] * 500,
1869 &ironlake_display_srwm_info,
1870 &ironlake_cursor_srwm_info,
1871 &fbc_wm, &plane_wm, &cursor_wm))
1872 return;
1873
1874 I915_WRITE(WM1_LP_ILK,
1875 WM1_LP_SR_EN |
1876 (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1877 (fbc_wm << WM1_LP_FBC_SHIFT) |
1878 (plane_wm << WM1_LP_SR_SHIFT) |
1879 cursor_wm);
1880
1881 /* WM2 */
1882 if (!ironlake_compute_srwm(dev, 2, enabled,
1883 dev_priv->wm.pri_latency[2] * 500,
1884 &ironlake_display_srwm_info,
1885 &ironlake_cursor_srwm_info,
1886 &fbc_wm, &plane_wm, &cursor_wm))
1887 return;
1888
1889 I915_WRITE(WM2_LP_ILK,
1890 WM2_LP_EN |
1891 (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1892 (fbc_wm << WM1_LP_FBC_SHIFT) |
1893 (plane_wm << WM1_LP_SR_SHIFT) |
1894 cursor_wm);
1895
1896 /*
1897 * WM3 is unsupported on ILK, probably because we don't have latency
1898 * data for that power state
1899 */
1900 }
1901
1902 static void sandybridge_update_wm(struct drm_crtc *crtc)
1903 {
1904 struct drm_device *dev = crtc->dev;
1905 struct drm_i915_private *dev_priv = dev->dev_private;
1906 int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
1907 u32 val;
1908 int fbc_wm, plane_wm, cursor_wm;
1909 unsigned int enabled;
1910
1911 enabled = 0;
1912 if (g4x_compute_wm0(dev, PIPE_A,
1913 &sandybridge_display_wm_info, latency,
1914 &sandybridge_cursor_wm_info, latency,
1915 &plane_wm, &cursor_wm)) {
1916 val = I915_READ(WM0_PIPEA_ILK);
1917 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1918 I915_WRITE(WM0_PIPEA_ILK, val |
1919 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1920 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1921 " plane %d, " "cursor: %d\n",
1922 plane_wm, cursor_wm);
1923 enabled |= 1 << PIPE_A;
1924 }
1925
1926 if (g4x_compute_wm0(dev, PIPE_B,
1927 &sandybridge_display_wm_info, latency,
1928 &sandybridge_cursor_wm_info, latency,
1929 &plane_wm, &cursor_wm)) {
1930 val = I915_READ(WM0_PIPEB_ILK);
1931 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1932 I915_WRITE(WM0_PIPEB_ILK, val |
1933 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1934 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1935 " plane %d, cursor: %d\n",
1936 plane_wm, cursor_wm);
1937 enabled |= 1 << PIPE_B;
1938 }
1939
1940 /*
1941 * Calculate and update the self-refresh watermark only when one
1942 * display plane is used.
1943 *
1944 * SNB support 3 levels of watermark.
1945 *
1946 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1947 * and disabled in the descending order
1948 *
1949 */
1950 I915_WRITE(WM3_LP_ILK, 0);
1951 I915_WRITE(WM2_LP_ILK, 0);
1952 I915_WRITE(WM1_LP_ILK, 0);
1953
1954 if (!single_plane_enabled(enabled) ||
1955 dev_priv->sprite_scaling_enabled)
1956 return;
1957 enabled = ffs(enabled) - 1;
1958
1959 /* WM1 */
1960 if (!ironlake_compute_srwm(dev, 1, enabled,
1961 dev_priv->wm.pri_latency[1] * 500,
1962 &sandybridge_display_srwm_info,
1963 &sandybridge_cursor_srwm_info,
1964 &fbc_wm, &plane_wm, &cursor_wm))
1965 return;
1966
1967 I915_WRITE(WM1_LP_ILK,
1968 WM1_LP_SR_EN |
1969 (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1970 (fbc_wm << WM1_LP_FBC_SHIFT) |
1971 (plane_wm << WM1_LP_SR_SHIFT) |
1972 cursor_wm);
1973
1974 /* WM2 */
1975 if (!ironlake_compute_srwm(dev, 2, enabled,
1976 dev_priv->wm.pri_latency[2] * 500,
1977 &sandybridge_display_srwm_info,
1978 &sandybridge_cursor_srwm_info,
1979 &fbc_wm, &plane_wm, &cursor_wm))
1980 return;
1981
1982 I915_WRITE(WM2_LP_ILK,
1983 WM2_LP_EN |
1984 (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1985 (fbc_wm << WM1_LP_FBC_SHIFT) |
1986 (plane_wm << WM1_LP_SR_SHIFT) |
1987 cursor_wm);
1988
1989 /* WM3 */
1990 if (!ironlake_compute_srwm(dev, 3, enabled,
1991 dev_priv->wm.pri_latency[3] * 500,
1992 &sandybridge_display_srwm_info,
1993 &sandybridge_cursor_srwm_info,
1994 &fbc_wm, &plane_wm, &cursor_wm))
1995 return;
1996
1997 I915_WRITE(WM3_LP_ILK,
1998 WM3_LP_EN |
1999 (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
2000 (fbc_wm << WM1_LP_FBC_SHIFT) |
2001 (plane_wm << WM1_LP_SR_SHIFT) |
2002 cursor_wm);
2003 }
2004
2005 static void ivybridge_update_wm(struct drm_crtc *crtc)
2006 {
2007 struct drm_device *dev = crtc->dev;
2008 struct drm_i915_private *dev_priv = dev->dev_private;
2009 int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
2010 u32 val;
2011 int fbc_wm, plane_wm, cursor_wm;
2012 int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
2013 unsigned int enabled;
2014
2015 enabled = 0;
2016 if (g4x_compute_wm0(dev, PIPE_A,
2017 &sandybridge_display_wm_info, latency,
2018 &sandybridge_cursor_wm_info, latency,
2019 &plane_wm, &cursor_wm)) {
2020 val = I915_READ(WM0_PIPEA_ILK);
2021 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2022 I915_WRITE(WM0_PIPEA_ILK, val |
2023 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2024 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
2025 " plane %d, " "cursor: %d\n",
2026 plane_wm, cursor_wm);
2027 enabled |= 1 << PIPE_A;
2028 }
2029
2030 if (g4x_compute_wm0(dev, PIPE_B,
2031 &sandybridge_display_wm_info, latency,
2032 &sandybridge_cursor_wm_info, latency,
2033 &plane_wm, &cursor_wm)) {
2034 val = I915_READ(WM0_PIPEB_ILK);
2035 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2036 I915_WRITE(WM0_PIPEB_ILK, val |
2037 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2038 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
2039 " plane %d, cursor: %d\n",
2040 plane_wm, cursor_wm);
2041 enabled |= 1 << PIPE_B;
2042 }
2043
2044 if (g4x_compute_wm0(dev, PIPE_C,
2045 &sandybridge_display_wm_info, latency,
2046 &sandybridge_cursor_wm_info, latency,
2047 &plane_wm, &cursor_wm)) {
2048 val = I915_READ(WM0_PIPEC_IVB);
2049 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2050 I915_WRITE(WM0_PIPEC_IVB, val |
2051 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2052 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
2053 " plane %d, cursor: %d\n",
2054 plane_wm, cursor_wm);
2055 enabled |= 1 << PIPE_C;
2056 }
2057
2058 /*
2059 * Calculate and update the self-refresh watermark only when one
2060 * display plane is used.
2061 *
2062 * SNB support 3 levels of watermark.
2063 *
2064 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
2065 * and disabled in the descending order
2066 *
2067 */
2068 I915_WRITE(WM3_LP_ILK, 0);
2069 I915_WRITE(WM2_LP_ILK, 0);
2070 I915_WRITE(WM1_LP_ILK, 0);
2071
2072 if (!single_plane_enabled(enabled) ||
2073 dev_priv->sprite_scaling_enabled)
2074 return;
2075 enabled = ffs(enabled) - 1;
2076
2077 /* WM1 */
2078 if (!ironlake_compute_srwm(dev, 1, enabled,
2079 dev_priv->wm.pri_latency[1] * 500,
2080 &sandybridge_display_srwm_info,
2081 &sandybridge_cursor_srwm_info,
2082 &fbc_wm, &plane_wm, &cursor_wm))
2083 return;
2084
2085 I915_WRITE(WM1_LP_ILK,
2086 WM1_LP_SR_EN |
2087 (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
2088 (fbc_wm << WM1_LP_FBC_SHIFT) |
2089 (plane_wm << WM1_LP_SR_SHIFT) |
2090 cursor_wm);
2091
2092 /* WM2 */
2093 if (!ironlake_compute_srwm(dev, 2, enabled,
2094 dev_priv->wm.pri_latency[2] * 500,
2095 &sandybridge_display_srwm_info,
2096 &sandybridge_cursor_srwm_info,
2097 &fbc_wm, &plane_wm, &cursor_wm))
2098 return;
2099
2100 I915_WRITE(WM2_LP_ILK,
2101 WM2_LP_EN |
2102 (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
2103 (fbc_wm << WM1_LP_FBC_SHIFT) |
2104 (plane_wm << WM1_LP_SR_SHIFT) |
2105 cursor_wm);
2106
2107 /* WM3, note we have to correct the cursor latency */
2108 if (!ironlake_compute_srwm(dev, 3, enabled,
2109 dev_priv->wm.pri_latency[3] * 500,
2110 &sandybridge_display_srwm_info,
2111 &sandybridge_cursor_srwm_info,
2112 &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2113 !ironlake_compute_srwm(dev, 3, enabled,
2114 dev_priv->wm.cur_latency[3] * 500,
2115 &sandybridge_display_srwm_info,
2116 &sandybridge_cursor_srwm_info,
2117 &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2118 return;
2119
2120 I915_WRITE(WM3_LP_ILK,
2121 WM3_LP_EN |
2122 (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
2123 (fbc_wm << WM1_LP_FBC_SHIFT) |
2124 (plane_wm << WM1_LP_SR_SHIFT) |
2125 cursor_wm);
2126 }
2127
2128 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
2129 struct drm_crtc *crtc)
2130 {
2131 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2132 uint32_t pixel_rate;
2133
2134 pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
2135
2136 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
2137 * adjust the pixel_rate here. */
2138
2139 if (intel_crtc->config.pch_pfit.enabled) {
2140 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
2141 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
2142
2143 pipe_w = intel_crtc->config.pipe_src_w;
2144 pipe_h = intel_crtc->config.pipe_src_h;
2145 pfit_w = (pfit_size >> 16) & 0xFFFF;
2146 pfit_h = pfit_size & 0xFFFF;
2147 if (pipe_w < pfit_w)
2148 pipe_w = pfit_w;
2149 if (pipe_h < pfit_h)
2150 pipe_h = pfit_h;
2151
2152 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
2153 pfit_w * pfit_h);
2154 }
2155
2156 return pixel_rate;
2157 }
2158
2159 /* latency must be in 0.1us units. */
2160 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2161 uint32_t latency)
2162 {
2163 uint64_t ret;
2164
2165 if (WARN(latency == 0, "Latency value missing\n"))
2166 return UINT_MAX;
2167
2168 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
2169 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
2170
2171 return ret;
2172 }
2173
2174 /* latency must be in 0.1us units. */
2175 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2176 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2177 uint32_t latency)
2178 {
2179 uint32_t ret;
2180
2181 if (WARN(latency == 0, "Latency value missing\n"))
2182 return UINT_MAX;
2183
2184 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
2185 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
2186 ret = DIV_ROUND_UP(ret, 64) + 2;
2187 return ret;
2188 }
2189
2190 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2191 uint8_t bytes_per_pixel)
2192 {
2193 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
2194 }
2195
2196 struct hsw_pipe_wm_parameters {
2197 bool active;
2198 uint32_t pipe_htotal;
2199 uint32_t pixel_rate;
2200 struct intel_plane_wm_parameters pri;
2201 struct intel_plane_wm_parameters spr;
2202 struct intel_plane_wm_parameters cur;
2203 };
2204
2205 struct hsw_wm_maximums {
2206 uint16_t pri;
2207 uint16_t spr;
2208 uint16_t cur;
2209 uint16_t fbc;
2210 };
2211
2212 /* used in computing the new watermarks state */
2213 struct intel_wm_config {
2214 unsigned int num_pipes_active;
2215 bool sprites_enabled;
2216 bool sprites_scaled;
2217 };
2218
2219 /*
2220 * For both WM_PIPE and WM_LP.
2221 * mem_value must be in 0.1us units.
2222 */
2223 static uint32_t ilk_compute_pri_wm(const struct hsw_pipe_wm_parameters *params,
2224 uint32_t mem_value,
2225 bool is_lp)
2226 {
2227 uint32_t method1, method2;
2228
2229 if (!params->active || !params->pri.enabled)
2230 return 0;
2231
2232 method1 = ilk_wm_method1(params->pixel_rate,
2233 params->pri.bytes_per_pixel,
2234 mem_value);
2235
2236 if (!is_lp)
2237 return method1;
2238
2239 method2 = ilk_wm_method2(params->pixel_rate,
2240 params->pipe_htotal,
2241 params->pri.horiz_pixels,
2242 params->pri.bytes_per_pixel,
2243 mem_value);
2244
2245 return min(method1, method2);
2246 }
2247
2248 /*
2249 * For both WM_PIPE and WM_LP.
2250 * mem_value must be in 0.1us units.
2251 */
2252 static uint32_t ilk_compute_spr_wm(const struct hsw_pipe_wm_parameters *params,
2253 uint32_t mem_value)
2254 {
2255 uint32_t method1, method2;
2256
2257 if (!params->active || !params->spr.enabled)
2258 return 0;
2259
2260 method1 = ilk_wm_method1(params->pixel_rate,
2261 params->spr.bytes_per_pixel,
2262 mem_value);
2263 method2 = ilk_wm_method2(params->pixel_rate,
2264 params->pipe_htotal,
2265 params->spr.horiz_pixels,
2266 params->spr.bytes_per_pixel,
2267 mem_value);
2268 return min(method1, method2);
2269 }
2270
2271 /*
2272 * For both WM_PIPE and WM_LP.
2273 * mem_value must be in 0.1us units.
2274 */
2275 static uint32_t ilk_compute_cur_wm(const struct hsw_pipe_wm_parameters *params,
2276 uint32_t mem_value)
2277 {
2278 if (!params->active || !params->cur.enabled)
2279 return 0;
2280
2281 return ilk_wm_method2(params->pixel_rate,
2282 params->pipe_htotal,
2283 params->cur.horiz_pixels,
2284 params->cur.bytes_per_pixel,
2285 mem_value);
2286 }
2287
2288 /* Only for WM_LP. */
2289 static uint32_t ilk_compute_fbc_wm(const struct hsw_pipe_wm_parameters *params,
2290 uint32_t pri_val)
2291 {
2292 if (!params->active || !params->pri.enabled)
2293 return 0;
2294
2295 return ilk_wm_fbc(pri_val,
2296 params->pri.horiz_pixels,
2297 params->pri.bytes_per_pixel);
2298 }
2299
2300 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
2301 {
2302 if (INTEL_INFO(dev)->gen >= 8)
2303 return 3072;
2304 else if (INTEL_INFO(dev)->gen >= 7)
2305 return 768;
2306 else
2307 return 512;
2308 }
2309
2310 /* Calculate the maximum primary/sprite plane watermark */
2311 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2312 int level,
2313 const struct intel_wm_config *config,
2314 enum intel_ddb_partitioning ddb_partitioning,
2315 bool is_sprite)
2316 {
2317 unsigned int fifo_size = ilk_display_fifo_size(dev);
2318 unsigned int max;
2319
2320 /* if sprites aren't enabled, sprites get nothing */
2321 if (is_sprite && !config->sprites_enabled)
2322 return 0;
2323
2324 /* HSW allows LP1+ watermarks even with multiple pipes */
2325 if (level == 0 || config->num_pipes_active > 1) {
2326 fifo_size /= INTEL_INFO(dev)->num_pipes;
2327
2328 /*
2329 * For some reason the non self refresh
2330 * FIFO size is only half of the self
2331 * refresh FIFO size on ILK/SNB.
2332 */
2333 if (INTEL_INFO(dev)->gen <= 6)
2334 fifo_size /= 2;
2335 }
2336
2337 if (config->sprites_enabled) {
2338 /* level 0 is always calculated with 1:1 split */
2339 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2340 if (is_sprite)
2341 fifo_size *= 5;
2342 fifo_size /= 6;
2343 } else {
2344 fifo_size /= 2;
2345 }
2346 }
2347
2348 /* clamp to max that the registers can hold */
2349 if (INTEL_INFO(dev)->gen >= 8)
2350 max = level == 0 ? 255 : 2047;
2351 else if (INTEL_INFO(dev)->gen >= 7)
2352 /* IVB/HSW primary/sprite plane watermarks */
2353 max = level == 0 ? 127 : 1023;
2354 else if (!is_sprite)
2355 /* ILK/SNB primary plane watermarks */
2356 max = level == 0 ? 127 : 511;
2357 else
2358 /* ILK/SNB sprite plane watermarks */
2359 max = level == 0 ? 63 : 255;
2360
2361 return min(fifo_size, max);
2362 }
2363
2364 /* Calculate the maximum cursor plane watermark */
2365 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2366 int level,
2367 const struct intel_wm_config *config)
2368 {
2369 /* HSW LP1+ watermarks w/ multiple pipes */
2370 if (level > 0 && config->num_pipes_active > 1)
2371 return 64;
2372
2373 /* otherwise just report max that registers can hold */
2374 if (INTEL_INFO(dev)->gen >= 7)
2375 return level == 0 ? 63 : 255;
2376 else
2377 return level == 0 ? 31 : 63;
2378 }
2379
2380 /* Calculate the maximum FBC watermark */
2381 static unsigned int ilk_fbc_wm_max(struct drm_device *dev)
2382 {
2383 /* max that registers can hold */
2384 if (INTEL_INFO(dev)->gen >= 8)
2385 return 31;
2386 else
2387 return 15;
2388 }
2389
2390 static void ilk_compute_wm_maximums(struct drm_device *dev,
2391 int level,
2392 const struct intel_wm_config *config,
2393 enum intel_ddb_partitioning ddb_partitioning,
2394 struct hsw_wm_maximums *max)
2395 {
2396 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2397 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2398 max->cur = ilk_cursor_wm_max(dev, level, config);
2399 max->fbc = ilk_fbc_wm_max(dev);
2400 }
2401
2402 static bool ilk_validate_wm_level(int level,
2403 const struct hsw_wm_maximums *max,
2404 struct intel_wm_level *result)
2405 {
2406 bool ret;
2407
2408 /* already determined to be invalid? */
2409 if (!result->enable)
2410 return false;
2411
2412 result->enable = result->pri_val <= max->pri &&
2413 result->spr_val <= max->spr &&
2414 result->cur_val <= max->cur;
2415
2416 ret = result->enable;
2417
2418 /*
2419 * HACK until we can pre-compute everything,
2420 * and thus fail gracefully if LP0 watermarks
2421 * are exceeded...
2422 */
2423 if (level == 0 && !result->enable) {
2424 if (result->pri_val > max->pri)
2425 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2426 level, result->pri_val, max->pri);
2427 if (result->spr_val > max->spr)
2428 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2429 level, result->spr_val, max->spr);
2430 if (result->cur_val > max->cur)
2431 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2432 level, result->cur_val, max->cur);
2433
2434 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2435 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2436 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2437 result->enable = true;
2438 }
2439
2440 return ret;
2441 }
2442
2443 static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
2444 int level,
2445 const struct hsw_pipe_wm_parameters *p,
2446 struct intel_wm_level *result)
2447 {
2448 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2449 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2450 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2451
2452 /* WM1+ latency values stored in 0.5us units */
2453 if (level > 0) {
2454 pri_latency *= 5;
2455 spr_latency *= 5;
2456 cur_latency *= 5;
2457 }
2458
2459 result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2460 result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2461 result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2462 result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2463 result->enable = true;
2464 }
2465
2466 static uint32_t
2467 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2468 {
2469 struct drm_i915_private *dev_priv = dev->dev_private;
2470 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2471 struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2472 u32 linetime, ips_linetime;
2473
2474 if (!intel_crtc_active(crtc))
2475 return 0;
2476
2477 /* The WM are computed with base on how long it takes to fill a single
2478 * row at the given clock rate, multiplied by 8.
2479 * */
2480 linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
2481 ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
2482 intel_ddi_get_cdclk_freq(dev_priv));
2483
2484 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2485 PIPE_WM_LINETIME_TIME(linetime);
2486 }
2487
2488 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2489 {
2490 struct drm_i915_private *dev_priv = dev->dev_private;
2491
2492 if (IS_HASWELL(dev)) {
2493 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2494
2495 wm[0] = (sskpd >> 56) & 0xFF;
2496 if (wm[0] == 0)
2497 wm[0] = sskpd & 0xF;
2498 wm[1] = (sskpd >> 4) & 0xFF;
2499 wm[2] = (sskpd >> 12) & 0xFF;
2500 wm[3] = (sskpd >> 20) & 0x1FF;
2501 wm[4] = (sskpd >> 32) & 0x1FF;
2502 } else if (INTEL_INFO(dev)->gen >= 6) {
2503 uint32_t sskpd = I915_READ(MCH_SSKPD);
2504
2505 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2506 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2507 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2508 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2509 } else if (INTEL_INFO(dev)->gen >= 5) {
2510 uint32_t mltr = I915_READ(MLTR_ILK);
2511
2512 /* ILK primary LP0 latency is 700 ns */
2513 wm[0] = 7;
2514 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2515 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2516 }
2517 }
2518
2519 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2520 {
2521 /* ILK sprite LP0 latency is 1300 ns */
2522 if (INTEL_INFO(dev)->gen == 5)
2523 wm[0] = 13;
2524 }
2525
2526 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2527 {
2528 /* ILK cursor LP0 latency is 1300 ns */
2529 if (INTEL_INFO(dev)->gen == 5)
2530 wm[0] = 13;
2531
2532 /* WaDoubleCursorLP3Latency:ivb */
2533 if (IS_IVYBRIDGE(dev))
2534 wm[3] *= 2;
2535 }
2536
2537 static int ilk_wm_max_level(const struct drm_device *dev)
2538 {
2539 /* how many WM levels are we expecting */
2540 if (IS_HASWELL(dev))
2541 return 4;
2542 else if (INTEL_INFO(dev)->gen >= 6)
2543 return 3;
2544 else
2545 return 2;
2546 }
2547
2548 static void intel_print_wm_latency(struct drm_device *dev,
2549 const char *name,
2550 const uint16_t wm[5])
2551 {
2552 int level, max_level = ilk_wm_max_level(dev);
2553
2554 for (level = 0; level <= max_level; level++) {
2555 unsigned int latency = wm[level];
2556
2557 if (latency == 0) {
2558 DRM_ERROR("%s WM%d latency not provided\n",
2559 name, level);
2560 continue;
2561 }
2562
2563 /* WM1+ latency values in 0.5us units */
2564 if (level > 0)
2565 latency *= 5;
2566
2567 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2568 name, level, wm[level],
2569 latency / 10, latency % 10);
2570 }
2571 }
2572
2573 static void intel_setup_wm_latency(struct drm_device *dev)
2574 {
2575 struct drm_i915_private *dev_priv = dev->dev_private;
2576
2577 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2578
2579 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2580 sizeof(dev_priv->wm.pri_latency));
2581 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2582 sizeof(dev_priv->wm.pri_latency));
2583
2584 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2585 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2586
2587 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2588 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2589 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2590 }
2591
2592 static void hsw_compute_wm_parameters(struct drm_crtc *crtc,
2593 struct hsw_pipe_wm_parameters *p,
2594 struct intel_wm_config *config)
2595 {
2596 struct drm_device *dev = crtc->dev;
2597 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2598 enum pipe pipe = intel_crtc->pipe;
2599 struct drm_plane *plane;
2600
2601 p->active = intel_crtc_active(crtc);
2602 if (p->active) {
2603 p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
2604 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2605 p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2606 p->cur.bytes_per_pixel = 4;
2607 p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2608 p->cur.horiz_pixels = 64;
2609 /* TODO: for now, assume primary and cursor planes are always enabled. */
2610 p->pri.enabled = true;
2611 p->cur.enabled = true;
2612 }
2613
2614 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2615 config->num_pipes_active += intel_crtc_active(crtc);
2616
2617 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2618 struct intel_plane *intel_plane = to_intel_plane(plane);
2619
2620 if (intel_plane->pipe == pipe)
2621 p->spr = intel_plane->wm;
2622
2623 config->sprites_enabled |= intel_plane->wm.enabled;
2624 config->sprites_scaled |= intel_plane->wm.scaled;
2625 }
2626 }
2627
2628 /* Compute new watermarks for the pipe */
2629 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2630 const struct hsw_pipe_wm_parameters *params,
2631 struct intel_pipe_wm *pipe_wm)
2632 {
2633 struct drm_device *dev = crtc->dev;
2634 struct drm_i915_private *dev_priv = dev->dev_private;
2635 int level, max_level = ilk_wm_max_level(dev);
2636 /* LP0 watermark maximums depend on this pipe alone */
2637 struct intel_wm_config config = {
2638 .num_pipes_active = 1,
2639 .sprites_enabled = params->spr.enabled,
2640 .sprites_scaled = params->spr.scaled,
2641 };
2642 struct hsw_wm_maximums max;
2643
2644 /* LP0 watermarks always use 1/2 DDB partitioning */
2645 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2646
2647 for (level = 0; level <= max_level; level++)
2648 ilk_compute_wm_level(dev_priv, level, params,
2649 &pipe_wm->wm[level]);
2650
2651 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2652
2653 /* At least LP0 must be valid */
2654 return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
2655 }
2656
2657 /*
2658 * Merge the watermarks from all active pipes for a specific level.
2659 */
2660 static void ilk_merge_wm_level(struct drm_device *dev,
2661 int level,
2662 struct intel_wm_level *ret_wm)
2663 {
2664 const struct intel_crtc *intel_crtc;
2665
2666 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2667 const struct intel_wm_level *wm =
2668 &intel_crtc->wm.active.wm[level];
2669
2670 if (!wm->enable)
2671 return;
2672
2673 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2674 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2675 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2676 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2677 }
2678
2679 ret_wm->enable = true;
2680 }
2681
2682 /*
2683 * Merge all low power watermarks for all active pipes.
2684 */
2685 static void ilk_wm_merge(struct drm_device *dev,
2686 const struct hsw_wm_maximums *max,
2687 struct intel_pipe_wm *merged)
2688 {
2689 int level, max_level = ilk_wm_max_level(dev);
2690
2691 merged->fbc_wm_enabled = true;
2692
2693 /* merge each WM1+ level */
2694 for (level = 1; level <= max_level; level++) {
2695 struct intel_wm_level *wm = &merged->wm[level];
2696
2697 ilk_merge_wm_level(dev, level, wm);
2698
2699 if (!ilk_validate_wm_level(level, max, wm))
2700 break;
2701
2702 /*
2703 * The spec says it is preferred to disable
2704 * FBC WMs instead of disabling a WM level.
2705 */
2706 if (wm->fbc_val > max->fbc) {
2707 merged->fbc_wm_enabled = false;
2708 wm->fbc_val = 0;
2709 }
2710 }
2711 }
2712
2713 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2714 {
2715 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2716 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2717 }
2718
2719 static void hsw_compute_wm_results(struct drm_device *dev,
2720 const struct intel_pipe_wm *merged,
2721 enum intel_ddb_partitioning partitioning,
2722 struct hsw_wm_values *results)
2723 {
2724 struct intel_crtc *intel_crtc;
2725 int level, wm_lp;
2726
2727 results->enable_fbc_wm = merged->fbc_wm_enabled;
2728 results->partitioning = partitioning;
2729
2730 /* LP1+ register values */
2731 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2732 const struct intel_wm_level *r;
2733
2734 level = ilk_wm_lp_to_level(wm_lp, merged);
2735
2736 r = &merged->wm[level];
2737 if (!r->enable)
2738 break;
2739
2740 results->wm_lp[wm_lp - 1] = WM3_LP_EN |
2741 ((level * 2) << WM1_LP_LATENCY_SHIFT) |
2742 (r->pri_val << WM1_LP_SR_SHIFT) |
2743 r->cur_val;
2744
2745 if (INTEL_INFO(dev)->gen >= 8)
2746 results->wm_lp[wm_lp - 1] |=
2747 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2748 else
2749 results->wm_lp[wm_lp - 1] |=
2750 r->fbc_val << WM1_LP_FBC_SHIFT;
2751
2752 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2753 }
2754
2755 /* LP0 register values */
2756 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2757 enum pipe pipe = intel_crtc->pipe;
2758 const struct intel_wm_level *r =
2759 &intel_crtc->wm.active.wm[0];
2760
2761 if (WARN_ON(!r->enable))
2762 continue;
2763
2764 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2765
2766 results->wm_pipe[pipe] =
2767 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2768 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2769 r->cur_val;
2770 }
2771 }
2772
2773 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2774 * case both are at the same level. Prefer r1 in case they're the same. */
2775 static struct intel_pipe_wm *hsw_find_best_result(struct drm_device *dev,
2776 struct intel_pipe_wm *r1,
2777 struct intel_pipe_wm *r2)
2778 {
2779 int level, max_level = ilk_wm_max_level(dev);
2780 int level1 = 0, level2 = 0;
2781
2782 for (level = 1; level <= max_level; level++) {
2783 if (r1->wm[level].enable)
2784 level1 = level;
2785 if (r2->wm[level].enable)
2786 level2 = level;
2787 }
2788
2789 if (level1 == level2) {
2790 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2791 return r2;
2792 else
2793 return r1;
2794 } else if (level1 > level2) {
2795 return r1;
2796 } else {
2797 return r2;
2798 }
2799 }
2800
2801 /* dirty bits used to track which watermarks need changes */
2802 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2803 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2804 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2805 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2806 #define WM_DIRTY_FBC (1 << 24)
2807 #define WM_DIRTY_DDB (1 << 25)
2808
2809 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2810 const struct hsw_wm_values *old,
2811 const struct hsw_wm_values *new)
2812 {
2813 unsigned int dirty = 0;
2814 enum pipe pipe;
2815 int wm_lp;
2816
2817 for_each_pipe(pipe) {
2818 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2819 dirty |= WM_DIRTY_LINETIME(pipe);
2820 /* Must disable LP1+ watermarks too */
2821 dirty |= WM_DIRTY_LP_ALL;
2822 }
2823
2824 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2825 dirty |= WM_DIRTY_PIPE(pipe);
2826 /* Must disable LP1+ watermarks too */
2827 dirty |= WM_DIRTY_LP_ALL;
2828 }
2829 }
2830
2831 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2832 dirty |= WM_DIRTY_FBC;
2833 /* Must disable LP1+ watermarks too */
2834 dirty |= WM_DIRTY_LP_ALL;
2835 }
2836
2837 if (old->partitioning != new->partitioning) {
2838 dirty |= WM_DIRTY_DDB;
2839 /* Must disable LP1+ watermarks too */
2840 dirty |= WM_DIRTY_LP_ALL;
2841 }
2842
2843 /* LP1+ watermarks already deemed dirty, no need to continue */
2844 if (dirty & WM_DIRTY_LP_ALL)
2845 return dirty;
2846
2847 /* Find the lowest numbered LP1+ watermark in need of an update... */
2848 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2849 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2850 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2851 break;
2852 }
2853
2854 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2855 for (; wm_lp <= 3; wm_lp++)
2856 dirty |= WM_DIRTY_LP(wm_lp);
2857
2858 return dirty;
2859 }
2860
2861 /*
2862 * The spec says we shouldn't write when we don't need, because every write
2863 * causes WMs to be re-evaluated, expending some power.
2864 */
2865 static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
2866 struct hsw_wm_values *results)
2867 {
2868 struct hsw_wm_values *previous = &dev_priv->wm.hw;
2869 unsigned int dirty;
2870 uint32_t val;
2871
2872 dirty = ilk_compute_wm_dirty(dev_priv->dev, previous, results);
2873 if (!dirty)
2874 return;
2875
2876 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != 0)
2877 I915_WRITE(WM3_LP_ILK, 0);
2878 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != 0)
2879 I915_WRITE(WM2_LP_ILK, 0);
2880 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != 0)
2881 I915_WRITE(WM1_LP_ILK, 0);
2882
2883 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2884 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2885 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2886 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2887 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2888 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2889
2890 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2891 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2892 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2893 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2894 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2895 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2896
2897 if (dirty & WM_DIRTY_DDB) {
2898 val = I915_READ(WM_MISC);
2899 if (results->partitioning == INTEL_DDB_PART_1_2)
2900 val &= ~WM_MISC_DATA_PARTITION_5_6;
2901 else
2902 val |= WM_MISC_DATA_PARTITION_5_6;
2903 I915_WRITE(WM_MISC, val);
2904 }
2905
2906 if (dirty & WM_DIRTY_FBC) {
2907 val = I915_READ(DISP_ARB_CTL);
2908 if (results->enable_fbc_wm)
2909 val &= ~DISP_FBC_WM_DIS;
2910 else
2911 val |= DISP_FBC_WM_DIS;
2912 I915_WRITE(DISP_ARB_CTL, val);
2913 }
2914
2915 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2916 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2917 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2918 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2919 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2920 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2921
2922 if (dirty & WM_DIRTY_LP(1) && results->wm_lp[0] != 0)
2923 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2924 if (dirty & WM_DIRTY_LP(2) && results->wm_lp[1] != 0)
2925 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2926 if (dirty & WM_DIRTY_LP(3) && results->wm_lp[2] != 0)
2927 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2928
2929 dev_priv->wm.hw = *results;
2930 }
2931
2932 static void haswell_update_wm(struct drm_crtc *crtc)
2933 {
2934 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2935 struct drm_device *dev = crtc->dev;
2936 struct drm_i915_private *dev_priv = dev->dev_private;
2937 struct hsw_wm_maximums max;
2938 struct hsw_pipe_wm_parameters params = {};
2939 struct hsw_wm_values results = {};
2940 enum intel_ddb_partitioning partitioning;
2941 struct intel_pipe_wm pipe_wm = {};
2942 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2943 struct intel_wm_config config = {};
2944
2945 hsw_compute_wm_parameters(crtc, &params, &config);
2946
2947 intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2948
2949 if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2950 return;
2951
2952 intel_crtc->wm.active = pipe_wm;
2953
2954 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2955 ilk_wm_merge(dev, &max, &lp_wm_1_2);
2956
2957 /* 5/6 split only in single pipe config on IVB+ */
2958 if (INTEL_INFO(dev)->gen >= 7 &&
2959 config.num_pipes_active == 1 && config.sprites_enabled) {
2960 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2961 ilk_wm_merge(dev, &max, &lp_wm_5_6);
2962
2963 best_lp_wm = hsw_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2964 } else {
2965 best_lp_wm = &lp_wm_1_2;
2966 }
2967
2968 partitioning = (best_lp_wm == &lp_wm_1_2) ?
2969 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2970
2971 hsw_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2972
2973 hsw_write_wm_values(dev_priv, &results);
2974 }
2975
2976 static void haswell_update_sprite_wm(struct drm_plane *plane,
2977 struct drm_crtc *crtc,
2978 uint32_t sprite_width, int pixel_size,
2979 bool enabled, bool scaled)
2980 {
2981 struct intel_plane *intel_plane = to_intel_plane(plane);
2982
2983 intel_plane->wm.enabled = enabled;
2984 intel_plane->wm.scaled = scaled;
2985 intel_plane->wm.horiz_pixels = sprite_width;
2986 intel_plane->wm.bytes_per_pixel = pixel_size;
2987
2988 haswell_update_wm(crtc);
2989 }
2990
2991 static bool
2992 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2993 uint32_t sprite_width, int pixel_size,
2994 const struct intel_watermark_params *display,
2995 int display_latency_ns, int *sprite_wm)
2996 {
2997 struct drm_crtc *crtc;
2998 int clock;
2999 int entries, tlb_miss;
3000
3001 crtc = intel_get_crtc_for_plane(dev, plane);
3002 if (!intel_crtc_active(crtc)) {
3003 *sprite_wm = display->guard_size;
3004 return false;
3005 }
3006
3007 clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3008
3009 /* Use the small buffer method to calculate the sprite watermark */
3010 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3011 tlb_miss = display->fifo_size*display->cacheline_size -
3012 sprite_width * 8;
3013 if (tlb_miss > 0)
3014 entries += tlb_miss;
3015 entries = DIV_ROUND_UP(entries, display->cacheline_size);
3016 *sprite_wm = entries + display->guard_size;
3017 if (*sprite_wm > (int)display->max_wm)
3018 *sprite_wm = display->max_wm;
3019
3020 return true;
3021 }
3022
3023 static bool
3024 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
3025 uint32_t sprite_width, int pixel_size,
3026 const struct intel_watermark_params *display,
3027 int latency_ns, int *sprite_wm)
3028 {
3029 struct drm_crtc *crtc;
3030 unsigned long line_time_us;
3031 int clock;
3032 int line_count, line_size;
3033 int small, large;
3034 int entries;
3035
3036 if (!latency_ns) {
3037 *sprite_wm = 0;
3038 return false;
3039 }
3040
3041 crtc = intel_get_crtc_for_plane(dev, plane);
3042 clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3043 if (!clock) {
3044 *sprite_wm = 0;
3045 return false;
3046 }
3047
3048 line_time_us = (sprite_width * 1000) / clock;
3049 if (!line_time_us) {
3050 *sprite_wm = 0;
3051 return false;
3052 }
3053
3054 line_count = (latency_ns / line_time_us + 1000) / 1000;
3055 line_size = sprite_width * pixel_size;
3056
3057 /* Use the minimum of the small and large buffer method for primary */
3058 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3059 large = line_count * line_size;
3060
3061 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3062 *sprite_wm = entries + display->guard_size;
3063
3064 return *sprite_wm > 0x3ff ? false : true;
3065 }
3066
3067 static void sandybridge_update_sprite_wm(struct drm_plane *plane,
3068 struct drm_crtc *crtc,
3069 uint32_t sprite_width, int pixel_size,
3070 bool enabled, bool scaled)
3071 {
3072 struct drm_device *dev = plane->dev;
3073 struct drm_i915_private *dev_priv = dev->dev_private;
3074 int pipe = to_intel_plane(plane)->pipe;
3075 int latency = dev_priv->wm.spr_latency[0] * 100; /* In unit 0.1us */
3076 u32 val;
3077 int sprite_wm, reg;
3078 int ret;
3079
3080 if (!enabled)
3081 return;
3082
3083 switch (pipe) {
3084 case 0:
3085 reg = WM0_PIPEA_ILK;
3086 break;
3087 case 1:
3088 reg = WM0_PIPEB_ILK;
3089 break;
3090 case 2:
3091 reg = WM0_PIPEC_IVB;
3092 break;
3093 default:
3094 return; /* bad pipe */
3095 }
3096
3097 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
3098 &sandybridge_display_wm_info,
3099 latency, &sprite_wm);
3100 if (!ret) {
3101 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
3102 pipe_name(pipe));
3103 return;
3104 }
3105
3106 val = I915_READ(reg);
3107 val &= ~WM0_PIPE_SPRITE_MASK;
3108 I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
3109 DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
3110
3111
3112 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3113 pixel_size,
3114 &sandybridge_display_srwm_info,
3115 dev_priv->wm.spr_latency[1] * 500,
3116 &sprite_wm);
3117 if (!ret) {
3118 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
3119 pipe_name(pipe));
3120 return;
3121 }
3122 I915_WRITE(WM1S_LP_ILK, sprite_wm);
3123
3124 /* Only IVB has two more LP watermarks for sprite */
3125 if (!IS_IVYBRIDGE(dev))
3126 return;
3127
3128 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3129 pixel_size,
3130 &sandybridge_display_srwm_info,
3131 dev_priv->wm.spr_latency[2] * 500,
3132 &sprite_wm);
3133 if (!ret) {
3134 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
3135 pipe_name(pipe));
3136 return;
3137 }
3138 I915_WRITE(WM2S_LP_IVB, sprite_wm);
3139
3140 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3141 pixel_size,
3142 &sandybridge_display_srwm_info,
3143 dev_priv->wm.spr_latency[3] * 500,
3144 &sprite_wm);
3145 if (!ret) {
3146 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
3147 pipe_name(pipe));
3148 return;
3149 }
3150 I915_WRITE(WM3S_LP_IVB, sprite_wm);
3151 }
3152
3153 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3154 {
3155 struct drm_device *dev = crtc->dev;
3156 struct drm_i915_private *dev_priv = dev->dev_private;
3157 struct hsw_wm_values *hw = &dev_priv->wm.hw;
3158 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3159 struct intel_pipe_wm *active = &intel_crtc->wm.active;
3160 enum pipe pipe = intel_crtc->pipe;
3161 static const unsigned int wm0_pipe_reg[] = {
3162 [PIPE_A] = WM0_PIPEA_ILK,
3163 [PIPE_B] = WM0_PIPEB_ILK,
3164 [PIPE_C] = WM0_PIPEC_IVB,
3165 };
3166
3167 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3168 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3169
3170 if (intel_crtc_active(crtc)) {
3171 u32 tmp = hw->wm_pipe[pipe];
3172
3173 /*
3174 * For active pipes LP0 watermark is marked as
3175 * enabled, and LP1+ watermaks as disabled since
3176 * we can't really reverse compute them in case
3177 * multiple pipes are active.
3178 */
3179 active->wm[0].enable = true;
3180 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3181 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3182 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3183 active->linetime = hw->wm_linetime[pipe];
3184 } else {
3185 int level, max_level = ilk_wm_max_level(dev);
3186
3187 /*
3188 * For inactive pipes, all watermark levels
3189 * should be marked as enabled but zeroed,
3190 * which is what we'd compute them to.
3191 */
3192 for (level = 0; level <= max_level; level++)
3193 active->wm[level].enable = true;
3194 }
3195 }
3196
3197 void ilk_wm_get_hw_state(struct drm_device *dev)
3198 {
3199 struct drm_i915_private *dev_priv = dev->dev_private;
3200 struct hsw_wm_values *hw = &dev_priv->wm.hw;
3201 struct drm_crtc *crtc;
3202
3203 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3204 ilk_pipe_wm_get_hw_state(crtc);
3205
3206 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
3207 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
3208 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3209
3210 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3211 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
3212 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3213
3214 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
3215 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3216
3217 hw->enable_fbc_wm =
3218 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3219 }
3220
3221 /**
3222 * intel_update_watermarks - update FIFO watermark values based on current modes
3223 *
3224 * Calculate watermark values for the various WM regs based on current mode
3225 * and plane configuration.
3226 *
3227 * There are several cases to deal with here:
3228 * - normal (i.e. non-self-refresh)
3229 * - self-refresh (SR) mode
3230 * - lines are large relative to FIFO size (buffer can hold up to 2)
3231 * - lines are small relative to FIFO size (buffer can hold more than 2
3232 * lines), so need to account for TLB latency
3233 *
3234 * The normal calculation is:
3235 * watermark = dotclock * bytes per pixel * latency
3236 * where latency is platform & configuration dependent (we assume pessimal
3237 * values here).
3238 *
3239 * The SR calculation is:
3240 * watermark = (trunc(latency/line time)+1) * surface width *
3241 * bytes per pixel
3242 * where
3243 * line time = htotal / dotclock
3244 * surface width = hdisplay for normal plane and 64 for cursor
3245 * and latency is assumed to be high, as above.
3246 *
3247 * The final value programmed to the register should always be rounded up,
3248 * and include an extra 2 entries to account for clock crossings.
3249 *
3250 * We don't use the sprite, so we can ignore that. And on Crestline we have
3251 * to set the non-SR watermarks to 8.
3252 */
3253 void intel_update_watermarks(struct drm_crtc *crtc)
3254 {
3255 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3256
3257 if (dev_priv->display.update_wm)
3258 dev_priv->display.update_wm(crtc);
3259 }
3260
3261 void intel_update_sprite_watermarks(struct drm_plane *plane,
3262 struct drm_crtc *crtc,
3263 uint32_t sprite_width, int pixel_size,
3264 bool enabled, bool scaled)
3265 {
3266 struct drm_i915_private *dev_priv = plane->dev->dev_private;
3267
3268 if (dev_priv->display.update_sprite_wm)
3269 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
3270 pixel_size, enabled, scaled);
3271 }
3272
3273 static struct drm_i915_gem_object *
3274 intel_alloc_context_page(struct drm_device *dev)
3275 {
3276 struct drm_i915_gem_object *ctx;
3277 int ret;
3278
3279 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3280
3281 ctx = i915_gem_alloc_object(dev, 4096);
3282 if (!ctx) {
3283 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
3284 return NULL;
3285 }
3286
3287 ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
3288 if (ret) {
3289 DRM_ERROR("failed to pin power context: %d\n", ret);
3290 goto err_unref;
3291 }
3292
3293 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
3294 if (ret) {
3295 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
3296 goto err_unpin;
3297 }
3298
3299 return ctx;
3300
3301 err_unpin:
3302 i915_gem_object_unpin(ctx);
3303 err_unref:
3304 drm_gem_object_unreference(&ctx->base);
3305 return NULL;
3306 }
3307
3308 /**
3309 * Lock protecting IPS related data structures
3310 */
3311 DEFINE_SPINLOCK(mchdev_lock);
3312
3313 /* Global for IPS driver to get at the current i915 device. Protected by
3314 * mchdev_lock. */
3315 static struct drm_i915_private *i915_mch_dev;
3316
3317 bool ironlake_set_drps(struct drm_device *dev, u8 val)
3318 {
3319 struct drm_i915_private *dev_priv = dev->dev_private;
3320 u16 rgvswctl;
3321
3322 assert_spin_locked(&mchdev_lock);
3323
3324 rgvswctl = I915_READ16(MEMSWCTL);
3325 if (rgvswctl & MEMCTL_CMD_STS) {
3326 DRM_DEBUG("gpu busy, RCS change rejected\n");
3327 return false; /* still busy with another command */
3328 }
3329
3330 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3331 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3332 I915_WRITE16(MEMSWCTL, rgvswctl);
3333 POSTING_READ16(MEMSWCTL);
3334
3335 rgvswctl |= MEMCTL_CMD_STS;
3336 I915_WRITE16(MEMSWCTL, rgvswctl);
3337
3338 return true;
3339 }
3340
3341 static void ironlake_enable_drps(struct drm_device *dev)
3342 {
3343 struct drm_i915_private *dev_priv = dev->dev_private;
3344 u32 rgvmodectl = I915_READ(MEMMODECTL);
3345 u8 fmax, fmin, fstart, vstart;
3346
3347 spin_lock_irq(&mchdev_lock);
3348
3349 /* Enable temp reporting */
3350 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3351 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3352
3353 /* 100ms RC evaluation intervals */
3354 I915_WRITE(RCUPEI, 100000);
3355 I915_WRITE(RCDNEI, 100000);
3356
3357 /* Set max/min thresholds to 90ms and 80ms respectively */
3358 I915_WRITE(RCBMAXAVG, 90000);
3359 I915_WRITE(RCBMINAVG, 80000);
3360
3361 I915_WRITE(MEMIHYST, 1);
3362
3363 /* Set up min, max, and cur for interrupt handling */
3364 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3365 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3366 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3367 MEMMODE_FSTART_SHIFT;
3368
3369 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3370 PXVFREQ_PX_SHIFT;
3371
3372 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3373 dev_priv->ips.fstart = fstart;
3374
3375 dev_priv->ips.max_delay = fstart;
3376 dev_priv->ips.min_delay = fmin;
3377 dev_priv->ips.cur_delay = fstart;
3378
3379 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3380 fmax, fmin, fstart);
3381
3382 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3383
3384 /*
3385 * Interrupts will be enabled in ironlake_irq_postinstall
3386 */
3387
3388 I915_WRITE(VIDSTART, vstart);
3389 POSTING_READ(VIDSTART);
3390
3391 rgvmodectl |= MEMMODE_SWMODE_EN;
3392 I915_WRITE(MEMMODECTL, rgvmodectl);
3393
3394 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3395 DRM_ERROR("stuck trying to change perf mode\n");
3396 mdelay(1);
3397
3398 ironlake_set_drps(dev, fstart);
3399
3400 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3401 I915_READ(0x112e0);
3402 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3403 dev_priv->ips.last_count2 = I915_READ(0x112f4);
3404 getrawmonotonic(&dev_priv->ips.last_time2);
3405
3406 spin_unlock_irq(&mchdev_lock);
3407 }
3408
3409 static void ironlake_disable_drps(struct drm_device *dev)
3410 {
3411 struct drm_i915_private *dev_priv = dev->dev_private;
3412 u16 rgvswctl;
3413
3414 spin_lock_irq(&mchdev_lock);
3415
3416 rgvswctl = I915_READ16(MEMSWCTL);
3417
3418 /* Ack interrupts, disable EFC interrupt */
3419 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3420 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3421 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3422 I915_WRITE(DEIIR, DE_PCU_EVENT);
3423 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3424
3425 /* Go back to the starting frequency */
3426 ironlake_set_drps(dev, dev_priv->ips.fstart);
3427 mdelay(1);
3428 rgvswctl |= MEMCTL_CMD_STS;
3429 I915_WRITE(MEMSWCTL, rgvswctl);
3430 mdelay(1);
3431
3432 spin_unlock_irq(&mchdev_lock);
3433 }
3434
3435 /* There's a funny hw issue where the hw returns all 0 when reading from
3436 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3437 * ourselves, instead of doing a rmw cycle (which might result in us clearing
3438 * all limits and the gpu stuck at whatever frequency it is at atm).
3439 */
3440 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3441 {
3442 u32 limits;
3443
3444 /* Only set the down limit when we've reached the lowest level to avoid
3445 * getting more interrupts, otherwise leave this clear. This prevents a
3446 * race in the hw when coming out of rc6: There's a tiny window where
3447 * the hw runs at the minimal clock before selecting the desired
3448 * frequency, if the down threshold expires in that window we will not
3449 * receive a down interrupt. */
3450 limits = dev_priv->rps.max_delay << 24;
3451 if (val <= dev_priv->rps.min_delay)
3452 limits |= dev_priv->rps.min_delay << 16;
3453
3454 return limits;
3455 }
3456
3457 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3458 {
3459 int new_power;
3460
3461 new_power = dev_priv->rps.power;
3462 switch (dev_priv->rps.power) {
3463 case LOW_POWER:
3464 if (val > dev_priv->rps.rpe_delay + 1 && val > dev_priv->rps.cur_delay)
3465 new_power = BETWEEN;
3466 break;
3467
3468 case BETWEEN:
3469 if (val <= dev_priv->rps.rpe_delay && val < dev_priv->rps.cur_delay)
3470 new_power = LOW_POWER;
3471 else if (val >= dev_priv->rps.rp0_delay && val > dev_priv->rps.cur_delay)
3472 new_power = HIGH_POWER;
3473 break;
3474
3475 case HIGH_POWER:
3476 if (val < (dev_priv->rps.rp1_delay + dev_priv->rps.rp0_delay) >> 1 && val < dev_priv->rps.cur_delay)
3477 new_power = BETWEEN;
3478 break;
3479 }
3480 /* Max/min bins are special */
3481 if (val == dev_priv->rps.min_delay)
3482 new_power = LOW_POWER;
3483 if (val == dev_priv->rps.max_delay)
3484 new_power = HIGH_POWER;
3485 if (new_power == dev_priv->rps.power)
3486 return;
3487
3488 /* Note the units here are not exactly 1us, but 1280ns. */
3489 switch (new_power) {
3490 case LOW_POWER:
3491 /* Upclock if more than 95% busy over 16ms */
3492 I915_WRITE(GEN6_RP_UP_EI, 12500);
3493 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3494
3495 /* Downclock if less than 85% busy over 32ms */
3496 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3497 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3498
3499 I915_WRITE(GEN6_RP_CONTROL,
3500 GEN6_RP_MEDIA_TURBO |
3501 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3502 GEN6_RP_MEDIA_IS_GFX |
3503 GEN6_RP_ENABLE |
3504 GEN6_RP_UP_BUSY_AVG |
3505 GEN6_RP_DOWN_IDLE_AVG);
3506 break;
3507
3508 case BETWEEN:
3509 /* Upclock if more than 90% busy over 13ms */
3510 I915_WRITE(GEN6_RP_UP_EI, 10250);
3511 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3512
3513 /* Downclock if less than 75% busy over 32ms */
3514 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3515 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3516
3517 I915_WRITE(GEN6_RP_CONTROL,
3518 GEN6_RP_MEDIA_TURBO |
3519 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3520 GEN6_RP_MEDIA_IS_GFX |
3521 GEN6_RP_ENABLE |
3522 GEN6_RP_UP_BUSY_AVG |
3523 GEN6_RP_DOWN_IDLE_AVG);
3524 break;
3525
3526 case HIGH_POWER:
3527 /* Upclock if more than 85% busy over 10ms */
3528 I915_WRITE(GEN6_RP_UP_EI, 8000);
3529 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3530
3531 /* Downclock if less than 60% busy over 32ms */
3532 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3533 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3534
3535 I915_WRITE(GEN6_RP_CONTROL,
3536 GEN6_RP_MEDIA_TURBO |
3537 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3538 GEN6_RP_MEDIA_IS_GFX |
3539 GEN6_RP_ENABLE |
3540 GEN6_RP_UP_BUSY_AVG |
3541 GEN6_RP_DOWN_IDLE_AVG);
3542 break;
3543 }
3544
3545 dev_priv->rps.power = new_power;
3546 dev_priv->rps.last_adj = 0;
3547 }
3548
3549 void gen6_set_rps(struct drm_device *dev, u8 val)
3550 {
3551 struct drm_i915_private *dev_priv = dev->dev_private;
3552
3553 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3554 WARN_ON(val > dev_priv->rps.max_delay);
3555 WARN_ON(val < dev_priv->rps.min_delay);
3556
3557 if (val == dev_priv->rps.cur_delay)
3558 return;
3559
3560 gen6_set_rps_thresholds(dev_priv, val);
3561
3562 if (IS_HASWELL(dev))
3563 I915_WRITE(GEN6_RPNSWREQ,
3564 HSW_FREQUENCY(val));
3565 else
3566 I915_WRITE(GEN6_RPNSWREQ,
3567 GEN6_FREQUENCY(val) |
3568 GEN6_OFFSET(0) |
3569 GEN6_AGGRESSIVE_TURBO);
3570
3571 /* Make sure we continue to get interrupts
3572 * until we hit the minimum or maximum frequencies.
3573 */
3574 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3575 gen6_rps_limits(dev_priv, val));
3576
3577 POSTING_READ(GEN6_RPNSWREQ);
3578
3579 dev_priv->rps.cur_delay = val;
3580
3581 trace_intel_gpu_freq_change(val * 50);
3582 }
3583
3584 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3585 {
3586 mutex_lock(&dev_priv->rps.hw_lock);
3587 if (dev_priv->rps.enabled) {
3588 if (dev_priv->info->is_valleyview)
3589 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3590 else
3591 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3592 dev_priv->rps.last_adj = 0;
3593 }
3594 mutex_unlock(&dev_priv->rps.hw_lock);
3595 }
3596
3597 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3598 {
3599 mutex_lock(&dev_priv->rps.hw_lock);
3600 if (dev_priv->rps.enabled) {
3601 if (dev_priv->info->is_valleyview)
3602 valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
3603 else
3604 gen6_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
3605 dev_priv->rps.last_adj = 0;
3606 }
3607 mutex_unlock(&dev_priv->rps.hw_lock);
3608 }
3609
3610 void valleyview_set_rps(struct drm_device *dev, u8 val)
3611 {
3612 struct drm_i915_private *dev_priv = dev->dev_private;
3613
3614 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3615 WARN_ON(val > dev_priv->rps.max_delay);
3616 WARN_ON(val < dev_priv->rps.min_delay);
3617
3618 DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3619 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
3620 dev_priv->rps.cur_delay,
3621 vlv_gpu_freq(dev_priv, val), val);
3622
3623 if (val == dev_priv->rps.cur_delay)
3624 return;
3625
3626 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3627
3628 dev_priv->rps.cur_delay = val;
3629
3630 trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3631 }
3632
3633 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3634 {
3635 struct drm_i915_private *dev_priv = dev->dev_private;
3636
3637 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3638 I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3639 /* Complete PM interrupt masking here doesn't race with the rps work
3640 * item again unmasking PM interrupts because that is using a different
3641 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3642 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3643
3644 spin_lock_irq(&dev_priv->irq_lock);
3645 dev_priv->rps.pm_iir = 0;
3646 spin_unlock_irq(&dev_priv->irq_lock);
3647
3648 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3649 }
3650
3651 static void gen6_disable_rps(struct drm_device *dev)
3652 {
3653 struct drm_i915_private *dev_priv = dev->dev_private;
3654
3655 I915_WRITE(GEN6_RC_CONTROL, 0);
3656 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3657
3658 gen6_disable_rps_interrupts(dev);
3659 }
3660
3661 static void valleyview_disable_rps(struct drm_device *dev)
3662 {
3663 struct drm_i915_private *dev_priv = dev->dev_private;
3664
3665 I915_WRITE(GEN6_RC_CONTROL, 0);
3666
3667 gen6_disable_rps_interrupts(dev);
3668
3669 if (dev_priv->vlv_pctx) {
3670 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3671 dev_priv->vlv_pctx = NULL;
3672 }
3673 }
3674
3675 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3676 {
3677 if (IS_GEN6(dev))
3678 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
3679
3680 if (IS_HASWELL(dev))
3681 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3682
3683 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3684 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3685 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3686 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3687 }
3688
3689 int intel_enable_rc6(const struct drm_device *dev)
3690 {
3691 /* No RC6 before Ironlake */
3692 if (INTEL_INFO(dev)->gen < 5)
3693 return 0;
3694
3695 /* Respect the kernel parameter if it is set */
3696 if (i915_enable_rc6 >= 0)
3697 return i915_enable_rc6;
3698
3699 /* Disable RC6 on Ironlake */
3700 if (INTEL_INFO(dev)->gen == 5)
3701 return 0;
3702
3703 if (IS_HASWELL(dev))
3704 return INTEL_RC6_ENABLE;
3705
3706 /* snb/ivb have more than one rc6 state. */
3707 if (INTEL_INFO(dev)->gen == 6)
3708 return INTEL_RC6_ENABLE;
3709
3710 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3711 }
3712
3713 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3714 {
3715 struct drm_i915_private *dev_priv = dev->dev_private;
3716 u32 enabled_intrs;
3717
3718 spin_lock_irq(&dev_priv->irq_lock);
3719 WARN_ON(dev_priv->rps.pm_iir);
3720 snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
3721 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3722 spin_unlock_irq(&dev_priv->irq_lock);
3723
3724 /* only unmask PM interrupts we need. Mask all others. */
3725 enabled_intrs = GEN6_PM_RPS_EVENTS;
3726
3727 /* IVB and SNB hard hangs on looping batchbuffer
3728 * if GEN6_PM_UP_EI_EXPIRED is masked.
3729 */
3730 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
3731 enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
3732
3733 I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
3734 }
3735
3736 static void gen8_enable_rps(struct drm_device *dev)
3737 {
3738 struct drm_i915_private *dev_priv = dev->dev_private;
3739 struct intel_ring_buffer *ring;
3740 uint32_t rc6_mask = 0, rp_state_cap;
3741 int unused;
3742
3743 /* 1a: Software RC state - RC0 */
3744 I915_WRITE(GEN6_RC_STATE, 0);
3745
3746 /* 1c & 1d: Get forcewake during program sequence. Although the driver
3747 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3748 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3749
3750 /* 2a: Disable RC states. */
3751 I915_WRITE(GEN6_RC_CONTROL, 0);
3752
3753 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3754
3755 /* 2b: Program RC6 thresholds.*/
3756 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3757 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3758 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3759 for_each_ring(ring, dev_priv, unused)
3760 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3761 I915_WRITE(GEN6_RC_SLEEP, 0);
3762 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3763
3764 /* 3: Enable RC6 */
3765 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3766 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3767 DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
3768 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3769 GEN6_RC_CTL_EI_MODE(1) |
3770 rc6_mask);
3771
3772 /* 4 Program defaults and thresholds for RPS*/
3773 I915_WRITE(GEN6_RPNSWREQ, HSW_FREQUENCY(10)); /* Request 500 MHz */
3774 I915_WRITE(GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(12)); /* Request 600 MHz */
3775 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3776 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3777
3778 /* Docs recommend 900MHz, and 300 MHz respectively */
3779 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3780 dev_priv->rps.max_delay << 24 |
3781 dev_priv->rps.min_delay << 16);
3782
3783 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3784 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3785 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3786 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3787
3788 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3789
3790 /* 5: Enable RPS */
3791 I915_WRITE(GEN6_RP_CONTROL,
3792 GEN6_RP_MEDIA_TURBO |
3793 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3794 GEN6_RP_MEDIA_IS_GFX |
3795 GEN6_RP_ENABLE |
3796 GEN6_RP_UP_BUSY_AVG |
3797 GEN6_RP_DOWN_IDLE_AVG);
3798
3799 /* 6: Ring frequency + overclocking (our driver does this later */
3800
3801 gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3802
3803 gen6_enable_rps_interrupts(dev);
3804
3805 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3806 }
3807
3808 static void gen6_enable_rps(struct drm_device *dev)
3809 {
3810 struct drm_i915_private *dev_priv = dev->dev_private;
3811 struct intel_ring_buffer *ring;
3812 u32 rp_state_cap;
3813 u32 gt_perf_status;
3814 u32 rc6vids, pcu_mbox, rc6_mask = 0;
3815 u32 gtfifodbg;
3816 int rc6_mode;
3817 int i, ret;
3818
3819 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3820
3821 /* Here begins a magic sequence of register writes to enable
3822 * auto-downclocking.
3823 *
3824 * Perhaps there might be some value in exposing these to
3825 * userspace...
3826 */
3827 I915_WRITE(GEN6_RC_STATE, 0);
3828
3829 /* Clear the DBG now so we don't confuse earlier errors */
3830 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3831 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3832 I915_WRITE(GTFIFODBG, gtfifodbg);
3833 }
3834
3835 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3836
3837 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3838 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3839
3840 /* In units of 50MHz */
3841 dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
3842 dev_priv->rps.min_delay = (rp_state_cap >> 16) & 0xff;
3843 dev_priv->rps.rp1_delay = (rp_state_cap >> 8) & 0xff;
3844 dev_priv->rps.rp0_delay = (rp_state_cap >> 0) & 0xff;
3845 dev_priv->rps.rpe_delay = dev_priv->rps.rp1_delay;
3846 dev_priv->rps.cur_delay = 0;
3847
3848 /* disable the counters and set deterministic thresholds */
3849 I915_WRITE(GEN6_RC_CONTROL, 0);
3850
3851 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3852 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3853 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3854 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3855 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3856
3857 for_each_ring(ring, dev_priv, i)
3858 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3859
3860 I915_WRITE(GEN6_RC_SLEEP, 0);
3861 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3862 if (IS_IVYBRIDGE(dev))
3863 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3864 else
3865 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3866 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3867 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3868
3869 /* Check if we are enabling RC6 */
3870 rc6_mode = intel_enable_rc6(dev_priv->dev);
3871 if (rc6_mode & INTEL_RC6_ENABLE)
3872 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3873
3874 /* We don't use those on Haswell */
3875 if (!IS_HASWELL(dev)) {
3876 if (rc6_mode & INTEL_RC6p_ENABLE)
3877 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3878
3879 if (rc6_mode & INTEL_RC6pp_ENABLE)
3880 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3881 }
3882
3883 intel_print_rc6_info(dev, rc6_mask);
3884
3885 I915_WRITE(GEN6_RC_CONTROL,
3886 rc6_mask |
3887 GEN6_RC_CTL_EI_MODE(1) |
3888 GEN6_RC_CTL_HW_ENABLE);
3889
3890 /* Power down if completely idle for over 50ms */
3891 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3892 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3893
3894 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3895 if (!ret) {
3896 pcu_mbox = 0;
3897 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3898 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3899 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3900 (dev_priv->rps.max_delay & 0xff) * 50,
3901 (pcu_mbox & 0xff) * 50);
3902 dev_priv->rps.hw_max = pcu_mbox & 0xff;
3903 }
3904 } else {
3905 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3906 }
3907
3908 dev_priv->rps.power = HIGH_POWER; /* force a reset */
3909 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3910
3911 gen6_enable_rps_interrupts(dev);
3912
3913 rc6vids = 0;
3914 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3915 if (IS_GEN6(dev) && ret) {
3916 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3917 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3918 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3919 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3920 rc6vids &= 0xffff00;
3921 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3922 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3923 if (ret)
3924 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3925 }
3926
3927 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3928 }
3929
3930 void gen6_update_ring_freq(struct drm_device *dev)
3931 {
3932 struct drm_i915_private *dev_priv = dev->dev_private;
3933 int min_freq = 15;
3934 unsigned int gpu_freq;
3935 unsigned int max_ia_freq, min_ring_freq;
3936 int scaling_factor = 180;
3937 struct cpufreq_policy *policy;
3938
3939 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3940
3941 policy = cpufreq_cpu_get(0);
3942 if (policy) {
3943 max_ia_freq = policy->cpuinfo.max_freq;
3944 cpufreq_cpu_put(policy);
3945 } else {
3946 /*
3947 * Default to measured freq if none found, PCU will ensure we
3948 * don't go over
3949 */
3950 max_ia_freq = tsc_khz;
3951 }
3952
3953 /* Convert from kHz to MHz */
3954 max_ia_freq /= 1000;
3955
3956 min_ring_freq = I915_READ(DCLK) & 0xf;
3957 /* convert DDR frequency from units of 266.6MHz to bandwidth */
3958 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3959
3960 /*
3961 * For each potential GPU frequency, load a ring frequency we'd like
3962 * to use for memory access. We do this by specifying the IA frequency
3963 * the PCU should use as a reference to determine the ring frequency.
3964 */
3965 for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3966 gpu_freq--) {
3967 int diff = dev_priv->rps.max_delay - gpu_freq;
3968 unsigned int ia_freq = 0, ring_freq = 0;
3969
3970 if (INTEL_INFO(dev)->gen >= 8) {
3971 /* max(2 * GT, DDR). NB: GT is 50MHz units */
3972 ring_freq = max(min_ring_freq, gpu_freq);
3973 } else if (IS_HASWELL(dev)) {
3974 ring_freq = mult_frac(gpu_freq, 5, 4);
3975 ring_freq = max(min_ring_freq, ring_freq);
3976 /* leave ia_freq as the default, chosen by cpufreq */
3977 } else {
3978 /* On older processors, there is no separate ring
3979 * clock domain, so in order to boost the bandwidth
3980 * of the ring, we need to upclock the CPU (ia_freq).
3981 *
3982 * For GPU frequencies less than 750MHz,
3983 * just use the lowest ring freq.
3984 */
3985 if (gpu_freq < min_freq)
3986 ia_freq = 800;
3987 else
3988 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3989 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3990 }
3991
3992 sandybridge_pcode_write(dev_priv,
3993 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3994 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3995 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3996 gpu_freq);
3997 }
3998 }
3999
4000 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4001 {
4002 u32 val, rp0;
4003
4004 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4005
4006 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
4007 /* Clamp to max */
4008 rp0 = min_t(u32, rp0, 0xea);
4009
4010 return rp0;
4011 }
4012
4013 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4014 {
4015 u32 val, rpe;
4016
4017 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4018 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4019 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4020 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
4021
4022 return rpe;
4023 }
4024
4025 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4026 {
4027 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4028 }
4029
4030 static void valleyview_setup_pctx(struct drm_device *dev)
4031 {
4032 struct drm_i915_private *dev_priv = dev->dev_private;
4033 struct drm_i915_gem_object *pctx;
4034 unsigned long pctx_paddr;
4035 u32 pcbr;
4036 int pctx_size = 24*1024;
4037
4038 pcbr = I915_READ(VLV_PCBR);
4039 if (pcbr) {
4040 /* BIOS set it up already, grab the pre-alloc'd space */
4041 int pcbr_offset;
4042
4043 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
4044 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
4045 pcbr_offset,
4046 I915_GTT_OFFSET_NONE,
4047 pctx_size);
4048 goto out;
4049 }
4050
4051 /*
4052 * From the Gunit register HAS:
4053 * The Gfx driver is expected to program this register and ensure
4054 * proper allocation within Gfx stolen memory. For example, this
4055 * register should be programmed such than the PCBR range does not
4056 * overlap with other ranges, such as the frame buffer, protected
4057 * memory, or any other relevant ranges.
4058 */
4059 pctx = i915_gem_object_create_stolen(dev, pctx_size);
4060 if (!pctx) {
4061 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
4062 return;
4063 }
4064
4065 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
4066 I915_WRITE(VLV_PCBR, pctx_paddr);
4067
4068 out:
4069 dev_priv->vlv_pctx = pctx;
4070 }
4071
4072 static void valleyview_enable_rps(struct drm_device *dev)
4073 {
4074 struct drm_i915_private *dev_priv = dev->dev_private;
4075 struct intel_ring_buffer *ring;
4076 u32 gtfifodbg, val, rc6_mode = 0;
4077 int i;
4078
4079 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4080
4081 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4082 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4083 gtfifodbg);
4084 I915_WRITE(GTFIFODBG, gtfifodbg);
4085 }
4086
4087 valleyview_setup_pctx(dev);
4088
4089 /* If VLV, Forcewake all wells, else re-direct to regular path */
4090 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4091
4092 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4093 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4094 I915_WRITE(GEN6_RP_UP_EI, 66000);
4095 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4096
4097 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4098
4099 I915_WRITE(GEN6_RP_CONTROL,
4100 GEN6_RP_MEDIA_TURBO |
4101 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4102 GEN6_RP_MEDIA_IS_GFX |
4103 GEN6_RP_ENABLE |
4104 GEN6_RP_UP_BUSY_AVG |
4105 GEN6_RP_DOWN_IDLE_CONT);
4106
4107 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
4108 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4109 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4110
4111 for_each_ring(ring, dev_priv, i)
4112 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4113
4114 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4115
4116 /* allows RC6 residency counter to work */
4117 I915_WRITE(VLV_COUNTER_CONTROL,
4118 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4119 VLV_MEDIA_RC6_COUNT_EN |
4120 VLV_RENDER_RC6_COUNT_EN));
4121 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4122 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4123
4124 intel_print_rc6_info(dev, rc6_mode);
4125
4126 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4127
4128 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4129
4130 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4131 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4132
4133 dev_priv->rps.cur_delay = (val >> 8) & 0xff;
4134 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4135 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
4136 dev_priv->rps.cur_delay);
4137
4138 dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
4139 dev_priv->rps.hw_max = dev_priv->rps.max_delay;
4140 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4141 vlv_gpu_freq(dev_priv, dev_priv->rps.max_delay),
4142 dev_priv->rps.max_delay);
4143
4144 dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
4145 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4146 vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
4147 dev_priv->rps.rpe_delay);
4148
4149 dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
4150 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4151 vlv_gpu_freq(dev_priv, dev_priv->rps.min_delay),
4152 dev_priv->rps.min_delay);
4153
4154 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4155 vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
4156 dev_priv->rps.rpe_delay);
4157
4158 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
4159
4160 gen6_enable_rps_interrupts(dev);
4161
4162 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4163 }
4164
4165 void ironlake_teardown_rc6(struct drm_device *dev)
4166 {
4167 struct drm_i915_private *dev_priv = dev->dev_private;
4168
4169 if (dev_priv->ips.renderctx) {
4170 i915_gem_object_unpin(dev_priv->ips.renderctx);
4171 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
4172 dev_priv->ips.renderctx = NULL;
4173 }
4174
4175 if (dev_priv->ips.pwrctx) {
4176 i915_gem_object_unpin(dev_priv->ips.pwrctx);
4177 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
4178 dev_priv->ips.pwrctx = NULL;
4179 }
4180 }
4181
4182 static void ironlake_disable_rc6(struct drm_device *dev)
4183 {
4184 struct drm_i915_private *dev_priv = dev->dev_private;
4185
4186 if (I915_READ(PWRCTXA)) {
4187 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
4188 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
4189 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
4190 50);
4191
4192 I915_WRITE(PWRCTXA, 0);
4193 POSTING_READ(PWRCTXA);
4194
4195 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4196 POSTING_READ(RSTDBYCTL);
4197 }
4198 }
4199
4200 static int ironlake_setup_rc6(struct drm_device *dev)
4201 {
4202 struct drm_i915_private *dev_priv = dev->dev_private;
4203
4204 if (dev_priv->ips.renderctx == NULL)
4205 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
4206 if (!dev_priv->ips.renderctx)
4207 return -ENOMEM;
4208
4209 if (dev_priv->ips.pwrctx == NULL)
4210 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
4211 if (!dev_priv->ips.pwrctx) {
4212 ironlake_teardown_rc6(dev);
4213 return -ENOMEM;
4214 }
4215
4216 return 0;
4217 }
4218
4219 static void ironlake_enable_rc6(struct drm_device *dev)
4220 {
4221 struct drm_i915_private *dev_priv = dev->dev_private;
4222 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
4223 bool was_interruptible;
4224 int ret;
4225
4226 /* rc6 disabled by default due to repeated reports of hanging during
4227 * boot and resume.
4228 */
4229 if (!intel_enable_rc6(dev))
4230 return;
4231
4232 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4233
4234 ret = ironlake_setup_rc6(dev);
4235 if (ret)
4236 return;
4237
4238 was_interruptible = dev_priv->mm.interruptible;
4239 dev_priv->mm.interruptible = false;
4240
4241 /*
4242 * GPU can automatically power down the render unit if given a page
4243 * to save state.
4244 */
4245 ret = intel_ring_begin(ring, 6);
4246 if (ret) {
4247 ironlake_teardown_rc6(dev);
4248 dev_priv->mm.interruptible = was_interruptible;
4249 return;
4250 }
4251
4252 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
4253 intel_ring_emit(ring, MI_SET_CONTEXT);
4254 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4255 MI_MM_SPACE_GTT |
4256 MI_SAVE_EXT_STATE_EN |
4257 MI_RESTORE_EXT_STATE_EN |
4258 MI_RESTORE_INHIBIT);
4259 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
4260 intel_ring_emit(ring, MI_NOOP);
4261 intel_ring_emit(ring, MI_FLUSH);
4262 intel_ring_advance(ring);
4263
4264 /*
4265 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
4266 * does an implicit flush, combined with MI_FLUSH above, it should be
4267 * safe to assume that renderctx is valid
4268 */
4269 ret = intel_ring_idle(ring);
4270 dev_priv->mm.interruptible = was_interruptible;
4271 if (ret) {
4272 DRM_ERROR("failed to enable ironlake power savings\n");
4273 ironlake_teardown_rc6(dev);
4274 return;
4275 }
4276
4277 I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4278 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4279
4280 intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
4281 }
4282
4283 static unsigned long intel_pxfreq(u32 vidfreq)
4284 {
4285 unsigned long freq;
4286 int div = (vidfreq & 0x3f0000) >> 16;
4287 int post = (vidfreq & 0x3000) >> 12;
4288 int pre = (vidfreq & 0x7);
4289
4290 if (!pre)
4291 return 0;
4292
4293 freq = ((div * 133333) / ((1<<post) * pre));
4294
4295 return freq;
4296 }
4297
4298 static const struct cparams {
4299 u16 i;
4300 u16 t;
4301 u16 m;
4302 u16 c;
4303 } cparams[] = {
4304 { 1, 1333, 301, 28664 },
4305 { 1, 1066, 294, 24460 },
4306 { 1, 800, 294, 25192 },
4307 { 0, 1333, 276, 27605 },
4308 { 0, 1066, 276, 27605 },
4309 { 0, 800, 231, 23784 },
4310 };
4311
4312 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4313 {
4314 u64 total_count, diff, ret;
4315 u32 count1, count2, count3, m = 0, c = 0;
4316 unsigned long now = jiffies_to_msecs(jiffies), diff1;
4317 int i;
4318
4319 assert_spin_locked(&mchdev_lock);
4320
4321 diff1 = now - dev_priv->ips.last_time1;
4322
4323 /* Prevent division-by-zero if we are asking too fast.
4324 * Also, we don't get interesting results if we are polling
4325 * faster than once in 10ms, so just return the saved value
4326 * in such cases.
4327 */
4328 if (diff1 <= 10)
4329 return dev_priv->ips.chipset_power;
4330
4331 count1 = I915_READ(DMIEC);
4332 count2 = I915_READ(DDREC);
4333 count3 = I915_READ(CSIEC);
4334
4335 total_count = count1 + count2 + count3;
4336
4337 /* FIXME: handle per-counter overflow */
4338 if (total_count < dev_priv->ips.last_count1) {
4339 diff = ~0UL - dev_priv->ips.last_count1;
4340 diff += total_count;
4341 } else {
4342 diff = total_count - dev_priv->ips.last_count1;
4343 }
4344
4345 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4346 if (cparams[i].i == dev_priv->ips.c_m &&
4347 cparams[i].t == dev_priv->ips.r_t) {
4348 m = cparams[i].m;
4349 c = cparams[i].c;
4350 break;
4351 }
4352 }
4353
4354 diff = div_u64(diff, diff1);
4355 ret = ((m * diff) + c);
4356 ret = div_u64(ret, 10);
4357
4358 dev_priv->ips.last_count1 = total_count;
4359 dev_priv->ips.last_time1 = now;
4360
4361 dev_priv->ips.chipset_power = ret;
4362
4363 return ret;
4364 }
4365
4366 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4367 {
4368 unsigned long val;
4369
4370 if (dev_priv->info->gen != 5)
4371 return 0;
4372
4373 spin_lock_irq(&mchdev_lock);
4374
4375 val = __i915_chipset_val(dev_priv);
4376
4377 spin_unlock_irq(&mchdev_lock);
4378
4379 return val;
4380 }
4381
4382 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4383 {
4384 unsigned long m, x, b;
4385 u32 tsfs;
4386
4387 tsfs = I915_READ(TSFS);
4388
4389 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4390 x = I915_READ8(TR1);
4391
4392 b = tsfs & TSFS_INTR_MASK;
4393
4394 return ((m * x) / 127) - b;
4395 }
4396
4397 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4398 {
4399 static const struct v_table {
4400 u16 vd; /* in .1 mil */
4401 u16 vm; /* in .1 mil */
4402 } v_table[] = {
4403 { 0, 0, },
4404 { 375, 0, },
4405 { 500, 0, },
4406 { 625, 0, },
4407 { 750, 0, },
4408 { 875, 0, },
4409 { 1000, 0, },
4410 { 1125, 0, },
4411 { 4125, 3000, },
4412 { 4125, 3000, },
4413 { 4125, 3000, },
4414 { 4125, 3000, },
4415 { 4125, 3000, },
4416 { 4125, 3000, },
4417 { 4125, 3000, },
4418 { 4125, 3000, },
4419 { 4125, 3000, },
4420 { 4125, 3000, },
4421 { 4125, 3000, },
4422 { 4125, 3000, },
4423 { 4125, 3000, },
4424 { 4125, 3000, },
4425 { 4125, 3000, },
4426 { 4125, 3000, },
4427 { 4125, 3000, },
4428 { 4125, 3000, },
4429 { 4125, 3000, },
4430 { 4125, 3000, },
4431 { 4125, 3000, },
4432 { 4125, 3000, },
4433 { 4125, 3000, },
4434 { 4125, 3000, },
4435 { 4250, 3125, },
4436 { 4375, 3250, },
4437 { 4500, 3375, },
4438 { 4625, 3500, },
4439 { 4750, 3625, },
4440 { 4875, 3750, },
4441 { 5000, 3875, },
4442 { 5125, 4000, },
4443 { 5250, 4125, },
4444 { 5375, 4250, },
4445 { 5500, 4375, },
4446 { 5625, 4500, },
4447 { 5750, 4625, },
4448 { 5875, 4750, },
4449 { 6000, 4875, },
4450 { 6125, 5000, },
4451 { 6250, 5125, },
4452 { 6375, 5250, },
4453 { 6500, 5375, },
4454 { 6625, 5500, },
4455 { 6750, 5625, },
4456 { 6875, 5750, },
4457 { 7000, 5875, },
4458 { 7125, 6000, },
4459 { 7250, 6125, },
4460 { 7375, 6250, },
4461 { 7500, 6375, },
4462 { 7625, 6500, },
4463 { 7750, 6625, },
4464 { 7875, 6750, },
4465 { 8000, 6875, },
4466 { 8125, 7000, },
4467 { 8250, 7125, },
4468 { 8375, 7250, },
4469 { 8500, 7375, },
4470 { 8625, 7500, },
4471 { 8750, 7625, },
4472 { 8875, 7750, },
4473 { 9000, 7875, },
4474 { 9125, 8000, },
4475 { 9250, 8125, },
4476 { 9375, 8250, },
4477 { 9500, 8375, },
4478 { 9625, 8500, },
4479 { 9750, 8625, },
4480 { 9875, 8750, },
4481 { 10000, 8875, },
4482 { 10125, 9000, },
4483 { 10250, 9125, },
4484 { 10375, 9250, },
4485 { 10500, 9375, },
4486 { 10625, 9500, },
4487 { 10750, 9625, },
4488 { 10875, 9750, },
4489 { 11000, 9875, },
4490 { 11125, 10000, },
4491 { 11250, 10125, },
4492 { 11375, 10250, },
4493 { 11500, 10375, },
4494 { 11625, 10500, },
4495 { 11750, 10625, },
4496 { 11875, 10750, },
4497 { 12000, 10875, },
4498 { 12125, 11000, },
4499 { 12250, 11125, },
4500 { 12375, 11250, },
4501 { 12500, 11375, },
4502 { 12625, 11500, },
4503 { 12750, 11625, },
4504 { 12875, 11750, },
4505 { 13000, 11875, },
4506 { 13125, 12000, },
4507 { 13250, 12125, },
4508 { 13375, 12250, },
4509 { 13500, 12375, },
4510 { 13625, 12500, },
4511 { 13750, 12625, },
4512 { 13875, 12750, },
4513 { 14000, 12875, },
4514 { 14125, 13000, },
4515 { 14250, 13125, },
4516 { 14375, 13250, },
4517 { 14500, 13375, },
4518 { 14625, 13500, },
4519 { 14750, 13625, },
4520 { 14875, 13750, },
4521 { 15000, 13875, },
4522 { 15125, 14000, },
4523 { 15250, 14125, },
4524 { 15375, 14250, },
4525 { 15500, 14375, },
4526 { 15625, 14500, },
4527 { 15750, 14625, },
4528 { 15875, 14750, },
4529 { 16000, 14875, },
4530 { 16125, 15000, },
4531 };
4532 if (dev_priv->info->is_mobile)
4533 return v_table[pxvid].vm;
4534 else
4535 return v_table[pxvid].vd;
4536 }
4537
4538 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4539 {
4540 struct timespec now, diff1;
4541 u64 diff;
4542 unsigned long diffms;
4543 u32 count;
4544
4545 assert_spin_locked(&mchdev_lock);
4546
4547 getrawmonotonic(&now);
4548 diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4549
4550 /* Don't divide by 0 */
4551 diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4552 if (!diffms)
4553 return;
4554
4555 count = I915_READ(GFXEC);
4556
4557 if (count < dev_priv->ips.last_count2) {
4558 diff = ~0UL - dev_priv->ips.last_count2;
4559 diff += count;
4560 } else {
4561 diff = count - dev_priv->ips.last_count2;
4562 }
4563
4564 dev_priv->ips.last_count2 = count;
4565 dev_priv->ips.last_time2 = now;
4566
4567 /* More magic constants... */
4568 diff = diff * 1181;
4569 diff = div_u64(diff, diffms * 10);
4570 dev_priv->ips.gfx_power = diff;
4571 }
4572
4573 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4574 {
4575 if (dev_priv->info->gen != 5)
4576 return;
4577
4578 spin_lock_irq(&mchdev_lock);
4579
4580 __i915_update_gfx_val(dev_priv);
4581
4582 spin_unlock_irq(&mchdev_lock);
4583 }
4584
4585 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4586 {
4587 unsigned long t, corr, state1, corr2, state2;
4588 u32 pxvid, ext_v;
4589
4590 assert_spin_locked(&mchdev_lock);
4591
4592 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4593 pxvid = (pxvid >> 24) & 0x7f;
4594 ext_v = pvid_to_extvid(dev_priv, pxvid);
4595
4596 state1 = ext_v;
4597
4598 t = i915_mch_val(dev_priv);
4599
4600 /* Revel in the empirically derived constants */
4601
4602 /* Correction factor in 1/100000 units */
4603 if (t > 80)
4604 corr = ((t * 2349) + 135940);
4605 else if (t >= 50)
4606 corr = ((t * 964) + 29317);
4607 else /* < 50 */
4608 corr = ((t * 301) + 1004);
4609
4610 corr = corr * ((150142 * state1) / 10000 - 78642);
4611 corr /= 100000;
4612 corr2 = (corr * dev_priv->ips.corr);
4613
4614 state2 = (corr2 * state1) / 10000;
4615 state2 /= 100; /* convert to mW */
4616
4617 __i915_update_gfx_val(dev_priv);
4618
4619 return dev_priv->ips.gfx_power + state2;
4620 }
4621
4622 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4623 {
4624 unsigned long val;
4625
4626 if (dev_priv->info->gen != 5)
4627 return 0;
4628
4629 spin_lock_irq(&mchdev_lock);
4630
4631 val = __i915_gfx_val(dev_priv);
4632
4633 spin_unlock_irq(&mchdev_lock);
4634
4635 return val;
4636 }
4637
4638 /**
4639 * i915_read_mch_val - return value for IPS use
4640 *
4641 * Calculate and return a value for the IPS driver to use when deciding whether
4642 * we have thermal and power headroom to increase CPU or GPU power budget.
4643 */
4644 unsigned long i915_read_mch_val(void)
4645 {
4646 struct drm_i915_private *dev_priv;
4647 unsigned long chipset_val, graphics_val, ret = 0;
4648
4649 spin_lock_irq(&mchdev_lock);
4650 if (!i915_mch_dev)
4651 goto out_unlock;
4652 dev_priv = i915_mch_dev;
4653
4654 chipset_val = __i915_chipset_val(dev_priv);
4655 graphics_val = __i915_gfx_val(dev_priv);
4656
4657 ret = chipset_val + graphics_val;
4658
4659 out_unlock:
4660 spin_unlock_irq(&mchdev_lock);
4661
4662 return ret;
4663 }
4664 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4665
4666 /**
4667 * i915_gpu_raise - raise GPU frequency limit
4668 *
4669 * Raise the limit; IPS indicates we have thermal headroom.
4670 */
4671 bool i915_gpu_raise(void)
4672 {
4673 struct drm_i915_private *dev_priv;
4674 bool ret = true;
4675
4676 spin_lock_irq(&mchdev_lock);
4677 if (!i915_mch_dev) {
4678 ret = false;
4679 goto out_unlock;
4680 }
4681 dev_priv = i915_mch_dev;
4682
4683 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4684 dev_priv->ips.max_delay--;
4685
4686 out_unlock:
4687 spin_unlock_irq(&mchdev_lock);
4688
4689 return ret;
4690 }
4691 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4692
4693 /**
4694 * i915_gpu_lower - lower GPU frequency limit
4695 *
4696 * IPS indicates we're close to a thermal limit, so throttle back the GPU
4697 * frequency maximum.
4698 */
4699 bool i915_gpu_lower(void)
4700 {
4701 struct drm_i915_private *dev_priv;
4702 bool ret = true;
4703
4704 spin_lock_irq(&mchdev_lock);
4705 if (!i915_mch_dev) {
4706 ret = false;
4707 goto out_unlock;
4708 }
4709 dev_priv = i915_mch_dev;
4710
4711 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4712 dev_priv->ips.max_delay++;
4713
4714 out_unlock:
4715 spin_unlock_irq(&mchdev_lock);
4716
4717 return ret;
4718 }
4719 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4720
4721 /**
4722 * i915_gpu_busy - indicate GPU business to IPS
4723 *
4724 * Tell the IPS driver whether or not the GPU is busy.
4725 */
4726 bool i915_gpu_busy(void)
4727 {
4728 struct drm_i915_private *dev_priv;
4729 struct intel_ring_buffer *ring;
4730 bool ret = false;
4731 int i;
4732
4733 spin_lock_irq(&mchdev_lock);
4734 if (!i915_mch_dev)
4735 goto out_unlock;
4736 dev_priv = i915_mch_dev;
4737
4738 for_each_ring(ring, dev_priv, i)
4739 ret |= !list_empty(&ring->request_list);
4740
4741 out_unlock:
4742 spin_unlock_irq(&mchdev_lock);
4743
4744 return ret;
4745 }
4746 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4747
4748 /**
4749 * i915_gpu_turbo_disable - disable graphics turbo
4750 *
4751 * Disable graphics turbo by resetting the max frequency and setting the
4752 * current frequency to the default.
4753 */
4754 bool i915_gpu_turbo_disable(void)
4755 {
4756 struct drm_i915_private *dev_priv;
4757 bool ret = true;
4758
4759 spin_lock_irq(&mchdev_lock);
4760 if (!i915_mch_dev) {
4761 ret = false;
4762 goto out_unlock;
4763 }
4764 dev_priv = i915_mch_dev;
4765
4766 dev_priv->ips.max_delay = dev_priv->ips.fstart;
4767
4768 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4769 ret = false;
4770
4771 out_unlock:
4772 spin_unlock_irq(&mchdev_lock);
4773
4774 return ret;
4775 }
4776 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4777
4778 /**
4779 * Tells the intel_ips driver that the i915 driver is now loaded, if
4780 * IPS got loaded first.
4781 *
4782 * This awkward dance is so that neither module has to depend on the
4783 * other in order for IPS to do the appropriate communication of
4784 * GPU turbo limits to i915.
4785 */
4786 static void
4787 ips_ping_for_i915_load(void)
4788 {
4789 void (*link)(void);
4790
4791 link = symbol_get(ips_link_to_i915_driver);
4792 if (link) {
4793 link();
4794 symbol_put(ips_link_to_i915_driver);
4795 }
4796 }
4797
4798 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4799 {
4800 /* We only register the i915 ips part with intel-ips once everything is
4801 * set up, to avoid intel-ips sneaking in and reading bogus values. */
4802 spin_lock_irq(&mchdev_lock);
4803 i915_mch_dev = dev_priv;
4804 spin_unlock_irq(&mchdev_lock);
4805
4806 ips_ping_for_i915_load();
4807 }
4808
4809 void intel_gpu_ips_teardown(void)
4810 {
4811 spin_lock_irq(&mchdev_lock);
4812 i915_mch_dev = NULL;
4813 spin_unlock_irq(&mchdev_lock);
4814 }
4815 static void intel_init_emon(struct drm_device *dev)
4816 {
4817 struct drm_i915_private *dev_priv = dev->dev_private;
4818 u32 lcfuse;
4819 u8 pxw[16];
4820 int i;
4821
4822 /* Disable to program */
4823 I915_WRITE(ECR, 0);
4824 POSTING_READ(ECR);
4825
4826 /* Program energy weights for various events */
4827 I915_WRITE(SDEW, 0x15040d00);
4828 I915_WRITE(CSIEW0, 0x007f0000);
4829 I915_WRITE(CSIEW1, 0x1e220004);
4830 I915_WRITE(CSIEW2, 0x04000004);
4831
4832 for (i = 0; i < 5; i++)
4833 I915_WRITE(PEW + (i * 4), 0);
4834 for (i = 0; i < 3; i++)
4835 I915_WRITE(DEW + (i * 4), 0);
4836
4837 /* Program P-state weights to account for frequency power adjustment */
4838 for (i = 0; i < 16; i++) {
4839 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4840 unsigned long freq = intel_pxfreq(pxvidfreq);
4841 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4842 PXVFREQ_PX_SHIFT;
4843 unsigned long val;
4844
4845 val = vid * vid;
4846 val *= (freq / 1000);
4847 val *= 255;
4848 val /= (127*127*900);
4849 if (val > 0xff)
4850 DRM_ERROR("bad pxval: %ld\n", val);
4851 pxw[i] = val;
4852 }
4853 /* Render standby states get 0 weight */
4854 pxw[14] = 0;
4855 pxw[15] = 0;
4856
4857 for (i = 0; i < 4; i++) {
4858 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4859 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4860 I915_WRITE(PXW + (i * 4), val);
4861 }
4862
4863 /* Adjust magic regs to magic values (more experimental results) */
4864 I915_WRITE(OGW0, 0);
4865 I915_WRITE(OGW1, 0);
4866 I915_WRITE(EG0, 0x00007f00);
4867 I915_WRITE(EG1, 0x0000000e);
4868 I915_WRITE(EG2, 0x000e0000);
4869 I915_WRITE(EG3, 0x68000300);
4870 I915_WRITE(EG4, 0x42000000);
4871 I915_WRITE(EG5, 0x00140031);
4872 I915_WRITE(EG6, 0);
4873 I915_WRITE(EG7, 0);
4874
4875 for (i = 0; i < 8; i++)
4876 I915_WRITE(PXWL + (i * 4), 0);
4877
4878 /* Enable PMON + select events */
4879 I915_WRITE(ECR, 0x80000019);
4880
4881 lcfuse = I915_READ(LCFUSE02);
4882
4883 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4884 }
4885
4886 void intel_disable_gt_powersave(struct drm_device *dev)
4887 {
4888 struct drm_i915_private *dev_priv = dev->dev_private;
4889
4890 /* Interrupts should be disabled already to avoid re-arming. */
4891 WARN_ON(dev->irq_enabled);
4892
4893 if (IS_IRONLAKE_M(dev)) {
4894 ironlake_disable_drps(dev);
4895 ironlake_disable_rc6(dev);
4896 } else if (INTEL_INFO(dev)->gen >= 6) {
4897 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4898 cancel_work_sync(&dev_priv->rps.work);
4899 mutex_lock(&dev_priv->rps.hw_lock);
4900 if (IS_VALLEYVIEW(dev))
4901 valleyview_disable_rps(dev);
4902 else
4903 gen6_disable_rps(dev);
4904 dev_priv->rps.enabled = false;
4905 mutex_unlock(&dev_priv->rps.hw_lock);
4906 }
4907 }
4908
4909 static void intel_gen6_powersave_work(struct work_struct *work)
4910 {
4911 struct drm_i915_private *dev_priv =
4912 container_of(work, struct drm_i915_private,
4913 rps.delayed_resume_work.work);
4914 struct drm_device *dev = dev_priv->dev;
4915
4916 mutex_lock(&dev_priv->rps.hw_lock);
4917
4918 if (IS_VALLEYVIEW(dev)) {
4919 valleyview_enable_rps(dev);
4920 } else if (IS_BROADWELL(dev)) {
4921 gen8_enable_rps(dev);
4922 gen6_update_ring_freq(dev);
4923 } else {
4924 gen6_enable_rps(dev);
4925 gen6_update_ring_freq(dev);
4926 }
4927 dev_priv->rps.enabled = true;
4928 mutex_unlock(&dev_priv->rps.hw_lock);
4929 }
4930
4931 void intel_enable_gt_powersave(struct drm_device *dev)
4932 {
4933 struct drm_i915_private *dev_priv = dev->dev_private;
4934
4935 if (IS_IRONLAKE_M(dev)) {
4936 ironlake_enable_drps(dev);
4937 ironlake_enable_rc6(dev);
4938 intel_init_emon(dev);
4939 } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4940 /*
4941 * PCU communication is slow and this doesn't need to be
4942 * done at any specific time, so do this out of our fast path
4943 * to make resume and init faster.
4944 */
4945 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4946 round_jiffies_up_relative(HZ));
4947 }
4948 }
4949
4950 static void ibx_init_clock_gating(struct drm_device *dev)
4951 {
4952 struct drm_i915_private *dev_priv = dev->dev_private;
4953
4954 /*
4955 * On Ibex Peak and Cougar Point, we need to disable clock
4956 * gating for the panel power sequencer or it will fail to
4957 * start up when no ports are active.
4958 */
4959 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4960 }
4961
4962 static void g4x_disable_trickle_feed(struct drm_device *dev)
4963 {
4964 struct drm_i915_private *dev_priv = dev->dev_private;
4965 int pipe;
4966
4967 for_each_pipe(pipe) {
4968 I915_WRITE(DSPCNTR(pipe),
4969 I915_READ(DSPCNTR(pipe)) |
4970 DISPPLANE_TRICKLE_FEED_DISABLE);
4971 intel_flush_primary_plane(dev_priv, pipe);
4972 }
4973 }
4974
4975 static void ironlake_init_clock_gating(struct drm_device *dev)
4976 {
4977 struct drm_i915_private *dev_priv = dev->dev_private;
4978 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4979
4980 /*
4981 * Required for FBC
4982 * WaFbcDisableDpfcClockGating:ilk
4983 */
4984 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4985 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4986 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4987
4988 I915_WRITE(PCH_3DCGDIS0,
4989 MARIUNIT_CLOCK_GATE_DISABLE |
4990 SVSMUNIT_CLOCK_GATE_DISABLE);
4991 I915_WRITE(PCH_3DCGDIS1,
4992 VFMUNIT_CLOCK_GATE_DISABLE);
4993
4994 /*
4995 * According to the spec the following bits should be set in
4996 * order to enable memory self-refresh
4997 * The bit 22/21 of 0x42004
4998 * The bit 5 of 0x42020
4999 * The bit 15 of 0x45000
5000 */
5001 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5002 (I915_READ(ILK_DISPLAY_CHICKEN2) |
5003 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5004 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5005 I915_WRITE(DISP_ARB_CTL,
5006 (I915_READ(DISP_ARB_CTL) |
5007 DISP_FBC_WM_DIS));
5008 I915_WRITE(WM3_LP_ILK, 0);
5009 I915_WRITE(WM2_LP_ILK, 0);
5010 I915_WRITE(WM1_LP_ILK, 0);
5011
5012 /*
5013 * Based on the document from hardware guys the following bits
5014 * should be set unconditionally in order to enable FBC.
5015 * The bit 22 of 0x42000
5016 * The bit 22 of 0x42004
5017 * The bit 7,8,9 of 0x42020.
5018 */
5019 if (IS_IRONLAKE_M(dev)) {
5020 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
5021 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5022 I915_READ(ILK_DISPLAY_CHICKEN1) |
5023 ILK_FBCQ_DIS);
5024 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5025 I915_READ(ILK_DISPLAY_CHICKEN2) |
5026 ILK_DPARB_GATE);
5027 }
5028
5029 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5030
5031 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5032 I915_READ(ILK_DISPLAY_CHICKEN2) |
5033 ILK_ELPIN_409_SELECT);
5034 I915_WRITE(_3D_CHICKEN2,
5035 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5036 _3D_CHICKEN2_WM_READ_PIPELINED);
5037
5038 /* WaDisableRenderCachePipelinedFlush:ilk */
5039 I915_WRITE(CACHE_MODE_0,
5040 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5041
5042 g4x_disable_trickle_feed(dev);
5043
5044 ibx_init_clock_gating(dev);
5045 }
5046
5047 static void cpt_init_clock_gating(struct drm_device *dev)
5048 {
5049 struct drm_i915_private *dev_priv = dev->dev_private;
5050 int pipe;
5051 uint32_t val;
5052
5053 /*
5054 * On Ibex Peak and Cougar Point, we need to disable clock
5055 * gating for the panel power sequencer or it will fail to
5056 * start up when no ports are active.
5057 */
5058 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5059 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5060 PCH_CPUNIT_CLOCK_GATE_DISABLE);
5061 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5062 DPLS_EDP_PPS_FIX_DIS);
5063 /* The below fixes the weird display corruption, a few pixels shifted
5064 * downward, on (only) LVDS of some HP laptops with IVY.
5065 */
5066 for_each_pipe(pipe) {
5067 val = I915_READ(TRANS_CHICKEN2(pipe));
5068 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5069 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5070 if (dev_priv->vbt.fdi_rx_polarity_inverted)
5071 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5072 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5073 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5074 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5075 I915_WRITE(TRANS_CHICKEN2(pipe), val);
5076 }
5077 /* WADP0ClockGatingDisable */
5078 for_each_pipe(pipe) {
5079 I915_WRITE(TRANS_CHICKEN1(pipe),
5080 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5081 }
5082 }
5083
5084 static void gen6_check_mch_setup(struct drm_device *dev)
5085 {
5086 struct drm_i915_private *dev_priv = dev->dev_private;
5087 uint32_t tmp;
5088
5089 tmp = I915_READ(MCH_SSKPD);
5090 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
5091 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
5092 DRM_INFO("This can cause pipe underruns and display issues.\n");
5093 DRM_INFO("Please upgrade your BIOS to fix this.\n");
5094 }
5095 }
5096
5097 static void gen6_init_clock_gating(struct drm_device *dev)
5098 {
5099 struct drm_i915_private *dev_priv = dev->dev_private;
5100 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5101
5102 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5103
5104 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5105 I915_READ(ILK_DISPLAY_CHICKEN2) |
5106 ILK_ELPIN_409_SELECT);
5107
5108 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5109 I915_WRITE(_3D_CHICKEN,
5110 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5111
5112 /* WaSetupGtModeTdRowDispatch:snb */
5113 if (IS_SNB_GT1(dev))
5114 I915_WRITE(GEN6_GT_MODE,
5115 _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
5116
5117 I915_WRITE(WM3_LP_ILK, 0);
5118 I915_WRITE(WM2_LP_ILK, 0);
5119 I915_WRITE(WM1_LP_ILK, 0);
5120
5121 I915_WRITE(CACHE_MODE_0,
5122 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5123
5124 I915_WRITE(GEN6_UCGCTL1,
5125 I915_READ(GEN6_UCGCTL1) |
5126 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5127 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5128
5129 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5130 * gating disable must be set. Failure to set it results in
5131 * flickering pixels due to Z write ordering failures after
5132 * some amount of runtime in the Mesa "fire" demo, and Unigine
5133 * Sanctuary and Tropics, and apparently anything else with
5134 * alpha test or pixel discard.
5135 *
5136 * According to the spec, bit 11 (RCCUNIT) must also be set,
5137 * but we didn't debug actual testcases to find it out.
5138 *
5139 * Also apply WaDisableVDSUnitClockGating:snb and
5140 * WaDisableRCPBUnitClockGating:snb.
5141 */
5142 I915_WRITE(GEN6_UCGCTL2,
5143 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
5144 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5145 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5146
5147 /* Bspec says we need to always set all mask bits. */
5148 I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
5149 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
5150
5151 /*
5152 * According to the spec the following bits should be
5153 * set in order to enable memory self-refresh and fbc:
5154 * The bit21 and bit22 of 0x42000
5155 * The bit21 and bit22 of 0x42004
5156 * The bit5 and bit7 of 0x42020
5157 * The bit14 of 0x70180
5158 * The bit14 of 0x71180
5159 *
5160 * WaFbcAsynchFlipDisableFbcQueue:snb
5161 */
5162 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5163 I915_READ(ILK_DISPLAY_CHICKEN1) |
5164 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
5165 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5166 I915_READ(ILK_DISPLAY_CHICKEN2) |
5167 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5168 I915_WRITE(ILK_DSPCLK_GATE_D,
5169 I915_READ(ILK_DSPCLK_GATE_D) |
5170 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
5171 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5172
5173 g4x_disable_trickle_feed(dev);
5174
5175 /* The default value should be 0x200 according to docs, but the two
5176 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
5177 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
5178 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
5179
5180 cpt_init_clock_gating(dev);
5181
5182 gen6_check_mch_setup(dev);
5183 }
5184
5185 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
5186 {
5187 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
5188
5189 reg &= ~GEN7_FF_SCHED_MASK;
5190 reg |= GEN7_FF_TS_SCHED_HW;
5191 reg |= GEN7_FF_VS_SCHED_HW;
5192 reg |= GEN7_FF_DS_SCHED_HW;
5193
5194 if (IS_HASWELL(dev_priv->dev))
5195 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
5196
5197 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5198 }
5199
5200 static void lpt_init_clock_gating(struct drm_device *dev)
5201 {
5202 struct drm_i915_private *dev_priv = dev->dev_private;
5203
5204 /*
5205 * TODO: this bit should only be enabled when really needed, then
5206 * disabled when not needed anymore in order to save power.
5207 */
5208 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5209 I915_WRITE(SOUTH_DSPCLK_GATE_D,
5210 I915_READ(SOUTH_DSPCLK_GATE_D) |
5211 PCH_LP_PARTITION_LEVEL_DISABLE);
5212
5213 /* WADPOClockGatingDisable:hsw */
5214 I915_WRITE(_TRANSA_CHICKEN1,
5215 I915_READ(_TRANSA_CHICKEN1) |
5216 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5217 }
5218
5219 static void lpt_suspend_hw(struct drm_device *dev)
5220 {
5221 struct drm_i915_private *dev_priv = dev->dev_private;
5222
5223 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5224 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5225
5226 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5227 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5228 }
5229 }
5230
5231 static void gen8_init_clock_gating(struct drm_device *dev)
5232 {
5233 struct drm_i915_private *dev_priv = dev->dev_private;
5234 enum pipe i;
5235
5236 I915_WRITE(WM3_LP_ILK, 0);
5237 I915_WRITE(WM2_LP_ILK, 0);
5238 I915_WRITE(WM1_LP_ILK, 0);
5239
5240 /* FIXME(BDW): Check all the w/a, some might only apply to
5241 * pre-production hw. */
5242
5243 WARN(!i915_preliminary_hw_support,
5244 "GEN8_CENTROID_PIXEL_OPT_DIS not be needed for production\n");
5245 I915_WRITE(HALF_SLICE_CHICKEN3,
5246 _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
5247 I915_WRITE(HALF_SLICE_CHICKEN3,
5248 _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5249 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
5250
5251 I915_WRITE(_3D_CHICKEN3,
5252 _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
5253
5254 I915_WRITE(COMMON_SLICE_CHICKEN2,
5255 _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
5256
5257 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5258 _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
5259
5260 /* WaSwitchSolVfFArbitrationPriority */
5261 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5262
5263 /* WaPsrDPAMaskVBlankInSRD */
5264 I915_WRITE(CHICKEN_PAR1_1,
5265 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
5266
5267 /* WaPsrDPRSUnmaskVBlankInSRD */
5268 for_each_pipe(i) {
5269 I915_WRITE(CHICKEN_PIPESL_1(i),
5270 I915_READ(CHICKEN_PIPESL_1(i) |
5271 DPRS_MASK_VBLANK_SRD));
5272 }
5273 }
5274
5275 static void haswell_init_clock_gating(struct drm_device *dev)
5276 {
5277 struct drm_i915_private *dev_priv = dev->dev_private;
5278
5279 I915_WRITE(WM3_LP_ILK, 0);
5280 I915_WRITE(WM2_LP_ILK, 0);
5281 I915_WRITE(WM1_LP_ILK, 0);
5282
5283 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5284 * This implements the WaDisableRCZUnitClockGating:hsw workaround.
5285 */
5286 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5287
5288 /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
5289 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5290 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5291
5292 /* WaApplyL3ControlAndL3ChickenMode:hsw */
5293 I915_WRITE(GEN7_L3CNTLREG1,
5294 GEN7_WA_FOR_GEN7_L3_CONTROL);
5295 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5296 GEN7_WA_L3_CHICKEN_MODE);
5297
5298 /* L3 caching of data atomics doesn't work -- disable it. */
5299 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
5300 I915_WRITE(HSW_ROW_CHICKEN3,
5301 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
5302
5303 /* This is required by WaCatErrorRejectionIssue:hsw */
5304 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5305 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5306 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5307
5308 /* WaVSRefCountFullforceMissDisable:hsw */
5309 gen7_setup_fixed_func_scheduler(dev_priv);
5310
5311 /* WaDisable4x2SubspanOptimization:hsw */
5312 I915_WRITE(CACHE_MODE_1,
5313 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5314
5315 /* WaSwitchSolVfFArbitrationPriority:hsw */
5316 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5317
5318 /* WaRsPkgCStateDisplayPMReq:hsw */
5319 I915_WRITE(CHICKEN_PAR1_1,
5320 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5321
5322 lpt_init_clock_gating(dev);
5323 }
5324
5325 static void ivybridge_init_clock_gating(struct drm_device *dev)
5326 {
5327 struct drm_i915_private *dev_priv = dev->dev_private;
5328 uint32_t snpcr;
5329
5330 I915_WRITE(WM3_LP_ILK, 0);
5331 I915_WRITE(WM2_LP_ILK, 0);
5332 I915_WRITE(WM1_LP_ILK, 0);
5333
5334 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5335
5336 /* WaDisableEarlyCull:ivb */
5337 I915_WRITE(_3D_CHICKEN3,
5338 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5339
5340 /* WaDisableBackToBackFlipFix:ivb */
5341 I915_WRITE(IVB_CHICKEN3,
5342 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5343 CHICKEN3_DGMG_DONE_FIX_DISABLE);
5344
5345 /* WaDisablePSDDualDispatchEnable:ivb */
5346 if (IS_IVB_GT1(dev))
5347 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5348 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5349 else
5350 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
5351 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5352
5353 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5354 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5355 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5356
5357 /* WaApplyL3ControlAndL3ChickenMode:ivb */
5358 I915_WRITE(GEN7_L3CNTLREG1,
5359 GEN7_WA_FOR_GEN7_L3_CONTROL);
5360 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5361 GEN7_WA_L3_CHICKEN_MODE);
5362 if (IS_IVB_GT1(dev))
5363 I915_WRITE(GEN7_ROW_CHICKEN2,
5364 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5365 else
5366 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5367 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5368
5369
5370 /* WaForceL3Serialization:ivb */
5371 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5372 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5373
5374 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5375 * gating disable must be set. Failure to set it results in
5376 * flickering pixels due to Z write ordering failures after
5377 * some amount of runtime in the Mesa "fire" demo, and Unigine
5378 * Sanctuary and Tropics, and apparently anything else with
5379 * alpha test or pixel discard.
5380 *
5381 * According to the spec, bit 11 (RCCUNIT) must also be set,
5382 * but we didn't debug actual testcases to find it out.
5383 *
5384 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5385 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5386 */
5387 I915_WRITE(GEN6_UCGCTL2,
5388 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
5389 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5390
5391 /* This is required by WaCatErrorRejectionIssue:ivb */
5392 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5393 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5394 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5395
5396 g4x_disable_trickle_feed(dev);
5397
5398 /* WaVSRefCountFullforceMissDisable:ivb */
5399 gen7_setup_fixed_func_scheduler(dev_priv);
5400
5401 /* WaDisable4x2SubspanOptimization:ivb */
5402 I915_WRITE(CACHE_MODE_1,
5403 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5404
5405 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5406 snpcr &= ~GEN6_MBC_SNPCR_MASK;
5407 snpcr |= GEN6_MBC_SNPCR_MED;
5408 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5409
5410 if (!HAS_PCH_NOP(dev))
5411 cpt_init_clock_gating(dev);
5412
5413 gen6_check_mch_setup(dev);
5414 }
5415
5416 static void valleyview_init_clock_gating(struct drm_device *dev)
5417 {
5418 struct drm_i915_private *dev_priv = dev->dev_private;
5419 u32 val;
5420
5421 mutex_lock(&dev_priv->rps.hw_lock);
5422 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5423 mutex_unlock(&dev_priv->rps.hw_lock);
5424 switch ((val >> 6) & 3) {
5425 case 0:
5426 dev_priv->mem_freq = 800;
5427 break;
5428 case 1:
5429 dev_priv->mem_freq = 1066;
5430 break;
5431 case 2:
5432 dev_priv->mem_freq = 1333;
5433 break;
5434 case 3:
5435 dev_priv->mem_freq = 1333;
5436 break;
5437 }
5438 DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5439
5440 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5441
5442 /* WaDisableEarlyCull:vlv */
5443 I915_WRITE(_3D_CHICKEN3,
5444 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5445
5446 /* WaDisableBackToBackFlipFix:vlv */
5447 I915_WRITE(IVB_CHICKEN3,
5448 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5449 CHICKEN3_DGMG_DONE_FIX_DISABLE);
5450
5451 /* WaDisablePSDDualDispatchEnable:vlv */
5452 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5453 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5454 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5455
5456 /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
5457 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5458 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5459
5460 /* WaApplyL3ControlAndL3ChickenMode:vlv */
5461 I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
5462 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
5463
5464 /* WaForceL3Serialization:vlv */
5465 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5466 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5467
5468 /* WaDisableDopClockGating:vlv */
5469 I915_WRITE(GEN7_ROW_CHICKEN2,
5470 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5471
5472 /* This is required by WaCatErrorRejectionIssue:vlv */
5473 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5474 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5475 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5476
5477 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5478 * gating disable must be set. Failure to set it results in
5479 * flickering pixels due to Z write ordering failures after
5480 * some amount of runtime in the Mesa "fire" demo, and Unigine
5481 * Sanctuary and Tropics, and apparently anything else with
5482 * alpha test or pixel discard.
5483 *
5484 * According to the spec, bit 11 (RCCUNIT) must also be set,
5485 * but we didn't debug actual testcases to find it out.
5486 *
5487 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5488 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5489 *
5490 * Also apply WaDisableVDSUnitClockGating:vlv and
5491 * WaDisableRCPBUnitClockGating:vlv.
5492 */
5493 I915_WRITE(GEN6_UCGCTL2,
5494 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
5495 GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
5496 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
5497 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5498 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5499
5500 I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5501
5502 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5503
5504 I915_WRITE(CACHE_MODE_1,
5505 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5506
5507 /*
5508 * WaDisableVLVClockGating_VBIIssue:vlv
5509 * Disable clock gating on th GCFG unit to prevent a delay
5510 * in the reporting of vblank events.
5511 */
5512 I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
5513
5514 /* Conservative clock gating settings for now */
5515 I915_WRITE(0x9400, 0xffffffff);
5516 I915_WRITE(0x9404, 0xffffffff);
5517 I915_WRITE(0x9408, 0xffffffff);
5518 I915_WRITE(0x940c, 0xffffffff);
5519 I915_WRITE(0x9410, 0xffffffff);
5520 I915_WRITE(0x9414, 0xffffffff);
5521 I915_WRITE(0x9418, 0xffffffff);
5522 }
5523
5524 static void g4x_init_clock_gating(struct drm_device *dev)
5525 {
5526 struct drm_i915_private *dev_priv = dev->dev_private;
5527 uint32_t dspclk_gate;
5528
5529 I915_WRITE(RENCLK_GATE_D1, 0);
5530 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5531 GS_UNIT_CLOCK_GATE_DISABLE |
5532 CL_UNIT_CLOCK_GATE_DISABLE);
5533 I915_WRITE(RAMCLK_GATE_D, 0);
5534 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5535 OVRUNIT_CLOCK_GATE_DISABLE |
5536 OVCUNIT_CLOCK_GATE_DISABLE;
5537 if (IS_GM45(dev))
5538 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5539 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5540
5541 /* WaDisableRenderCachePipelinedFlush */
5542 I915_WRITE(CACHE_MODE_0,
5543 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5544
5545 g4x_disable_trickle_feed(dev);
5546 }
5547
5548 static void crestline_init_clock_gating(struct drm_device *dev)
5549 {
5550 struct drm_i915_private *dev_priv = dev->dev_private;
5551
5552 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5553 I915_WRITE(RENCLK_GATE_D2, 0);
5554 I915_WRITE(DSPCLK_GATE_D, 0);
5555 I915_WRITE(RAMCLK_GATE_D, 0);
5556 I915_WRITE16(DEUC, 0);
5557 I915_WRITE(MI_ARB_STATE,
5558 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5559 }
5560
5561 static void broadwater_init_clock_gating(struct drm_device *dev)
5562 {
5563 struct drm_i915_private *dev_priv = dev->dev_private;
5564
5565 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5566 I965_RCC_CLOCK_GATE_DISABLE |
5567 I965_RCPB_CLOCK_GATE_DISABLE |
5568 I965_ISC_CLOCK_GATE_DISABLE |
5569 I965_FBC_CLOCK_GATE_DISABLE);
5570 I915_WRITE(RENCLK_GATE_D2, 0);
5571 I915_WRITE(MI_ARB_STATE,
5572 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5573 }
5574
5575 static void gen3_init_clock_gating(struct drm_device *dev)
5576 {
5577 struct drm_i915_private *dev_priv = dev->dev_private;
5578 u32 dstate = I915_READ(D_STATE);
5579
5580 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5581 DSTATE_DOT_CLOCK_GATING;
5582 I915_WRITE(D_STATE, dstate);
5583
5584 if (IS_PINEVIEW(dev))
5585 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5586
5587 /* IIR "flip pending" means done if this bit is set */
5588 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5589 }
5590
5591 static void i85x_init_clock_gating(struct drm_device *dev)
5592 {
5593 struct drm_i915_private *dev_priv = dev->dev_private;
5594
5595 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5596 }
5597
5598 static void i830_init_clock_gating(struct drm_device *dev)
5599 {
5600 struct drm_i915_private *dev_priv = dev->dev_private;
5601
5602 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5603 }
5604
5605 void intel_init_clock_gating(struct drm_device *dev)
5606 {
5607 struct drm_i915_private *dev_priv = dev->dev_private;
5608
5609 dev_priv->display.init_clock_gating(dev);
5610 }
5611
5612 void intel_suspend_hw(struct drm_device *dev)
5613 {
5614 if (HAS_PCH_LPT(dev))
5615 lpt_suspend_hw(dev);
5616 }
5617
5618 #define for_each_power_well(i, power_well, domain_mask, power_domains) \
5619 for (i = 0; \
5620 i < (power_domains)->power_well_count && \
5621 ((power_well) = &(power_domains)->power_wells[i]); \
5622 i++) \
5623 if ((power_well)->domains & (domain_mask))
5624
5625 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
5626 for (i = (power_domains)->power_well_count - 1; \
5627 i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
5628 i--) \
5629 if ((power_well)->domains & (domain_mask))
5630
5631 /**
5632 * We should only use the power well if we explicitly asked the hardware to
5633 * enable it, so check if it's enabled and also check if we've requested it to
5634 * be enabled.
5635 */
5636 static bool hsw_power_well_enabled(struct drm_device *dev,
5637 struct i915_power_well *power_well)
5638 {
5639 struct drm_i915_private *dev_priv = dev->dev_private;
5640
5641 return I915_READ(HSW_PWR_WELL_DRIVER) ==
5642 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5643 }
5644
5645 bool intel_display_power_enabled_sw(struct drm_device *dev,
5646 enum intel_display_power_domain domain)
5647 {
5648 struct drm_i915_private *dev_priv = dev->dev_private;
5649 struct i915_power_domains *power_domains;
5650
5651 power_domains = &dev_priv->power_domains;
5652
5653 return power_domains->domain_use_count[domain];
5654 }
5655
5656 bool intel_display_power_enabled(struct drm_device *dev,
5657 enum intel_display_power_domain domain)
5658 {
5659 struct drm_i915_private *dev_priv = dev->dev_private;
5660 struct i915_power_domains *power_domains;
5661 struct i915_power_well *power_well;
5662 bool is_enabled;
5663 int i;
5664
5665 power_domains = &dev_priv->power_domains;
5666
5667 is_enabled = true;
5668
5669 mutex_lock(&power_domains->lock);
5670 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5671 if (power_well->always_on)
5672 continue;
5673
5674 if (!power_well->is_enabled(dev, power_well)) {
5675 is_enabled = false;
5676 break;
5677 }
5678 }
5679 mutex_unlock(&power_domains->lock);
5680
5681 return is_enabled;
5682 }
5683
5684 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
5685 {
5686 struct drm_device *dev = dev_priv->dev;
5687 unsigned long irqflags;
5688
5689 if (IS_BROADWELL(dev)) {
5690 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5691 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
5692 dev_priv->de_irq_mask[PIPE_B]);
5693 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
5694 ~dev_priv->de_irq_mask[PIPE_B] |
5695 GEN8_PIPE_VBLANK);
5696 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
5697 dev_priv->de_irq_mask[PIPE_C]);
5698 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
5699 ~dev_priv->de_irq_mask[PIPE_C] |
5700 GEN8_PIPE_VBLANK);
5701 POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
5702 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5703 }
5704 }
5705
5706 static void hsw_power_well_post_disable(struct drm_i915_private *dev_priv)
5707 {
5708 struct drm_device *dev = dev_priv->dev;
5709 enum pipe p;
5710 unsigned long irqflags;
5711
5712 /*
5713 * After this, the registers on the pipes that are part of the power
5714 * well will become zero, so we have to adjust our counters according to
5715 * that.
5716 *
5717 * FIXME: Should we do this in general in drm_vblank_post_modeset?
5718 */
5719 spin_lock_irqsave(&dev->vbl_lock, irqflags);
5720 for_each_pipe(p)
5721 if (p != PIPE_A)
5722 dev->vblank[p].last = 0;
5723 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
5724 }
5725
5726 static void hsw_set_power_well(struct drm_device *dev,
5727 struct i915_power_well *power_well, bool enable)
5728 {
5729 struct drm_i915_private *dev_priv = dev->dev_private;
5730 bool is_enabled, enable_requested;
5731 uint32_t tmp;
5732
5733 WARN_ON(dev_priv->pc8.enabled);
5734
5735 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5736 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5737 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5738
5739 if (enable) {
5740 if (!enable_requested)
5741 I915_WRITE(HSW_PWR_WELL_DRIVER,
5742 HSW_PWR_WELL_ENABLE_REQUEST);
5743
5744 if (!is_enabled) {
5745 DRM_DEBUG_KMS("Enabling power well\n");
5746 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5747 HSW_PWR_WELL_STATE_ENABLED), 20))
5748 DRM_ERROR("Timeout enabling power well\n");
5749 }
5750
5751 hsw_power_well_post_enable(dev_priv);
5752 } else {
5753 if (enable_requested) {
5754 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5755 POSTING_READ(HSW_PWR_WELL_DRIVER);
5756 DRM_DEBUG_KMS("Requesting to disable the power well\n");
5757
5758 hsw_power_well_post_disable(dev_priv);
5759 }
5760 }
5761 }
5762
5763 static void __intel_power_well_get(struct drm_device *dev,
5764 struct i915_power_well *power_well)
5765 {
5766 struct drm_i915_private *dev_priv = dev->dev_private;
5767
5768 if (!power_well->count++ && power_well->set) {
5769 hsw_disable_package_c8(dev_priv);
5770 power_well->set(dev, power_well, true);
5771 }
5772 }
5773
5774 static void __intel_power_well_put(struct drm_device *dev,
5775 struct i915_power_well *power_well)
5776 {
5777 struct drm_i915_private *dev_priv = dev->dev_private;
5778
5779 WARN_ON(!power_well->count);
5780
5781 if (!--power_well->count && power_well->set &&
5782 i915_disable_power_well) {
5783 power_well->set(dev, power_well, false);
5784 hsw_enable_package_c8(dev_priv);
5785 }
5786 }
5787
5788 void intel_display_power_get(struct drm_device *dev,
5789 enum intel_display_power_domain domain)
5790 {
5791 struct drm_i915_private *dev_priv = dev->dev_private;
5792 struct i915_power_domains *power_domains;
5793 struct i915_power_well *power_well;
5794 int i;
5795
5796 power_domains = &dev_priv->power_domains;
5797
5798 mutex_lock(&power_domains->lock);
5799
5800 for_each_power_well(i, power_well, BIT(domain), power_domains)
5801 __intel_power_well_get(dev, power_well);
5802
5803 power_domains->domain_use_count[domain]++;
5804
5805 mutex_unlock(&power_domains->lock);
5806 }
5807
5808 void intel_display_power_put(struct drm_device *dev,
5809 enum intel_display_power_domain domain)
5810 {
5811 struct drm_i915_private *dev_priv = dev->dev_private;
5812 struct i915_power_domains *power_domains;
5813 struct i915_power_well *power_well;
5814 int i;
5815
5816 power_domains = &dev_priv->power_domains;
5817
5818 mutex_lock(&power_domains->lock);
5819
5820 WARN_ON(!power_domains->domain_use_count[domain]);
5821 power_domains->domain_use_count[domain]--;
5822
5823 for_each_power_well_rev(i, power_well, BIT(domain), power_domains)
5824 __intel_power_well_put(dev, power_well);
5825
5826 mutex_unlock(&power_domains->lock);
5827 }
5828
5829 static struct i915_power_domains *hsw_pwr;
5830
5831 /* Display audio driver power well request */
5832 void i915_request_power_well(void)
5833 {
5834 struct drm_i915_private *dev_priv;
5835
5836 if (WARN_ON(!hsw_pwr))
5837 return;
5838
5839 dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5840 power_domains);
5841 intel_display_power_get(dev_priv->dev, POWER_DOMAIN_AUDIO);
5842 }
5843 EXPORT_SYMBOL_GPL(i915_request_power_well);
5844
5845 /* Display audio driver power well release */
5846 void i915_release_power_well(void)
5847 {
5848 struct drm_i915_private *dev_priv;
5849
5850 if (WARN_ON(!hsw_pwr))
5851 return;
5852
5853 dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5854 power_domains);
5855 intel_display_power_put(dev_priv->dev, POWER_DOMAIN_AUDIO);
5856 }
5857 EXPORT_SYMBOL_GPL(i915_release_power_well);
5858
5859 static struct i915_power_well i9xx_always_on_power_well[] = {
5860 {
5861 .name = "always-on",
5862 .always_on = 1,
5863 .domains = POWER_DOMAIN_MASK,
5864 },
5865 };
5866
5867 static struct i915_power_well hsw_power_wells[] = {
5868 {
5869 .name = "always-on",
5870 .always_on = 1,
5871 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
5872 },
5873 {
5874 .name = "display",
5875 .domains = POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS,
5876 .is_enabled = hsw_power_well_enabled,
5877 .set = hsw_set_power_well,
5878 },
5879 };
5880
5881 static struct i915_power_well bdw_power_wells[] = {
5882 {
5883 .name = "always-on",
5884 .always_on = 1,
5885 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
5886 },
5887 {
5888 .name = "display",
5889 .domains = POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS,
5890 .is_enabled = hsw_power_well_enabled,
5891 .set = hsw_set_power_well,
5892 },
5893 };
5894
5895 #define set_power_wells(power_domains, __power_wells) ({ \
5896 (power_domains)->power_wells = (__power_wells); \
5897 (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
5898 })
5899
5900 int intel_power_domains_init(struct drm_device *dev)
5901 {
5902 struct drm_i915_private *dev_priv = dev->dev_private;
5903 struct i915_power_domains *power_domains = &dev_priv->power_domains;
5904
5905 mutex_init(&power_domains->lock);
5906
5907 /*
5908 * The enabling order will be from lower to higher indexed wells,
5909 * the disabling order is reversed.
5910 */
5911 if (IS_HASWELL(dev)) {
5912 set_power_wells(power_domains, hsw_power_wells);
5913 hsw_pwr = power_domains;
5914 } else if (IS_BROADWELL(dev)) {
5915 set_power_wells(power_domains, bdw_power_wells);
5916 hsw_pwr = power_domains;
5917 } else {
5918 set_power_wells(power_domains, i9xx_always_on_power_well);
5919 }
5920
5921 return 0;
5922 }
5923
5924 void intel_power_domains_remove(struct drm_device *dev)
5925 {
5926 hsw_pwr = NULL;
5927 }
5928
5929 static void intel_power_domains_resume(struct drm_device *dev)
5930 {
5931 struct drm_i915_private *dev_priv = dev->dev_private;
5932 struct i915_power_domains *power_domains = &dev_priv->power_domains;
5933 struct i915_power_well *power_well;
5934 int i;
5935
5936 mutex_lock(&power_domains->lock);
5937 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
5938 if (power_well->set)
5939 power_well->set(dev, power_well, power_well->count > 0);
5940 }
5941 mutex_unlock(&power_domains->lock);
5942 }
5943
5944 /*
5945 * Starting with Haswell, we have a "Power Down Well" that can be turned off
5946 * when not needed anymore. We have 4 registers that can request the power well
5947 * to be enabled, and it will only be disabled if none of the registers is
5948 * requesting it to be enabled.
5949 */
5950 void intel_power_domains_init_hw(struct drm_device *dev)
5951 {
5952 struct drm_i915_private *dev_priv = dev->dev_private;
5953
5954 /* For now, we need the power well to be always enabled. */
5955 intel_display_set_init_power(dev, true);
5956 intel_power_domains_resume(dev);
5957
5958 if (!(IS_HASWELL(dev) || IS_BROADWELL(dev)))
5959 return;
5960
5961 /* We're taking over the BIOS, so clear any requests made by it since
5962 * the driver is in charge now. */
5963 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5964 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5965 }
5966
5967 /* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
5968 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
5969 {
5970 hsw_disable_package_c8(dev_priv);
5971 }
5972
5973 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
5974 {
5975 hsw_enable_package_c8(dev_priv);
5976 }
5977
5978 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
5979 {
5980 struct drm_device *dev = dev_priv->dev;
5981 struct device *device = &dev->pdev->dev;
5982
5983 if (!HAS_RUNTIME_PM(dev))
5984 return;
5985
5986 pm_runtime_get_sync(device);
5987 WARN(dev_priv->pm.suspended, "Device still suspended.\n");
5988 }
5989
5990 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
5991 {
5992 struct drm_device *dev = dev_priv->dev;
5993 struct device *device = &dev->pdev->dev;
5994
5995 if (!HAS_RUNTIME_PM(dev))
5996 return;
5997
5998 pm_runtime_mark_last_busy(device);
5999 pm_runtime_put_autosuspend(device);
6000 }
6001
6002 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
6003 {
6004 struct drm_device *dev = dev_priv->dev;
6005 struct device *device = &dev->pdev->dev;
6006
6007 dev_priv->pm.suspended = false;
6008
6009 if (!HAS_RUNTIME_PM(dev))
6010 return;
6011
6012 pm_runtime_set_active(device);
6013
6014 pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
6015 pm_runtime_mark_last_busy(device);
6016 pm_runtime_use_autosuspend(device);
6017 }
6018
6019 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
6020 {
6021 struct drm_device *dev = dev_priv->dev;
6022 struct device *device = &dev->pdev->dev;
6023
6024 if (!HAS_RUNTIME_PM(dev))
6025 return;
6026
6027 /* Make sure we're not suspended first. */
6028 pm_runtime_get_sync(device);
6029 pm_runtime_disable(device);
6030 }
6031
6032 /* Set up chip specific power management-related functions */
6033 void intel_init_pm(struct drm_device *dev)
6034 {
6035 struct drm_i915_private *dev_priv = dev->dev_private;
6036
6037 if (I915_HAS_FBC(dev)) {
6038 if (INTEL_INFO(dev)->gen >= 7) {
6039 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6040 dev_priv->display.enable_fbc = gen7_enable_fbc;
6041 dev_priv->display.disable_fbc = ironlake_disable_fbc;
6042 } else if (INTEL_INFO(dev)->gen >= 5) {
6043 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6044 dev_priv->display.enable_fbc = ironlake_enable_fbc;
6045 dev_priv->display.disable_fbc = ironlake_disable_fbc;
6046 } else if (IS_GM45(dev)) {
6047 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
6048 dev_priv->display.enable_fbc = g4x_enable_fbc;
6049 dev_priv->display.disable_fbc = g4x_disable_fbc;
6050 } else {
6051 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
6052 dev_priv->display.enable_fbc = i8xx_enable_fbc;
6053 dev_priv->display.disable_fbc = i8xx_disable_fbc;
6054 }
6055 }
6056
6057 /* For cxsr */
6058 if (IS_PINEVIEW(dev))
6059 i915_pineview_get_mem_freq(dev);
6060 else if (IS_GEN5(dev))
6061 i915_ironlake_get_mem_freq(dev);
6062
6063 /* For FIFO watermark updates */
6064 if (HAS_PCH_SPLIT(dev)) {
6065 intel_setup_wm_latency(dev);
6066
6067 if (IS_GEN5(dev)) {
6068 if (dev_priv->wm.pri_latency[1] &&
6069 dev_priv->wm.spr_latency[1] &&
6070 dev_priv->wm.cur_latency[1])
6071 dev_priv->display.update_wm = ironlake_update_wm;
6072 else {
6073 DRM_DEBUG_KMS("Failed to get proper latency. "
6074 "Disable CxSR\n");
6075 dev_priv->display.update_wm = NULL;
6076 }
6077 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6078 } else if (IS_GEN6(dev)) {
6079 if (dev_priv->wm.pri_latency[0] &&
6080 dev_priv->wm.spr_latency[0] &&
6081 dev_priv->wm.cur_latency[0]) {
6082 dev_priv->display.update_wm = sandybridge_update_wm;
6083 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
6084 } else {
6085 DRM_DEBUG_KMS("Failed to read display plane latency. "
6086 "Disable CxSR\n");
6087 dev_priv->display.update_wm = NULL;
6088 }
6089 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6090 } else if (IS_IVYBRIDGE(dev)) {
6091 if (dev_priv->wm.pri_latency[0] &&
6092 dev_priv->wm.spr_latency[0] &&
6093 dev_priv->wm.cur_latency[0]) {
6094 dev_priv->display.update_wm = ivybridge_update_wm;
6095 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
6096 } else {
6097 DRM_DEBUG_KMS("Failed to read display plane latency. "
6098 "Disable CxSR\n");
6099 dev_priv->display.update_wm = NULL;
6100 }
6101 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6102 } else if (IS_HASWELL(dev)) {
6103 if (dev_priv->wm.pri_latency[0] &&
6104 dev_priv->wm.spr_latency[0] &&
6105 dev_priv->wm.cur_latency[0]) {
6106 dev_priv->display.update_wm = haswell_update_wm;
6107 dev_priv->display.update_sprite_wm =
6108 haswell_update_sprite_wm;
6109 } else {
6110 DRM_DEBUG_KMS("Failed to read display plane latency. "
6111 "Disable CxSR\n");
6112 dev_priv->display.update_wm = NULL;
6113 }
6114 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6115 } else if (INTEL_INFO(dev)->gen == 8) {
6116 dev_priv->display.init_clock_gating = gen8_init_clock_gating;
6117 } else
6118 dev_priv->display.update_wm = NULL;
6119 } else if (IS_VALLEYVIEW(dev)) {
6120 dev_priv->display.update_wm = valleyview_update_wm;
6121 dev_priv->display.init_clock_gating =
6122 valleyview_init_clock_gating;
6123 } else if (IS_PINEVIEW(dev)) {
6124 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6125 dev_priv->is_ddr3,
6126 dev_priv->fsb_freq,
6127 dev_priv->mem_freq)) {
6128 DRM_INFO("failed to find known CxSR latency "
6129 "(found ddr%s fsb freq %d, mem freq %d), "
6130 "disabling CxSR\n",
6131 (dev_priv->is_ddr3 == 1) ? "3" : "2",
6132 dev_priv->fsb_freq, dev_priv->mem_freq);
6133 /* Disable CxSR and never update its watermark again */
6134 pineview_disable_cxsr(dev);
6135 dev_priv->display.update_wm = NULL;
6136 } else
6137 dev_priv->display.update_wm = pineview_update_wm;
6138 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6139 } else if (IS_G4X(dev)) {
6140 dev_priv->display.update_wm = g4x_update_wm;
6141 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6142 } else if (IS_GEN4(dev)) {
6143 dev_priv->display.update_wm = i965_update_wm;
6144 if (IS_CRESTLINE(dev))
6145 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6146 else if (IS_BROADWATER(dev))
6147 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6148 } else if (IS_GEN3(dev)) {
6149 dev_priv->display.update_wm = i9xx_update_wm;
6150 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6151 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6152 } else if (IS_I865G(dev)) {
6153 dev_priv->display.update_wm = i830_update_wm;
6154 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6155 dev_priv->display.get_fifo_size = i830_get_fifo_size;
6156 } else if (IS_I85X(dev)) {
6157 dev_priv->display.update_wm = i9xx_update_wm;
6158 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
6159 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6160 } else {
6161 dev_priv->display.update_wm = i830_update_wm;
6162 dev_priv->display.init_clock_gating = i830_init_clock_gating;
6163 if (IS_845G(dev))
6164 dev_priv->display.get_fifo_size = i845_get_fifo_size;
6165 else
6166 dev_priv->display.get_fifo_size = i830_get_fifo_size;
6167 }
6168 }
6169
6170 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
6171 {
6172 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6173
6174 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6175 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6176 return -EAGAIN;
6177 }
6178
6179 I915_WRITE(GEN6_PCODE_DATA, *val);
6180 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6181
6182 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6183 500)) {
6184 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6185 return -ETIMEDOUT;
6186 }
6187
6188 *val = I915_READ(GEN6_PCODE_DATA);
6189 I915_WRITE(GEN6_PCODE_DATA, 0);
6190
6191 return 0;
6192 }
6193
6194 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
6195 {
6196 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6197
6198 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6199 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6200 return -EAGAIN;
6201 }
6202
6203 I915_WRITE(GEN6_PCODE_DATA, val);
6204 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6205
6206 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6207 500)) {
6208 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6209 return -ETIMEDOUT;
6210 }
6211
6212 I915_WRITE(GEN6_PCODE_DATA, 0);
6213
6214 return 0;
6215 }
6216
6217 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6218 {
6219 int div;
6220
6221 /* 4 x czclk */
6222 switch (dev_priv->mem_freq) {
6223 case 800:
6224 div = 10;
6225 break;
6226 case 1066:
6227 div = 12;
6228 break;
6229 case 1333:
6230 div = 16;
6231 break;
6232 default:
6233 return -1;
6234 }
6235
6236 return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
6237 }
6238
6239 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6240 {
6241 int mul;
6242
6243 /* 4 x czclk */
6244 switch (dev_priv->mem_freq) {
6245 case 800:
6246 mul = 10;
6247 break;
6248 case 1066:
6249 mul = 12;
6250 break;
6251 case 1333:
6252 mul = 16;
6253 break;
6254 default:
6255 return -1;
6256 }
6257
6258 return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
6259 }
6260
6261 void intel_pm_init(struct drm_device *dev)
6262 {
6263 struct drm_i915_private *dev_priv = dev->dev_private;
6264
6265 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6266 intel_gen6_powersave_work);
6267 }
This page took 0.434382 seconds and 6 git commands to generate.