Merge tag 'platform-drivers-x86-v4.7-1' of git://git.infradead.org/users/dvhart/linux...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 int __intel_ring_space(int head, int tail, int size)
38 {
39 int space = head - tail;
40 if (space <= 0)
41 space += size;
42 return space - I915_RING_FREE_SPACE;
43 }
44
45 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
46 {
47 if (ringbuf->last_retired_head != -1) {
48 ringbuf->head = ringbuf->last_retired_head;
49 ringbuf->last_retired_head = -1;
50 }
51
52 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
53 ringbuf->tail, ringbuf->size);
54 }
55
56 int intel_ring_space(struct intel_ringbuffer *ringbuf)
57 {
58 intel_ring_update_space(ringbuf);
59 return ringbuf->space;
60 }
61
62 bool intel_engine_stopped(struct intel_engine_cs *engine)
63 {
64 struct drm_i915_private *dev_priv = engine->dev->dev_private;
65 return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
66 }
67
68 static void __intel_ring_advance(struct intel_engine_cs *engine)
69 {
70 struct intel_ringbuffer *ringbuf = engine->buffer;
71 ringbuf->tail &= ringbuf->size - 1;
72 if (intel_engine_stopped(engine))
73 return;
74 engine->write_tail(engine, ringbuf->tail);
75 }
76
77 static int
78 gen2_render_ring_flush(struct drm_i915_gem_request *req,
79 u32 invalidate_domains,
80 u32 flush_domains)
81 {
82 struct intel_engine_cs *engine = req->engine;
83 u32 cmd;
84 int ret;
85
86 cmd = MI_FLUSH;
87 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
88 cmd |= MI_NO_WRITE_FLUSH;
89
90 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
91 cmd |= MI_READ_FLUSH;
92
93 ret = intel_ring_begin(req, 2);
94 if (ret)
95 return ret;
96
97 intel_ring_emit(engine, cmd);
98 intel_ring_emit(engine, MI_NOOP);
99 intel_ring_advance(engine);
100
101 return 0;
102 }
103
104 static int
105 gen4_render_ring_flush(struct drm_i915_gem_request *req,
106 u32 invalidate_domains,
107 u32 flush_domains)
108 {
109 struct intel_engine_cs *engine = req->engine;
110 struct drm_device *dev = engine->dev;
111 u32 cmd;
112 int ret;
113
114 /*
115 * read/write caches:
116 *
117 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
118 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
119 * also flushed at 2d versus 3d pipeline switches.
120 *
121 * read-only caches:
122 *
123 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
124 * MI_READ_FLUSH is set, and is always flushed on 965.
125 *
126 * I915_GEM_DOMAIN_COMMAND may not exist?
127 *
128 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
129 * invalidated when MI_EXE_FLUSH is set.
130 *
131 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
132 * invalidated with every MI_FLUSH.
133 *
134 * TLBs:
135 *
136 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
137 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
138 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
139 * are flushed at any MI_FLUSH.
140 */
141
142 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
143 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
144 cmd &= ~MI_NO_WRITE_FLUSH;
145 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
146 cmd |= MI_EXE_FLUSH;
147
148 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
149 (IS_G4X(dev) || IS_GEN5(dev)))
150 cmd |= MI_INVALIDATE_ISP;
151
152 ret = intel_ring_begin(req, 2);
153 if (ret)
154 return ret;
155
156 intel_ring_emit(engine, cmd);
157 intel_ring_emit(engine, MI_NOOP);
158 intel_ring_advance(engine);
159
160 return 0;
161 }
162
163 /**
164 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
165 * implementing two workarounds on gen6. From section 1.4.7.1
166 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
167 *
168 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
169 * produced by non-pipelined state commands), software needs to first
170 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
171 * 0.
172 *
173 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
174 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
175 *
176 * And the workaround for these two requires this workaround first:
177 *
178 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
179 * BEFORE the pipe-control with a post-sync op and no write-cache
180 * flushes.
181 *
182 * And this last workaround is tricky because of the requirements on
183 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
184 * volume 2 part 1:
185 *
186 * "1 of the following must also be set:
187 * - Render Target Cache Flush Enable ([12] of DW1)
188 * - Depth Cache Flush Enable ([0] of DW1)
189 * - Stall at Pixel Scoreboard ([1] of DW1)
190 * - Depth Stall ([13] of DW1)
191 * - Post-Sync Operation ([13] of DW1)
192 * - Notify Enable ([8] of DW1)"
193 *
194 * The cache flushes require the workaround flush that triggered this
195 * one, so we can't use it. Depth stall would trigger the same.
196 * Post-sync nonzero is what triggered this second workaround, so we
197 * can't use that one either. Notify enable is IRQs, which aren't
198 * really our business. That leaves only stall at scoreboard.
199 */
200 static int
201 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
202 {
203 struct intel_engine_cs *engine = req->engine;
204 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
205 int ret;
206
207 ret = intel_ring_begin(req, 6);
208 if (ret)
209 return ret;
210
211 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
212 intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
213 PIPE_CONTROL_STALL_AT_SCOREBOARD);
214 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
215 intel_ring_emit(engine, 0); /* low dword */
216 intel_ring_emit(engine, 0); /* high dword */
217 intel_ring_emit(engine, MI_NOOP);
218 intel_ring_advance(engine);
219
220 ret = intel_ring_begin(req, 6);
221 if (ret)
222 return ret;
223
224 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
225 intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
226 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
227 intel_ring_emit(engine, 0);
228 intel_ring_emit(engine, 0);
229 intel_ring_emit(engine, MI_NOOP);
230 intel_ring_advance(engine);
231
232 return 0;
233 }
234
235 static int
236 gen6_render_ring_flush(struct drm_i915_gem_request *req,
237 u32 invalidate_domains, u32 flush_domains)
238 {
239 struct intel_engine_cs *engine = req->engine;
240 u32 flags = 0;
241 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
242 int ret;
243
244 /* Force SNB workarounds for PIPE_CONTROL flushes */
245 ret = intel_emit_post_sync_nonzero_flush(req);
246 if (ret)
247 return ret;
248
249 /* Just flush everything. Experiments have shown that reducing the
250 * number of bits based on the write domains has little performance
251 * impact.
252 */
253 if (flush_domains) {
254 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
255 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
256 /*
257 * Ensure that any following seqno writes only happen
258 * when the render cache is indeed flushed.
259 */
260 flags |= PIPE_CONTROL_CS_STALL;
261 }
262 if (invalidate_domains) {
263 flags |= PIPE_CONTROL_TLB_INVALIDATE;
264 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
265 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
266 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
267 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
268 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
269 /*
270 * TLB invalidate requires a post-sync write.
271 */
272 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
273 }
274
275 ret = intel_ring_begin(req, 4);
276 if (ret)
277 return ret;
278
279 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
280 intel_ring_emit(engine, flags);
281 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
282 intel_ring_emit(engine, 0);
283 intel_ring_advance(engine);
284
285 return 0;
286 }
287
288 static int
289 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
290 {
291 struct intel_engine_cs *engine = req->engine;
292 int ret;
293
294 ret = intel_ring_begin(req, 4);
295 if (ret)
296 return ret;
297
298 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
299 intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
300 PIPE_CONTROL_STALL_AT_SCOREBOARD);
301 intel_ring_emit(engine, 0);
302 intel_ring_emit(engine, 0);
303 intel_ring_advance(engine);
304
305 return 0;
306 }
307
308 static int
309 gen7_render_ring_flush(struct drm_i915_gem_request *req,
310 u32 invalidate_domains, u32 flush_domains)
311 {
312 struct intel_engine_cs *engine = req->engine;
313 u32 flags = 0;
314 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
315 int ret;
316
317 /*
318 * Ensure that any following seqno writes only happen when the render
319 * cache is indeed flushed.
320 *
321 * Workaround: 4th PIPE_CONTROL command (except the ones with only
322 * read-cache invalidate bits set) must have the CS_STALL bit set. We
323 * don't try to be clever and just set it unconditionally.
324 */
325 flags |= PIPE_CONTROL_CS_STALL;
326
327 /* Just flush everything. Experiments have shown that reducing the
328 * number of bits based on the write domains has little performance
329 * impact.
330 */
331 if (flush_domains) {
332 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
333 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
334 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
335 flags |= PIPE_CONTROL_FLUSH_ENABLE;
336 }
337 if (invalidate_domains) {
338 flags |= PIPE_CONTROL_TLB_INVALIDATE;
339 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
340 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
341 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
342 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
343 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
344 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
345 /*
346 * TLB invalidate requires a post-sync write.
347 */
348 flags |= PIPE_CONTROL_QW_WRITE;
349 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
350
351 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
352
353 /* Workaround: we must issue a pipe_control with CS-stall bit
354 * set before a pipe_control command that has the state cache
355 * invalidate bit set. */
356 gen7_render_ring_cs_stall_wa(req);
357 }
358
359 ret = intel_ring_begin(req, 4);
360 if (ret)
361 return ret;
362
363 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
364 intel_ring_emit(engine, flags);
365 intel_ring_emit(engine, scratch_addr);
366 intel_ring_emit(engine, 0);
367 intel_ring_advance(engine);
368
369 return 0;
370 }
371
372 static int
373 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
374 u32 flags, u32 scratch_addr)
375 {
376 struct intel_engine_cs *engine = req->engine;
377 int ret;
378
379 ret = intel_ring_begin(req, 6);
380 if (ret)
381 return ret;
382
383 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
384 intel_ring_emit(engine, flags);
385 intel_ring_emit(engine, scratch_addr);
386 intel_ring_emit(engine, 0);
387 intel_ring_emit(engine, 0);
388 intel_ring_emit(engine, 0);
389 intel_ring_advance(engine);
390
391 return 0;
392 }
393
394 static int
395 gen8_render_ring_flush(struct drm_i915_gem_request *req,
396 u32 invalidate_domains, u32 flush_domains)
397 {
398 u32 flags = 0;
399 u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
400 int ret;
401
402 flags |= PIPE_CONTROL_CS_STALL;
403
404 if (flush_domains) {
405 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
406 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
407 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
408 flags |= PIPE_CONTROL_FLUSH_ENABLE;
409 }
410 if (invalidate_domains) {
411 flags |= PIPE_CONTROL_TLB_INVALIDATE;
412 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
413 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
414 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
415 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
416 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
417 flags |= PIPE_CONTROL_QW_WRITE;
418 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
419
420 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
421 ret = gen8_emit_pipe_control(req,
422 PIPE_CONTROL_CS_STALL |
423 PIPE_CONTROL_STALL_AT_SCOREBOARD,
424 0);
425 if (ret)
426 return ret;
427 }
428
429 return gen8_emit_pipe_control(req, flags, scratch_addr);
430 }
431
432 static void ring_write_tail(struct intel_engine_cs *engine,
433 u32 value)
434 {
435 struct drm_i915_private *dev_priv = engine->dev->dev_private;
436 I915_WRITE_TAIL(engine, value);
437 }
438
439 u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
440 {
441 struct drm_i915_private *dev_priv = engine->dev->dev_private;
442 u64 acthd;
443
444 if (INTEL_INFO(engine->dev)->gen >= 8)
445 acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
446 RING_ACTHD_UDW(engine->mmio_base));
447 else if (INTEL_INFO(engine->dev)->gen >= 4)
448 acthd = I915_READ(RING_ACTHD(engine->mmio_base));
449 else
450 acthd = I915_READ(ACTHD);
451
452 return acthd;
453 }
454
455 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
456 {
457 struct drm_i915_private *dev_priv = engine->dev->dev_private;
458 u32 addr;
459
460 addr = dev_priv->status_page_dmah->busaddr;
461 if (INTEL_INFO(engine->dev)->gen >= 4)
462 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
463 I915_WRITE(HWS_PGA, addr);
464 }
465
466 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
467 {
468 struct drm_device *dev = engine->dev;
469 struct drm_i915_private *dev_priv = engine->dev->dev_private;
470 i915_reg_t mmio;
471
472 /* The ring status page addresses are no longer next to the rest of
473 * the ring registers as of gen7.
474 */
475 if (IS_GEN7(dev)) {
476 switch (engine->id) {
477 case RCS:
478 mmio = RENDER_HWS_PGA_GEN7;
479 break;
480 case BCS:
481 mmio = BLT_HWS_PGA_GEN7;
482 break;
483 /*
484 * VCS2 actually doesn't exist on Gen7. Only shut up
485 * gcc switch check warning
486 */
487 case VCS2:
488 case VCS:
489 mmio = BSD_HWS_PGA_GEN7;
490 break;
491 case VECS:
492 mmio = VEBOX_HWS_PGA_GEN7;
493 break;
494 }
495 } else if (IS_GEN6(engine->dev)) {
496 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
497 } else {
498 /* XXX: gen8 returns to sanity */
499 mmio = RING_HWS_PGA(engine->mmio_base);
500 }
501
502 I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
503 POSTING_READ(mmio);
504
505 /*
506 * Flush the TLB for this page
507 *
508 * FIXME: These two bits have disappeared on gen8, so a question
509 * arises: do we still need this and if so how should we go about
510 * invalidating the TLB?
511 */
512 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
513 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
514
515 /* ring should be idle before issuing a sync flush*/
516 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
517
518 I915_WRITE(reg,
519 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
520 INSTPM_SYNC_FLUSH));
521 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
522 1000))
523 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
524 engine->name);
525 }
526 }
527
528 static bool stop_ring(struct intel_engine_cs *engine)
529 {
530 struct drm_i915_private *dev_priv = to_i915(engine->dev);
531
532 if (!IS_GEN2(engine->dev)) {
533 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
534 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
535 DRM_ERROR("%s : timed out trying to stop ring\n",
536 engine->name);
537 /* Sometimes we observe that the idle flag is not
538 * set even though the ring is empty. So double
539 * check before giving up.
540 */
541 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
542 return false;
543 }
544 }
545
546 I915_WRITE_CTL(engine, 0);
547 I915_WRITE_HEAD(engine, 0);
548 engine->write_tail(engine, 0);
549
550 if (!IS_GEN2(engine->dev)) {
551 (void)I915_READ_CTL(engine);
552 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
553 }
554
555 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
556 }
557
558 void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
559 {
560 memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
561 }
562
563 static int init_ring_common(struct intel_engine_cs *engine)
564 {
565 struct drm_device *dev = engine->dev;
566 struct drm_i915_private *dev_priv = dev->dev_private;
567 struct intel_ringbuffer *ringbuf = engine->buffer;
568 struct drm_i915_gem_object *obj = ringbuf->obj;
569 int ret = 0;
570
571 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
572
573 if (!stop_ring(engine)) {
574 /* G45 ring initialization often fails to reset head to zero */
575 DRM_DEBUG_KMS("%s head not reset to zero "
576 "ctl %08x head %08x tail %08x start %08x\n",
577 engine->name,
578 I915_READ_CTL(engine),
579 I915_READ_HEAD(engine),
580 I915_READ_TAIL(engine),
581 I915_READ_START(engine));
582
583 if (!stop_ring(engine)) {
584 DRM_ERROR("failed to set %s head to zero "
585 "ctl %08x head %08x tail %08x start %08x\n",
586 engine->name,
587 I915_READ_CTL(engine),
588 I915_READ_HEAD(engine),
589 I915_READ_TAIL(engine),
590 I915_READ_START(engine));
591 ret = -EIO;
592 goto out;
593 }
594 }
595
596 if (I915_NEED_GFX_HWS(dev))
597 intel_ring_setup_status_page(engine);
598 else
599 ring_setup_phys_status_page(engine);
600
601 /* Enforce ordering by reading HEAD register back */
602 I915_READ_HEAD(engine);
603
604 /* Initialize the ring. This must happen _after_ we've cleared the ring
605 * registers with the above sequence (the readback of the HEAD registers
606 * also enforces ordering), otherwise the hw might lose the new ring
607 * register values. */
608 I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
609
610 /* WaClearRingBufHeadRegAtInit:ctg,elk */
611 if (I915_READ_HEAD(engine))
612 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
613 engine->name, I915_READ_HEAD(engine));
614 I915_WRITE_HEAD(engine, 0);
615 (void)I915_READ_HEAD(engine);
616
617 I915_WRITE_CTL(engine,
618 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
619 | RING_VALID);
620
621 /* If the head is still not zero, the ring is dead */
622 if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
623 I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
624 (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
625 DRM_ERROR("%s initialization failed "
626 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
627 engine->name,
628 I915_READ_CTL(engine),
629 I915_READ_CTL(engine) & RING_VALID,
630 I915_READ_HEAD(engine), I915_READ_TAIL(engine),
631 I915_READ_START(engine),
632 (unsigned long)i915_gem_obj_ggtt_offset(obj));
633 ret = -EIO;
634 goto out;
635 }
636
637 ringbuf->last_retired_head = -1;
638 ringbuf->head = I915_READ_HEAD(engine);
639 ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
640 intel_ring_update_space(ringbuf);
641
642 intel_engine_init_hangcheck(engine);
643
644 out:
645 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
646
647 return ret;
648 }
649
650 void
651 intel_fini_pipe_control(struct intel_engine_cs *engine)
652 {
653 struct drm_device *dev = engine->dev;
654
655 if (engine->scratch.obj == NULL)
656 return;
657
658 if (INTEL_INFO(dev)->gen >= 5) {
659 kunmap(sg_page(engine->scratch.obj->pages->sgl));
660 i915_gem_object_ggtt_unpin(engine->scratch.obj);
661 }
662
663 drm_gem_object_unreference(&engine->scratch.obj->base);
664 engine->scratch.obj = NULL;
665 }
666
667 int
668 intel_init_pipe_control(struct intel_engine_cs *engine)
669 {
670 int ret;
671
672 WARN_ON(engine->scratch.obj);
673
674 engine->scratch.obj = i915_gem_alloc_object(engine->dev, 4096);
675 if (engine->scratch.obj == NULL) {
676 DRM_ERROR("Failed to allocate seqno page\n");
677 ret = -ENOMEM;
678 goto err;
679 }
680
681 ret = i915_gem_object_set_cache_level(engine->scratch.obj,
682 I915_CACHE_LLC);
683 if (ret)
684 goto err_unref;
685
686 ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
687 if (ret)
688 goto err_unref;
689
690 engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
691 engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
692 if (engine->scratch.cpu_page == NULL) {
693 ret = -ENOMEM;
694 goto err_unpin;
695 }
696
697 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
698 engine->name, engine->scratch.gtt_offset);
699 return 0;
700
701 err_unpin:
702 i915_gem_object_ggtt_unpin(engine->scratch.obj);
703 err_unref:
704 drm_gem_object_unreference(&engine->scratch.obj->base);
705 err:
706 return ret;
707 }
708
709 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
710 {
711 int ret, i;
712 struct intel_engine_cs *engine = req->engine;
713 struct drm_device *dev = engine->dev;
714 struct drm_i915_private *dev_priv = dev->dev_private;
715 struct i915_workarounds *w = &dev_priv->workarounds;
716
717 if (w->count == 0)
718 return 0;
719
720 engine->gpu_caches_dirty = true;
721 ret = intel_ring_flush_all_caches(req);
722 if (ret)
723 return ret;
724
725 ret = intel_ring_begin(req, (w->count * 2 + 2));
726 if (ret)
727 return ret;
728
729 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
730 for (i = 0; i < w->count; i++) {
731 intel_ring_emit_reg(engine, w->reg[i].addr);
732 intel_ring_emit(engine, w->reg[i].value);
733 }
734 intel_ring_emit(engine, MI_NOOP);
735
736 intel_ring_advance(engine);
737
738 engine->gpu_caches_dirty = true;
739 ret = intel_ring_flush_all_caches(req);
740 if (ret)
741 return ret;
742
743 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
744
745 return 0;
746 }
747
748 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
749 {
750 int ret;
751
752 ret = intel_ring_workarounds_emit(req);
753 if (ret != 0)
754 return ret;
755
756 ret = i915_gem_render_state_init(req);
757 if (ret)
758 return ret;
759
760 return 0;
761 }
762
763 static int wa_add(struct drm_i915_private *dev_priv,
764 i915_reg_t addr,
765 const u32 mask, const u32 val)
766 {
767 const u32 idx = dev_priv->workarounds.count;
768
769 if (WARN_ON(idx >= I915_MAX_WA_REGS))
770 return -ENOSPC;
771
772 dev_priv->workarounds.reg[idx].addr = addr;
773 dev_priv->workarounds.reg[idx].value = val;
774 dev_priv->workarounds.reg[idx].mask = mask;
775
776 dev_priv->workarounds.count++;
777
778 return 0;
779 }
780
781 #define WA_REG(addr, mask, val) do { \
782 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
783 if (r) \
784 return r; \
785 } while (0)
786
787 #define WA_SET_BIT_MASKED(addr, mask) \
788 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
789
790 #define WA_CLR_BIT_MASKED(addr, mask) \
791 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
792
793 #define WA_SET_FIELD_MASKED(addr, mask, value) \
794 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
795
796 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
797 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
798
799 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
800
801 static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
802 i915_reg_t reg)
803 {
804 struct drm_i915_private *dev_priv = engine->dev->dev_private;
805 struct i915_workarounds *wa = &dev_priv->workarounds;
806 const uint32_t index = wa->hw_whitelist_count[engine->id];
807
808 if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
809 return -EINVAL;
810
811 WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
812 i915_mmio_reg_offset(reg));
813 wa->hw_whitelist_count[engine->id]++;
814
815 return 0;
816 }
817
818 static int gen8_init_workarounds(struct intel_engine_cs *engine)
819 {
820 struct drm_device *dev = engine->dev;
821 struct drm_i915_private *dev_priv = dev->dev_private;
822
823 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
824
825 /* WaDisableAsyncFlipPerfMode:bdw,chv */
826 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
827
828 /* WaDisablePartialInstShootdown:bdw,chv */
829 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
830 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
831
832 /* Use Force Non-Coherent whenever executing a 3D context. This is a
833 * workaround for for a possible hang in the unlikely event a TLB
834 * invalidation occurs during a PSD flush.
835 */
836 /* WaForceEnableNonCoherent:bdw,chv */
837 /* WaHdcDisableFetchWhenMasked:bdw,chv */
838 WA_SET_BIT_MASKED(HDC_CHICKEN0,
839 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
840 HDC_FORCE_NON_COHERENT);
841
842 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
843 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
844 * polygons in the same 8x4 pixel/sample area to be processed without
845 * stalling waiting for the earlier ones to write to Hierarchical Z
846 * buffer."
847 *
848 * This optimization is off by default for BDW and CHV; turn it on.
849 */
850 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
851
852 /* Wa4x4STCOptimizationDisable:bdw,chv */
853 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
854
855 /*
856 * BSpec recommends 8x4 when MSAA is used,
857 * however in practice 16x4 seems fastest.
858 *
859 * Note that PS/WM thread counts depend on the WIZ hashing
860 * disable bit, which we don't touch here, but it's good
861 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
862 */
863 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
864 GEN6_WIZ_HASHING_MASK,
865 GEN6_WIZ_HASHING_16x4);
866
867 return 0;
868 }
869
870 static int bdw_init_workarounds(struct intel_engine_cs *engine)
871 {
872 int ret;
873 struct drm_device *dev = engine->dev;
874 struct drm_i915_private *dev_priv = dev->dev_private;
875
876 ret = gen8_init_workarounds(engine);
877 if (ret)
878 return ret;
879
880 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
881 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
882
883 /* WaDisableDopClockGating:bdw */
884 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
885 DOP_CLOCK_GATING_DISABLE);
886
887 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
888 GEN8_SAMPLER_POWER_BYPASS_DIS);
889
890 WA_SET_BIT_MASKED(HDC_CHICKEN0,
891 /* WaForceContextSaveRestoreNonCoherent:bdw */
892 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
893 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
894 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
895
896 return 0;
897 }
898
899 static int chv_init_workarounds(struct intel_engine_cs *engine)
900 {
901 int ret;
902 struct drm_device *dev = engine->dev;
903 struct drm_i915_private *dev_priv = dev->dev_private;
904
905 ret = gen8_init_workarounds(engine);
906 if (ret)
907 return ret;
908
909 /* WaDisableThreadStallDopClockGating:chv */
910 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
911
912 /* Improve HiZ throughput on CHV. */
913 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
914
915 return 0;
916 }
917
918 static int gen9_init_workarounds(struct intel_engine_cs *engine)
919 {
920 struct drm_device *dev = engine->dev;
921 struct drm_i915_private *dev_priv = dev->dev_private;
922 uint32_t tmp;
923 int ret;
924
925 /* WaEnableLbsSlaRetryTimerDecrement:skl */
926 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
927 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
928
929 /* WaDisableKillLogic:bxt,skl */
930 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
931 ECOCHK_DIS_TLB);
932
933 /* WaClearFlowControlGpgpuContextSave:skl,bxt */
934 /* WaDisablePartialInstShootdown:skl,bxt */
935 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
936 FLOW_CONTROL_ENABLE |
937 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
938
939 /* Syncing dependencies between camera and graphics:skl,bxt */
940 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
941 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
942
943 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
944 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
945 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
946 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
947 GEN9_DG_MIRROR_FIX_ENABLE);
948
949 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
950 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
951 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
952 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
953 GEN9_RHWO_OPTIMIZATION_DISABLE);
954 /*
955 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
956 * but we do that in per ctx batchbuffer as there is an issue
957 * with this register not getting restored on ctx restore
958 */
959 }
960
961 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
962 /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt */
963 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
964 GEN9_ENABLE_YV12_BUGFIX |
965 GEN9_ENABLE_GPGPU_PREEMPTION);
966
967 /* Wa4x4STCOptimizationDisable:skl,bxt */
968 /* WaDisablePartialResolveInVc:skl,bxt */
969 WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
970 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
971
972 /* WaCcsTlbPrefetchDisable:skl,bxt */
973 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
974 GEN9_CCS_TLB_PREFETCH_ENABLE);
975
976 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
977 if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
978 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
979 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
980 PIXEL_MASK_CAMMING_DISABLE);
981
982 /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
983 tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
984 if (IS_SKL_REVID(dev, SKL_REVID_F0, REVID_FOREVER) ||
985 IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
986 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
987 WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
988
989 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
990 if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
991 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
992 GEN8_SAMPLER_POWER_BYPASS_DIS);
993
994 /* WaDisableSTUnitPowerOptimization:skl,bxt */
995 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
996
997 /* WaOCLCoherentLineFlush:skl,bxt */
998 I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
999 GEN8_LQSC_FLUSH_COHERENT_LINES));
1000
1001 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt */
1002 ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
1003 if (ret)
1004 return ret;
1005
1006 /* WaAllowUMDToModifyHDCChicken1:skl,bxt */
1007 ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
1008 if (ret)
1009 return ret;
1010
1011 return 0;
1012 }
1013
1014 static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
1015 {
1016 struct drm_device *dev = engine->dev;
1017 struct drm_i915_private *dev_priv = dev->dev_private;
1018 u8 vals[3] = { 0, 0, 0 };
1019 unsigned int i;
1020
1021 for (i = 0; i < 3; i++) {
1022 u8 ss;
1023
1024 /*
1025 * Only consider slices where one, and only one, subslice has 7
1026 * EUs
1027 */
1028 if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1029 continue;
1030
1031 /*
1032 * subslice_7eu[i] != 0 (because of the check above) and
1033 * ss_max == 4 (maximum number of subslices possible per slice)
1034 *
1035 * -> 0 <= ss <= 3;
1036 */
1037 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1038 vals[i] = 3 - ss;
1039 }
1040
1041 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1042 return 0;
1043
1044 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1045 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1046 GEN9_IZ_HASHING_MASK(2) |
1047 GEN9_IZ_HASHING_MASK(1) |
1048 GEN9_IZ_HASHING_MASK(0),
1049 GEN9_IZ_HASHING(2, vals[2]) |
1050 GEN9_IZ_HASHING(1, vals[1]) |
1051 GEN9_IZ_HASHING(0, vals[0]));
1052
1053 return 0;
1054 }
1055
1056 static int skl_init_workarounds(struct intel_engine_cs *engine)
1057 {
1058 int ret;
1059 struct drm_device *dev = engine->dev;
1060 struct drm_i915_private *dev_priv = dev->dev_private;
1061
1062 ret = gen9_init_workarounds(engine);
1063 if (ret)
1064 return ret;
1065
1066 /*
1067 * Actual WA is to disable percontext preemption granularity control
1068 * until D0 which is the default case so this is equivalent to
1069 * !WaDisablePerCtxtPreemptionGranularityControl:skl
1070 */
1071 if (IS_SKL_REVID(dev, SKL_REVID_E0, REVID_FOREVER)) {
1072 I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1073 _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1074 }
1075
1076 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
1077 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1078 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1079 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1080 }
1081
1082 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1083 * involving this register should also be added to WA batch as required.
1084 */
1085 if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
1086 /* WaDisableLSQCROPERFforOCL:skl */
1087 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1088 GEN8_LQSC_RO_PERF_DIS);
1089
1090 /* WaEnableGapsTsvCreditFix:skl */
1091 if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
1092 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1093 GEN9_GAPS_TSV_CREDIT_DISABLE));
1094 }
1095
1096 /* WaDisablePowerCompilerClockGating:skl */
1097 if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
1098 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1099 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1100
1101 /* This is tied to WaForceContextSaveRestoreNonCoherent */
1102 if (IS_SKL_REVID(dev, 0, REVID_FOREVER)) {
1103 /*
1104 *Use Force Non-Coherent whenever executing a 3D context. This
1105 * is a workaround for a possible hang in the unlikely event
1106 * a TLB invalidation occurs during a PSD flush.
1107 */
1108 /* WaForceEnableNonCoherent:skl */
1109 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1110 HDC_FORCE_NON_COHERENT);
1111
1112 /* WaDisableHDCInvalidation:skl */
1113 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1114 BDW_DISABLE_HDC_INVALIDATION);
1115 }
1116
1117 /* WaBarrierPerformanceFixDisable:skl */
1118 if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
1119 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1120 HDC_FENCE_DEST_SLM_DISABLE |
1121 HDC_BARRIER_PERFORMANCE_DISABLE);
1122
1123 /* WaDisableSbeCacheDispatchPortSharing:skl */
1124 if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
1125 WA_SET_BIT_MASKED(
1126 GEN7_HALF_SLICE_CHICKEN1,
1127 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1128
1129 /* WaDisableLSQCROPERFforOCL:skl */
1130 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1131 if (ret)
1132 return ret;
1133
1134 return skl_tune_iz_hashing(engine);
1135 }
1136
1137 static int bxt_init_workarounds(struct intel_engine_cs *engine)
1138 {
1139 int ret;
1140 struct drm_device *dev = engine->dev;
1141 struct drm_i915_private *dev_priv = dev->dev_private;
1142
1143 ret = gen9_init_workarounds(engine);
1144 if (ret)
1145 return ret;
1146
1147 /* WaStoreMultiplePTEenable:bxt */
1148 /* This is a requirement according to Hardware specification */
1149 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1150 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1151
1152 /* WaSetClckGatingDisableMedia:bxt */
1153 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1154 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1155 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1156 }
1157
1158 /* WaDisableThreadStallDopClockGating:bxt */
1159 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1160 STALL_DOP_GATING_DISABLE);
1161
1162 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1163 if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1164 WA_SET_BIT_MASKED(
1165 GEN7_HALF_SLICE_CHICKEN1,
1166 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1167 }
1168
1169 /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1170 /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1171 /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1172 /* WaDisableLSQCROPERFforOCL:bxt */
1173 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1174 ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1175 if (ret)
1176 return ret;
1177
1178 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1179 if (ret)
1180 return ret;
1181 }
1182
1183 return 0;
1184 }
1185
1186 int init_workarounds_ring(struct intel_engine_cs *engine)
1187 {
1188 struct drm_device *dev = engine->dev;
1189 struct drm_i915_private *dev_priv = dev->dev_private;
1190
1191 WARN_ON(engine->id != RCS);
1192
1193 dev_priv->workarounds.count = 0;
1194 dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1195
1196 if (IS_BROADWELL(dev))
1197 return bdw_init_workarounds(engine);
1198
1199 if (IS_CHERRYVIEW(dev))
1200 return chv_init_workarounds(engine);
1201
1202 if (IS_SKYLAKE(dev))
1203 return skl_init_workarounds(engine);
1204
1205 if (IS_BROXTON(dev))
1206 return bxt_init_workarounds(engine);
1207
1208 return 0;
1209 }
1210
1211 static int init_render_ring(struct intel_engine_cs *engine)
1212 {
1213 struct drm_device *dev = engine->dev;
1214 struct drm_i915_private *dev_priv = dev->dev_private;
1215 int ret = init_ring_common(engine);
1216 if (ret)
1217 return ret;
1218
1219 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1220 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1221 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1222
1223 /* We need to disable the AsyncFlip performance optimisations in order
1224 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1225 * programmed to '1' on all products.
1226 *
1227 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1228 */
1229 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1230 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1231
1232 /* Required for the hardware to program scanline values for waiting */
1233 /* WaEnableFlushTlbInvalidationMode:snb */
1234 if (INTEL_INFO(dev)->gen == 6)
1235 I915_WRITE(GFX_MODE,
1236 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1237
1238 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1239 if (IS_GEN7(dev))
1240 I915_WRITE(GFX_MODE_GEN7,
1241 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1242 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1243
1244 if (IS_GEN6(dev)) {
1245 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1246 * "If this bit is set, STCunit will have LRA as replacement
1247 * policy. [...] This bit must be reset. LRA replacement
1248 * policy is not supported."
1249 */
1250 I915_WRITE(CACHE_MODE_0,
1251 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1252 }
1253
1254 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1255 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1256
1257 if (HAS_L3_DPF(dev))
1258 I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
1259
1260 return init_workarounds_ring(engine);
1261 }
1262
1263 static void render_ring_cleanup(struct intel_engine_cs *engine)
1264 {
1265 struct drm_device *dev = engine->dev;
1266 struct drm_i915_private *dev_priv = dev->dev_private;
1267
1268 if (dev_priv->semaphore_obj) {
1269 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1270 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1271 dev_priv->semaphore_obj = NULL;
1272 }
1273
1274 intel_fini_pipe_control(engine);
1275 }
1276
1277 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1278 unsigned int num_dwords)
1279 {
1280 #define MBOX_UPDATE_DWORDS 8
1281 struct intel_engine_cs *signaller = signaller_req->engine;
1282 struct drm_device *dev = signaller->dev;
1283 struct drm_i915_private *dev_priv = dev->dev_private;
1284 struct intel_engine_cs *waiter;
1285 enum intel_engine_id id;
1286 int ret, num_rings;
1287
1288 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1289 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1290 #undef MBOX_UPDATE_DWORDS
1291
1292 ret = intel_ring_begin(signaller_req, num_dwords);
1293 if (ret)
1294 return ret;
1295
1296 for_each_engine_id(waiter, dev_priv, id) {
1297 u32 seqno;
1298 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1299 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1300 continue;
1301
1302 seqno = i915_gem_request_get_seqno(signaller_req);
1303 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1304 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1305 PIPE_CONTROL_QW_WRITE |
1306 PIPE_CONTROL_FLUSH_ENABLE);
1307 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1308 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1309 intel_ring_emit(signaller, seqno);
1310 intel_ring_emit(signaller, 0);
1311 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1312 MI_SEMAPHORE_TARGET(waiter->id));
1313 intel_ring_emit(signaller, 0);
1314 }
1315
1316 return 0;
1317 }
1318
1319 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1320 unsigned int num_dwords)
1321 {
1322 #define MBOX_UPDATE_DWORDS 6
1323 struct intel_engine_cs *signaller = signaller_req->engine;
1324 struct drm_device *dev = signaller->dev;
1325 struct drm_i915_private *dev_priv = dev->dev_private;
1326 struct intel_engine_cs *waiter;
1327 enum intel_engine_id id;
1328 int ret, num_rings;
1329
1330 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1331 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1332 #undef MBOX_UPDATE_DWORDS
1333
1334 ret = intel_ring_begin(signaller_req, num_dwords);
1335 if (ret)
1336 return ret;
1337
1338 for_each_engine_id(waiter, dev_priv, id) {
1339 u32 seqno;
1340 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1341 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1342 continue;
1343
1344 seqno = i915_gem_request_get_seqno(signaller_req);
1345 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1346 MI_FLUSH_DW_OP_STOREDW);
1347 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1348 MI_FLUSH_DW_USE_GTT);
1349 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1350 intel_ring_emit(signaller, seqno);
1351 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1352 MI_SEMAPHORE_TARGET(waiter->id));
1353 intel_ring_emit(signaller, 0);
1354 }
1355
1356 return 0;
1357 }
1358
1359 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1360 unsigned int num_dwords)
1361 {
1362 struct intel_engine_cs *signaller = signaller_req->engine;
1363 struct drm_device *dev = signaller->dev;
1364 struct drm_i915_private *dev_priv = dev->dev_private;
1365 struct intel_engine_cs *useless;
1366 enum intel_engine_id id;
1367 int ret, num_rings;
1368
1369 #define MBOX_UPDATE_DWORDS 3
1370 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1371 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1372 #undef MBOX_UPDATE_DWORDS
1373
1374 ret = intel_ring_begin(signaller_req, num_dwords);
1375 if (ret)
1376 return ret;
1377
1378 for_each_engine_id(useless, dev_priv, id) {
1379 i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
1380
1381 if (i915_mmio_reg_valid(mbox_reg)) {
1382 u32 seqno = i915_gem_request_get_seqno(signaller_req);
1383
1384 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1385 intel_ring_emit_reg(signaller, mbox_reg);
1386 intel_ring_emit(signaller, seqno);
1387 }
1388 }
1389
1390 /* If num_dwords was rounded, make sure the tail pointer is correct */
1391 if (num_rings % 2 == 0)
1392 intel_ring_emit(signaller, MI_NOOP);
1393
1394 return 0;
1395 }
1396
1397 /**
1398 * gen6_add_request - Update the semaphore mailbox registers
1399 *
1400 * @request - request to write to the ring
1401 *
1402 * Update the mailbox registers in the *other* rings with the current seqno.
1403 * This acts like a signal in the canonical semaphore.
1404 */
1405 static int
1406 gen6_add_request(struct drm_i915_gem_request *req)
1407 {
1408 struct intel_engine_cs *engine = req->engine;
1409 int ret;
1410
1411 if (engine->semaphore.signal)
1412 ret = engine->semaphore.signal(req, 4);
1413 else
1414 ret = intel_ring_begin(req, 4);
1415
1416 if (ret)
1417 return ret;
1418
1419 intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1420 intel_ring_emit(engine,
1421 I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1422 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1423 intel_ring_emit(engine, MI_USER_INTERRUPT);
1424 __intel_ring_advance(engine);
1425
1426 return 0;
1427 }
1428
1429 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1430 u32 seqno)
1431 {
1432 struct drm_i915_private *dev_priv = dev->dev_private;
1433 return dev_priv->last_seqno < seqno;
1434 }
1435
1436 /**
1437 * intel_ring_sync - sync the waiter to the signaller on seqno
1438 *
1439 * @waiter - ring that is waiting
1440 * @signaller - ring which has, or will signal
1441 * @seqno - seqno which the waiter will block on
1442 */
1443
1444 static int
1445 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1446 struct intel_engine_cs *signaller,
1447 u32 seqno)
1448 {
1449 struct intel_engine_cs *waiter = waiter_req->engine;
1450 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1451 int ret;
1452
1453 ret = intel_ring_begin(waiter_req, 4);
1454 if (ret)
1455 return ret;
1456
1457 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1458 MI_SEMAPHORE_GLOBAL_GTT |
1459 MI_SEMAPHORE_POLL |
1460 MI_SEMAPHORE_SAD_GTE_SDD);
1461 intel_ring_emit(waiter, seqno);
1462 intel_ring_emit(waiter,
1463 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1464 intel_ring_emit(waiter,
1465 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1466 intel_ring_advance(waiter);
1467 return 0;
1468 }
1469
1470 static int
1471 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1472 struct intel_engine_cs *signaller,
1473 u32 seqno)
1474 {
1475 struct intel_engine_cs *waiter = waiter_req->engine;
1476 u32 dw1 = MI_SEMAPHORE_MBOX |
1477 MI_SEMAPHORE_COMPARE |
1478 MI_SEMAPHORE_REGISTER;
1479 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1480 int ret;
1481
1482 /* Throughout all of the GEM code, seqno passed implies our current
1483 * seqno is >= the last seqno executed. However for hardware the
1484 * comparison is strictly greater than.
1485 */
1486 seqno -= 1;
1487
1488 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1489
1490 ret = intel_ring_begin(waiter_req, 4);
1491 if (ret)
1492 return ret;
1493
1494 /* If seqno wrap happened, omit the wait with no-ops */
1495 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1496 intel_ring_emit(waiter, dw1 | wait_mbox);
1497 intel_ring_emit(waiter, seqno);
1498 intel_ring_emit(waiter, 0);
1499 intel_ring_emit(waiter, MI_NOOP);
1500 } else {
1501 intel_ring_emit(waiter, MI_NOOP);
1502 intel_ring_emit(waiter, MI_NOOP);
1503 intel_ring_emit(waiter, MI_NOOP);
1504 intel_ring_emit(waiter, MI_NOOP);
1505 }
1506 intel_ring_advance(waiter);
1507
1508 return 0;
1509 }
1510
1511 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1512 do { \
1513 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1514 PIPE_CONTROL_DEPTH_STALL); \
1515 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1516 intel_ring_emit(ring__, 0); \
1517 intel_ring_emit(ring__, 0); \
1518 } while (0)
1519
1520 static int
1521 pc_render_add_request(struct drm_i915_gem_request *req)
1522 {
1523 struct intel_engine_cs *engine = req->engine;
1524 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1525 int ret;
1526
1527 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1528 * incoherent with writes to memory, i.e. completely fubar,
1529 * so we need to use PIPE_NOTIFY instead.
1530 *
1531 * However, we also need to workaround the qword write
1532 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1533 * memory before requesting an interrupt.
1534 */
1535 ret = intel_ring_begin(req, 32);
1536 if (ret)
1537 return ret;
1538
1539 intel_ring_emit(engine,
1540 GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1541 PIPE_CONTROL_WRITE_FLUSH |
1542 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1543 intel_ring_emit(engine,
1544 engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1545 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1546 intel_ring_emit(engine, 0);
1547 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1548 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1549 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1550 scratch_addr += 2 * CACHELINE_BYTES;
1551 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1552 scratch_addr += 2 * CACHELINE_BYTES;
1553 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1554 scratch_addr += 2 * CACHELINE_BYTES;
1555 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1556 scratch_addr += 2 * CACHELINE_BYTES;
1557 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1558
1559 intel_ring_emit(engine,
1560 GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1561 PIPE_CONTROL_WRITE_FLUSH |
1562 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1563 PIPE_CONTROL_NOTIFY);
1564 intel_ring_emit(engine,
1565 engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1566 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1567 intel_ring_emit(engine, 0);
1568 __intel_ring_advance(engine);
1569
1570 return 0;
1571 }
1572
1573 static void
1574 gen6_seqno_barrier(struct intel_engine_cs *engine)
1575 {
1576 /* Workaround to force correct ordering between irq and seqno writes on
1577 * ivb (and maybe also on snb) by reading from a CS register (like
1578 * ACTHD) before reading the status page.
1579 *
1580 * Note that this effectively stalls the read by the time it takes to
1581 * do a memory transaction, which more or less ensures that the write
1582 * from the GPU has sufficient time to invalidate the CPU cacheline.
1583 * Alternatively we could delay the interrupt from the CS ring to give
1584 * the write time to land, but that would incur a delay after every
1585 * batch i.e. much more frequent than a delay when waiting for the
1586 * interrupt (with the same net latency).
1587 */
1588 struct drm_i915_private *dev_priv = engine->dev->dev_private;
1589 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1590 }
1591
1592 static u32
1593 ring_get_seqno(struct intel_engine_cs *engine)
1594 {
1595 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1596 }
1597
1598 static void
1599 ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1600 {
1601 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1602 }
1603
1604 static u32
1605 pc_render_get_seqno(struct intel_engine_cs *engine)
1606 {
1607 return engine->scratch.cpu_page[0];
1608 }
1609
1610 static void
1611 pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1612 {
1613 engine->scratch.cpu_page[0] = seqno;
1614 }
1615
1616 static bool
1617 gen5_ring_get_irq(struct intel_engine_cs *engine)
1618 {
1619 struct drm_device *dev = engine->dev;
1620 struct drm_i915_private *dev_priv = dev->dev_private;
1621 unsigned long flags;
1622
1623 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1624 return false;
1625
1626 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1627 if (engine->irq_refcount++ == 0)
1628 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1629 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1630
1631 return true;
1632 }
1633
1634 static void
1635 gen5_ring_put_irq(struct intel_engine_cs *engine)
1636 {
1637 struct drm_device *dev = engine->dev;
1638 struct drm_i915_private *dev_priv = dev->dev_private;
1639 unsigned long flags;
1640
1641 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1642 if (--engine->irq_refcount == 0)
1643 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1644 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1645 }
1646
1647 static bool
1648 i9xx_ring_get_irq(struct intel_engine_cs *engine)
1649 {
1650 struct drm_device *dev = engine->dev;
1651 struct drm_i915_private *dev_priv = dev->dev_private;
1652 unsigned long flags;
1653
1654 if (!intel_irqs_enabled(dev_priv))
1655 return false;
1656
1657 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1658 if (engine->irq_refcount++ == 0) {
1659 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1660 I915_WRITE(IMR, dev_priv->irq_mask);
1661 POSTING_READ(IMR);
1662 }
1663 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1664
1665 return true;
1666 }
1667
1668 static void
1669 i9xx_ring_put_irq(struct intel_engine_cs *engine)
1670 {
1671 struct drm_device *dev = engine->dev;
1672 struct drm_i915_private *dev_priv = dev->dev_private;
1673 unsigned long flags;
1674
1675 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1676 if (--engine->irq_refcount == 0) {
1677 dev_priv->irq_mask |= engine->irq_enable_mask;
1678 I915_WRITE(IMR, dev_priv->irq_mask);
1679 POSTING_READ(IMR);
1680 }
1681 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1682 }
1683
1684 static bool
1685 i8xx_ring_get_irq(struct intel_engine_cs *engine)
1686 {
1687 struct drm_device *dev = engine->dev;
1688 struct drm_i915_private *dev_priv = dev->dev_private;
1689 unsigned long flags;
1690
1691 if (!intel_irqs_enabled(dev_priv))
1692 return false;
1693
1694 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1695 if (engine->irq_refcount++ == 0) {
1696 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1697 I915_WRITE16(IMR, dev_priv->irq_mask);
1698 POSTING_READ16(IMR);
1699 }
1700 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1701
1702 return true;
1703 }
1704
1705 static void
1706 i8xx_ring_put_irq(struct intel_engine_cs *engine)
1707 {
1708 struct drm_device *dev = engine->dev;
1709 struct drm_i915_private *dev_priv = dev->dev_private;
1710 unsigned long flags;
1711
1712 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1713 if (--engine->irq_refcount == 0) {
1714 dev_priv->irq_mask |= engine->irq_enable_mask;
1715 I915_WRITE16(IMR, dev_priv->irq_mask);
1716 POSTING_READ16(IMR);
1717 }
1718 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1719 }
1720
1721 static int
1722 bsd_ring_flush(struct drm_i915_gem_request *req,
1723 u32 invalidate_domains,
1724 u32 flush_domains)
1725 {
1726 struct intel_engine_cs *engine = req->engine;
1727 int ret;
1728
1729 ret = intel_ring_begin(req, 2);
1730 if (ret)
1731 return ret;
1732
1733 intel_ring_emit(engine, MI_FLUSH);
1734 intel_ring_emit(engine, MI_NOOP);
1735 intel_ring_advance(engine);
1736 return 0;
1737 }
1738
1739 static int
1740 i9xx_add_request(struct drm_i915_gem_request *req)
1741 {
1742 struct intel_engine_cs *engine = req->engine;
1743 int ret;
1744
1745 ret = intel_ring_begin(req, 4);
1746 if (ret)
1747 return ret;
1748
1749 intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1750 intel_ring_emit(engine,
1751 I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1752 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1753 intel_ring_emit(engine, MI_USER_INTERRUPT);
1754 __intel_ring_advance(engine);
1755
1756 return 0;
1757 }
1758
1759 static bool
1760 gen6_ring_get_irq(struct intel_engine_cs *engine)
1761 {
1762 struct drm_device *dev = engine->dev;
1763 struct drm_i915_private *dev_priv = dev->dev_private;
1764 unsigned long flags;
1765
1766 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1767 return false;
1768
1769 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1770 if (engine->irq_refcount++ == 0) {
1771 if (HAS_L3_DPF(dev) && engine->id == RCS)
1772 I915_WRITE_IMR(engine,
1773 ~(engine->irq_enable_mask |
1774 GT_PARITY_ERROR(dev)));
1775 else
1776 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1777 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1778 }
1779 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1780
1781 return true;
1782 }
1783
1784 static void
1785 gen6_ring_put_irq(struct intel_engine_cs *engine)
1786 {
1787 struct drm_device *dev = engine->dev;
1788 struct drm_i915_private *dev_priv = dev->dev_private;
1789 unsigned long flags;
1790
1791 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1792 if (--engine->irq_refcount == 0) {
1793 if (HAS_L3_DPF(dev) && engine->id == RCS)
1794 I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
1795 else
1796 I915_WRITE_IMR(engine, ~0);
1797 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1798 }
1799 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1800 }
1801
1802 static bool
1803 hsw_vebox_get_irq(struct intel_engine_cs *engine)
1804 {
1805 struct drm_device *dev = engine->dev;
1806 struct drm_i915_private *dev_priv = dev->dev_private;
1807 unsigned long flags;
1808
1809 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1810 return false;
1811
1812 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1813 if (engine->irq_refcount++ == 0) {
1814 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1815 gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
1816 }
1817 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1818
1819 return true;
1820 }
1821
1822 static void
1823 hsw_vebox_put_irq(struct intel_engine_cs *engine)
1824 {
1825 struct drm_device *dev = engine->dev;
1826 struct drm_i915_private *dev_priv = dev->dev_private;
1827 unsigned long flags;
1828
1829 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1830 if (--engine->irq_refcount == 0) {
1831 I915_WRITE_IMR(engine, ~0);
1832 gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
1833 }
1834 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1835 }
1836
1837 static bool
1838 gen8_ring_get_irq(struct intel_engine_cs *engine)
1839 {
1840 struct drm_device *dev = engine->dev;
1841 struct drm_i915_private *dev_priv = dev->dev_private;
1842 unsigned long flags;
1843
1844 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1845 return false;
1846
1847 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1848 if (engine->irq_refcount++ == 0) {
1849 if (HAS_L3_DPF(dev) && engine->id == RCS) {
1850 I915_WRITE_IMR(engine,
1851 ~(engine->irq_enable_mask |
1852 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1853 } else {
1854 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1855 }
1856 POSTING_READ(RING_IMR(engine->mmio_base));
1857 }
1858 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1859
1860 return true;
1861 }
1862
1863 static void
1864 gen8_ring_put_irq(struct intel_engine_cs *engine)
1865 {
1866 struct drm_device *dev = engine->dev;
1867 struct drm_i915_private *dev_priv = dev->dev_private;
1868 unsigned long flags;
1869
1870 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1871 if (--engine->irq_refcount == 0) {
1872 if (HAS_L3_DPF(dev) && engine->id == RCS) {
1873 I915_WRITE_IMR(engine,
1874 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1875 } else {
1876 I915_WRITE_IMR(engine, ~0);
1877 }
1878 POSTING_READ(RING_IMR(engine->mmio_base));
1879 }
1880 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1881 }
1882
1883 static int
1884 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1885 u64 offset, u32 length,
1886 unsigned dispatch_flags)
1887 {
1888 struct intel_engine_cs *engine = req->engine;
1889 int ret;
1890
1891 ret = intel_ring_begin(req, 2);
1892 if (ret)
1893 return ret;
1894
1895 intel_ring_emit(engine,
1896 MI_BATCH_BUFFER_START |
1897 MI_BATCH_GTT |
1898 (dispatch_flags & I915_DISPATCH_SECURE ?
1899 0 : MI_BATCH_NON_SECURE_I965));
1900 intel_ring_emit(engine, offset);
1901 intel_ring_advance(engine);
1902
1903 return 0;
1904 }
1905
1906 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1907 #define I830_BATCH_LIMIT (256*1024)
1908 #define I830_TLB_ENTRIES (2)
1909 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1910 static int
1911 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1912 u64 offset, u32 len,
1913 unsigned dispatch_flags)
1914 {
1915 struct intel_engine_cs *engine = req->engine;
1916 u32 cs_offset = engine->scratch.gtt_offset;
1917 int ret;
1918
1919 ret = intel_ring_begin(req, 6);
1920 if (ret)
1921 return ret;
1922
1923 /* Evict the invalid PTE TLBs */
1924 intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1925 intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1926 intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1927 intel_ring_emit(engine, cs_offset);
1928 intel_ring_emit(engine, 0xdeadbeef);
1929 intel_ring_emit(engine, MI_NOOP);
1930 intel_ring_advance(engine);
1931
1932 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1933 if (len > I830_BATCH_LIMIT)
1934 return -ENOSPC;
1935
1936 ret = intel_ring_begin(req, 6 + 2);
1937 if (ret)
1938 return ret;
1939
1940 /* Blit the batch (which has now all relocs applied) to the
1941 * stable batch scratch bo area (so that the CS never
1942 * stumbles over its tlb invalidation bug) ...
1943 */
1944 intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1945 intel_ring_emit(engine,
1946 BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1947 intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1948 intel_ring_emit(engine, cs_offset);
1949 intel_ring_emit(engine, 4096);
1950 intel_ring_emit(engine, offset);
1951
1952 intel_ring_emit(engine, MI_FLUSH);
1953 intel_ring_emit(engine, MI_NOOP);
1954 intel_ring_advance(engine);
1955
1956 /* ... and execute it. */
1957 offset = cs_offset;
1958 }
1959
1960 ret = intel_ring_begin(req, 2);
1961 if (ret)
1962 return ret;
1963
1964 intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1965 intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1966 0 : MI_BATCH_NON_SECURE));
1967 intel_ring_advance(engine);
1968
1969 return 0;
1970 }
1971
1972 static int
1973 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1974 u64 offset, u32 len,
1975 unsigned dispatch_flags)
1976 {
1977 struct intel_engine_cs *engine = req->engine;
1978 int ret;
1979
1980 ret = intel_ring_begin(req, 2);
1981 if (ret)
1982 return ret;
1983
1984 intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1985 intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1986 0 : MI_BATCH_NON_SECURE));
1987 intel_ring_advance(engine);
1988
1989 return 0;
1990 }
1991
1992 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1993 {
1994 struct drm_i915_private *dev_priv = to_i915(engine->dev);
1995
1996 if (!dev_priv->status_page_dmah)
1997 return;
1998
1999 drm_pci_free(engine->dev, dev_priv->status_page_dmah);
2000 engine->status_page.page_addr = NULL;
2001 }
2002
2003 static void cleanup_status_page(struct intel_engine_cs *engine)
2004 {
2005 struct drm_i915_gem_object *obj;
2006
2007 obj = engine->status_page.obj;
2008 if (obj == NULL)
2009 return;
2010
2011 kunmap(sg_page(obj->pages->sgl));
2012 i915_gem_object_ggtt_unpin(obj);
2013 drm_gem_object_unreference(&obj->base);
2014 engine->status_page.obj = NULL;
2015 }
2016
2017 static int init_status_page(struct intel_engine_cs *engine)
2018 {
2019 struct drm_i915_gem_object *obj = engine->status_page.obj;
2020
2021 if (obj == NULL) {
2022 unsigned flags;
2023 int ret;
2024
2025 obj = i915_gem_alloc_object(engine->dev, 4096);
2026 if (obj == NULL) {
2027 DRM_ERROR("Failed to allocate status page\n");
2028 return -ENOMEM;
2029 }
2030
2031 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2032 if (ret)
2033 goto err_unref;
2034
2035 flags = 0;
2036 if (!HAS_LLC(engine->dev))
2037 /* On g33, we cannot place HWS above 256MiB, so
2038 * restrict its pinning to the low mappable arena.
2039 * Though this restriction is not documented for
2040 * gen4, gen5, or byt, they also behave similarly
2041 * and hang if the HWS is placed at the top of the
2042 * GTT. To generalise, it appears that all !llc
2043 * platforms have issues with us placing the HWS
2044 * above the mappable region (even though we never
2045 * actualy map it).
2046 */
2047 flags |= PIN_MAPPABLE;
2048 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
2049 if (ret) {
2050 err_unref:
2051 drm_gem_object_unreference(&obj->base);
2052 return ret;
2053 }
2054
2055 engine->status_page.obj = obj;
2056 }
2057
2058 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
2059 engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
2060 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2061
2062 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2063 engine->name, engine->status_page.gfx_addr);
2064
2065 return 0;
2066 }
2067
2068 static int init_phys_status_page(struct intel_engine_cs *engine)
2069 {
2070 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2071
2072 if (!dev_priv->status_page_dmah) {
2073 dev_priv->status_page_dmah =
2074 drm_pci_alloc(engine->dev, PAGE_SIZE, PAGE_SIZE);
2075 if (!dev_priv->status_page_dmah)
2076 return -ENOMEM;
2077 }
2078
2079 engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2080 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2081
2082 return 0;
2083 }
2084
2085 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2086 {
2087 if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2088 i915_gem_object_unpin_map(ringbuf->obj);
2089 else
2090 iounmap(ringbuf->virtual_start);
2091 ringbuf->virtual_start = NULL;
2092 ringbuf->vma = NULL;
2093 i915_gem_object_ggtt_unpin(ringbuf->obj);
2094 }
2095
2096 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
2097 struct intel_ringbuffer *ringbuf)
2098 {
2099 struct drm_i915_private *dev_priv = to_i915(dev);
2100 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2101 struct drm_i915_gem_object *obj = ringbuf->obj;
2102 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2103 unsigned flags = PIN_OFFSET_BIAS | 4096;
2104 void *addr;
2105 int ret;
2106
2107 if (HAS_LLC(dev_priv) && !obj->stolen) {
2108 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
2109 if (ret)
2110 return ret;
2111
2112 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2113 if (ret)
2114 goto err_unpin;
2115
2116 addr = i915_gem_object_pin_map(obj);
2117 if (IS_ERR(addr)) {
2118 ret = PTR_ERR(addr);
2119 goto err_unpin;
2120 }
2121 } else {
2122 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
2123 flags | PIN_MAPPABLE);
2124 if (ret)
2125 return ret;
2126
2127 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2128 if (ret)
2129 goto err_unpin;
2130
2131 /* Access through the GTT requires the device to be awake. */
2132 assert_rpm_wakelock_held(dev_priv);
2133
2134 addr = ioremap_wc(ggtt->mappable_base +
2135 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2136 if (addr == NULL) {
2137 ret = -ENOMEM;
2138 goto err_unpin;
2139 }
2140 }
2141
2142 ringbuf->virtual_start = addr;
2143 ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2144 return 0;
2145
2146 err_unpin:
2147 i915_gem_object_ggtt_unpin(obj);
2148 return ret;
2149 }
2150
2151 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2152 {
2153 drm_gem_object_unreference(&ringbuf->obj->base);
2154 ringbuf->obj = NULL;
2155 }
2156
2157 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2158 struct intel_ringbuffer *ringbuf)
2159 {
2160 struct drm_i915_gem_object *obj;
2161
2162 obj = NULL;
2163 if (!HAS_LLC(dev))
2164 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2165 if (obj == NULL)
2166 obj = i915_gem_alloc_object(dev, ringbuf->size);
2167 if (obj == NULL)
2168 return -ENOMEM;
2169
2170 /* mark ring buffers as read-only from GPU side by default */
2171 obj->gt_ro = 1;
2172
2173 ringbuf->obj = obj;
2174
2175 return 0;
2176 }
2177
2178 struct intel_ringbuffer *
2179 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2180 {
2181 struct intel_ringbuffer *ring;
2182 int ret;
2183
2184 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2185 if (ring == NULL) {
2186 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2187 engine->name);
2188 return ERR_PTR(-ENOMEM);
2189 }
2190
2191 ring->engine = engine;
2192 list_add(&ring->link, &engine->buffers);
2193
2194 ring->size = size;
2195 /* Workaround an erratum on the i830 which causes a hang if
2196 * the TAIL pointer points to within the last 2 cachelines
2197 * of the buffer.
2198 */
2199 ring->effective_size = size;
2200 if (IS_I830(engine->dev) || IS_845G(engine->dev))
2201 ring->effective_size -= 2 * CACHELINE_BYTES;
2202
2203 ring->last_retired_head = -1;
2204 intel_ring_update_space(ring);
2205
2206 ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2207 if (ret) {
2208 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2209 engine->name, ret);
2210 list_del(&ring->link);
2211 kfree(ring);
2212 return ERR_PTR(ret);
2213 }
2214
2215 return ring;
2216 }
2217
2218 void
2219 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2220 {
2221 intel_destroy_ringbuffer_obj(ring);
2222 list_del(&ring->link);
2223 kfree(ring);
2224 }
2225
2226 static int intel_init_ring_buffer(struct drm_device *dev,
2227 struct intel_engine_cs *engine)
2228 {
2229 struct intel_ringbuffer *ringbuf;
2230 int ret;
2231
2232 WARN_ON(engine->buffer);
2233
2234 engine->dev = dev;
2235 INIT_LIST_HEAD(&engine->active_list);
2236 INIT_LIST_HEAD(&engine->request_list);
2237 INIT_LIST_HEAD(&engine->execlist_queue);
2238 INIT_LIST_HEAD(&engine->buffers);
2239 i915_gem_batch_pool_init(dev, &engine->batch_pool);
2240 memset(engine->semaphore.sync_seqno, 0,
2241 sizeof(engine->semaphore.sync_seqno));
2242
2243 init_waitqueue_head(&engine->irq_queue);
2244
2245 ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
2246 if (IS_ERR(ringbuf)) {
2247 ret = PTR_ERR(ringbuf);
2248 goto error;
2249 }
2250 engine->buffer = ringbuf;
2251
2252 if (I915_NEED_GFX_HWS(dev)) {
2253 ret = init_status_page(engine);
2254 if (ret)
2255 goto error;
2256 } else {
2257 WARN_ON(engine->id != RCS);
2258 ret = init_phys_status_page(engine);
2259 if (ret)
2260 goto error;
2261 }
2262
2263 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2264 if (ret) {
2265 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2266 engine->name, ret);
2267 intel_destroy_ringbuffer_obj(ringbuf);
2268 goto error;
2269 }
2270
2271 ret = i915_cmd_parser_init_ring(engine);
2272 if (ret)
2273 goto error;
2274
2275 return 0;
2276
2277 error:
2278 intel_cleanup_engine(engine);
2279 return ret;
2280 }
2281
2282 void intel_cleanup_engine(struct intel_engine_cs *engine)
2283 {
2284 struct drm_i915_private *dev_priv;
2285
2286 if (!intel_engine_initialized(engine))
2287 return;
2288
2289 dev_priv = to_i915(engine->dev);
2290
2291 if (engine->buffer) {
2292 intel_stop_engine(engine);
2293 WARN_ON(!IS_GEN2(engine->dev) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2294
2295 intel_unpin_ringbuffer_obj(engine->buffer);
2296 intel_ringbuffer_free(engine->buffer);
2297 engine->buffer = NULL;
2298 }
2299
2300 if (engine->cleanup)
2301 engine->cleanup(engine);
2302
2303 if (I915_NEED_GFX_HWS(engine->dev)) {
2304 cleanup_status_page(engine);
2305 } else {
2306 WARN_ON(engine->id != RCS);
2307 cleanup_phys_status_page(engine);
2308 }
2309
2310 i915_cmd_parser_fini_ring(engine);
2311 i915_gem_batch_pool_fini(&engine->batch_pool);
2312 engine->dev = NULL;
2313 }
2314
2315 static int ring_wait_for_space(struct intel_engine_cs *engine, int n)
2316 {
2317 struct intel_ringbuffer *ringbuf = engine->buffer;
2318 struct drm_i915_gem_request *request;
2319 unsigned space;
2320 int ret;
2321
2322 if (intel_ring_space(ringbuf) >= n)
2323 return 0;
2324
2325 /* The whole point of reserving space is to not wait! */
2326 WARN_ON(ringbuf->reserved_in_use);
2327
2328 list_for_each_entry(request, &engine->request_list, list) {
2329 space = __intel_ring_space(request->postfix, ringbuf->tail,
2330 ringbuf->size);
2331 if (space >= n)
2332 break;
2333 }
2334
2335 if (WARN_ON(&request->list == &engine->request_list))
2336 return -ENOSPC;
2337
2338 ret = i915_wait_request(request);
2339 if (ret)
2340 return ret;
2341
2342 ringbuf->space = space;
2343 return 0;
2344 }
2345
2346 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2347 {
2348 uint32_t __iomem *virt;
2349 int rem = ringbuf->size - ringbuf->tail;
2350
2351 virt = ringbuf->virtual_start + ringbuf->tail;
2352 rem /= 4;
2353 while (rem--)
2354 iowrite32(MI_NOOP, virt++);
2355
2356 ringbuf->tail = 0;
2357 intel_ring_update_space(ringbuf);
2358 }
2359
2360 int intel_engine_idle(struct intel_engine_cs *engine)
2361 {
2362 struct drm_i915_gem_request *req;
2363
2364 /* Wait upon the last request to be completed */
2365 if (list_empty(&engine->request_list))
2366 return 0;
2367
2368 req = list_entry(engine->request_list.prev,
2369 struct drm_i915_gem_request,
2370 list);
2371
2372 /* Make sure we do not trigger any retires */
2373 return __i915_wait_request(req,
2374 req->i915->mm.interruptible,
2375 NULL, NULL);
2376 }
2377
2378 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2379 {
2380 request->ringbuf = request->engine->buffer;
2381 return 0;
2382 }
2383
2384 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2385 {
2386 /*
2387 * The first call merely notes the reserve request and is common for
2388 * all back ends. The subsequent localised _begin() call actually
2389 * ensures that the reservation is available. Without the begin, if
2390 * the request creator immediately submitted the request without
2391 * adding any commands to it then there might not actually be
2392 * sufficient room for the submission commands.
2393 */
2394 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2395
2396 return intel_ring_begin(request, 0);
2397 }
2398
2399 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2400 {
2401 WARN_ON(ringbuf->reserved_size);
2402 WARN_ON(ringbuf->reserved_in_use);
2403
2404 ringbuf->reserved_size = size;
2405 }
2406
2407 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2408 {
2409 WARN_ON(ringbuf->reserved_in_use);
2410
2411 ringbuf->reserved_size = 0;
2412 ringbuf->reserved_in_use = false;
2413 }
2414
2415 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2416 {
2417 WARN_ON(ringbuf->reserved_in_use);
2418
2419 ringbuf->reserved_in_use = true;
2420 ringbuf->reserved_tail = ringbuf->tail;
2421 }
2422
2423 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2424 {
2425 WARN_ON(!ringbuf->reserved_in_use);
2426 if (ringbuf->tail > ringbuf->reserved_tail) {
2427 WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2428 "request reserved size too small: %d vs %d!\n",
2429 ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2430 } else {
2431 /*
2432 * The ring was wrapped while the reserved space was in use.
2433 * That means that some unknown amount of the ring tail was
2434 * no-op filled and skipped. Thus simply adding the ring size
2435 * to the tail and doing the above space check will not work.
2436 * Rather than attempt to track how much tail was skipped,
2437 * it is much simpler to say that also skipping the sanity
2438 * check every once in a while is not a big issue.
2439 */
2440 }
2441
2442 ringbuf->reserved_size = 0;
2443 ringbuf->reserved_in_use = false;
2444 }
2445
2446 static int __intel_ring_prepare(struct intel_engine_cs *engine, int bytes)
2447 {
2448 struct intel_ringbuffer *ringbuf = engine->buffer;
2449 int remain_usable = ringbuf->effective_size - ringbuf->tail;
2450 int remain_actual = ringbuf->size - ringbuf->tail;
2451 int ret, total_bytes, wait_bytes = 0;
2452 bool need_wrap = false;
2453
2454 if (ringbuf->reserved_in_use)
2455 total_bytes = bytes;
2456 else
2457 total_bytes = bytes + ringbuf->reserved_size;
2458
2459 if (unlikely(bytes > remain_usable)) {
2460 /*
2461 * Not enough space for the basic request. So need to flush
2462 * out the remainder and then wait for base + reserved.
2463 */
2464 wait_bytes = remain_actual + total_bytes;
2465 need_wrap = true;
2466 } else {
2467 if (unlikely(total_bytes > remain_usable)) {
2468 /*
2469 * The base request will fit but the reserved space
2470 * falls off the end. So don't need an immediate wrap
2471 * and only need to effectively wait for the reserved
2472 * size space from the start of ringbuffer.
2473 */
2474 wait_bytes = remain_actual + ringbuf->reserved_size;
2475 } else if (total_bytes > ringbuf->space) {
2476 /* No wrapping required, just waiting. */
2477 wait_bytes = total_bytes;
2478 }
2479 }
2480
2481 if (wait_bytes) {
2482 ret = ring_wait_for_space(engine, wait_bytes);
2483 if (unlikely(ret))
2484 return ret;
2485
2486 if (need_wrap)
2487 __wrap_ring_buffer(ringbuf);
2488 }
2489
2490 return 0;
2491 }
2492
2493 int intel_ring_begin(struct drm_i915_gem_request *req,
2494 int num_dwords)
2495 {
2496 struct intel_engine_cs *engine = req->engine;
2497 int ret;
2498
2499 ret = __intel_ring_prepare(engine, num_dwords * sizeof(uint32_t));
2500 if (ret)
2501 return ret;
2502
2503 engine->buffer->space -= num_dwords * sizeof(uint32_t);
2504 return 0;
2505 }
2506
2507 /* Align the ring tail to a cacheline boundary */
2508 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2509 {
2510 struct intel_engine_cs *engine = req->engine;
2511 int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2512 int ret;
2513
2514 if (num_dwords == 0)
2515 return 0;
2516
2517 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2518 ret = intel_ring_begin(req, num_dwords);
2519 if (ret)
2520 return ret;
2521
2522 while (num_dwords--)
2523 intel_ring_emit(engine, MI_NOOP);
2524
2525 intel_ring_advance(engine);
2526
2527 return 0;
2528 }
2529
2530 void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2531 {
2532 struct drm_i915_private *dev_priv = to_i915(engine->dev);
2533
2534 /* Our semaphore implementation is strictly monotonic (i.e. we proceed
2535 * so long as the semaphore value in the register/page is greater
2536 * than the sync value), so whenever we reset the seqno,
2537 * so long as we reset the tracking semaphore value to 0, it will
2538 * always be before the next request's seqno. If we don't reset
2539 * the semaphore value, then when the seqno moves backwards all
2540 * future waits will complete instantly (causing rendering corruption).
2541 */
2542 if (INTEL_INFO(dev_priv)->gen == 6 || INTEL_INFO(dev_priv)->gen == 7) {
2543 I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
2544 I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2545 if (HAS_VEBOX(dev_priv))
2546 I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2547 }
2548 if (dev_priv->semaphore_obj) {
2549 struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
2550 struct page *page = i915_gem_object_get_dirty_page(obj, 0);
2551 void *semaphores = kmap(page);
2552 memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
2553 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
2554 kunmap(page);
2555 }
2556 memset(engine->semaphore.sync_seqno, 0,
2557 sizeof(engine->semaphore.sync_seqno));
2558
2559 engine->set_seqno(engine, seqno);
2560 engine->last_submitted_seqno = seqno;
2561
2562 engine->hangcheck.seqno = seqno;
2563 }
2564
2565 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
2566 u32 value)
2567 {
2568 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2569
2570 /* Every tail move must follow the sequence below */
2571
2572 /* Disable notification that the ring is IDLE. The GT
2573 * will then assume that it is busy and bring it out of rc6.
2574 */
2575 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2576 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2577
2578 /* Clear the context id. Here be magic! */
2579 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2580
2581 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2582 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2583 GEN6_BSD_SLEEP_INDICATOR) == 0,
2584 50))
2585 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2586
2587 /* Now that the ring is fully powered up, update the tail */
2588 I915_WRITE_TAIL(engine, value);
2589 POSTING_READ(RING_TAIL(engine->mmio_base));
2590
2591 /* Let the ring send IDLE messages to the GT again,
2592 * and so let it sleep to conserve power when idle.
2593 */
2594 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2595 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2596 }
2597
2598 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2599 u32 invalidate, u32 flush)
2600 {
2601 struct intel_engine_cs *engine = req->engine;
2602 uint32_t cmd;
2603 int ret;
2604
2605 ret = intel_ring_begin(req, 4);
2606 if (ret)
2607 return ret;
2608
2609 cmd = MI_FLUSH_DW;
2610 if (INTEL_INFO(engine->dev)->gen >= 8)
2611 cmd += 1;
2612
2613 /* We always require a command barrier so that subsequent
2614 * commands, such as breadcrumb interrupts, are strictly ordered
2615 * wrt the contents of the write cache being flushed to memory
2616 * (and thus being coherent from the CPU).
2617 */
2618 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2619
2620 /*
2621 * Bspec vol 1c.5 - video engine command streamer:
2622 * "If ENABLED, all TLBs will be invalidated once the flush
2623 * operation is complete. This bit is only valid when the
2624 * Post-Sync Operation field is a value of 1h or 3h."
2625 */
2626 if (invalidate & I915_GEM_GPU_DOMAINS)
2627 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2628
2629 intel_ring_emit(engine, cmd);
2630 intel_ring_emit(engine,
2631 I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2632 if (INTEL_INFO(engine->dev)->gen >= 8) {
2633 intel_ring_emit(engine, 0); /* upper addr */
2634 intel_ring_emit(engine, 0); /* value */
2635 } else {
2636 intel_ring_emit(engine, 0);
2637 intel_ring_emit(engine, MI_NOOP);
2638 }
2639 intel_ring_advance(engine);
2640 return 0;
2641 }
2642
2643 static int
2644 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2645 u64 offset, u32 len,
2646 unsigned dispatch_flags)
2647 {
2648 struct intel_engine_cs *engine = req->engine;
2649 bool ppgtt = USES_PPGTT(engine->dev) &&
2650 !(dispatch_flags & I915_DISPATCH_SECURE);
2651 int ret;
2652
2653 ret = intel_ring_begin(req, 4);
2654 if (ret)
2655 return ret;
2656
2657 /* FIXME(BDW): Address space and security selectors. */
2658 intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2659 (dispatch_flags & I915_DISPATCH_RS ?
2660 MI_BATCH_RESOURCE_STREAMER : 0));
2661 intel_ring_emit(engine, lower_32_bits(offset));
2662 intel_ring_emit(engine, upper_32_bits(offset));
2663 intel_ring_emit(engine, MI_NOOP);
2664 intel_ring_advance(engine);
2665
2666 return 0;
2667 }
2668
2669 static int
2670 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2671 u64 offset, u32 len,
2672 unsigned dispatch_flags)
2673 {
2674 struct intel_engine_cs *engine = req->engine;
2675 int ret;
2676
2677 ret = intel_ring_begin(req, 2);
2678 if (ret)
2679 return ret;
2680
2681 intel_ring_emit(engine,
2682 MI_BATCH_BUFFER_START |
2683 (dispatch_flags & I915_DISPATCH_SECURE ?
2684 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2685 (dispatch_flags & I915_DISPATCH_RS ?
2686 MI_BATCH_RESOURCE_STREAMER : 0));
2687 /* bit0-7 is the length on GEN6+ */
2688 intel_ring_emit(engine, offset);
2689 intel_ring_advance(engine);
2690
2691 return 0;
2692 }
2693
2694 static int
2695 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2696 u64 offset, u32 len,
2697 unsigned dispatch_flags)
2698 {
2699 struct intel_engine_cs *engine = req->engine;
2700 int ret;
2701
2702 ret = intel_ring_begin(req, 2);
2703 if (ret)
2704 return ret;
2705
2706 intel_ring_emit(engine,
2707 MI_BATCH_BUFFER_START |
2708 (dispatch_flags & I915_DISPATCH_SECURE ?
2709 0 : MI_BATCH_NON_SECURE_I965));
2710 /* bit0-7 is the length on GEN6+ */
2711 intel_ring_emit(engine, offset);
2712 intel_ring_advance(engine);
2713
2714 return 0;
2715 }
2716
2717 /* Blitter support (SandyBridge+) */
2718
2719 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2720 u32 invalidate, u32 flush)
2721 {
2722 struct intel_engine_cs *engine = req->engine;
2723 struct drm_device *dev = engine->dev;
2724 uint32_t cmd;
2725 int ret;
2726
2727 ret = intel_ring_begin(req, 4);
2728 if (ret)
2729 return ret;
2730
2731 cmd = MI_FLUSH_DW;
2732 if (INTEL_INFO(dev)->gen >= 8)
2733 cmd += 1;
2734
2735 /* We always require a command barrier so that subsequent
2736 * commands, such as breadcrumb interrupts, are strictly ordered
2737 * wrt the contents of the write cache being flushed to memory
2738 * (and thus being coherent from the CPU).
2739 */
2740 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2741
2742 /*
2743 * Bspec vol 1c.3 - blitter engine command streamer:
2744 * "If ENABLED, all TLBs will be invalidated once the flush
2745 * operation is complete. This bit is only valid when the
2746 * Post-Sync Operation field is a value of 1h or 3h."
2747 */
2748 if (invalidate & I915_GEM_DOMAIN_RENDER)
2749 cmd |= MI_INVALIDATE_TLB;
2750 intel_ring_emit(engine, cmd);
2751 intel_ring_emit(engine,
2752 I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2753 if (INTEL_INFO(dev)->gen >= 8) {
2754 intel_ring_emit(engine, 0); /* upper addr */
2755 intel_ring_emit(engine, 0); /* value */
2756 } else {
2757 intel_ring_emit(engine, 0);
2758 intel_ring_emit(engine, MI_NOOP);
2759 }
2760 intel_ring_advance(engine);
2761
2762 return 0;
2763 }
2764
2765 int intel_init_render_ring_buffer(struct drm_device *dev)
2766 {
2767 struct drm_i915_private *dev_priv = dev->dev_private;
2768 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2769 struct drm_i915_gem_object *obj;
2770 int ret;
2771
2772 engine->name = "render ring";
2773 engine->id = RCS;
2774 engine->exec_id = I915_EXEC_RENDER;
2775 engine->mmio_base = RENDER_RING_BASE;
2776
2777 if (INTEL_INFO(dev)->gen >= 8) {
2778 if (i915_semaphore_is_enabled(dev)) {
2779 obj = i915_gem_alloc_object(dev, 4096);
2780 if (obj == NULL) {
2781 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2782 i915.semaphores = 0;
2783 } else {
2784 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2785 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2786 if (ret != 0) {
2787 drm_gem_object_unreference(&obj->base);
2788 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2789 i915.semaphores = 0;
2790 } else
2791 dev_priv->semaphore_obj = obj;
2792 }
2793 }
2794
2795 engine->init_context = intel_rcs_ctx_init;
2796 engine->add_request = gen6_add_request;
2797 engine->flush = gen8_render_ring_flush;
2798 engine->irq_get = gen8_ring_get_irq;
2799 engine->irq_put = gen8_ring_put_irq;
2800 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2801 engine->irq_seqno_barrier = gen6_seqno_barrier;
2802 engine->get_seqno = ring_get_seqno;
2803 engine->set_seqno = ring_set_seqno;
2804 if (i915_semaphore_is_enabled(dev)) {
2805 WARN_ON(!dev_priv->semaphore_obj);
2806 engine->semaphore.sync_to = gen8_ring_sync;
2807 engine->semaphore.signal = gen8_rcs_signal;
2808 GEN8_RING_SEMAPHORE_INIT(engine);
2809 }
2810 } else if (INTEL_INFO(dev)->gen >= 6) {
2811 engine->init_context = intel_rcs_ctx_init;
2812 engine->add_request = gen6_add_request;
2813 engine->flush = gen7_render_ring_flush;
2814 if (INTEL_INFO(dev)->gen == 6)
2815 engine->flush = gen6_render_ring_flush;
2816 engine->irq_get = gen6_ring_get_irq;
2817 engine->irq_put = gen6_ring_put_irq;
2818 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2819 engine->irq_seqno_barrier = gen6_seqno_barrier;
2820 engine->get_seqno = ring_get_seqno;
2821 engine->set_seqno = ring_set_seqno;
2822 if (i915_semaphore_is_enabled(dev)) {
2823 engine->semaphore.sync_to = gen6_ring_sync;
2824 engine->semaphore.signal = gen6_signal;
2825 /*
2826 * The current semaphore is only applied on pre-gen8
2827 * platform. And there is no VCS2 ring on the pre-gen8
2828 * platform. So the semaphore between RCS and VCS2 is
2829 * initialized as INVALID. Gen8 will initialize the
2830 * sema between VCS2 and RCS later.
2831 */
2832 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2833 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2834 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2835 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2836 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2837 engine->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2838 engine->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2839 engine->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2840 engine->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2841 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2842 }
2843 } else if (IS_GEN5(dev)) {
2844 engine->add_request = pc_render_add_request;
2845 engine->flush = gen4_render_ring_flush;
2846 engine->get_seqno = pc_render_get_seqno;
2847 engine->set_seqno = pc_render_set_seqno;
2848 engine->irq_get = gen5_ring_get_irq;
2849 engine->irq_put = gen5_ring_put_irq;
2850 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2851 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2852 } else {
2853 engine->add_request = i9xx_add_request;
2854 if (INTEL_INFO(dev)->gen < 4)
2855 engine->flush = gen2_render_ring_flush;
2856 else
2857 engine->flush = gen4_render_ring_flush;
2858 engine->get_seqno = ring_get_seqno;
2859 engine->set_seqno = ring_set_seqno;
2860 if (IS_GEN2(dev)) {
2861 engine->irq_get = i8xx_ring_get_irq;
2862 engine->irq_put = i8xx_ring_put_irq;
2863 } else {
2864 engine->irq_get = i9xx_ring_get_irq;
2865 engine->irq_put = i9xx_ring_put_irq;
2866 }
2867 engine->irq_enable_mask = I915_USER_INTERRUPT;
2868 }
2869 engine->write_tail = ring_write_tail;
2870
2871 if (IS_HASWELL(dev))
2872 engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2873 else if (IS_GEN8(dev))
2874 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2875 else if (INTEL_INFO(dev)->gen >= 6)
2876 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2877 else if (INTEL_INFO(dev)->gen >= 4)
2878 engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2879 else if (IS_I830(dev) || IS_845G(dev))
2880 engine->dispatch_execbuffer = i830_dispatch_execbuffer;
2881 else
2882 engine->dispatch_execbuffer = i915_dispatch_execbuffer;
2883 engine->init_hw = init_render_ring;
2884 engine->cleanup = render_ring_cleanup;
2885
2886 /* Workaround batchbuffer to combat CS tlb bug. */
2887 if (HAS_BROKEN_CS_TLB(dev)) {
2888 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2889 if (obj == NULL) {
2890 DRM_ERROR("Failed to allocate batch bo\n");
2891 return -ENOMEM;
2892 }
2893
2894 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2895 if (ret != 0) {
2896 drm_gem_object_unreference(&obj->base);
2897 DRM_ERROR("Failed to ping batch bo\n");
2898 return ret;
2899 }
2900
2901 engine->scratch.obj = obj;
2902 engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2903 }
2904
2905 ret = intel_init_ring_buffer(dev, engine);
2906 if (ret)
2907 return ret;
2908
2909 if (INTEL_INFO(dev)->gen >= 5) {
2910 ret = intel_init_pipe_control(engine);
2911 if (ret)
2912 return ret;
2913 }
2914
2915 return 0;
2916 }
2917
2918 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2919 {
2920 struct drm_i915_private *dev_priv = dev->dev_private;
2921 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2922
2923 engine->name = "bsd ring";
2924 engine->id = VCS;
2925 engine->exec_id = I915_EXEC_BSD;
2926
2927 engine->write_tail = ring_write_tail;
2928 if (INTEL_INFO(dev)->gen >= 6) {
2929 engine->mmio_base = GEN6_BSD_RING_BASE;
2930 /* gen6 bsd needs a special wa for tail updates */
2931 if (IS_GEN6(dev))
2932 engine->write_tail = gen6_bsd_ring_write_tail;
2933 engine->flush = gen6_bsd_ring_flush;
2934 engine->add_request = gen6_add_request;
2935 engine->irq_seqno_barrier = gen6_seqno_barrier;
2936 engine->get_seqno = ring_get_seqno;
2937 engine->set_seqno = ring_set_seqno;
2938 if (INTEL_INFO(dev)->gen >= 8) {
2939 engine->irq_enable_mask =
2940 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2941 engine->irq_get = gen8_ring_get_irq;
2942 engine->irq_put = gen8_ring_put_irq;
2943 engine->dispatch_execbuffer =
2944 gen8_ring_dispatch_execbuffer;
2945 if (i915_semaphore_is_enabled(dev)) {
2946 engine->semaphore.sync_to = gen8_ring_sync;
2947 engine->semaphore.signal = gen8_xcs_signal;
2948 GEN8_RING_SEMAPHORE_INIT(engine);
2949 }
2950 } else {
2951 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2952 engine->irq_get = gen6_ring_get_irq;
2953 engine->irq_put = gen6_ring_put_irq;
2954 engine->dispatch_execbuffer =
2955 gen6_ring_dispatch_execbuffer;
2956 if (i915_semaphore_is_enabled(dev)) {
2957 engine->semaphore.sync_to = gen6_ring_sync;
2958 engine->semaphore.signal = gen6_signal;
2959 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2960 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2961 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2962 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2963 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2964 engine->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2965 engine->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2966 engine->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2967 engine->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2968 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2969 }
2970 }
2971 } else {
2972 engine->mmio_base = BSD_RING_BASE;
2973 engine->flush = bsd_ring_flush;
2974 engine->add_request = i9xx_add_request;
2975 engine->get_seqno = ring_get_seqno;
2976 engine->set_seqno = ring_set_seqno;
2977 if (IS_GEN5(dev)) {
2978 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2979 engine->irq_get = gen5_ring_get_irq;
2980 engine->irq_put = gen5_ring_put_irq;
2981 } else {
2982 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2983 engine->irq_get = i9xx_ring_get_irq;
2984 engine->irq_put = i9xx_ring_put_irq;
2985 }
2986 engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2987 }
2988 engine->init_hw = init_ring_common;
2989
2990 return intel_init_ring_buffer(dev, engine);
2991 }
2992
2993 /**
2994 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2995 */
2996 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2997 {
2998 struct drm_i915_private *dev_priv = dev->dev_private;
2999 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
3000
3001 engine->name = "bsd2 ring";
3002 engine->id = VCS2;
3003 engine->exec_id = I915_EXEC_BSD;
3004
3005 engine->write_tail = ring_write_tail;
3006 engine->mmio_base = GEN8_BSD2_RING_BASE;
3007 engine->flush = gen6_bsd_ring_flush;
3008 engine->add_request = gen6_add_request;
3009 engine->irq_seqno_barrier = gen6_seqno_barrier;
3010 engine->get_seqno = ring_get_seqno;
3011 engine->set_seqno = ring_set_seqno;
3012 engine->irq_enable_mask =
3013 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
3014 engine->irq_get = gen8_ring_get_irq;
3015 engine->irq_put = gen8_ring_put_irq;
3016 engine->dispatch_execbuffer =
3017 gen8_ring_dispatch_execbuffer;
3018 if (i915_semaphore_is_enabled(dev)) {
3019 engine->semaphore.sync_to = gen8_ring_sync;
3020 engine->semaphore.signal = gen8_xcs_signal;
3021 GEN8_RING_SEMAPHORE_INIT(engine);
3022 }
3023 engine->init_hw = init_ring_common;
3024
3025 return intel_init_ring_buffer(dev, engine);
3026 }
3027
3028 int intel_init_blt_ring_buffer(struct drm_device *dev)
3029 {
3030 struct drm_i915_private *dev_priv = dev->dev_private;
3031 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
3032
3033 engine->name = "blitter ring";
3034 engine->id = BCS;
3035 engine->exec_id = I915_EXEC_BLT;
3036
3037 engine->mmio_base = BLT_RING_BASE;
3038 engine->write_tail = ring_write_tail;
3039 engine->flush = gen6_ring_flush;
3040 engine->add_request = gen6_add_request;
3041 engine->irq_seqno_barrier = gen6_seqno_barrier;
3042 engine->get_seqno = ring_get_seqno;
3043 engine->set_seqno = ring_set_seqno;
3044 if (INTEL_INFO(dev)->gen >= 8) {
3045 engine->irq_enable_mask =
3046 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
3047 engine->irq_get = gen8_ring_get_irq;
3048 engine->irq_put = gen8_ring_put_irq;
3049 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3050 if (i915_semaphore_is_enabled(dev)) {
3051 engine->semaphore.sync_to = gen8_ring_sync;
3052 engine->semaphore.signal = gen8_xcs_signal;
3053 GEN8_RING_SEMAPHORE_INIT(engine);
3054 }
3055 } else {
3056 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
3057 engine->irq_get = gen6_ring_get_irq;
3058 engine->irq_put = gen6_ring_put_irq;
3059 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3060 if (i915_semaphore_is_enabled(dev)) {
3061 engine->semaphore.signal = gen6_signal;
3062 engine->semaphore.sync_to = gen6_ring_sync;
3063 /*
3064 * The current semaphore is only applied on pre-gen8
3065 * platform. And there is no VCS2 ring on the pre-gen8
3066 * platform. So the semaphore between BCS and VCS2 is
3067 * initialized as INVALID. Gen8 will initialize the
3068 * sema between BCS and VCS2 later.
3069 */
3070 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
3071 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
3072 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
3073 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
3074 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3075 engine->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
3076 engine->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
3077 engine->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
3078 engine->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
3079 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3080 }
3081 }
3082 engine->init_hw = init_ring_common;
3083
3084 return intel_init_ring_buffer(dev, engine);
3085 }
3086
3087 int intel_init_vebox_ring_buffer(struct drm_device *dev)
3088 {
3089 struct drm_i915_private *dev_priv = dev->dev_private;
3090 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
3091
3092 engine->name = "video enhancement ring";
3093 engine->id = VECS;
3094 engine->exec_id = I915_EXEC_VEBOX;
3095
3096 engine->mmio_base = VEBOX_RING_BASE;
3097 engine->write_tail = ring_write_tail;
3098 engine->flush = gen6_ring_flush;
3099 engine->add_request = gen6_add_request;
3100 engine->irq_seqno_barrier = gen6_seqno_barrier;
3101 engine->get_seqno = ring_get_seqno;
3102 engine->set_seqno = ring_set_seqno;
3103
3104 if (INTEL_INFO(dev)->gen >= 8) {
3105 engine->irq_enable_mask =
3106 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3107 engine->irq_get = gen8_ring_get_irq;
3108 engine->irq_put = gen8_ring_put_irq;
3109 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3110 if (i915_semaphore_is_enabled(dev)) {
3111 engine->semaphore.sync_to = gen8_ring_sync;
3112 engine->semaphore.signal = gen8_xcs_signal;
3113 GEN8_RING_SEMAPHORE_INIT(engine);
3114 }
3115 } else {
3116 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3117 engine->irq_get = hsw_vebox_get_irq;
3118 engine->irq_put = hsw_vebox_put_irq;
3119 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3120 if (i915_semaphore_is_enabled(dev)) {
3121 engine->semaphore.sync_to = gen6_ring_sync;
3122 engine->semaphore.signal = gen6_signal;
3123 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
3124 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
3125 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3126 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3127 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3128 engine->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3129 engine->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3130 engine->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3131 engine->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3132 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3133 }
3134 }
3135 engine->init_hw = init_ring_common;
3136
3137 return intel_init_ring_buffer(dev, engine);
3138 }
3139
3140 int
3141 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3142 {
3143 struct intel_engine_cs *engine = req->engine;
3144 int ret;
3145
3146 if (!engine->gpu_caches_dirty)
3147 return 0;
3148
3149 ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
3150 if (ret)
3151 return ret;
3152
3153 trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3154
3155 engine->gpu_caches_dirty = false;
3156 return 0;
3157 }
3158
3159 int
3160 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3161 {
3162 struct intel_engine_cs *engine = req->engine;
3163 uint32_t flush_domains;
3164 int ret;
3165
3166 flush_domains = 0;
3167 if (engine->gpu_caches_dirty)
3168 flush_domains = I915_GEM_GPU_DOMAINS;
3169
3170 ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3171 if (ret)
3172 return ret;
3173
3174 trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3175
3176 engine->gpu_caches_dirty = false;
3177 return 0;
3178 }
3179
3180 void
3181 intel_stop_engine(struct intel_engine_cs *engine)
3182 {
3183 int ret;
3184
3185 if (!intel_engine_initialized(engine))
3186 return;
3187
3188 ret = intel_engine_idle(engine);
3189 if (ret)
3190 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3191 engine->name, ret);
3192
3193 stop_ring(engine);
3194 }
This page took 0.126578 seconds and 6 git commands to generate.