drm/i915: Store a i915 backpointer from engine, and use it
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 /* Rough estimate of the typical request size, performing a flush,
38 * set-context and then emitting the batch.
39 */
40 #define LEGACY_REQUEST_SIZE 200
41
42 int __intel_ring_space(int head, int tail, int size)
43 {
44 int space = head - tail;
45 if (space <= 0)
46 space += size;
47 return space - I915_RING_FREE_SPACE;
48 }
49
50 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
51 {
52 if (ringbuf->last_retired_head != -1) {
53 ringbuf->head = ringbuf->last_retired_head;
54 ringbuf->last_retired_head = -1;
55 }
56
57 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
58 ringbuf->tail, ringbuf->size);
59 }
60
61 bool intel_engine_stopped(struct intel_engine_cs *engine)
62 {
63 struct drm_i915_private *dev_priv = engine->i915;
64 return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
65 }
66
67 static void __intel_ring_advance(struct intel_engine_cs *engine)
68 {
69 struct intel_ringbuffer *ringbuf = engine->buffer;
70 ringbuf->tail &= ringbuf->size - 1;
71 if (intel_engine_stopped(engine))
72 return;
73 engine->write_tail(engine, ringbuf->tail);
74 }
75
76 static int
77 gen2_render_ring_flush(struct drm_i915_gem_request *req,
78 u32 invalidate_domains,
79 u32 flush_domains)
80 {
81 struct intel_engine_cs *engine = req->engine;
82 u32 cmd;
83 int ret;
84
85 cmd = MI_FLUSH;
86 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
87 cmd |= MI_NO_WRITE_FLUSH;
88
89 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
90 cmd |= MI_READ_FLUSH;
91
92 ret = intel_ring_begin(req, 2);
93 if (ret)
94 return ret;
95
96 intel_ring_emit(engine, cmd);
97 intel_ring_emit(engine, MI_NOOP);
98 intel_ring_advance(engine);
99
100 return 0;
101 }
102
103 static int
104 gen4_render_ring_flush(struct drm_i915_gem_request *req,
105 u32 invalidate_domains,
106 u32 flush_domains)
107 {
108 struct intel_engine_cs *engine = req->engine;
109 u32 cmd;
110 int ret;
111
112 /*
113 * read/write caches:
114 *
115 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
116 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
117 * also flushed at 2d versus 3d pipeline switches.
118 *
119 * read-only caches:
120 *
121 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
122 * MI_READ_FLUSH is set, and is always flushed on 965.
123 *
124 * I915_GEM_DOMAIN_COMMAND may not exist?
125 *
126 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
127 * invalidated when MI_EXE_FLUSH is set.
128 *
129 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
130 * invalidated with every MI_FLUSH.
131 *
132 * TLBs:
133 *
134 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
135 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
136 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
137 * are flushed at any MI_FLUSH.
138 */
139
140 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
141 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
142 cmd &= ~MI_NO_WRITE_FLUSH;
143 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
144 cmd |= MI_EXE_FLUSH;
145
146 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
147 (IS_G4X(req->i915) || IS_GEN5(req->i915)))
148 cmd |= MI_INVALIDATE_ISP;
149
150 ret = intel_ring_begin(req, 2);
151 if (ret)
152 return ret;
153
154 intel_ring_emit(engine, cmd);
155 intel_ring_emit(engine, MI_NOOP);
156 intel_ring_advance(engine);
157
158 return 0;
159 }
160
161 /**
162 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
163 * implementing two workarounds on gen6. From section 1.4.7.1
164 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
165 *
166 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
167 * produced by non-pipelined state commands), software needs to first
168 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
169 * 0.
170 *
171 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
172 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
173 *
174 * And the workaround for these two requires this workaround first:
175 *
176 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
177 * BEFORE the pipe-control with a post-sync op and no write-cache
178 * flushes.
179 *
180 * And this last workaround is tricky because of the requirements on
181 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
182 * volume 2 part 1:
183 *
184 * "1 of the following must also be set:
185 * - Render Target Cache Flush Enable ([12] of DW1)
186 * - Depth Cache Flush Enable ([0] of DW1)
187 * - Stall at Pixel Scoreboard ([1] of DW1)
188 * - Depth Stall ([13] of DW1)
189 * - Post-Sync Operation ([13] of DW1)
190 * - Notify Enable ([8] of DW1)"
191 *
192 * The cache flushes require the workaround flush that triggered this
193 * one, so we can't use it. Depth stall would trigger the same.
194 * Post-sync nonzero is what triggered this second workaround, so we
195 * can't use that one either. Notify enable is IRQs, which aren't
196 * really our business. That leaves only stall at scoreboard.
197 */
198 static int
199 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
200 {
201 struct intel_engine_cs *engine = req->engine;
202 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
203 int ret;
204
205 ret = intel_ring_begin(req, 6);
206 if (ret)
207 return ret;
208
209 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
210 intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
211 PIPE_CONTROL_STALL_AT_SCOREBOARD);
212 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
213 intel_ring_emit(engine, 0); /* low dword */
214 intel_ring_emit(engine, 0); /* high dword */
215 intel_ring_emit(engine, MI_NOOP);
216 intel_ring_advance(engine);
217
218 ret = intel_ring_begin(req, 6);
219 if (ret)
220 return ret;
221
222 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
223 intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
224 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
225 intel_ring_emit(engine, 0);
226 intel_ring_emit(engine, 0);
227 intel_ring_emit(engine, MI_NOOP);
228 intel_ring_advance(engine);
229
230 return 0;
231 }
232
233 static int
234 gen6_render_ring_flush(struct drm_i915_gem_request *req,
235 u32 invalidate_domains, u32 flush_domains)
236 {
237 struct intel_engine_cs *engine = req->engine;
238 u32 flags = 0;
239 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
240 int ret;
241
242 /* Force SNB workarounds for PIPE_CONTROL flushes */
243 ret = intel_emit_post_sync_nonzero_flush(req);
244 if (ret)
245 return ret;
246
247 /* Just flush everything. Experiments have shown that reducing the
248 * number of bits based on the write domains has little performance
249 * impact.
250 */
251 if (flush_domains) {
252 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
253 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
254 /*
255 * Ensure that any following seqno writes only happen
256 * when the render cache is indeed flushed.
257 */
258 flags |= PIPE_CONTROL_CS_STALL;
259 }
260 if (invalidate_domains) {
261 flags |= PIPE_CONTROL_TLB_INVALIDATE;
262 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
263 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
264 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
265 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
266 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
267 /*
268 * TLB invalidate requires a post-sync write.
269 */
270 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
271 }
272
273 ret = intel_ring_begin(req, 4);
274 if (ret)
275 return ret;
276
277 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
278 intel_ring_emit(engine, flags);
279 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
280 intel_ring_emit(engine, 0);
281 intel_ring_advance(engine);
282
283 return 0;
284 }
285
286 static int
287 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
288 {
289 struct intel_engine_cs *engine = req->engine;
290 int ret;
291
292 ret = intel_ring_begin(req, 4);
293 if (ret)
294 return ret;
295
296 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
297 intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
298 PIPE_CONTROL_STALL_AT_SCOREBOARD);
299 intel_ring_emit(engine, 0);
300 intel_ring_emit(engine, 0);
301 intel_ring_advance(engine);
302
303 return 0;
304 }
305
306 static int
307 gen7_render_ring_flush(struct drm_i915_gem_request *req,
308 u32 invalidate_domains, u32 flush_domains)
309 {
310 struct intel_engine_cs *engine = req->engine;
311 u32 flags = 0;
312 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
313 int ret;
314
315 /*
316 * Ensure that any following seqno writes only happen when the render
317 * cache is indeed flushed.
318 *
319 * Workaround: 4th PIPE_CONTROL command (except the ones with only
320 * read-cache invalidate bits set) must have the CS_STALL bit set. We
321 * don't try to be clever and just set it unconditionally.
322 */
323 flags |= PIPE_CONTROL_CS_STALL;
324
325 /* Just flush everything. Experiments have shown that reducing the
326 * number of bits based on the write domains has little performance
327 * impact.
328 */
329 if (flush_domains) {
330 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
331 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
332 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
333 flags |= PIPE_CONTROL_FLUSH_ENABLE;
334 }
335 if (invalidate_domains) {
336 flags |= PIPE_CONTROL_TLB_INVALIDATE;
337 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
338 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
339 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
340 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
341 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
342 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
343 /*
344 * TLB invalidate requires a post-sync write.
345 */
346 flags |= PIPE_CONTROL_QW_WRITE;
347 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
348
349 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
350
351 /* Workaround: we must issue a pipe_control with CS-stall bit
352 * set before a pipe_control command that has the state cache
353 * invalidate bit set. */
354 gen7_render_ring_cs_stall_wa(req);
355 }
356
357 ret = intel_ring_begin(req, 4);
358 if (ret)
359 return ret;
360
361 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
362 intel_ring_emit(engine, flags);
363 intel_ring_emit(engine, scratch_addr);
364 intel_ring_emit(engine, 0);
365 intel_ring_advance(engine);
366
367 return 0;
368 }
369
370 static int
371 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
372 u32 flags, u32 scratch_addr)
373 {
374 struct intel_engine_cs *engine = req->engine;
375 int ret;
376
377 ret = intel_ring_begin(req, 6);
378 if (ret)
379 return ret;
380
381 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
382 intel_ring_emit(engine, flags);
383 intel_ring_emit(engine, scratch_addr);
384 intel_ring_emit(engine, 0);
385 intel_ring_emit(engine, 0);
386 intel_ring_emit(engine, 0);
387 intel_ring_advance(engine);
388
389 return 0;
390 }
391
392 static int
393 gen8_render_ring_flush(struct drm_i915_gem_request *req,
394 u32 invalidate_domains, u32 flush_domains)
395 {
396 u32 flags = 0;
397 u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
398 int ret;
399
400 flags |= PIPE_CONTROL_CS_STALL;
401
402 if (flush_domains) {
403 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
404 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
405 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
406 flags |= PIPE_CONTROL_FLUSH_ENABLE;
407 }
408 if (invalidate_domains) {
409 flags |= PIPE_CONTROL_TLB_INVALIDATE;
410 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
411 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
412 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
413 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
414 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
415 flags |= PIPE_CONTROL_QW_WRITE;
416 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
417
418 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
419 ret = gen8_emit_pipe_control(req,
420 PIPE_CONTROL_CS_STALL |
421 PIPE_CONTROL_STALL_AT_SCOREBOARD,
422 0);
423 if (ret)
424 return ret;
425 }
426
427 return gen8_emit_pipe_control(req, flags, scratch_addr);
428 }
429
430 static void ring_write_tail(struct intel_engine_cs *engine,
431 u32 value)
432 {
433 struct drm_i915_private *dev_priv = engine->i915;
434 I915_WRITE_TAIL(engine, value);
435 }
436
437 u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
438 {
439 struct drm_i915_private *dev_priv = engine->i915;
440 u64 acthd;
441
442 if (INTEL_GEN(dev_priv) >= 8)
443 acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
444 RING_ACTHD_UDW(engine->mmio_base));
445 else if (INTEL_GEN(dev_priv) >= 4)
446 acthd = I915_READ(RING_ACTHD(engine->mmio_base));
447 else
448 acthd = I915_READ(ACTHD);
449
450 return acthd;
451 }
452
453 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
454 {
455 struct drm_i915_private *dev_priv = engine->i915;
456 u32 addr;
457
458 addr = dev_priv->status_page_dmah->busaddr;
459 if (INTEL_GEN(dev_priv) >= 4)
460 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
461 I915_WRITE(HWS_PGA, addr);
462 }
463
464 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
465 {
466 struct drm_i915_private *dev_priv = engine->i915;
467 i915_reg_t mmio;
468
469 /* The ring status page addresses are no longer next to the rest of
470 * the ring registers as of gen7.
471 */
472 if (IS_GEN7(dev_priv)) {
473 switch (engine->id) {
474 case RCS:
475 mmio = RENDER_HWS_PGA_GEN7;
476 break;
477 case BCS:
478 mmio = BLT_HWS_PGA_GEN7;
479 break;
480 /*
481 * VCS2 actually doesn't exist on Gen7. Only shut up
482 * gcc switch check warning
483 */
484 case VCS2:
485 case VCS:
486 mmio = BSD_HWS_PGA_GEN7;
487 break;
488 case VECS:
489 mmio = VEBOX_HWS_PGA_GEN7;
490 break;
491 }
492 } else if (IS_GEN6(dev_priv)) {
493 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
494 } else {
495 /* XXX: gen8 returns to sanity */
496 mmio = RING_HWS_PGA(engine->mmio_base);
497 }
498
499 I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
500 POSTING_READ(mmio);
501
502 /*
503 * Flush the TLB for this page
504 *
505 * FIXME: These two bits have disappeared on gen8, so a question
506 * arises: do we still need this and if so how should we go about
507 * invalidating the TLB?
508 */
509 if (INTEL_GEN(dev_priv) >= 6 && INTEL_GEN(dev_priv) < 8) {
510 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
511
512 /* ring should be idle before issuing a sync flush*/
513 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
514
515 I915_WRITE(reg,
516 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
517 INSTPM_SYNC_FLUSH));
518 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
519 1000))
520 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
521 engine->name);
522 }
523 }
524
525 static bool stop_ring(struct intel_engine_cs *engine)
526 {
527 struct drm_i915_private *dev_priv = engine->i915;
528
529 if (!IS_GEN2(dev_priv)) {
530 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
531 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
532 DRM_ERROR("%s : timed out trying to stop ring\n",
533 engine->name);
534 /* Sometimes we observe that the idle flag is not
535 * set even though the ring is empty. So double
536 * check before giving up.
537 */
538 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
539 return false;
540 }
541 }
542
543 I915_WRITE_CTL(engine, 0);
544 I915_WRITE_HEAD(engine, 0);
545 engine->write_tail(engine, 0);
546
547 if (!IS_GEN2(dev_priv)) {
548 (void)I915_READ_CTL(engine);
549 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
550 }
551
552 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
553 }
554
555 void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
556 {
557 memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
558 }
559
560 static int init_ring_common(struct intel_engine_cs *engine)
561 {
562 struct drm_i915_private *dev_priv = engine->i915;
563 struct intel_ringbuffer *ringbuf = engine->buffer;
564 struct drm_i915_gem_object *obj = ringbuf->obj;
565 int ret = 0;
566
567 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
568
569 if (!stop_ring(engine)) {
570 /* G45 ring initialization often fails to reset head to zero */
571 DRM_DEBUG_KMS("%s head not reset to zero "
572 "ctl %08x head %08x tail %08x start %08x\n",
573 engine->name,
574 I915_READ_CTL(engine),
575 I915_READ_HEAD(engine),
576 I915_READ_TAIL(engine),
577 I915_READ_START(engine));
578
579 if (!stop_ring(engine)) {
580 DRM_ERROR("failed to set %s head to zero "
581 "ctl %08x head %08x tail %08x start %08x\n",
582 engine->name,
583 I915_READ_CTL(engine),
584 I915_READ_HEAD(engine),
585 I915_READ_TAIL(engine),
586 I915_READ_START(engine));
587 ret = -EIO;
588 goto out;
589 }
590 }
591
592 if (I915_NEED_GFX_HWS(dev_priv))
593 intel_ring_setup_status_page(engine);
594 else
595 ring_setup_phys_status_page(engine);
596
597 /* Enforce ordering by reading HEAD register back */
598 I915_READ_HEAD(engine);
599
600 /* Initialize the ring. This must happen _after_ we've cleared the ring
601 * registers with the above sequence (the readback of the HEAD registers
602 * also enforces ordering), otherwise the hw might lose the new ring
603 * register values. */
604 I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
605
606 /* WaClearRingBufHeadRegAtInit:ctg,elk */
607 if (I915_READ_HEAD(engine))
608 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
609 engine->name, I915_READ_HEAD(engine));
610 I915_WRITE_HEAD(engine, 0);
611 (void)I915_READ_HEAD(engine);
612
613 I915_WRITE_CTL(engine,
614 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
615 | RING_VALID);
616
617 /* If the head is still not zero, the ring is dead */
618 if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
619 I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
620 (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
621 DRM_ERROR("%s initialization failed "
622 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
623 engine->name,
624 I915_READ_CTL(engine),
625 I915_READ_CTL(engine) & RING_VALID,
626 I915_READ_HEAD(engine), I915_READ_TAIL(engine),
627 I915_READ_START(engine),
628 (unsigned long)i915_gem_obj_ggtt_offset(obj));
629 ret = -EIO;
630 goto out;
631 }
632
633 ringbuf->last_retired_head = -1;
634 ringbuf->head = I915_READ_HEAD(engine);
635 ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
636 intel_ring_update_space(ringbuf);
637
638 intel_engine_init_hangcheck(engine);
639
640 out:
641 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
642
643 return ret;
644 }
645
646 void
647 intel_fini_pipe_control(struct intel_engine_cs *engine)
648 {
649 if (engine->scratch.obj == NULL)
650 return;
651
652 if (INTEL_GEN(engine->i915) >= 5) {
653 kunmap(sg_page(engine->scratch.obj->pages->sgl));
654 i915_gem_object_ggtt_unpin(engine->scratch.obj);
655 }
656
657 drm_gem_object_unreference(&engine->scratch.obj->base);
658 engine->scratch.obj = NULL;
659 }
660
661 int
662 intel_init_pipe_control(struct intel_engine_cs *engine)
663 {
664 int ret;
665
666 WARN_ON(engine->scratch.obj);
667
668 engine->scratch.obj = i915_gem_object_create(engine->i915->dev, 4096);
669 if (IS_ERR(engine->scratch.obj)) {
670 DRM_ERROR("Failed to allocate seqno page\n");
671 ret = PTR_ERR(engine->scratch.obj);
672 engine->scratch.obj = NULL;
673 goto err;
674 }
675
676 ret = i915_gem_object_set_cache_level(engine->scratch.obj,
677 I915_CACHE_LLC);
678 if (ret)
679 goto err_unref;
680
681 ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
682 if (ret)
683 goto err_unref;
684
685 engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
686 engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
687 if (engine->scratch.cpu_page == NULL) {
688 ret = -ENOMEM;
689 goto err_unpin;
690 }
691
692 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
693 engine->name, engine->scratch.gtt_offset);
694 return 0;
695
696 err_unpin:
697 i915_gem_object_ggtt_unpin(engine->scratch.obj);
698 err_unref:
699 drm_gem_object_unreference(&engine->scratch.obj->base);
700 err:
701 return ret;
702 }
703
704 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
705 {
706 struct intel_engine_cs *engine = req->engine;
707 struct i915_workarounds *w = &req->i915->workarounds;
708 int ret, i;
709
710 if (w->count == 0)
711 return 0;
712
713 engine->gpu_caches_dirty = true;
714 ret = intel_ring_flush_all_caches(req);
715 if (ret)
716 return ret;
717
718 ret = intel_ring_begin(req, (w->count * 2 + 2));
719 if (ret)
720 return ret;
721
722 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
723 for (i = 0; i < w->count; i++) {
724 intel_ring_emit_reg(engine, w->reg[i].addr);
725 intel_ring_emit(engine, w->reg[i].value);
726 }
727 intel_ring_emit(engine, MI_NOOP);
728
729 intel_ring_advance(engine);
730
731 engine->gpu_caches_dirty = true;
732 ret = intel_ring_flush_all_caches(req);
733 if (ret)
734 return ret;
735
736 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
737
738 return 0;
739 }
740
741 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
742 {
743 int ret;
744
745 ret = intel_ring_workarounds_emit(req);
746 if (ret != 0)
747 return ret;
748
749 ret = i915_gem_render_state_init(req);
750 if (ret)
751 return ret;
752
753 return 0;
754 }
755
756 static int wa_add(struct drm_i915_private *dev_priv,
757 i915_reg_t addr,
758 const u32 mask, const u32 val)
759 {
760 const u32 idx = dev_priv->workarounds.count;
761
762 if (WARN_ON(idx >= I915_MAX_WA_REGS))
763 return -ENOSPC;
764
765 dev_priv->workarounds.reg[idx].addr = addr;
766 dev_priv->workarounds.reg[idx].value = val;
767 dev_priv->workarounds.reg[idx].mask = mask;
768
769 dev_priv->workarounds.count++;
770
771 return 0;
772 }
773
774 #define WA_REG(addr, mask, val) do { \
775 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
776 if (r) \
777 return r; \
778 } while (0)
779
780 #define WA_SET_BIT_MASKED(addr, mask) \
781 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
782
783 #define WA_CLR_BIT_MASKED(addr, mask) \
784 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
785
786 #define WA_SET_FIELD_MASKED(addr, mask, value) \
787 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
788
789 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
790 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
791
792 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
793
794 static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
795 i915_reg_t reg)
796 {
797 struct drm_i915_private *dev_priv = engine->i915;
798 struct i915_workarounds *wa = &dev_priv->workarounds;
799 const uint32_t index = wa->hw_whitelist_count[engine->id];
800
801 if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
802 return -EINVAL;
803
804 WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
805 i915_mmio_reg_offset(reg));
806 wa->hw_whitelist_count[engine->id]++;
807
808 return 0;
809 }
810
811 static int gen8_init_workarounds(struct intel_engine_cs *engine)
812 {
813 struct drm_i915_private *dev_priv = engine->i915;
814
815 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
816
817 /* WaDisableAsyncFlipPerfMode:bdw,chv */
818 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
819
820 /* WaDisablePartialInstShootdown:bdw,chv */
821 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
822 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
823
824 /* Use Force Non-Coherent whenever executing a 3D context. This is a
825 * workaround for for a possible hang in the unlikely event a TLB
826 * invalidation occurs during a PSD flush.
827 */
828 /* WaForceEnableNonCoherent:bdw,chv */
829 /* WaHdcDisableFetchWhenMasked:bdw,chv */
830 WA_SET_BIT_MASKED(HDC_CHICKEN0,
831 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
832 HDC_FORCE_NON_COHERENT);
833
834 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
835 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
836 * polygons in the same 8x4 pixel/sample area to be processed without
837 * stalling waiting for the earlier ones to write to Hierarchical Z
838 * buffer."
839 *
840 * This optimization is off by default for BDW and CHV; turn it on.
841 */
842 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
843
844 /* Wa4x4STCOptimizationDisable:bdw,chv */
845 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
846
847 /*
848 * BSpec recommends 8x4 when MSAA is used,
849 * however in practice 16x4 seems fastest.
850 *
851 * Note that PS/WM thread counts depend on the WIZ hashing
852 * disable bit, which we don't touch here, but it's good
853 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
854 */
855 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
856 GEN6_WIZ_HASHING_MASK,
857 GEN6_WIZ_HASHING_16x4);
858
859 return 0;
860 }
861
862 static int bdw_init_workarounds(struct intel_engine_cs *engine)
863 {
864 struct drm_i915_private *dev_priv = engine->i915;
865 int ret;
866
867 ret = gen8_init_workarounds(engine);
868 if (ret)
869 return ret;
870
871 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
872 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
873
874 /* WaDisableDopClockGating:bdw */
875 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
876 DOP_CLOCK_GATING_DISABLE);
877
878 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
879 GEN8_SAMPLER_POWER_BYPASS_DIS);
880
881 WA_SET_BIT_MASKED(HDC_CHICKEN0,
882 /* WaForceContextSaveRestoreNonCoherent:bdw */
883 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
884 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
885 (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
886
887 return 0;
888 }
889
890 static int chv_init_workarounds(struct intel_engine_cs *engine)
891 {
892 struct drm_i915_private *dev_priv = engine->i915;
893 int ret;
894
895 ret = gen8_init_workarounds(engine);
896 if (ret)
897 return ret;
898
899 /* WaDisableThreadStallDopClockGating:chv */
900 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
901
902 /* Improve HiZ throughput on CHV. */
903 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
904
905 return 0;
906 }
907
908 static int gen9_init_workarounds(struct intel_engine_cs *engine)
909 {
910 struct drm_i915_private *dev_priv = engine->i915;
911 uint32_t tmp;
912 int ret;
913
914 /* WaEnableLbsSlaRetryTimerDecrement:skl */
915 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
916 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
917
918 /* WaDisableKillLogic:bxt,skl */
919 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
920 ECOCHK_DIS_TLB);
921
922 /* WaClearFlowControlGpgpuContextSave:skl,bxt */
923 /* WaDisablePartialInstShootdown:skl,bxt */
924 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
925 FLOW_CONTROL_ENABLE |
926 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
927
928 /* Syncing dependencies between camera and graphics:skl,bxt */
929 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
930 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
931
932 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
933 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
934 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
935 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
936 GEN9_DG_MIRROR_FIX_ENABLE);
937
938 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
939 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
940 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
941 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
942 GEN9_RHWO_OPTIMIZATION_DISABLE);
943 /*
944 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
945 * but we do that in per ctx batchbuffer as there is an issue
946 * with this register not getting restored on ctx restore
947 */
948 }
949
950 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
951 /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt */
952 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
953 GEN9_ENABLE_YV12_BUGFIX |
954 GEN9_ENABLE_GPGPU_PREEMPTION);
955
956 /* Wa4x4STCOptimizationDisable:skl,bxt */
957 /* WaDisablePartialResolveInVc:skl,bxt */
958 WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
959 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
960
961 /* WaCcsTlbPrefetchDisable:skl,bxt */
962 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
963 GEN9_CCS_TLB_PREFETCH_ENABLE);
964
965 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
966 if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
967 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
968 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
969 PIXEL_MASK_CAMMING_DISABLE);
970
971 /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
972 tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
973 if (IS_SKL_REVID(dev_priv, SKL_REVID_F0, REVID_FOREVER) ||
974 IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
975 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
976 WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
977
978 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
979 if (IS_SKYLAKE(dev_priv) || IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
980 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
981 GEN8_SAMPLER_POWER_BYPASS_DIS);
982
983 /* WaDisableSTUnitPowerOptimization:skl,bxt */
984 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
985
986 /* WaOCLCoherentLineFlush:skl,bxt */
987 I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
988 GEN8_LQSC_FLUSH_COHERENT_LINES));
989
990 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt */
991 ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
992 if (ret)
993 return ret;
994
995 /* WaAllowUMDToModifyHDCChicken1:skl,bxt */
996 ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
997 if (ret)
998 return ret;
999
1000 return 0;
1001 }
1002
1003 static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
1004 {
1005 struct drm_i915_private *dev_priv = engine->i915;
1006 u8 vals[3] = { 0, 0, 0 };
1007 unsigned int i;
1008
1009 for (i = 0; i < 3; i++) {
1010 u8 ss;
1011
1012 /*
1013 * Only consider slices where one, and only one, subslice has 7
1014 * EUs
1015 */
1016 if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1017 continue;
1018
1019 /*
1020 * subslice_7eu[i] != 0 (because of the check above) and
1021 * ss_max == 4 (maximum number of subslices possible per slice)
1022 *
1023 * -> 0 <= ss <= 3;
1024 */
1025 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1026 vals[i] = 3 - ss;
1027 }
1028
1029 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1030 return 0;
1031
1032 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1033 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1034 GEN9_IZ_HASHING_MASK(2) |
1035 GEN9_IZ_HASHING_MASK(1) |
1036 GEN9_IZ_HASHING_MASK(0),
1037 GEN9_IZ_HASHING(2, vals[2]) |
1038 GEN9_IZ_HASHING(1, vals[1]) |
1039 GEN9_IZ_HASHING(0, vals[0]));
1040
1041 return 0;
1042 }
1043
1044 static int skl_init_workarounds(struct intel_engine_cs *engine)
1045 {
1046 struct drm_i915_private *dev_priv = engine->i915;
1047 int ret;
1048
1049 ret = gen9_init_workarounds(engine);
1050 if (ret)
1051 return ret;
1052
1053 /*
1054 * Actual WA is to disable percontext preemption granularity control
1055 * until D0 which is the default case so this is equivalent to
1056 * !WaDisablePerCtxtPreemptionGranularityControl:skl
1057 */
1058 if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
1059 I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1060 _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1061 }
1062
1063 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0)) {
1064 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1065 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1066 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1067 }
1068
1069 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1070 * involving this register should also be added to WA batch as required.
1071 */
1072 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1073 /* WaDisableLSQCROPERFforOCL:skl */
1074 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1075 GEN8_LQSC_RO_PERF_DIS);
1076
1077 /* WaEnableGapsTsvCreditFix:skl */
1078 if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
1079 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1080 GEN9_GAPS_TSV_CREDIT_DISABLE));
1081 }
1082
1083 /* WaDisablePowerCompilerClockGating:skl */
1084 if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
1085 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1086 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1087
1088 /* This is tied to WaForceContextSaveRestoreNonCoherent */
1089 if (IS_SKL_REVID(dev_priv, 0, REVID_FOREVER)) {
1090 /*
1091 *Use Force Non-Coherent whenever executing a 3D context. This
1092 * is a workaround for a possible hang in the unlikely event
1093 * a TLB invalidation occurs during a PSD flush.
1094 */
1095 /* WaForceEnableNonCoherent:skl */
1096 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1097 HDC_FORCE_NON_COHERENT);
1098
1099 /* WaDisableHDCInvalidation:skl */
1100 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1101 BDW_DISABLE_HDC_INVALIDATION);
1102 }
1103
1104 /* WaBarrierPerformanceFixDisable:skl */
1105 if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1106 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1107 HDC_FENCE_DEST_SLM_DISABLE |
1108 HDC_BARRIER_PERFORMANCE_DISABLE);
1109
1110 /* WaDisableSbeCacheDispatchPortSharing:skl */
1111 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1112 WA_SET_BIT_MASKED(
1113 GEN7_HALF_SLICE_CHICKEN1,
1114 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1115
1116 /* WaDisableLSQCROPERFforOCL:skl */
1117 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1118 if (ret)
1119 return ret;
1120
1121 return skl_tune_iz_hashing(engine);
1122 }
1123
1124 static int bxt_init_workarounds(struct intel_engine_cs *engine)
1125 {
1126 struct drm_i915_private *dev_priv = engine->i915;
1127 int ret;
1128
1129 ret = gen9_init_workarounds(engine);
1130 if (ret)
1131 return ret;
1132
1133 /* WaStoreMultiplePTEenable:bxt */
1134 /* This is a requirement according to Hardware specification */
1135 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1136 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1137
1138 /* WaSetClckGatingDisableMedia:bxt */
1139 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1140 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1141 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1142 }
1143
1144 /* WaDisableThreadStallDopClockGating:bxt */
1145 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1146 STALL_DOP_GATING_DISABLE);
1147
1148 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1149 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1150 WA_SET_BIT_MASKED(
1151 GEN7_HALF_SLICE_CHICKEN1,
1152 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1153 }
1154
1155 /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1156 /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1157 /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1158 /* WaDisableLSQCROPERFforOCL:bxt */
1159 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1160 ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1161 if (ret)
1162 return ret;
1163
1164 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1165 if (ret)
1166 return ret;
1167 }
1168
1169 /* WaProgramL3SqcReg1DefaultForPerf:bxt */
1170 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1171 I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
1172 L3_HIGH_PRIO_CREDITS(2));
1173
1174 return 0;
1175 }
1176
1177 int init_workarounds_ring(struct intel_engine_cs *engine)
1178 {
1179 struct drm_i915_private *dev_priv = engine->i915;
1180
1181 WARN_ON(engine->id != RCS);
1182
1183 dev_priv->workarounds.count = 0;
1184 dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1185
1186 if (IS_BROADWELL(dev_priv))
1187 return bdw_init_workarounds(engine);
1188
1189 if (IS_CHERRYVIEW(dev_priv))
1190 return chv_init_workarounds(engine);
1191
1192 if (IS_SKYLAKE(dev_priv))
1193 return skl_init_workarounds(engine);
1194
1195 if (IS_BROXTON(dev_priv))
1196 return bxt_init_workarounds(engine);
1197
1198 return 0;
1199 }
1200
1201 static int init_render_ring(struct intel_engine_cs *engine)
1202 {
1203 struct drm_i915_private *dev_priv = engine->i915;
1204 int ret = init_ring_common(engine);
1205 if (ret)
1206 return ret;
1207
1208 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1209 if (INTEL_GEN(dev_priv) >= 4 && INTEL_GEN(dev_priv) < 7)
1210 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1211
1212 /* We need to disable the AsyncFlip performance optimisations in order
1213 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1214 * programmed to '1' on all products.
1215 *
1216 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1217 */
1218 if (INTEL_GEN(dev_priv) >= 6 && INTEL_GEN(dev_priv) < 8)
1219 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1220
1221 /* Required for the hardware to program scanline values for waiting */
1222 /* WaEnableFlushTlbInvalidationMode:snb */
1223 if (IS_GEN6(dev_priv))
1224 I915_WRITE(GFX_MODE,
1225 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1226
1227 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1228 if (IS_GEN7(dev_priv))
1229 I915_WRITE(GFX_MODE_GEN7,
1230 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1231 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1232
1233 if (IS_GEN6(dev_priv)) {
1234 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1235 * "If this bit is set, STCunit will have LRA as replacement
1236 * policy. [...] This bit must be reset. LRA replacement
1237 * policy is not supported."
1238 */
1239 I915_WRITE(CACHE_MODE_0,
1240 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1241 }
1242
1243 if (INTEL_GEN(dev_priv) >= 6 && INTEL_GEN(dev_priv) < 8)
1244 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1245
1246 if (HAS_L3_DPF(dev_priv))
1247 I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
1248
1249 return init_workarounds_ring(engine);
1250 }
1251
1252 static void render_ring_cleanup(struct intel_engine_cs *engine)
1253 {
1254 struct drm_i915_private *dev_priv = engine->i915;
1255
1256 if (dev_priv->semaphore_obj) {
1257 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1258 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1259 dev_priv->semaphore_obj = NULL;
1260 }
1261
1262 intel_fini_pipe_control(engine);
1263 }
1264
1265 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1266 unsigned int num_dwords)
1267 {
1268 #define MBOX_UPDATE_DWORDS 8
1269 struct intel_engine_cs *signaller = signaller_req->engine;
1270 struct drm_i915_private *dev_priv = signaller_req->i915;
1271 struct intel_engine_cs *waiter;
1272 enum intel_engine_id id;
1273 int ret, num_rings;
1274
1275 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1276 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1277 #undef MBOX_UPDATE_DWORDS
1278
1279 ret = intel_ring_begin(signaller_req, num_dwords);
1280 if (ret)
1281 return ret;
1282
1283 for_each_engine_id(waiter, dev_priv, id) {
1284 u32 seqno;
1285 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1286 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1287 continue;
1288
1289 seqno = i915_gem_request_get_seqno(signaller_req);
1290 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1291 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1292 PIPE_CONTROL_QW_WRITE |
1293 PIPE_CONTROL_CS_STALL);
1294 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1295 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1296 intel_ring_emit(signaller, seqno);
1297 intel_ring_emit(signaller, 0);
1298 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1299 MI_SEMAPHORE_TARGET(waiter->hw_id));
1300 intel_ring_emit(signaller, 0);
1301 }
1302
1303 return 0;
1304 }
1305
1306 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1307 unsigned int num_dwords)
1308 {
1309 #define MBOX_UPDATE_DWORDS 6
1310 struct intel_engine_cs *signaller = signaller_req->engine;
1311 struct drm_i915_private *dev_priv = signaller_req->i915;
1312 struct intel_engine_cs *waiter;
1313 enum intel_engine_id id;
1314 int ret, num_rings;
1315
1316 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1317 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1318 #undef MBOX_UPDATE_DWORDS
1319
1320 ret = intel_ring_begin(signaller_req, num_dwords);
1321 if (ret)
1322 return ret;
1323
1324 for_each_engine_id(waiter, dev_priv, id) {
1325 u32 seqno;
1326 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1327 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1328 continue;
1329
1330 seqno = i915_gem_request_get_seqno(signaller_req);
1331 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1332 MI_FLUSH_DW_OP_STOREDW);
1333 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1334 MI_FLUSH_DW_USE_GTT);
1335 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1336 intel_ring_emit(signaller, seqno);
1337 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1338 MI_SEMAPHORE_TARGET(waiter->hw_id));
1339 intel_ring_emit(signaller, 0);
1340 }
1341
1342 return 0;
1343 }
1344
1345 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1346 unsigned int num_dwords)
1347 {
1348 struct intel_engine_cs *signaller = signaller_req->engine;
1349 struct drm_i915_private *dev_priv = signaller_req->i915;
1350 struct intel_engine_cs *useless;
1351 enum intel_engine_id id;
1352 int ret, num_rings;
1353
1354 #define MBOX_UPDATE_DWORDS 3
1355 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1356 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1357 #undef MBOX_UPDATE_DWORDS
1358
1359 ret = intel_ring_begin(signaller_req, num_dwords);
1360 if (ret)
1361 return ret;
1362
1363 for_each_engine_id(useless, dev_priv, id) {
1364 i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
1365
1366 if (i915_mmio_reg_valid(mbox_reg)) {
1367 u32 seqno = i915_gem_request_get_seqno(signaller_req);
1368
1369 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1370 intel_ring_emit_reg(signaller, mbox_reg);
1371 intel_ring_emit(signaller, seqno);
1372 }
1373 }
1374
1375 /* If num_dwords was rounded, make sure the tail pointer is correct */
1376 if (num_rings % 2 == 0)
1377 intel_ring_emit(signaller, MI_NOOP);
1378
1379 return 0;
1380 }
1381
1382 /**
1383 * gen6_add_request - Update the semaphore mailbox registers
1384 *
1385 * @request - request to write to the ring
1386 *
1387 * Update the mailbox registers in the *other* rings with the current seqno.
1388 * This acts like a signal in the canonical semaphore.
1389 */
1390 static int
1391 gen6_add_request(struct drm_i915_gem_request *req)
1392 {
1393 struct intel_engine_cs *engine = req->engine;
1394 int ret;
1395
1396 if (engine->semaphore.signal)
1397 ret = engine->semaphore.signal(req, 4);
1398 else
1399 ret = intel_ring_begin(req, 4);
1400
1401 if (ret)
1402 return ret;
1403
1404 intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1405 intel_ring_emit(engine,
1406 I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1407 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1408 intel_ring_emit(engine, MI_USER_INTERRUPT);
1409 __intel_ring_advance(engine);
1410
1411 return 0;
1412 }
1413
1414 static int
1415 gen8_render_add_request(struct drm_i915_gem_request *req)
1416 {
1417 struct intel_engine_cs *engine = req->engine;
1418 int ret;
1419
1420 if (engine->semaphore.signal)
1421 ret = engine->semaphore.signal(req, 8);
1422 else
1423 ret = intel_ring_begin(req, 8);
1424 if (ret)
1425 return ret;
1426
1427 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
1428 intel_ring_emit(engine, (PIPE_CONTROL_GLOBAL_GTT_IVB |
1429 PIPE_CONTROL_CS_STALL |
1430 PIPE_CONTROL_QW_WRITE));
1431 intel_ring_emit(engine, intel_hws_seqno_address(req->engine));
1432 intel_ring_emit(engine, 0);
1433 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1434 /* We're thrashing one dword of HWS. */
1435 intel_ring_emit(engine, 0);
1436 intel_ring_emit(engine, MI_USER_INTERRUPT);
1437 intel_ring_emit(engine, MI_NOOP);
1438 __intel_ring_advance(engine);
1439
1440 return 0;
1441 }
1442
1443 static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
1444 u32 seqno)
1445 {
1446 return dev_priv->last_seqno < seqno;
1447 }
1448
1449 /**
1450 * intel_ring_sync - sync the waiter to the signaller on seqno
1451 *
1452 * @waiter - ring that is waiting
1453 * @signaller - ring which has, or will signal
1454 * @seqno - seqno which the waiter will block on
1455 */
1456
1457 static int
1458 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1459 struct intel_engine_cs *signaller,
1460 u32 seqno)
1461 {
1462 struct intel_engine_cs *waiter = waiter_req->engine;
1463 struct drm_i915_private *dev_priv = waiter_req->i915;
1464 struct i915_hw_ppgtt *ppgtt;
1465 int ret;
1466
1467 ret = intel_ring_begin(waiter_req, 4);
1468 if (ret)
1469 return ret;
1470
1471 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1472 MI_SEMAPHORE_GLOBAL_GTT |
1473 MI_SEMAPHORE_SAD_GTE_SDD);
1474 intel_ring_emit(waiter, seqno);
1475 intel_ring_emit(waiter,
1476 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1477 intel_ring_emit(waiter,
1478 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1479 intel_ring_advance(waiter);
1480
1481 /* When the !RCS engines idle waiting upon a semaphore, they lose their
1482 * pagetables and we must reload them before executing the batch.
1483 * We do this on the i915_switch_context() following the wait and
1484 * before the dispatch.
1485 */
1486 ppgtt = waiter_req->ctx->ppgtt;
1487 if (ppgtt && waiter_req->engine->id != RCS)
1488 ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
1489 return 0;
1490 }
1491
1492 static int
1493 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1494 struct intel_engine_cs *signaller,
1495 u32 seqno)
1496 {
1497 struct intel_engine_cs *waiter = waiter_req->engine;
1498 u32 dw1 = MI_SEMAPHORE_MBOX |
1499 MI_SEMAPHORE_COMPARE |
1500 MI_SEMAPHORE_REGISTER;
1501 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1502 int ret;
1503
1504 /* Throughout all of the GEM code, seqno passed implies our current
1505 * seqno is >= the last seqno executed. However for hardware the
1506 * comparison is strictly greater than.
1507 */
1508 seqno -= 1;
1509
1510 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1511
1512 ret = intel_ring_begin(waiter_req, 4);
1513 if (ret)
1514 return ret;
1515
1516 /* If seqno wrap happened, omit the wait with no-ops */
1517 if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
1518 intel_ring_emit(waiter, dw1 | wait_mbox);
1519 intel_ring_emit(waiter, seqno);
1520 intel_ring_emit(waiter, 0);
1521 intel_ring_emit(waiter, MI_NOOP);
1522 } else {
1523 intel_ring_emit(waiter, MI_NOOP);
1524 intel_ring_emit(waiter, MI_NOOP);
1525 intel_ring_emit(waiter, MI_NOOP);
1526 intel_ring_emit(waiter, MI_NOOP);
1527 }
1528 intel_ring_advance(waiter);
1529
1530 return 0;
1531 }
1532
1533 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1534 do { \
1535 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1536 PIPE_CONTROL_DEPTH_STALL); \
1537 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1538 intel_ring_emit(ring__, 0); \
1539 intel_ring_emit(ring__, 0); \
1540 } while (0)
1541
1542 static int
1543 pc_render_add_request(struct drm_i915_gem_request *req)
1544 {
1545 struct intel_engine_cs *engine = req->engine;
1546 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1547 int ret;
1548
1549 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1550 * incoherent with writes to memory, i.e. completely fubar,
1551 * so we need to use PIPE_NOTIFY instead.
1552 *
1553 * However, we also need to workaround the qword write
1554 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1555 * memory before requesting an interrupt.
1556 */
1557 ret = intel_ring_begin(req, 32);
1558 if (ret)
1559 return ret;
1560
1561 intel_ring_emit(engine,
1562 GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1563 PIPE_CONTROL_WRITE_FLUSH |
1564 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1565 intel_ring_emit(engine,
1566 engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1567 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1568 intel_ring_emit(engine, 0);
1569 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1570 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1571 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1572 scratch_addr += 2 * CACHELINE_BYTES;
1573 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1574 scratch_addr += 2 * CACHELINE_BYTES;
1575 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1576 scratch_addr += 2 * CACHELINE_BYTES;
1577 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1578 scratch_addr += 2 * CACHELINE_BYTES;
1579 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1580
1581 intel_ring_emit(engine,
1582 GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1583 PIPE_CONTROL_WRITE_FLUSH |
1584 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1585 PIPE_CONTROL_NOTIFY);
1586 intel_ring_emit(engine,
1587 engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1588 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1589 intel_ring_emit(engine, 0);
1590 __intel_ring_advance(engine);
1591
1592 return 0;
1593 }
1594
1595 static void
1596 gen6_seqno_barrier(struct intel_engine_cs *engine)
1597 {
1598 struct drm_i915_private *dev_priv = engine->i915;
1599
1600 /* Workaround to force correct ordering between irq and seqno writes on
1601 * ivb (and maybe also on snb) by reading from a CS register (like
1602 * ACTHD) before reading the status page.
1603 *
1604 * Note that this effectively stalls the read by the time it takes to
1605 * do a memory transaction, which more or less ensures that the write
1606 * from the GPU has sufficient time to invalidate the CPU cacheline.
1607 * Alternatively we could delay the interrupt from the CS ring to give
1608 * the write time to land, but that would incur a delay after every
1609 * batch i.e. much more frequent than a delay when waiting for the
1610 * interrupt (with the same net latency).
1611 *
1612 * Also note that to prevent whole machine hangs on gen7, we have to
1613 * take the spinlock to guard against concurrent cacheline access.
1614 */
1615 spin_lock_irq(&dev_priv->uncore.lock);
1616 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1617 spin_unlock_irq(&dev_priv->uncore.lock);
1618 }
1619
1620 static u32
1621 ring_get_seqno(struct intel_engine_cs *engine)
1622 {
1623 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1624 }
1625
1626 static void
1627 ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1628 {
1629 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1630 }
1631
1632 static u32
1633 pc_render_get_seqno(struct intel_engine_cs *engine)
1634 {
1635 return engine->scratch.cpu_page[0];
1636 }
1637
1638 static void
1639 pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1640 {
1641 engine->scratch.cpu_page[0] = seqno;
1642 }
1643
1644 static bool
1645 gen5_ring_get_irq(struct intel_engine_cs *engine)
1646 {
1647 struct drm_i915_private *dev_priv = engine->i915;
1648 unsigned long flags;
1649
1650 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1651 return false;
1652
1653 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1654 if (engine->irq_refcount++ == 0)
1655 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1656 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1657
1658 return true;
1659 }
1660
1661 static void
1662 gen5_ring_put_irq(struct intel_engine_cs *engine)
1663 {
1664 struct drm_i915_private *dev_priv = engine->i915;
1665 unsigned long flags;
1666
1667 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1668 if (--engine->irq_refcount == 0)
1669 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1670 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1671 }
1672
1673 static bool
1674 i9xx_ring_get_irq(struct intel_engine_cs *engine)
1675 {
1676 struct drm_i915_private *dev_priv = engine->i915;
1677 unsigned long flags;
1678
1679 if (!intel_irqs_enabled(dev_priv))
1680 return false;
1681
1682 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1683 if (engine->irq_refcount++ == 0) {
1684 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1685 I915_WRITE(IMR, dev_priv->irq_mask);
1686 POSTING_READ(IMR);
1687 }
1688 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1689
1690 return true;
1691 }
1692
1693 static void
1694 i9xx_ring_put_irq(struct intel_engine_cs *engine)
1695 {
1696 struct drm_i915_private *dev_priv = engine->i915;
1697 unsigned long flags;
1698
1699 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1700 if (--engine->irq_refcount == 0) {
1701 dev_priv->irq_mask |= engine->irq_enable_mask;
1702 I915_WRITE(IMR, dev_priv->irq_mask);
1703 POSTING_READ(IMR);
1704 }
1705 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1706 }
1707
1708 static bool
1709 i8xx_ring_get_irq(struct intel_engine_cs *engine)
1710 {
1711 struct drm_i915_private *dev_priv = engine->i915;
1712 unsigned long flags;
1713
1714 if (!intel_irqs_enabled(dev_priv))
1715 return false;
1716
1717 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1718 if (engine->irq_refcount++ == 0) {
1719 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1720 I915_WRITE16(IMR, dev_priv->irq_mask);
1721 POSTING_READ16(IMR);
1722 }
1723 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1724
1725 return true;
1726 }
1727
1728 static void
1729 i8xx_ring_put_irq(struct intel_engine_cs *engine)
1730 {
1731 struct drm_i915_private *dev_priv = engine->i915;
1732 unsigned long flags;
1733
1734 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1735 if (--engine->irq_refcount == 0) {
1736 dev_priv->irq_mask |= engine->irq_enable_mask;
1737 I915_WRITE16(IMR, dev_priv->irq_mask);
1738 POSTING_READ16(IMR);
1739 }
1740 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1741 }
1742
1743 static int
1744 bsd_ring_flush(struct drm_i915_gem_request *req,
1745 u32 invalidate_domains,
1746 u32 flush_domains)
1747 {
1748 struct intel_engine_cs *engine = req->engine;
1749 int ret;
1750
1751 ret = intel_ring_begin(req, 2);
1752 if (ret)
1753 return ret;
1754
1755 intel_ring_emit(engine, MI_FLUSH);
1756 intel_ring_emit(engine, MI_NOOP);
1757 intel_ring_advance(engine);
1758 return 0;
1759 }
1760
1761 static int
1762 i9xx_add_request(struct drm_i915_gem_request *req)
1763 {
1764 struct intel_engine_cs *engine = req->engine;
1765 int ret;
1766
1767 ret = intel_ring_begin(req, 4);
1768 if (ret)
1769 return ret;
1770
1771 intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1772 intel_ring_emit(engine,
1773 I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1774 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1775 intel_ring_emit(engine, MI_USER_INTERRUPT);
1776 __intel_ring_advance(engine);
1777
1778 return 0;
1779 }
1780
1781 static bool
1782 gen6_ring_get_irq(struct intel_engine_cs *engine)
1783 {
1784 struct drm_i915_private *dev_priv = engine->i915;
1785 unsigned long flags;
1786
1787 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1788 return false;
1789
1790 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1791 if (engine->irq_refcount++ == 0) {
1792 if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
1793 I915_WRITE_IMR(engine,
1794 ~(engine->irq_enable_mask |
1795 GT_PARITY_ERROR(dev_priv)));
1796 else
1797 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1798 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1799 }
1800 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1801
1802 return true;
1803 }
1804
1805 static void
1806 gen6_ring_put_irq(struct intel_engine_cs *engine)
1807 {
1808 struct drm_i915_private *dev_priv = engine->i915;
1809 unsigned long flags;
1810
1811 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1812 if (--engine->irq_refcount == 0) {
1813 if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
1814 I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
1815 else
1816 I915_WRITE_IMR(engine, ~0);
1817 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1818 }
1819 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1820 }
1821
1822 static bool
1823 hsw_vebox_get_irq(struct intel_engine_cs *engine)
1824 {
1825 struct drm_i915_private *dev_priv = engine->i915;
1826 unsigned long flags;
1827
1828 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1829 return false;
1830
1831 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1832 if (engine->irq_refcount++ == 0) {
1833 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1834 gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
1835 }
1836 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1837
1838 return true;
1839 }
1840
1841 static void
1842 hsw_vebox_put_irq(struct intel_engine_cs *engine)
1843 {
1844 struct drm_i915_private *dev_priv = engine->i915;
1845 unsigned long flags;
1846
1847 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1848 if (--engine->irq_refcount == 0) {
1849 I915_WRITE_IMR(engine, ~0);
1850 gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
1851 }
1852 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1853 }
1854
1855 static bool
1856 gen8_ring_get_irq(struct intel_engine_cs *engine)
1857 {
1858 struct drm_i915_private *dev_priv = engine->i915;
1859 unsigned long flags;
1860
1861 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1862 return false;
1863
1864 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1865 if (engine->irq_refcount++ == 0) {
1866 if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
1867 I915_WRITE_IMR(engine,
1868 ~(engine->irq_enable_mask |
1869 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1870 } else {
1871 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1872 }
1873 POSTING_READ(RING_IMR(engine->mmio_base));
1874 }
1875 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1876
1877 return true;
1878 }
1879
1880 static void
1881 gen8_ring_put_irq(struct intel_engine_cs *engine)
1882 {
1883 struct drm_i915_private *dev_priv = engine->i915;
1884 unsigned long flags;
1885
1886 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1887 if (--engine->irq_refcount == 0) {
1888 if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
1889 I915_WRITE_IMR(engine,
1890 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1891 } else {
1892 I915_WRITE_IMR(engine, ~0);
1893 }
1894 POSTING_READ(RING_IMR(engine->mmio_base));
1895 }
1896 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1897 }
1898
1899 static int
1900 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1901 u64 offset, u32 length,
1902 unsigned dispatch_flags)
1903 {
1904 struct intel_engine_cs *engine = req->engine;
1905 int ret;
1906
1907 ret = intel_ring_begin(req, 2);
1908 if (ret)
1909 return ret;
1910
1911 intel_ring_emit(engine,
1912 MI_BATCH_BUFFER_START |
1913 MI_BATCH_GTT |
1914 (dispatch_flags & I915_DISPATCH_SECURE ?
1915 0 : MI_BATCH_NON_SECURE_I965));
1916 intel_ring_emit(engine, offset);
1917 intel_ring_advance(engine);
1918
1919 return 0;
1920 }
1921
1922 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1923 #define I830_BATCH_LIMIT (256*1024)
1924 #define I830_TLB_ENTRIES (2)
1925 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1926 static int
1927 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1928 u64 offset, u32 len,
1929 unsigned dispatch_flags)
1930 {
1931 struct intel_engine_cs *engine = req->engine;
1932 u32 cs_offset = engine->scratch.gtt_offset;
1933 int ret;
1934
1935 ret = intel_ring_begin(req, 6);
1936 if (ret)
1937 return ret;
1938
1939 /* Evict the invalid PTE TLBs */
1940 intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1941 intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1942 intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1943 intel_ring_emit(engine, cs_offset);
1944 intel_ring_emit(engine, 0xdeadbeef);
1945 intel_ring_emit(engine, MI_NOOP);
1946 intel_ring_advance(engine);
1947
1948 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1949 if (len > I830_BATCH_LIMIT)
1950 return -ENOSPC;
1951
1952 ret = intel_ring_begin(req, 6 + 2);
1953 if (ret)
1954 return ret;
1955
1956 /* Blit the batch (which has now all relocs applied) to the
1957 * stable batch scratch bo area (so that the CS never
1958 * stumbles over its tlb invalidation bug) ...
1959 */
1960 intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1961 intel_ring_emit(engine,
1962 BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1963 intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1964 intel_ring_emit(engine, cs_offset);
1965 intel_ring_emit(engine, 4096);
1966 intel_ring_emit(engine, offset);
1967
1968 intel_ring_emit(engine, MI_FLUSH);
1969 intel_ring_emit(engine, MI_NOOP);
1970 intel_ring_advance(engine);
1971
1972 /* ... and execute it. */
1973 offset = cs_offset;
1974 }
1975
1976 ret = intel_ring_begin(req, 2);
1977 if (ret)
1978 return ret;
1979
1980 intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1981 intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1982 0 : MI_BATCH_NON_SECURE));
1983 intel_ring_advance(engine);
1984
1985 return 0;
1986 }
1987
1988 static int
1989 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1990 u64 offset, u32 len,
1991 unsigned dispatch_flags)
1992 {
1993 struct intel_engine_cs *engine = req->engine;
1994 int ret;
1995
1996 ret = intel_ring_begin(req, 2);
1997 if (ret)
1998 return ret;
1999
2000 intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
2001 intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
2002 0 : MI_BATCH_NON_SECURE));
2003 intel_ring_advance(engine);
2004
2005 return 0;
2006 }
2007
2008 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
2009 {
2010 struct drm_i915_private *dev_priv = engine->i915;
2011
2012 if (!dev_priv->status_page_dmah)
2013 return;
2014
2015 drm_pci_free(dev_priv->dev, dev_priv->status_page_dmah);
2016 engine->status_page.page_addr = NULL;
2017 }
2018
2019 static void cleanup_status_page(struct intel_engine_cs *engine)
2020 {
2021 struct drm_i915_gem_object *obj;
2022
2023 obj = engine->status_page.obj;
2024 if (obj == NULL)
2025 return;
2026
2027 kunmap(sg_page(obj->pages->sgl));
2028 i915_gem_object_ggtt_unpin(obj);
2029 drm_gem_object_unreference(&obj->base);
2030 engine->status_page.obj = NULL;
2031 }
2032
2033 static int init_status_page(struct intel_engine_cs *engine)
2034 {
2035 struct drm_i915_gem_object *obj = engine->status_page.obj;
2036
2037 if (obj == NULL) {
2038 unsigned flags;
2039 int ret;
2040
2041 obj = i915_gem_object_create(engine->i915->dev, 4096);
2042 if (IS_ERR(obj)) {
2043 DRM_ERROR("Failed to allocate status page\n");
2044 return PTR_ERR(obj);
2045 }
2046
2047 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2048 if (ret)
2049 goto err_unref;
2050
2051 flags = 0;
2052 if (!HAS_LLC(engine->i915))
2053 /* On g33, we cannot place HWS above 256MiB, so
2054 * restrict its pinning to the low mappable arena.
2055 * Though this restriction is not documented for
2056 * gen4, gen5, or byt, they also behave similarly
2057 * and hang if the HWS is placed at the top of the
2058 * GTT. To generalise, it appears that all !llc
2059 * platforms have issues with us placing the HWS
2060 * above the mappable region (even though we never
2061 * actualy map it).
2062 */
2063 flags |= PIN_MAPPABLE;
2064 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
2065 if (ret) {
2066 err_unref:
2067 drm_gem_object_unreference(&obj->base);
2068 return ret;
2069 }
2070
2071 engine->status_page.obj = obj;
2072 }
2073
2074 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
2075 engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
2076 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2077
2078 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2079 engine->name, engine->status_page.gfx_addr);
2080
2081 return 0;
2082 }
2083
2084 static int init_phys_status_page(struct intel_engine_cs *engine)
2085 {
2086 struct drm_i915_private *dev_priv = engine->i915;
2087
2088 if (!dev_priv->status_page_dmah) {
2089 dev_priv->status_page_dmah =
2090 drm_pci_alloc(dev_priv->dev, PAGE_SIZE, PAGE_SIZE);
2091 if (!dev_priv->status_page_dmah)
2092 return -ENOMEM;
2093 }
2094
2095 engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2096 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2097
2098 return 0;
2099 }
2100
2101 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2102 {
2103 GEM_BUG_ON(ringbuf->vma == NULL);
2104 GEM_BUG_ON(ringbuf->virtual_start == NULL);
2105
2106 if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2107 i915_gem_object_unpin_map(ringbuf->obj);
2108 else
2109 i915_vma_unpin_iomap(ringbuf->vma);
2110 ringbuf->virtual_start = NULL;
2111
2112 i915_gem_object_ggtt_unpin(ringbuf->obj);
2113 ringbuf->vma = NULL;
2114 }
2115
2116 int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
2117 struct intel_ringbuffer *ringbuf)
2118 {
2119 struct drm_i915_gem_object *obj = ringbuf->obj;
2120 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2121 unsigned flags = PIN_OFFSET_BIAS | 4096;
2122 void *addr;
2123 int ret;
2124
2125 if (HAS_LLC(dev_priv) && !obj->stolen) {
2126 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
2127 if (ret)
2128 return ret;
2129
2130 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2131 if (ret)
2132 goto err_unpin;
2133
2134 addr = i915_gem_object_pin_map(obj);
2135 if (IS_ERR(addr)) {
2136 ret = PTR_ERR(addr);
2137 goto err_unpin;
2138 }
2139 } else {
2140 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
2141 flags | PIN_MAPPABLE);
2142 if (ret)
2143 return ret;
2144
2145 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2146 if (ret)
2147 goto err_unpin;
2148
2149 /* Access through the GTT requires the device to be awake. */
2150 assert_rpm_wakelock_held(dev_priv);
2151
2152 addr = i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
2153 if (IS_ERR(addr)) {
2154 ret = PTR_ERR(addr);
2155 goto err_unpin;
2156 }
2157 }
2158
2159 ringbuf->virtual_start = addr;
2160 ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2161 return 0;
2162
2163 err_unpin:
2164 i915_gem_object_ggtt_unpin(obj);
2165 return ret;
2166 }
2167
2168 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2169 {
2170 drm_gem_object_unreference(&ringbuf->obj->base);
2171 ringbuf->obj = NULL;
2172 }
2173
2174 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2175 struct intel_ringbuffer *ringbuf)
2176 {
2177 struct drm_i915_gem_object *obj;
2178
2179 obj = NULL;
2180 if (!HAS_LLC(dev))
2181 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2182 if (obj == NULL)
2183 obj = i915_gem_object_create(dev, ringbuf->size);
2184 if (IS_ERR(obj))
2185 return PTR_ERR(obj);
2186
2187 /* mark ring buffers as read-only from GPU side by default */
2188 obj->gt_ro = 1;
2189
2190 ringbuf->obj = obj;
2191
2192 return 0;
2193 }
2194
2195 struct intel_ringbuffer *
2196 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2197 {
2198 struct intel_ringbuffer *ring;
2199 int ret;
2200
2201 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2202 if (ring == NULL) {
2203 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2204 engine->name);
2205 return ERR_PTR(-ENOMEM);
2206 }
2207
2208 ring->engine = engine;
2209 list_add(&ring->link, &engine->buffers);
2210
2211 ring->size = size;
2212 /* Workaround an erratum on the i830 which causes a hang if
2213 * the TAIL pointer points to within the last 2 cachelines
2214 * of the buffer.
2215 */
2216 ring->effective_size = size;
2217 if (IS_I830(engine->i915) || IS_845G(engine->i915))
2218 ring->effective_size -= 2 * CACHELINE_BYTES;
2219
2220 ring->last_retired_head = -1;
2221 intel_ring_update_space(ring);
2222
2223 ret = intel_alloc_ringbuffer_obj(engine->i915->dev, ring);
2224 if (ret) {
2225 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2226 engine->name, ret);
2227 list_del(&ring->link);
2228 kfree(ring);
2229 return ERR_PTR(ret);
2230 }
2231
2232 return ring;
2233 }
2234
2235 void
2236 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2237 {
2238 intel_destroy_ringbuffer_obj(ring);
2239 list_del(&ring->link);
2240 kfree(ring);
2241 }
2242
2243 static int intel_init_ring_buffer(struct drm_device *dev,
2244 struct intel_engine_cs *engine)
2245 {
2246 struct drm_i915_private *dev_priv = to_i915(dev);
2247 struct intel_ringbuffer *ringbuf;
2248 int ret;
2249
2250 WARN_ON(engine->buffer);
2251
2252 engine->i915 = dev_priv;
2253 INIT_LIST_HEAD(&engine->active_list);
2254 INIT_LIST_HEAD(&engine->request_list);
2255 INIT_LIST_HEAD(&engine->execlist_queue);
2256 INIT_LIST_HEAD(&engine->buffers);
2257 i915_gem_batch_pool_init(dev, &engine->batch_pool);
2258 memset(engine->semaphore.sync_seqno, 0,
2259 sizeof(engine->semaphore.sync_seqno));
2260
2261 init_waitqueue_head(&engine->irq_queue);
2262
2263 ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
2264 if (IS_ERR(ringbuf)) {
2265 ret = PTR_ERR(ringbuf);
2266 goto error;
2267 }
2268 engine->buffer = ringbuf;
2269
2270 if (I915_NEED_GFX_HWS(dev_priv)) {
2271 ret = init_status_page(engine);
2272 if (ret)
2273 goto error;
2274 } else {
2275 WARN_ON(engine->id != RCS);
2276 ret = init_phys_status_page(engine);
2277 if (ret)
2278 goto error;
2279 }
2280
2281 ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
2282 if (ret) {
2283 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2284 engine->name, ret);
2285 intel_destroy_ringbuffer_obj(ringbuf);
2286 goto error;
2287 }
2288
2289 ret = i915_cmd_parser_init_ring(engine);
2290 if (ret)
2291 goto error;
2292
2293 return 0;
2294
2295 error:
2296 intel_cleanup_engine(engine);
2297 return ret;
2298 }
2299
2300 void intel_cleanup_engine(struct intel_engine_cs *engine)
2301 {
2302 struct drm_i915_private *dev_priv;
2303
2304 if (!intel_engine_initialized(engine))
2305 return;
2306
2307 dev_priv = engine->i915;
2308
2309 if (engine->buffer) {
2310 intel_stop_engine(engine);
2311 WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2312
2313 intel_unpin_ringbuffer_obj(engine->buffer);
2314 intel_ringbuffer_free(engine->buffer);
2315 engine->buffer = NULL;
2316 }
2317
2318 if (engine->cleanup)
2319 engine->cleanup(engine);
2320
2321 if (I915_NEED_GFX_HWS(dev_priv)) {
2322 cleanup_status_page(engine);
2323 } else {
2324 WARN_ON(engine->id != RCS);
2325 cleanup_phys_status_page(engine);
2326 }
2327
2328 i915_cmd_parser_fini_ring(engine);
2329 i915_gem_batch_pool_fini(&engine->batch_pool);
2330 engine->i915 = NULL;
2331 }
2332
2333 int intel_engine_idle(struct intel_engine_cs *engine)
2334 {
2335 struct drm_i915_gem_request *req;
2336
2337 /* Wait upon the last request to be completed */
2338 if (list_empty(&engine->request_list))
2339 return 0;
2340
2341 req = list_entry(engine->request_list.prev,
2342 struct drm_i915_gem_request,
2343 list);
2344
2345 /* Make sure we do not trigger any retires */
2346 return __i915_wait_request(req,
2347 req->i915->mm.interruptible,
2348 NULL, NULL);
2349 }
2350
2351 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2352 {
2353 int ret;
2354
2355 /* Flush enough space to reduce the likelihood of waiting after
2356 * we start building the request - in which case we will just
2357 * have to repeat work.
2358 */
2359 request->reserved_space += LEGACY_REQUEST_SIZE;
2360
2361 request->ringbuf = request->engine->buffer;
2362
2363 ret = intel_ring_begin(request, 0);
2364 if (ret)
2365 return ret;
2366
2367 request->reserved_space -= LEGACY_REQUEST_SIZE;
2368 return 0;
2369 }
2370
2371 static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
2372 {
2373 struct intel_ringbuffer *ringbuf = req->ringbuf;
2374 struct intel_engine_cs *engine = req->engine;
2375 struct drm_i915_gem_request *target;
2376
2377 intel_ring_update_space(ringbuf);
2378 if (ringbuf->space >= bytes)
2379 return 0;
2380
2381 /*
2382 * Space is reserved in the ringbuffer for finalising the request,
2383 * as that cannot be allowed to fail. During request finalisation,
2384 * reserved_space is set to 0 to stop the overallocation and the
2385 * assumption is that then we never need to wait (which has the
2386 * risk of failing with EINTR).
2387 *
2388 * See also i915_gem_request_alloc() and i915_add_request().
2389 */
2390 GEM_BUG_ON(!req->reserved_space);
2391
2392 list_for_each_entry(target, &engine->request_list, list) {
2393 unsigned space;
2394
2395 /*
2396 * The request queue is per-engine, so can contain requests
2397 * from multiple ringbuffers. Here, we must ignore any that
2398 * aren't from the ringbuffer we're considering.
2399 */
2400 if (target->ringbuf != ringbuf)
2401 continue;
2402
2403 /* Would completion of this request free enough space? */
2404 space = __intel_ring_space(target->postfix, ringbuf->tail,
2405 ringbuf->size);
2406 if (space >= bytes)
2407 break;
2408 }
2409
2410 if (WARN_ON(&target->list == &engine->request_list))
2411 return -ENOSPC;
2412
2413 return i915_wait_request(target);
2414 }
2415
2416 int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
2417 {
2418 struct intel_ringbuffer *ringbuf = req->ringbuf;
2419 int remain_actual = ringbuf->size - ringbuf->tail;
2420 int remain_usable = ringbuf->effective_size - ringbuf->tail;
2421 int bytes = num_dwords * sizeof(u32);
2422 int total_bytes, wait_bytes;
2423 bool need_wrap = false;
2424
2425 total_bytes = bytes + req->reserved_space;
2426
2427 if (unlikely(bytes > remain_usable)) {
2428 /*
2429 * Not enough space for the basic request. So need to flush
2430 * out the remainder and then wait for base + reserved.
2431 */
2432 wait_bytes = remain_actual + total_bytes;
2433 need_wrap = true;
2434 } else if (unlikely(total_bytes > remain_usable)) {
2435 /*
2436 * The base request will fit but the reserved space
2437 * falls off the end. So we don't need an immediate wrap
2438 * and only need to effectively wait for the reserved
2439 * size space from the start of ringbuffer.
2440 */
2441 wait_bytes = remain_actual + req->reserved_space;
2442 } else {
2443 /* No wrapping required, just waiting. */
2444 wait_bytes = total_bytes;
2445 }
2446
2447 if (wait_bytes > ringbuf->space) {
2448 int ret = wait_for_space(req, wait_bytes);
2449 if (unlikely(ret))
2450 return ret;
2451
2452 intel_ring_update_space(ringbuf);
2453 }
2454
2455 if (unlikely(need_wrap)) {
2456 GEM_BUG_ON(remain_actual > ringbuf->space);
2457 GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
2458
2459 /* Fill the tail with MI_NOOP */
2460 memset(ringbuf->virtual_start + ringbuf->tail,
2461 0, remain_actual);
2462 ringbuf->tail = 0;
2463 ringbuf->space -= remain_actual;
2464 }
2465
2466 ringbuf->space -= bytes;
2467 GEM_BUG_ON(ringbuf->space < 0);
2468 return 0;
2469 }
2470
2471 /* Align the ring tail to a cacheline boundary */
2472 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2473 {
2474 struct intel_engine_cs *engine = req->engine;
2475 int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2476 int ret;
2477
2478 if (num_dwords == 0)
2479 return 0;
2480
2481 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2482 ret = intel_ring_begin(req, num_dwords);
2483 if (ret)
2484 return ret;
2485
2486 while (num_dwords--)
2487 intel_ring_emit(engine, MI_NOOP);
2488
2489 intel_ring_advance(engine);
2490
2491 return 0;
2492 }
2493
2494 void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2495 {
2496 struct drm_i915_private *dev_priv = engine->i915;
2497
2498 /* Our semaphore implementation is strictly monotonic (i.e. we proceed
2499 * so long as the semaphore value in the register/page is greater
2500 * than the sync value), so whenever we reset the seqno,
2501 * so long as we reset the tracking semaphore value to 0, it will
2502 * always be before the next request's seqno. If we don't reset
2503 * the semaphore value, then when the seqno moves backwards all
2504 * future waits will complete instantly (causing rendering corruption).
2505 */
2506 if (INTEL_INFO(dev_priv)->gen == 6 || INTEL_INFO(dev_priv)->gen == 7) {
2507 I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
2508 I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2509 if (HAS_VEBOX(dev_priv))
2510 I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2511 }
2512 if (dev_priv->semaphore_obj) {
2513 struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
2514 struct page *page = i915_gem_object_get_dirty_page(obj, 0);
2515 void *semaphores = kmap(page);
2516 memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
2517 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
2518 kunmap(page);
2519 }
2520 memset(engine->semaphore.sync_seqno, 0,
2521 sizeof(engine->semaphore.sync_seqno));
2522
2523 engine->set_seqno(engine, seqno);
2524 engine->last_submitted_seqno = seqno;
2525
2526 engine->hangcheck.seqno = seqno;
2527 }
2528
2529 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
2530 u32 value)
2531 {
2532 struct drm_i915_private *dev_priv = engine->i915;
2533
2534 /* Every tail move must follow the sequence below */
2535
2536 /* Disable notification that the ring is IDLE. The GT
2537 * will then assume that it is busy and bring it out of rc6.
2538 */
2539 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2540 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2541
2542 /* Clear the context id. Here be magic! */
2543 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2544
2545 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2546 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2547 GEN6_BSD_SLEEP_INDICATOR) == 0,
2548 50))
2549 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2550
2551 /* Now that the ring is fully powered up, update the tail */
2552 I915_WRITE_TAIL(engine, value);
2553 POSTING_READ(RING_TAIL(engine->mmio_base));
2554
2555 /* Let the ring send IDLE messages to the GT again,
2556 * and so let it sleep to conserve power when idle.
2557 */
2558 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2559 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2560 }
2561
2562 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2563 u32 invalidate, u32 flush)
2564 {
2565 struct intel_engine_cs *engine = req->engine;
2566 uint32_t cmd;
2567 int ret;
2568
2569 ret = intel_ring_begin(req, 4);
2570 if (ret)
2571 return ret;
2572
2573 cmd = MI_FLUSH_DW;
2574 if (INTEL_GEN(req->i915) >= 8)
2575 cmd += 1;
2576
2577 /* We always require a command barrier so that subsequent
2578 * commands, such as breadcrumb interrupts, are strictly ordered
2579 * wrt the contents of the write cache being flushed to memory
2580 * (and thus being coherent from the CPU).
2581 */
2582 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2583
2584 /*
2585 * Bspec vol 1c.5 - video engine command streamer:
2586 * "If ENABLED, all TLBs will be invalidated once the flush
2587 * operation is complete. This bit is only valid when the
2588 * Post-Sync Operation field is a value of 1h or 3h."
2589 */
2590 if (invalidate & I915_GEM_GPU_DOMAINS)
2591 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2592
2593 intel_ring_emit(engine, cmd);
2594 intel_ring_emit(engine,
2595 I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2596 if (INTEL_GEN(req->i915) >= 8) {
2597 intel_ring_emit(engine, 0); /* upper addr */
2598 intel_ring_emit(engine, 0); /* value */
2599 } else {
2600 intel_ring_emit(engine, 0);
2601 intel_ring_emit(engine, MI_NOOP);
2602 }
2603 intel_ring_advance(engine);
2604 return 0;
2605 }
2606
2607 static int
2608 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2609 u64 offset, u32 len,
2610 unsigned dispatch_flags)
2611 {
2612 struct intel_engine_cs *engine = req->engine;
2613 bool ppgtt = USES_PPGTT(engine->dev) &&
2614 !(dispatch_flags & I915_DISPATCH_SECURE);
2615 int ret;
2616
2617 ret = intel_ring_begin(req, 4);
2618 if (ret)
2619 return ret;
2620
2621 /* FIXME(BDW): Address space and security selectors. */
2622 intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2623 (dispatch_flags & I915_DISPATCH_RS ?
2624 MI_BATCH_RESOURCE_STREAMER : 0));
2625 intel_ring_emit(engine, lower_32_bits(offset));
2626 intel_ring_emit(engine, upper_32_bits(offset));
2627 intel_ring_emit(engine, MI_NOOP);
2628 intel_ring_advance(engine);
2629
2630 return 0;
2631 }
2632
2633 static int
2634 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2635 u64 offset, u32 len,
2636 unsigned dispatch_flags)
2637 {
2638 struct intel_engine_cs *engine = req->engine;
2639 int ret;
2640
2641 ret = intel_ring_begin(req, 2);
2642 if (ret)
2643 return ret;
2644
2645 intel_ring_emit(engine,
2646 MI_BATCH_BUFFER_START |
2647 (dispatch_flags & I915_DISPATCH_SECURE ?
2648 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2649 (dispatch_flags & I915_DISPATCH_RS ?
2650 MI_BATCH_RESOURCE_STREAMER : 0));
2651 /* bit0-7 is the length on GEN6+ */
2652 intel_ring_emit(engine, offset);
2653 intel_ring_advance(engine);
2654
2655 return 0;
2656 }
2657
2658 static int
2659 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2660 u64 offset, u32 len,
2661 unsigned dispatch_flags)
2662 {
2663 struct intel_engine_cs *engine = req->engine;
2664 int ret;
2665
2666 ret = intel_ring_begin(req, 2);
2667 if (ret)
2668 return ret;
2669
2670 intel_ring_emit(engine,
2671 MI_BATCH_BUFFER_START |
2672 (dispatch_flags & I915_DISPATCH_SECURE ?
2673 0 : MI_BATCH_NON_SECURE_I965));
2674 /* bit0-7 is the length on GEN6+ */
2675 intel_ring_emit(engine, offset);
2676 intel_ring_advance(engine);
2677
2678 return 0;
2679 }
2680
2681 /* Blitter support (SandyBridge+) */
2682
2683 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2684 u32 invalidate, u32 flush)
2685 {
2686 struct intel_engine_cs *engine = req->engine;
2687 uint32_t cmd;
2688 int ret;
2689
2690 ret = intel_ring_begin(req, 4);
2691 if (ret)
2692 return ret;
2693
2694 cmd = MI_FLUSH_DW;
2695 if (INTEL_GEN(req->i915) >= 8)
2696 cmd += 1;
2697
2698 /* We always require a command barrier so that subsequent
2699 * commands, such as breadcrumb interrupts, are strictly ordered
2700 * wrt the contents of the write cache being flushed to memory
2701 * (and thus being coherent from the CPU).
2702 */
2703 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2704
2705 /*
2706 * Bspec vol 1c.3 - blitter engine command streamer:
2707 * "If ENABLED, all TLBs will be invalidated once the flush
2708 * operation is complete. This bit is only valid when the
2709 * Post-Sync Operation field is a value of 1h or 3h."
2710 */
2711 if (invalidate & I915_GEM_DOMAIN_RENDER)
2712 cmd |= MI_INVALIDATE_TLB;
2713 intel_ring_emit(engine, cmd);
2714 intel_ring_emit(engine,
2715 I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2716 if (INTEL_GEN(req->i915) >= 8) {
2717 intel_ring_emit(engine, 0); /* upper addr */
2718 intel_ring_emit(engine, 0); /* value */
2719 } else {
2720 intel_ring_emit(engine, 0);
2721 intel_ring_emit(engine, MI_NOOP);
2722 }
2723 intel_ring_advance(engine);
2724
2725 return 0;
2726 }
2727
2728 int intel_init_render_ring_buffer(struct drm_device *dev)
2729 {
2730 struct drm_i915_private *dev_priv = dev->dev_private;
2731 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2732 struct drm_i915_gem_object *obj;
2733 int ret;
2734
2735 engine->name = "render ring";
2736 engine->id = RCS;
2737 engine->exec_id = I915_EXEC_RENDER;
2738 engine->hw_id = 0;
2739 engine->mmio_base = RENDER_RING_BASE;
2740
2741 if (INTEL_GEN(dev_priv) >= 8) {
2742 if (i915_semaphore_is_enabled(dev_priv)) {
2743 obj = i915_gem_object_create(dev, 4096);
2744 if (IS_ERR(obj)) {
2745 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2746 i915.semaphores = 0;
2747 } else {
2748 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2749 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2750 if (ret != 0) {
2751 drm_gem_object_unreference(&obj->base);
2752 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2753 i915.semaphores = 0;
2754 } else
2755 dev_priv->semaphore_obj = obj;
2756 }
2757 }
2758
2759 engine->init_context = intel_rcs_ctx_init;
2760 engine->add_request = gen8_render_add_request;
2761 engine->flush = gen8_render_ring_flush;
2762 engine->irq_get = gen8_ring_get_irq;
2763 engine->irq_put = gen8_ring_put_irq;
2764 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2765 engine->get_seqno = ring_get_seqno;
2766 engine->set_seqno = ring_set_seqno;
2767 if (i915_semaphore_is_enabled(dev_priv)) {
2768 WARN_ON(!dev_priv->semaphore_obj);
2769 engine->semaphore.sync_to = gen8_ring_sync;
2770 engine->semaphore.signal = gen8_rcs_signal;
2771 GEN8_RING_SEMAPHORE_INIT(engine);
2772 }
2773 } else if (INTEL_GEN(dev_priv) >= 6) {
2774 engine->init_context = intel_rcs_ctx_init;
2775 engine->add_request = gen6_add_request;
2776 engine->flush = gen7_render_ring_flush;
2777 if (IS_GEN6(dev_priv))
2778 engine->flush = gen6_render_ring_flush;
2779 engine->irq_get = gen6_ring_get_irq;
2780 engine->irq_put = gen6_ring_put_irq;
2781 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2782 engine->irq_seqno_barrier = gen6_seqno_barrier;
2783 engine->get_seqno = ring_get_seqno;
2784 engine->set_seqno = ring_set_seqno;
2785 if (i915_semaphore_is_enabled(dev_priv)) {
2786 engine->semaphore.sync_to = gen6_ring_sync;
2787 engine->semaphore.signal = gen6_signal;
2788 /*
2789 * The current semaphore is only applied on pre-gen8
2790 * platform. And there is no VCS2 ring on the pre-gen8
2791 * platform. So the semaphore between RCS and VCS2 is
2792 * initialized as INVALID. Gen8 will initialize the
2793 * sema between VCS2 and RCS later.
2794 */
2795 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2796 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2797 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2798 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2799 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2800 engine->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2801 engine->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2802 engine->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2803 engine->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2804 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2805 }
2806 } else if (IS_GEN5(dev_priv)) {
2807 engine->add_request = pc_render_add_request;
2808 engine->flush = gen4_render_ring_flush;
2809 engine->get_seqno = pc_render_get_seqno;
2810 engine->set_seqno = pc_render_set_seqno;
2811 engine->irq_get = gen5_ring_get_irq;
2812 engine->irq_put = gen5_ring_put_irq;
2813 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2814 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2815 } else {
2816 engine->add_request = i9xx_add_request;
2817 if (INTEL_GEN(dev_priv) < 4)
2818 engine->flush = gen2_render_ring_flush;
2819 else
2820 engine->flush = gen4_render_ring_flush;
2821 engine->get_seqno = ring_get_seqno;
2822 engine->set_seqno = ring_set_seqno;
2823 if (IS_GEN2(dev_priv)) {
2824 engine->irq_get = i8xx_ring_get_irq;
2825 engine->irq_put = i8xx_ring_put_irq;
2826 } else {
2827 engine->irq_get = i9xx_ring_get_irq;
2828 engine->irq_put = i9xx_ring_put_irq;
2829 }
2830 engine->irq_enable_mask = I915_USER_INTERRUPT;
2831 }
2832 engine->write_tail = ring_write_tail;
2833
2834 if (IS_HASWELL(dev_priv))
2835 engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2836 else if (IS_GEN8(dev_priv))
2837 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2838 else if (INTEL_GEN(dev_priv) >= 6)
2839 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2840 else if (INTEL_GEN(dev_priv) >= 4)
2841 engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2842 else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2843 engine->dispatch_execbuffer = i830_dispatch_execbuffer;
2844 else
2845 engine->dispatch_execbuffer = i915_dispatch_execbuffer;
2846 engine->init_hw = init_render_ring;
2847 engine->cleanup = render_ring_cleanup;
2848
2849 /* Workaround batchbuffer to combat CS tlb bug. */
2850 if (HAS_BROKEN_CS_TLB(dev_priv)) {
2851 obj = i915_gem_object_create(dev, I830_WA_SIZE);
2852 if (IS_ERR(obj)) {
2853 DRM_ERROR("Failed to allocate batch bo\n");
2854 return PTR_ERR(obj);
2855 }
2856
2857 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2858 if (ret != 0) {
2859 drm_gem_object_unreference(&obj->base);
2860 DRM_ERROR("Failed to ping batch bo\n");
2861 return ret;
2862 }
2863
2864 engine->scratch.obj = obj;
2865 engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2866 }
2867
2868 ret = intel_init_ring_buffer(dev, engine);
2869 if (ret)
2870 return ret;
2871
2872 if (INTEL_GEN(dev_priv) >= 5) {
2873 ret = intel_init_pipe_control(engine);
2874 if (ret)
2875 return ret;
2876 }
2877
2878 return 0;
2879 }
2880
2881 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2882 {
2883 struct drm_i915_private *dev_priv = dev->dev_private;
2884 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2885
2886 engine->name = "bsd ring";
2887 engine->id = VCS;
2888 engine->exec_id = I915_EXEC_BSD;
2889 engine->hw_id = 1;
2890
2891 engine->write_tail = ring_write_tail;
2892 if (INTEL_GEN(dev_priv) >= 6) {
2893 engine->mmio_base = GEN6_BSD_RING_BASE;
2894 /* gen6 bsd needs a special wa for tail updates */
2895 if (IS_GEN6(dev_priv))
2896 engine->write_tail = gen6_bsd_ring_write_tail;
2897 engine->flush = gen6_bsd_ring_flush;
2898 engine->add_request = gen6_add_request;
2899 engine->irq_seqno_barrier = gen6_seqno_barrier;
2900 engine->get_seqno = ring_get_seqno;
2901 engine->set_seqno = ring_set_seqno;
2902 if (INTEL_GEN(dev_priv) >= 8) {
2903 engine->irq_enable_mask =
2904 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2905 engine->irq_get = gen8_ring_get_irq;
2906 engine->irq_put = gen8_ring_put_irq;
2907 engine->dispatch_execbuffer =
2908 gen8_ring_dispatch_execbuffer;
2909 if (i915_semaphore_is_enabled(dev_priv)) {
2910 engine->semaphore.sync_to = gen8_ring_sync;
2911 engine->semaphore.signal = gen8_xcs_signal;
2912 GEN8_RING_SEMAPHORE_INIT(engine);
2913 }
2914 } else {
2915 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2916 engine->irq_get = gen6_ring_get_irq;
2917 engine->irq_put = gen6_ring_put_irq;
2918 engine->dispatch_execbuffer =
2919 gen6_ring_dispatch_execbuffer;
2920 if (i915_semaphore_is_enabled(dev_priv)) {
2921 engine->semaphore.sync_to = gen6_ring_sync;
2922 engine->semaphore.signal = gen6_signal;
2923 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2924 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2925 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2926 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2927 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2928 engine->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2929 engine->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2930 engine->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2931 engine->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2932 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2933 }
2934 }
2935 } else {
2936 engine->mmio_base = BSD_RING_BASE;
2937 engine->flush = bsd_ring_flush;
2938 engine->add_request = i9xx_add_request;
2939 engine->get_seqno = ring_get_seqno;
2940 engine->set_seqno = ring_set_seqno;
2941 if (IS_GEN5(dev_priv)) {
2942 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2943 engine->irq_get = gen5_ring_get_irq;
2944 engine->irq_put = gen5_ring_put_irq;
2945 } else {
2946 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2947 engine->irq_get = i9xx_ring_get_irq;
2948 engine->irq_put = i9xx_ring_put_irq;
2949 }
2950 engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2951 }
2952 engine->init_hw = init_ring_common;
2953
2954 return intel_init_ring_buffer(dev, engine);
2955 }
2956
2957 /**
2958 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2959 */
2960 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2961 {
2962 struct drm_i915_private *dev_priv = dev->dev_private;
2963 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2964
2965 engine->name = "bsd2 ring";
2966 engine->id = VCS2;
2967 engine->exec_id = I915_EXEC_BSD;
2968 engine->hw_id = 4;
2969
2970 engine->write_tail = ring_write_tail;
2971 engine->mmio_base = GEN8_BSD2_RING_BASE;
2972 engine->flush = gen6_bsd_ring_flush;
2973 engine->add_request = gen6_add_request;
2974 engine->irq_seqno_barrier = gen6_seqno_barrier;
2975 engine->get_seqno = ring_get_seqno;
2976 engine->set_seqno = ring_set_seqno;
2977 engine->irq_enable_mask =
2978 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2979 engine->irq_get = gen8_ring_get_irq;
2980 engine->irq_put = gen8_ring_put_irq;
2981 engine->dispatch_execbuffer =
2982 gen8_ring_dispatch_execbuffer;
2983 if (i915_semaphore_is_enabled(dev_priv)) {
2984 engine->semaphore.sync_to = gen8_ring_sync;
2985 engine->semaphore.signal = gen8_xcs_signal;
2986 GEN8_RING_SEMAPHORE_INIT(engine);
2987 }
2988 engine->init_hw = init_ring_common;
2989
2990 return intel_init_ring_buffer(dev, engine);
2991 }
2992
2993 int intel_init_blt_ring_buffer(struct drm_device *dev)
2994 {
2995 struct drm_i915_private *dev_priv = dev->dev_private;
2996 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2997
2998 engine->name = "blitter ring";
2999 engine->id = BCS;
3000 engine->exec_id = I915_EXEC_BLT;
3001 engine->hw_id = 2;
3002
3003 engine->mmio_base = BLT_RING_BASE;
3004 engine->write_tail = ring_write_tail;
3005 engine->flush = gen6_ring_flush;
3006 engine->add_request = gen6_add_request;
3007 engine->irq_seqno_barrier = gen6_seqno_barrier;
3008 engine->get_seqno = ring_get_seqno;
3009 engine->set_seqno = ring_set_seqno;
3010 if (INTEL_GEN(dev_priv) >= 8) {
3011 engine->irq_enable_mask =
3012 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
3013 engine->irq_get = gen8_ring_get_irq;
3014 engine->irq_put = gen8_ring_put_irq;
3015 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3016 if (i915_semaphore_is_enabled(dev_priv)) {
3017 engine->semaphore.sync_to = gen8_ring_sync;
3018 engine->semaphore.signal = gen8_xcs_signal;
3019 GEN8_RING_SEMAPHORE_INIT(engine);
3020 }
3021 } else {
3022 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
3023 engine->irq_get = gen6_ring_get_irq;
3024 engine->irq_put = gen6_ring_put_irq;
3025 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3026 if (i915_semaphore_is_enabled(dev_priv)) {
3027 engine->semaphore.signal = gen6_signal;
3028 engine->semaphore.sync_to = gen6_ring_sync;
3029 /*
3030 * The current semaphore is only applied on pre-gen8
3031 * platform. And there is no VCS2 ring on the pre-gen8
3032 * platform. So the semaphore between BCS and VCS2 is
3033 * initialized as INVALID. Gen8 will initialize the
3034 * sema between BCS and VCS2 later.
3035 */
3036 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
3037 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
3038 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
3039 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
3040 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3041 engine->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
3042 engine->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
3043 engine->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
3044 engine->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
3045 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3046 }
3047 }
3048 engine->init_hw = init_ring_common;
3049
3050 return intel_init_ring_buffer(dev, engine);
3051 }
3052
3053 int intel_init_vebox_ring_buffer(struct drm_device *dev)
3054 {
3055 struct drm_i915_private *dev_priv = dev->dev_private;
3056 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
3057
3058 engine->name = "video enhancement ring";
3059 engine->id = VECS;
3060 engine->exec_id = I915_EXEC_VEBOX;
3061 engine->hw_id = 3;
3062
3063 engine->mmio_base = VEBOX_RING_BASE;
3064 engine->write_tail = ring_write_tail;
3065 engine->flush = gen6_ring_flush;
3066 engine->add_request = gen6_add_request;
3067 engine->irq_seqno_barrier = gen6_seqno_barrier;
3068 engine->get_seqno = ring_get_seqno;
3069 engine->set_seqno = ring_set_seqno;
3070
3071 if (INTEL_GEN(dev_priv) >= 8) {
3072 engine->irq_enable_mask =
3073 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3074 engine->irq_get = gen8_ring_get_irq;
3075 engine->irq_put = gen8_ring_put_irq;
3076 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3077 if (i915_semaphore_is_enabled(dev_priv)) {
3078 engine->semaphore.sync_to = gen8_ring_sync;
3079 engine->semaphore.signal = gen8_xcs_signal;
3080 GEN8_RING_SEMAPHORE_INIT(engine);
3081 }
3082 } else {
3083 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3084 engine->irq_get = hsw_vebox_get_irq;
3085 engine->irq_put = hsw_vebox_put_irq;
3086 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3087 if (i915_semaphore_is_enabled(dev_priv)) {
3088 engine->semaphore.sync_to = gen6_ring_sync;
3089 engine->semaphore.signal = gen6_signal;
3090 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
3091 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
3092 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3093 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3094 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3095 engine->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3096 engine->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3097 engine->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3098 engine->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3099 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3100 }
3101 }
3102 engine->init_hw = init_ring_common;
3103
3104 return intel_init_ring_buffer(dev, engine);
3105 }
3106
3107 int
3108 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3109 {
3110 struct intel_engine_cs *engine = req->engine;
3111 int ret;
3112
3113 if (!engine->gpu_caches_dirty)
3114 return 0;
3115
3116 ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
3117 if (ret)
3118 return ret;
3119
3120 trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3121
3122 engine->gpu_caches_dirty = false;
3123 return 0;
3124 }
3125
3126 int
3127 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3128 {
3129 struct intel_engine_cs *engine = req->engine;
3130 uint32_t flush_domains;
3131 int ret;
3132
3133 flush_domains = 0;
3134 if (engine->gpu_caches_dirty)
3135 flush_domains = I915_GEM_GPU_DOMAINS;
3136
3137 ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3138 if (ret)
3139 return ret;
3140
3141 trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3142
3143 engine->gpu_caches_dirty = false;
3144 return 0;
3145 }
3146
3147 void
3148 intel_stop_engine(struct intel_engine_cs *engine)
3149 {
3150 int ret;
3151
3152 if (!intel_engine_initialized(engine))
3153 return;
3154
3155 ret = intel_engine_idle(engine);
3156 if (ret)
3157 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3158 engine->name, ret);
3159
3160 stop_ring(engine);
3161 }
This page took 0.098577 seconds and 5 git commands to generate.