drm/i915: Consolidate get/set_seqno
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 /* Rough estimate of the typical request size, performing a flush,
38 * set-context and then emitting the batch.
39 */
40 #define LEGACY_REQUEST_SIZE 200
41
42 int __intel_ring_space(int head, int tail, int size)
43 {
44 int space = head - tail;
45 if (space <= 0)
46 space += size;
47 return space - I915_RING_FREE_SPACE;
48 }
49
50 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
51 {
52 if (ringbuf->last_retired_head != -1) {
53 ringbuf->head = ringbuf->last_retired_head;
54 ringbuf->last_retired_head = -1;
55 }
56
57 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
58 ringbuf->tail, ringbuf->size);
59 }
60
61 bool intel_engine_stopped(struct intel_engine_cs *engine)
62 {
63 struct drm_i915_private *dev_priv = engine->i915;
64 return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
65 }
66
67 static void __intel_ring_advance(struct intel_engine_cs *engine)
68 {
69 struct intel_ringbuffer *ringbuf = engine->buffer;
70 ringbuf->tail &= ringbuf->size - 1;
71 if (intel_engine_stopped(engine))
72 return;
73 engine->write_tail(engine, ringbuf->tail);
74 }
75
76 static int
77 gen2_render_ring_flush(struct drm_i915_gem_request *req,
78 u32 invalidate_domains,
79 u32 flush_domains)
80 {
81 struct intel_engine_cs *engine = req->engine;
82 u32 cmd;
83 int ret;
84
85 cmd = MI_FLUSH;
86 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
87 cmd |= MI_NO_WRITE_FLUSH;
88
89 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
90 cmd |= MI_READ_FLUSH;
91
92 ret = intel_ring_begin(req, 2);
93 if (ret)
94 return ret;
95
96 intel_ring_emit(engine, cmd);
97 intel_ring_emit(engine, MI_NOOP);
98 intel_ring_advance(engine);
99
100 return 0;
101 }
102
103 static int
104 gen4_render_ring_flush(struct drm_i915_gem_request *req,
105 u32 invalidate_domains,
106 u32 flush_domains)
107 {
108 struct intel_engine_cs *engine = req->engine;
109 u32 cmd;
110 int ret;
111
112 /*
113 * read/write caches:
114 *
115 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
116 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
117 * also flushed at 2d versus 3d pipeline switches.
118 *
119 * read-only caches:
120 *
121 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
122 * MI_READ_FLUSH is set, and is always flushed on 965.
123 *
124 * I915_GEM_DOMAIN_COMMAND may not exist?
125 *
126 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
127 * invalidated when MI_EXE_FLUSH is set.
128 *
129 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
130 * invalidated with every MI_FLUSH.
131 *
132 * TLBs:
133 *
134 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
135 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
136 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
137 * are flushed at any MI_FLUSH.
138 */
139
140 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
141 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
142 cmd &= ~MI_NO_WRITE_FLUSH;
143 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
144 cmd |= MI_EXE_FLUSH;
145
146 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
147 (IS_G4X(req->i915) || IS_GEN5(req->i915)))
148 cmd |= MI_INVALIDATE_ISP;
149
150 ret = intel_ring_begin(req, 2);
151 if (ret)
152 return ret;
153
154 intel_ring_emit(engine, cmd);
155 intel_ring_emit(engine, MI_NOOP);
156 intel_ring_advance(engine);
157
158 return 0;
159 }
160
161 /**
162 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
163 * implementing two workarounds on gen6. From section 1.4.7.1
164 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
165 *
166 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
167 * produced by non-pipelined state commands), software needs to first
168 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
169 * 0.
170 *
171 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
172 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
173 *
174 * And the workaround for these two requires this workaround first:
175 *
176 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
177 * BEFORE the pipe-control with a post-sync op and no write-cache
178 * flushes.
179 *
180 * And this last workaround is tricky because of the requirements on
181 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
182 * volume 2 part 1:
183 *
184 * "1 of the following must also be set:
185 * - Render Target Cache Flush Enable ([12] of DW1)
186 * - Depth Cache Flush Enable ([0] of DW1)
187 * - Stall at Pixel Scoreboard ([1] of DW1)
188 * - Depth Stall ([13] of DW1)
189 * - Post-Sync Operation ([13] of DW1)
190 * - Notify Enable ([8] of DW1)"
191 *
192 * The cache flushes require the workaround flush that triggered this
193 * one, so we can't use it. Depth stall would trigger the same.
194 * Post-sync nonzero is what triggered this second workaround, so we
195 * can't use that one either. Notify enable is IRQs, which aren't
196 * really our business. That leaves only stall at scoreboard.
197 */
198 static int
199 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
200 {
201 struct intel_engine_cs *engine = req->engine;
202 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
203 int ret;
204
205 ret = intel_ring_begin(req, 6);
206 if (ret)
207 return ret;
208
209 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
210 intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
211 PIPE_CONTROL_STALL_AT_SCOREBOARD);
212 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
213 intel_ring_emit(engine, 0); /* low dword */
214 intel_ring_emit(engine, 0); /* high dword */
215 intel_ring_emit(engine, MI_NOOP);
216 intel_ring_advance(engine);
217
218 ret = intel_ring_begin(req, 6);
219 if (ret)
220 return ret;
221
222 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
223 intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
224 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
225 intel_ring_emit(engine, 0);
226 intel_ring_emit(engine, 0);
227 intel_ring_emit(engine, MI_NOOP);
228 intel_ring_advance(engine);
229
230 return 0;
231 }
232
233 static int
234 gen6_render_ring_flush(struct drm_i915_gem_request *req,
235 u32 invalidate_domains, u32 flush_domains)
236 {
237 struct intel_engine_cs *engine = req->engine;
238 u32 flags = 0;
239 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
240 int ret;
241
242 /* Force SNB workarounds for PIPE_CONTROL flushes */
243 ret = intel_emit_post_sync_nonzero_flush(req);
244 if (ret)
245 return ret;
246
247 /* Just flush everything. Experiments have shown that reducing the
248 * number of bits based on the write domains has little performance
249 * impact.
250 */
251 if (flush_domains) {
252 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
253 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
254 /*
255 * Ensure that any following seqno writes only happen
256 * when the render cache is indeed flushed.
257 */
258 flags |= PIPE_CONTROL_CS_STALL;
259 }
260 if (invalidate_domains) {
261 flags |= PIPE_CONTROL_TLB_INVALIDATE;
262 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
263 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
264 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
265 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
266 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
267 /*
268 * TLB invalidate requires a post-sync write.
269 */
270 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
271 }
272
273 ret = intel_ring_begin(req, 4);
274 if (ret)
275 return ret;
276
277 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
278 intel_ring_emit(engine, flags);
279 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
280 intel_ring_emit(engine, 0);
281 intel_ring_advance(engine);
282
283 return 0;
284 }
285
286 static int
287 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
288 {
289 struct intel_engine_cs *engine = req->engine;
290 int ret;
291
292 ret = intel_ring_begin(req, 4);
293 if (ret)
294 return ret;
295
296 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
297 intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
298 PIPE_CONTROL_STALL_AT_SCOREBOARD);
299 intel_ring_emit(engine, 0);
300 intel_ring_emit(engine, 0);
301 intel_ring_advance(engine);
302
303 return 0;
304 }
305
306 static int
307 gen7_render_ring_flush(struct drm_i915_gem_request *req,
308 u32 invalidate_domains, u32 flush_domains)
309 {
310 struct intel_engine_cs *engine = req->engine;
311 u32 flags = 0;
312 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
313 int ret;
314
315 /*
316 * Ensure that any following seqno writes only happen when the render
317 * cache is indeed flushed.
318 *
319 * Workaround: 4th PIPE_CONTROL command (except the ones with only
320 * read-cache invalidate bits set) must have the CS_STALL bit set. We
321 * don't try to be clever and just set it unconditionally.
322 */
323 flags |= PIPE_CONTROL_CS_STALL;
324
325 /* Just flush everything. Experiments have shown that reducing the
326 * number of bits based on the write domains has little performance
327 * impact.
328 */
329 if (flush_domains) {
330 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
331 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
332 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
333 flags |= PIPE_CONTROL_FLUSH_ENABLE;
334 }
335 if (invalidate_domains) {
336 flags |= PIPE_CONTROL_TLB_INVALIDATE;
337 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
338 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
339 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
340 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
341 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
342 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
343 /*
344 * TLB invalidate requires a post-sync write.
345 */
346 flags |= PIPE_CONTROL_QW_WRITE;
347 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
348
349 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
350
351 /* Workaround: we must issue a pipe_control with CS-stall bit
352 * set before a pipe_control command that has the state cache
353 * invalidate bit set. */
354 gen7_render_ring_cs_stall_wa(req);
355 }
356
357 ret = intel_ring_begin(req, 4);
358 if (ret)
359 return ret;
360
361 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
362 intel_ring_emit(engine, flags);
363 intel_ring_emit(engine, scratch_addr);
364 intel_ring_emit(engine, 0);
365 intel_ring_advance(engine);
366
367 return 0;
368 }
369
370 static int
371 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
372 u32 flags, u32 scratch_addr)
373 {
374 struct intel_engine_cs *engine = req->engine;
375 int ret;
376
377 ret = intel_ring_begin(req, 6);
378 if (ret)
379 return ret;
380
381 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
382 intel_ring_emit(engine, flags);
383 intel_ring_emit(engine, scratch_addr);
384 intel_ring_emit(engine, 0);
385 intel_ring_emit(engine, 0);
386 intel_ring_emit(engine, 0);
387 intel_ring_advance(engine);
388
389 return 0;
390 }
391
392 static int
393 gen8_render_ring_flush(struct drm_i915_gem_request *req,
394 u32 invalidate_domains, u32 flush_domains)
395 {
396 u32 flags = 0;
397 u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
398 int ret;
399
400 flags |= PIPE_CONTROL_CS_STALL;
401
402 if (flush_domains) {
403 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
404 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
405 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
406 flags |= PIPE_CONTROL_FLUSH_ENABLE;
407 }
408 if (invalidate_domains) {
409 flags |= PIPE_CONTROL_TLB_INVALIDATE;
410 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
411 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
412 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
413 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
414 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
415 flags |= PIPE_CONTROL_QW_WRITE;
416 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
417
418 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
419 ret = gen8_emit_pipe_control(req,
420 PIPE_CONTROL_CS_STALL |
421 PIPE_CONTROL_STALL_AT_SCOREBOARD,
422 0);
423 if (ret)
424 return ret;
425 }
426
427 return gen8_emit_pipe_control(req, flags, scratch_addr);
428 }
429
430 static void ring_write_tail(struct intel_engine_cs *engine,
431 u32 value)
432 {
433 struct drm_i915_private *dev_priv = engine->i915;
434 I915_WRITE_TAIL(engine, value);
435 }
436
437 u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
438 {
439 struct drm_i915_private *dev_priv = engine->i915;
440 u64 acthd;
441
442 if (INTEL_GEN(dev_priv) >= 8)
443 acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
444 RING_ACTHD_UDW(engine->mmio_base));
445 else if (INTEL_GEN(dev_priv) >= 4)
446 acthd = I915_READ(RING_ACTHD(engine->mmio_base));
447 else
448 acthd = I915_READ(ACTHD);
449
450 return acthd;
451 }
452
453 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
454 {
455 struct drm_i915_private *dev_priv = engine->i915;
456 u32 addr;
457
458 addr = dev_priv->status_page_dmah->busaddr;
459 if (INTEL_GEN(dev_priv) >= 4)
460 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
461 I915_WRITE(HWS_PGA, addr);
462 }
463
464 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
465 {
466 struct drm_i915_private *dev_priv = engine->i915;
467 i915_reg_t mmio;
468
469 /* The ring status page addresses are no longer next to the rest of
470 * the ring registers as of gen7.
471 */
472 if (IS_GEN7(dev_priv)) {
473 switch (engine->id) {
474 case RCS:
475 mmio = RENDER_HWS_PGA_GEN7;
476 break;
477 case BCS:
478 mmio = BLT_HWS_PGA_GEN7;
479 break;
480 /*
481 * VCS2 actually doesn't exist on Gen7. Only shut up
482 * gcc switch check warning
483 */
484 case VCS2:
485 case VCS:
486 mmio = BSD_HWS_PGA_GEN7;
487 break;
488 case VECS:
489 mmio = VEBOX_HWS_PGA_GEN7;
490 break;
491 }
492 } else if (IS_GEN6(dev_priv)) {
493 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
494 } else {
495 /* XXX: gen8 returns to sanity */
496 mmio = RING_HWS_PGA(engine->mmio_base);
497 }
498
499 I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
500 POSTING_READ(mmio);
501
502 /*
503 * Flush the TLB for this page
504 *
505 * FIXME: These two bits have disappeared on gen8, so a question
506 * arises: do we still need this and if so how should we go about
507 * invalidating the TLB?
508 */
509 if (IS_GEN(dev_priv, 6, 7)) {
510 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
511
512 /* ring should be idle before issuing a sync flush*/
513 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
514
515 I915_WRITE(reg,
516 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
517 INSTPM_SYNC_FLUSH));
518 if (intel_wait_for_register(dev_priv,
519 reg, INSTPM_SYNC_FLUSH, 0,
520 1000))
521 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
522 engine->name);
523 }
524 }
525
526 static bool stop_ring(struct intel_engine_cs *engine)
527 {
528 struct drm_i915_private *dev_priv = engine->i915;
529
530 if (!IS_GEN2(dev_priv)) {
531 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
532 if (intel_wait_for_register(dev_priv,
533 RING_MI_MODE(engine->mmio_base),
534 MODE_IDLE,
535 MODE_IDLE,
536 1000)) {
537 DRM_ERROR("%s : timed out trying to stop ring\n",
538 engine->name);
539 /* Sometimes we observe that the idle flag is not
540 * set even though the ring is empty. So double
541 * check before giving up.
542 */
543 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
544 return false;
545 }
546 }
547
548 I915_WRITE_CTL(engine, 0);
549 I915_WRITE_HEAD(engine, 0);
550 engine->write_tail(engine, 0);
551
552 if (!IS_GEN2(dev_priv)) {
553 (void)I915_READ_CTL(engine);
554 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
555 }
556
557 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
558 }
559
560 void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
561 {
562 memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
563 }
564
565 static int init_ring_common(struct intel_engine_cs *engine)
566 {
567 struct drm_i915_private *dev_priv = engine->i915;
568 struct intel_ringbuffer *ringbuf = engine->buffer;
569 struct drm_i915_gem_object *obj = ringbuf->obj;
570 int ret = 0;
571
572 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
573
574 if (!stop_ring(engine)) {
575 /* G45 ring initialization often fails to reset head to zero */
576 DRM_DEBUG_KMS("%s head not reset to zero "
577 "ctl %08x head %08x tail %08x start %08x\n",
578 engine->name,
579 I915_READ_CTL(engine),
580 I915_READ_HEAD(engine),
581 I915_READ_TAIL(engine),
582 I915_READ_START(engine));
583
584 if (!stop_ring(engine)) {
585 DRM_ERROR("failed to set %s head to zero "
586 "ctl %08x head %08x tail %08x start %08x\n",
587 engine->name,
588 I915_READ_CTL(engine),
589 I915_READ_HEAD(engine),
590 I915_READ_TAIL(engine),
591 I915_READ_START(engine));
592 ret = -EIO;
593 goto out;
594 }
595 }
596
597 if (I915_NEED_GFX_HWS(dev_priv))
598 intel_ring_setup_status_page(engine);
599 else
600 ring_setup_phys_status_page(engine);
601
602 /* Enforce ordering by reading HEAD register back */
603 I915_READ_HEAD(engine);
604
605 /* Initialize the ring. This must happen _after_ we've cleared the ring
606 * registers with the above sequence (the readback of the HEAD registers
607 * also enforces ordering), otherwise the hw might lose the new ring
608 * register values. */
609 I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
610
611 /* WaClearRingBufHeadRegAtInit:ctg,elk */
612 if (I915_READ_HEAD(engine))
613 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
614 engine->name, I915_READ_HEAD(engine));
615 I915_WRITE_HEAD(engine, 0);
616 (void)I915_READ_HEAD(engine);
617
618 I915_WRITE_CTL(engine,
619 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
620 | RING_VALID);
621
622 /* If the head is still not zero, the ring is dead */
623 if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
624 I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
625 (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
626 DRM_ERROR("%s initialization failed "
627 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
628 engine->name,
629 I915_READ_CTL(engine),
630 I915_READ_CTL(engine) & RING_VALID,
631 I915_READ_HEAD(engine), I915_READ_TAIL(engine),
632 I915_READ_START(engine),
633 (unsigned long)i915_gem_obj_ggtt_offset(obj));
634 ret = -EIO;
635 goto out;
636 }
637
638 ringbuf->last_retired_head = -1;
639 ringbuf->head = I915_READ_HEAD(engine);
640 ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
641 intel_ring_update_space(ringbuf);
642
643 intel_engine_init_hangcheck(engine);
644
645 out:
646 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
647
648 return ret;
649 }
650
651 void
652 intel_fini_pipe_control(struct intel_engine_cs *engine)
653 {
654 if (engine->scratch.obj == NULL)
655 return;
656
657 if (INTEL_GEN(engine->i915) >= 5) {
658 kunmap(sg_page(engine->scratch.obj->pages->sgl));
659 i915_gem_object_ggtt_unpin(engine->scratch.obj);
660 }
661
662 drm_gem_object_unreference(&engine->scratch.obj->base);
663 engine->scratch.obj = NULL;
664 }
665
666 int
667 intel_init_pipe_control(struct intel_engine_cs *engine)
668 {
669 int ret;
670
671 WARN_ON(engine->scratch.obj);
672
673 engine->scratch.obj = i915_gem_object_create(engine->i915->dev, 4096);
674 if (IS_ERR(engine->scratch.obj)) {
675 DRM_ERROR("Failed to allocate seqno page\n");
676 ret = PTR_ERR(engine->scratch.obj);
677 engine->scratch.obj = NULL;
678 goto err;
679 }
680
681 ret = i915_gem_object_set_cache_level(engine->scratch.obj,
682 I915_CACHE_LLC);
683 if (ret)
684 goto err_unref;
685
686 ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
687 if (ret)
688 goto err_unref;
689
690 engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
691 engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
692 if (engine->scratch.cpu_page == NULL) {
693 ret = -ENOMEM;
694 goto err_unpin;
695 }
696
697 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
698 engine->name, engine->scratch.gtt_offset);
699 return 0;
700
701 err_unpin:
702 i915_gem_object_ggtt_unpin(engine->scratch.obj);
703 err_unref:
704 drm_gem_object_unreference(&engine->scratch.obj->base);
705 err:
706 return ret;
707 }
708
709 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
710 {
711 struct intel_engine_cs *engine = req->engine;
712 struct i915_workarounds *w = &req->i915->workarounds;
713 int ret, i;
714
715 if (w->count == 0)
716 return 0;
717
718 engine->gpu_caches_dirty = true;
719 ret = intel_ring_flush_all_caches(req);
720 if (ret)
721 return ret;
722
723 ret = intel_ring_begin(req, (w->count * 2 + 2));
724 if (ret)
725 return ret;
726
727 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
728 for (i = 0; i < w->count; i++) {
729 intel_ring_emit_reg(engine, w->reg[i].addr);
730 intel_ring_emit(engine, w->reg[i].value);
731 }
732 intel_ring_emit(engine, MI_NOOP);
733
734 intel_ring_advance(engine);
735
736 engine->gpu_caches_dirty = true;
737 ret = intel_ring_flush_all_caches(req);
738 if (ret)
739 return ret;
740
741 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
742
743 return 0;
744 }
745
746 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
747 {
748 int ret;
749
750 ret = intel_ring_workarounds_emit(req);
751 if (ret != 0)
752 return ret;
753
754 ret = i915_gem_render_state_init(req);
755 if (ret)
756 return ret;
757
758 return 0;
759 }
760
761 static int wa_add(struct drm_i915_private *dev_priv,
762 i915_reg_t addr,
763 const u32 mask, const u32 val)
764 {
765 const u32 idx = dev_priv->workarounds.count;
766
767 if (WARN_ON(idx >= I915_MAX_WA_REGS))
768 return -ENOSPC;
769
770 dev_priv->workarounds.reg[idx].addr = addr;
771 dev_priv->workarounds.reg[idx].value = val;
772 dev_priv->workarounds.reg[idx].mask = mask;
773
774 dev_priv->workarounds.count++;
775
776 return 0;
777 }
778
779 #define WA_REG(addr, mask, val) do { \
780 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
781 if (r) \
782 return r; \
783 } while (0)
784
785 #define WA_SET_BIT_MASKED(addr, mask) \
786 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
787
788 #define WA_CLR_BIT_MASKED(addr, mask) \
789 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
790
791 #define WA_SET_FIELD_MASKED(addr, mask, value) \
792 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
793
794 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
795 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
796
797 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
798
799 static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
800 i915_reg_t reg)
801 {
802 struct drm_i915_private *dev_priv = engine->i915;
803 struct i915_workarounds *wa = &dev_priv->workarounds;
804 const uint32_t index = wa->hw_whitelist_count[engine->id];
805
806 if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
807 return -EINVAL;
808
809 WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
810 i915_mmio_reg_offset(reg));
811 wa->hw_whitelist_count[engine->id]++;
812
813 return 0;
814 }
815
816 static int gen8_init_workarounds(struct intel_engine_cs *engine)
817 {
818 struct drm_i915_private *dev_priv = engine->i915;
819
820 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
821
822 /* WaDisableAsyncFlipPerfMode:bdw,chv */
823 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
824
825 /* WaDisablePartialInstShootdown:bdw,chv */
826 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
827 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
828
829 /* Use Force Non-Coherent whenever executing a 3D context. This is a
830 * workaround for for a possible hang in the unlikely event a TLB
831 * invalidation occurs during a PSD flush.
832 */
833 /* WaForceEnableNonCoherent:bdw,chv */
834 /* WaHdcDisableFetchWhenMasked:bdw,chv */
835 WA_SET_BIT_MASKED(HDC_CHICKEN0,
836 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
837 HDC_FORCE_NON_COHERENT);
838
839 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
840 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
841 * polygons in the same 8x4 pixel/sample area to be processed without
842 * stalling waiting for the earlier ones to write to Hierarchical Z
843 * buffer."
844 *
845 * This optimization is off by default for BDW and CHV; turn it on.
846 */
847 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
848
849 /* Wa4x4STCOptimizationDisable:bdw,chv */
850 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
851
852 /*
853 * BSpec recommends 8x4 when MSAA is used,
854 * however in practice 16x4 seems fastest.
855 *
856 * Note that PS/WM thread counts depend on the WIZ hashing
857 * disable bit, which we don't touch here, but it's good
858 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
859 */
860 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
861 GEN6_WIZ_HASHING_MASK,
862 GEN6_WIZ_HASHING_16x4);
863
864 return 0;
865 }
866
867 static int bdw_init_workarounds(struct intel_engine_cs *engine)
868 {
869 struct drm_i915_private *dev_priv = engine->i915;
870 int ret;
871
872 ret = gen8_init_workarounds(engine);
873 if (ret)
874 return ret;
875
876 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
877 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
878
879 /* WaDisableDopClockGating:bdw */
880 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
881 DOP_CLOCK_GATING_DISABLE);
882
883 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
884 GEN8_SAMPLER_POWER_BYPASS_DIS);
885
886 WA_SET_BIT_MASKED(HDC_CHICKEN0,
887 /* WaForceContextSaveRestoreNonCoherent:bdw */
888 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
889 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
890 (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
891
892 return 0;
893 }
894
895 static int chv_init_workarounds(struct intel_engine_cs *engine)
896 {
897 struct drm_i915_private *dev_priv = engine->i915;
898 int ret;
899
900 ret = gen8_init_workarounds(engine);
901 if (ret)
902 return ret;
903
904 /* WaDisableThreadStallDopClockGating:chv */
905 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
906
907 /* Improve HiZ throughput on CHV. */
908 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
909
910 return 0;
911 }
912
913 static int gen9_init_workarounds(struct intel_engine_cs *engine)
914 {
915 struct drm_i915_private *dev_priv = engine->i915;
916 int ret;
917
918 /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
919 I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
920
921 /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
922 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
923 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
924
925 /* WaDisableKillLogic:bxt,skl,kbl */
926 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
927 ECOCHK_DIS_TLB);
928
929 /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
930 /* WaDisablePartialInstShootdown:skl,bxt,kbl */
931 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
932 FLOW_CONTROL_ENABLE |
933 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
934
935 /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
936 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
937 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
938
939 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
940 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
941 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
942 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
943 GEN9_DG_MIRROR_FIX_ENABLE);
944
945 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
946 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
947 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
948 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
949 GEN9_RHWO_OPTIMIZATION_DISABLE);
950 /*
951 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
952 * but we do that in per ctx batchbuffer as there is an issue
953 * with this register not getting restored on ctx restore
954 */
955 }
956
957 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
958 /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
959 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
960 GEN9_ENABLE_YV12_BUGFIX |
961 GEN9_ENABLE_GPGPU_PREEMPTION);
962
963 /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
964 /* WaDisablePartialResolveInVc:skl,bxt,kbl */
965 WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
966 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
967
968 /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
969 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
970 GEN9_CCS_TLB_PREFETCH_ENABLE);
971
972 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
973 if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
974 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
975 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
976 PIXEL_MASK_CAMMING_DISABLE);
977
978 /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
979 WA_SET_BIT_MASKED(HDC_CHICKEN0,
980 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
981 HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
982
983 /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
984 * both tied to WaForceContextSaveRestoreNonCoherent
985 * in some hsds for skl. We keep the tie for all gen9. The
986 * documentation is a bit hazy and so we want to get common behaviour,
987 * even though there is no clear evidence we would need both on kbl/bxt.
988 * This area has been source of system hangs so we play it safe
989 * and mimic the skl regardless of what bspec says.
990 *
991 * Use Force Non-Coherent whenever executing a 3D context. This
992 * is a workaround for a possible hang in the unlikely event
993 * a TLB invalidation occurs during a PSD flush.
994 */
995
996 /* WaForceEnableNonCoherent:skl,bxt,kbl */
997 WA_SET_BIT_MASKED(HDC_CHICKEN0,
998 HDC_FORCE_NON_COHERENT);
999
1000 /* WaDisableHDCInvalidation:skl,bxt,kbl */
1001 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1002 BDW_DISABLE_HDC_INVALIDATION);
1003
1004 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
1005 if (IS_SKYLAKE(dev_priv) ||
1006 IS_KABYLAKE(dev_priv) ||
1007 IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
1008 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
1009 GEN8_SAMPLER_POWER_BYPASS_DIS);
1010
1011 /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
1012 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
1013
1014 /* WaOCLCoherentLineFlush:skl,bxt,kbl */
1015 I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
1016 GEN8_LQSC_FLUSH_COHERENT_LINES));
1017
1018 /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
1019 ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
1020 if (ret)
1021 return ret;
1022
1023 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
1024 ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
1025 if (ret)
1026 return ret;
1027
1028 /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
1029 ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
1030 if (ret)
1031 return ret;
1032
1033 return 0;
1034 }
1035
1036 static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
1037 {
1038 struct drm_i915_private *dev_priv = engine->i915;
1039 u8 vals[3] = { 0, 0, 0 };
1040 unsigned int i;
1041
1042 for (i = 0; i < 3; i++) {
1043 u8 ss;
1044
1045 /*
1046 * Only consider slices where one, and only one, subslice has 7
1047 * EUs
1048 */
1049 if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1050 continue;
1051
1052 /*
1053 * subslice_7eu[i] != 0 (because of the check above) and
1054 * ss_max == 4 (maximum number of subslices possible per slice)
1055 *
1056 * -> 0 <= ss <= 3;
1057 */
1058 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1059 vals[i] = 3 - ss;
1060 }
1061
1062 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1063 return 0;
1064
1065 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1066 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1067 GEN9_IZ_HASHING_MASK(2) |
1068 GEN9_IZ_HASHING_MASK(1) |
1069 GEN9_IZ_HASHING_MASK(0),
1070 GEN9_IZ_HASHING(2, vals[2]) |
1071 GEN9_IZ_HASHING(1, vals[1]) |
1072 GEN9_IZ_HASHING(0, vals[0]));
1073
1074 return 0;
1075 }
1076
1077 static int skl_init_workarounds(struct intel_engine_cs *engine)
1078 {
1079 struct drm_i915_private *dev_priv = engine->i915;
1080 int ret;
1081
1082 ret = gen9_init_workarounds(engine);
1083 if (ret)
1084 return ret;
1085
1086 /*
1087 * Actual WA is to disable percontext preemption granularity control
1088 * until D0 which is the default case so this is equivalent to
1089 * !WaDisablePerCtxtPreemptionGranularityControl:skl
1090 */
1091 if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
1092 I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1093 _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1094 }
1095
1096 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
1097 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1098 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1099 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1100 }
1101
1102 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1103 * involving this register should also be added to WA batch as required.
1104 */
1105 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1106 /* WaDisableLSQCROPERFforOCL:skl */
1107 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1108 GEN8_LQSC_RO_PERF_DIS);
1109
1110 /* WaEnableGapsTsvCreditFix:skl */
1111 if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
1112 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1113 GEN9_GAPS_TSV_CREDIT_DISABLE));
1114 }
1115
1116 /* WaDisablePowerCompilerClockGating:skl */
1117 if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
1118 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1119 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1120
1121 /* WaBarrierPerformanceFixDisable:skl */
1122 if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1123 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1124 HDC_FENCE_DEST_SLM_DISABLE |
1125 HDC_BARRIER_PERFORMANCE_DISABLE);
1126
1127 /* WaDisableSbeCacheDispatchPortSharing:skl */
1128 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1129 WA_SET_BIT_MASKED(
1130 GEN7_HALF_SLICE_CHICKEN1,
1131 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1132
1133 /* WaDisableGafsUnitClkGating:skl */
1134 WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1135
1136 /* WaDisableLSQCROPERFforOCL:skl */
1137 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1138 if (ret)
1139 return ret;
1140
1141 return skl_tune_iz_hashing(engine);
1142 }
1143
1144 static int bxt_init_workarounds(struct intel_engine_cs *engine)
1145 {
1146 struct drm_i915_private *dev_priv = engine->i915;
1147 int ret;
1148
1149 ret = gen9_init_workarounds(engine);
1150 if (ret)
1151 return ret;
1152
1153 /* WaStoreMultiplePTEenable:bxt */
1154 /* This is a requirement according to Hardware specification */
1155 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1156 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1157
1158 /* WaSetClckGatingDisableMedia:bxt */
1159 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1160 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1161 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1162 }
1163
1164 /* WaDisableThreadStallDopClockGating:bxt */
1165 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1166 STALL_DOP_GATING_DISABLE);
1167
1168 /* WaDisablePooledEuLoadBalancingFix:bxt */
1169 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
1170 WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
1171 GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
1172 }
1173
1174 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1175 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1176 WA_SET_BIT_MASKED(
1177 GEN7_HALF_SLICE_CHICKEN1,
1178 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1179 }
1180
1181 /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1182 /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1183 /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1184 /* WaDisableLSQCROPERFforOCL:bxt */
1185 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1186 ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1187 if (ret)
1188 return ret;
1189
1190 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1191 if (ret)
1192 return ret;
1193 }
1194
1195 /* WaProgramL3SqcReg1DefaultForPerf:bxt */
1196 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1197 I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
1198 L3_HIGH_PRIO_CREDITS(2));
1199
1200 /* WaInsertDummyPushConstPs:bxt */
1201 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
1202 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1203 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1204
1205 return 0;
1206 }
1207
1208 static int kbl_init_workarounds(struct intel_engine_cs *engine)
1209 {
1210 struct drm_i915_private *dev_priv = engine->i915;
1211 int ret;
1212
1213 ret = gen9_init_workarounds(engine);
1214 if (ret)
1215 return ret;
1216
1217 /* WaEnableGapsTsvCreditFix:kbl */
1218 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1219 GEN9_GAPS_TSV_CREDIT_DISABLE));
1220
1221 /* WaDisableDynamicCreditSharing:kbl */
1222 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1223 WA_SET_BIT(GAMT_CHKN_BIT_REG,
1224 GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1225
1226 /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
1227 if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
1228 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1229 HDC_FENCE_DEST_SLM_DISABLE);
1230
1231 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1232 * involving this register should also be added to WA batch as required.
1233 */
1234 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
1235 /* WaDisableLSQCROPERFforOCL:kbl */
1236 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1237 GEN8_LQSC_RO_PERF_DIS);
1238
1239 /* WaInsertDummyPushConstPs:kbl */
1240 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1241 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1242 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1243
1244 /* WaDisableGafsUnitClkGating:kbl */
1245 WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1246
1247 /* WaDisableSbeCacheDispatchPortSharing:kbl */
1248 WA_SET_BIT_MASKED(
1249 GEN7_HALF_SLICE_CHICKEN1,
1250 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1251
1252 /* WaDisableLSQCROPERFforOCL:kbl */
1253 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1254 if (ret)
1255 return ret;
1256
1257 return 0;
1258 }
1259
1260 int init_workarounds_ring(struct intel_engine_cs *engine)
1261 {
1262 struct drm_i915_private *dev_priv = engine->i915;
1263
1264 WARN_ON(engine->id != RCS);
1265
1266 dev_priv->workarounds.count = 0;
1267 dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1268
1269 if (IS_BROADWELL(dev_priv))
1270 return bdw_init_workarounds(engine);
1271
1272 if (IS_CHERRYVIEW(dev_priv))
1273 return chv_init_workarounds(engine);
1274
1275 if (IS_SKYLAKE(dev_priv))
1276 return skl_init_workarounds(engine);
1277
1278 if (IS_BROXTON(dev_priv))
1279 return bxt_init_workarounds(engine);
1280
1281 if (IS_KABYLAKE(dev_priv))
1282 return kbl_init_workarounds(engine);
1283
1284 return 0;
1285 }
1286
1287 static int init_render_ring(struct intel_engine_cs *engine)
1288 {
1289 struct drm_i915_private *dev_priv = engine->i915;
1290 int ret = init_ring_common(engine);
1291 if (ret)
1292 return ret;
1293
1294 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1295 if (IS_GEN(dev_priv, 4, 6))
1296 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1297
1298 /* We need to disable the AsyncFlip performance optimisations in order
1299 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1300 * programmed to '1' on all products.
1301 *
1302 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1303 */
1304 if (IS_GEN(dev_priv, 6, 7))
1305 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1306
1307 /* Required for the hardware to program scanline values for waiting */
1308 /* WaEnableFlushTlbInvalidationMode:snb */
1309 if (IS_GEN6(dev_priv))
1310 I915_WRITE(GFX_MODE,
1311 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1312
1313 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1314 if (IS_GEN7(dev_priv))
1315 I915_WRITE(GFX_MODE_GEN7,
1316 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1317 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1318
1319 if (IS_GEN6(dev_priv)) {
1320 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1321 * "If this bit is set, STCunit will have LRA as replacement
1322 * policy. [...] This bit must be reset. LRA replacement
1323 * policy is not supported."
1324 */
1325 I915_WRITE(CACHE_MODE_0,
1326 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1327 }
1328
1329 if (IS_GEN(dev_priv, 6, 7))
1330 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1331
1332 if (HAS_L3_DPF(dev_priv))
1333 I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
1334
1335 return init_workarounds_ring(engine);
1336 }
1337
1338 static void render_ring_cleanup(struct intel_engine_cs *engine)
1339 {
1340 struct drm_i915_private *dev_priv = engine->i915;
1341
1342 if (dev_priv->semaphore_obj) {
1343 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1344 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1345 dev_priv->semaphore_obj = NULL;
1346 }
1347
1348 intel_fini_pipe_control(engine);
1349 }
1350
1351 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1352 unsigned int num_dwords)
1353 {
1354 #define MBOX_UPDATE_DWORDS 8
1355 struct intel_engine_cs *signaller = signaller_req->engine;
1356 struct drm_i915_private *dev_priv = signaller_req->i915;
1357 struct intel_engine_cs *waiter;
1358 enum intel_engine_id id;
1359 int ret, num_rings;
1360
1361 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1362 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1363 #undef MBOX_UPDATE_DWORDS
1364
1365 ret = intel_ring_begin(signaller_req, num_dwords);
1366 if (ret)
1367 return ret;
1368
1369 for_each_engine_id(waiter, dev_priv, id) {
1370 u32 seqno;
1371 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1372 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1373 continue;
1374
1375 seqno = i915_gem_request_get_seqno(signaller_req);
1376 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1377 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1378 PIPE_CONTROL_QW_WRITE |
1379 PIPE_CONTROL_CS_STALL);
1380 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1381 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1382 intel_ring_emit(signaller, seqno);
1383 intel_ring_emit(signaller, 0);
1384 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1385 MI_SEMAPHORE_TARGET(waiter->hw_id));
1386 intel_ring_emit(signaller, 0);
1387 }
1388
1389 return 0;
1390 }
1391
1392 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1393 unsigned int num_dwords)
1394 {
1395 #define MBOX_UPDATE_DWORDS 6
1396 struct intel_engine_cs *signaller = signaller_req->engine;
1397 struct drm_i915_private *dev_priv = signaller_req->i915;
1398 struct intel_engine_cs *waiter;
1399 enum intel_engine_id id;
1400 int ret, num_rings;
1401
1402 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1403 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1404 #undef MBOX_UPDATE_DWORDS
1405
1406 ret = intel_ring_begin(signaller_req, num_dwords);
1407 if (ret)
1408 return ret;
1409
1410 for_each_engine_id(waiter, dev_priv, id) {
1411 u32 seqno;
1412 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1413 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1414 continue;
1415
1416 seqno = i915_gem_request_get_seqno(signaller_req);
1417 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1418 MI_FLUSH_DW_OP_STOREDW);
1419 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1420 MI_FLUSH_DW_USE_GTT);
1421 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1422 intel_ring_emit(signaller, seqno);
1423 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1424 MI_SEMAPHORE_TARGET(waiter->hw_id));
1425 intel_ring_emit(signaller, 0);
1426 }
1427
1428 return 0;
1429 }
1430
1431 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1432 unsigned int num_dwords)
1433 {
1434 struct intel_engine_cs *signaller = signaller_req->engine;
1435 struct drm_i915_private *dev_priv = signaller_req->i915;
1436 struct intel_engine_cs *useless;
1437 enum intel_engine_id id;
1438 int ret, num_rings;
1439
1440 #define MBOX_UPDATE_DWORDS 3
1441 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1442 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1443 #undef MBOX_UPDATE_DWORDS
1444
1445 ret = intel_ring_begin(signaller_req, num_dwords);
1446 if (ret)
1447 return ret;
1448
1449 for_each_engine_id(useless, dev_priv, id) {
1450 i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
1451
1452 if (i915_mmio_reg_valid(mbox_reg)) {
1453 u32 seqno = i915_gem_request_get_seqno(signaller_req);
1454
1455 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1456 intel_ring_emit_reg(signaller, mbox_reg);
1457 intel_ring_emit(signaller, seqno);
1458 }
1459 }
1460
1461 /* If num_dwords was rounded, make sure the tail pointer is correct */
1462 if (num_rings % 2 == 0)
1463 intel_ring_emit(signaller, MI_NOOP);
1464
1465 return 0;
1466 }
1467
1468 /**
1469 * gen6_add_request - Update the semaphore mailbox registers
1470 *
1471 * @request - request to write to the ring
1472 *
1473 * Update the mailbox registers in the *other* rings with the current seqno.
1474 * This acts like a signal in the canonical semaphore.
1475 */
1476 static int
1477 gen6_add_request(struct drm_i915_gem_request *req)
1478 {
1479 struct intel_engine_cs *engine = req->engine;
1480 int ret;
1481
1482 if (engine->semaphore.signal)
1483 ret = engine->semaphore.signal(req, 4);
1484 else
1485 ret = intel_ring_begin(req, 4);
1486
1487 if (ret)
1488 return ret;
1489
1490 intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1491 intel_ring_emit(engine,
1492 I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1493 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1494 intel_ring_emit(engine, MI_USER_INTERRUPT);
1495 __intel_ring_advance(engine);
1496
1497 return 0;
1498 }
1499
1500 static int
1501 gen8_render_add_request(struct drm_i915_gem_request *req)
1502 {
1503 struct intel_engine_cs *engine = req->engine;
1504 int ret;
1505
1506 if (engine->semaphore.signal)
1507 ret = engine->semaphore.signal(req, 8);
1508 else
1509 ret = intel_ring_begin(req, 8);
1510 if (ret)
1511 return ret;
1512
1513 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
1514 intel_ring_emit(engine, (PIPE_CONTROL_GLOBAL_GTT_IVB |
1515 PIPE_CONTROL_CS_STALL |
1516 PIPE_CONTROL_QW_WRITE));
1517 intel_ring_emit(engine, intel_hws_seqno_address(req->engine));
1518 intel_ring_emit(engine, 0);
1519 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1520 /* We're thrashing one dword of HWS. */
1521 intel_ring_emit(engine, 0);
1522 intel_ring_emit(engine, MI_USER_INTERRUPT);
1523 intel_ring_emit(engine, MI_NOOP);
1524 __intel_ring_advance(engine);
1525
1526 return 0;
1527 }
1528
1529 static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
1530 u32 seqno)
1531 {
1532 return dev_priv->last_seqno < seqno;
1533 }
1534
1535 /**
1536 * intel_ring_sync - sync the waiter to the signaller on seqno
1537 *
1538 * @waiter - ring that is waiting
1539 * @signaller - ring which has, or will signal
1540 * @seqno - seqno which the waiter will block on
1541 */
1542
1543 static int
1544 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1545 struct intel_engine_cs *signaller,
1546 u32 seqno)
1547 {
1548 struct intel_engine_cs *waiter = waiter_req->engine;
1549 struct drm_i915_private *dev_priv = waiter_req->i915;
1550 struct i915_hw_ppgtt *ppgtt;
1551 int ret;
1552
1553 ret = intel_ring_begin(waiter_req, 4);
1554 if (ret)
1555 return ret;
1556
1557 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1558 MI_SEMAPHORE_GLOBAL_GTT |
1559 MI_SEMAPHORE_SAD_GTE_SDD);
1560 intel_ring_emit(waiter, seqno);
1561 intel_ring_emit(waiter,
1562 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1563 intel_ring_emit(waiter,
1564 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1565 intel_ring_advance(waiter);
1566
1567 /* When the !RCS engines idle waiting upon a semaphore, they lose their
1568 * pagetables and we must reload them before executing the batch.
1569 * We do this on the i915_switch_context() following the wait and
1570 * before the dispatch.
1571 */
1572 ppgtt = waiter_req->ctx->ppgtt;
1573 if (ppgtt && waiter_req->engine->id != RCS)
1574 ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
1575 return 0;
1576 }
1577
1578 static int
1579 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1580 struct intel_engine_cs *signaller,
1581 u32 seqno)
1582 {
1583 struct intel_engine_cs *waiter = waiter_req->engine;
1584 u32 dw1 = MI_SEMAPHORE_MBOX |
1585 MI_SEMAPHORE_COMPARE |
1586 MI_SEMAPHORE_REGISTER;
1587 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1588 int ret;
1589
1590 /* Throughout all of the GEM code, seqno passed implies our current
1591 * seqno is >= the last seqno executed. However for hardware the
1592 * comparison is strictly greater than.
1593 */
1594 seqno -= 1;
1595
1596 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1597
1598 ret = intel_ring_begin(waiter_req, 4);
1599 if (ret)
1600 return ret;
1601
1602 /* If seqno wrap happened, omit the wait with no-ops */
1603 if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
1604 intel_ring_emit(waiter, dw1 | wait_mbox);
1605 intel_ring_emit(waiter, seqno);
1606 intel_ring_emit(waiter, 0);
1607 intel_ring_emit(waiter, MI_NOOP);
1608 } else {
1609 intel_ring_emit(waiter, MI_NOOP);
1610 intel_ring_emit(waiter, MI_NOOP);
1611 intel_ring_emit(waiter, MI_NOOP);
1612 intel_ring_emit(waiter, MI_NOOP);
1613 }
1614 intel_ring_advance(waiter);
1615
1616 return 0;
1617 }
1618
1619 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1620 do { \
1621 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1622 PIPE_CONTROL_DEPTH_STALL); \
1623 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1624 intel_ring_emit(ring__, 0); \
1625 intel_ring_emit(ring__, 0); \
1626 } while (0)
1627
1628 static int
1629 pc_render_add_request(struct drm_i915_gem_request *req)
1630 {
1631 struct intel_engine_cs *engine = req->engine;
1632 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1633 int ret;
1634
1635 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1636 * incoherent with writes to memory, i.e. completely fubar,
1637 * so we need to use PIPE_NOTIFY instead.
1638 *
1639 * However, we also need to workaround the qword write
1640 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1641 * memory before requesting an interrupt.
1642 */
1643 ret = intel_ring_begin(req, 32);
1644 if (ret)
1645 return ret;
1646
1647 intel_ring_emit(engine,
1648 GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1649 PIPE_CONTROL_WRITE_FLUSH |
1650 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1651 intel_ring_emit(engine,
1652 engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1653 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1654 intel_ring_emit(engine, 0);
1655 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1656 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1657 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1658 scratch_addr += 2 * CACHELINE_BYTES;
1659 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1660 scratch_addr += 2 * CACHELINE_BYTES;
1661 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1662 scratch_addr += 2 * CACHELINE_BYTES;
1663 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1664 scratch_addr += 2 * CACHELINE_BYTES;
1665 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1666
1667 intel_ring_emit(engine,
1668 GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1669 PIPE_CONTROL_WRITE_FLUSH |
1670 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1671 PIPE_CONTROL_NOTIFY);
1672 intel_ring_emit(engine,
1673 engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1674 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1675 intel_ring_emit(engine, 0);
1676 __intel_ring_advance(engine);
1677
1678 return 0;
1679 }
1680
1681 static void
1682 gen6_seqno_barrier(struct intel_engine_cs *engine)
1683 {
1684 struct drm_i915_private *dev_priv = engine->i915;
1685
1686 /* Workaround to force correct ordering between irq and seqno writes on
1687 * ivb (and maybe also on snb) by reading from a CS register (like
1688 * ACTHD) before reading the status page.
1689 *
1690 * Note that this effectively stalls the read by the time it takes to
1691 * do a memory transaction, which more or less ensures that the write
1692 * from the GPU has sufficient time to invalidate the CPU cacheline.
1693 * Alternatively we could delay the interrupt from the CS ring to give
1694 * the write time to land, but that would incur a delay after every
1695 * batch i.e. much more frequent than a delay when waiting for the
1696 * interrupt (with the same net latency).
1697 *
1698 * Also note that to prevent whole machine hangs on gen7, we have to
1699 * take the spinlock to guard against concurrent cacheline access.
1700 */
1701 spin_lock_irq(&dev_priv->uncore.lock);
1702 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1703 spin_unlock_irq(&dev_priv->uncore.lock);
1704 }
1705
1706 static u32
1707 ring_get_seqno(struct intel_engine_cs *engine)
1708 {
1709 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1710 }
1711
1712 static void
1713 ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1714 {
1715 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1716 }
1717
1718 static u32
1719 pc_render_get_seqno(struct intel_engine_cs *engine)
1720 {
1721 return engine->scratch.cpu_page[0];
1722 }
1723
1724 static void
1725 pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1726 {
1727 engine->scratch.cpu_page[0] = seqno;
1728 }
1729
1730 static bool
1731 gen5_ring_get_irq(struct intel_engine_cs *engine)
1732 {
1733 struct drm_i915_private *dev_priv = engine->i915;
1734 unsigned long flags;
1735
1736 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1737 return false;
1738
1739 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1740 if (engine->irq_refcount++ == 0)
1741 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1742 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1743
1744 return true;
1745 }
1746
1747 static void
1748 gen5_ring_put_irq(struct intel_engine_cs *engine)
1749 {
1750 struct drm_i915_private *dev_priv = engine->i915;
1751 unsigned long flags;
1752
1753 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1754 if (--engine->irq_refcount == 0)
1755 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1756 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1757 }
1758
1759 static bool
1760 i9xx_ring_get_irq(struct intel_engine_cs *engine)
1761 {
1762 struct drm_i915_private *dev_priv = engine->i915;
1763 unsigned long flags;
1764
1765 if (!intel_irqs_enabled(dev_priv))
1766 return false;
1767
1768 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1769 if (engine->irq_refcount++ == 0) {
1770 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1771 I915_WRITE(IMR, dev_priv->irq_mask);
1772 POSTING_READ(IMR);
1773 }
1774 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1775
1776 return true;
1777 }
1778
1779 static void
1780 i9xx_ring_put_irq(struct intel_engine_cs *engine)
1781 {
1782 struct drm_i915_private *dev_priv = engine->i915;
1783 unsigned long flags;
1784
1785 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1786 if (--engine->irq_refcount == 0) {
1787 dev_priv->irq_mask |= engine->irq_enable_mask;
1788 I915_WRITE(IMR, dev_priv->irq_mask);
1789 POSTING_READ(IMR);
1790 }
1791 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1792 }
1793
1794 static bool
1795 i8xx_ring_get_irq(struct intel_engine_cs *engine)
1796 {
1797 struct drm_i915_private *dev_priv = engine->i915;
1798 unsigned long flags;
1799
1800 if (!intel_irqs_enabled(dev_priv))
1801 return false;
1802
1803 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1804 if (engine->irq_refcount++ == 0) {
1805 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1806 I915_WRITE16(IMR, dev_priv->irq_mask);
1807 POSTING_READ16(IMR);
1808 }
1809 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1810
1811 return true;
1812 }
1813
1814 static void
1815 i8xx_ring_put_irq(struct intel_engine_cs *engine)
1816 {
1817 struct drm_i915_private *dev_priv = engine->i915;
1818 unsigned long flags;
1819
1820 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1821 if (--engine->irq_refcount == 0) {
1822 dev_priv->irq_mask |= engine->irq_enable_mask;
1823 I915_WRITE16(IMR, dev_priv->irq_mask);
1824 POSTING_READ16(IMR);
1825 }
1826 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1827 }
1828
1829 static int
1830 bsd_ring_flush(struct drm_i915_gem_request *req,
1831 u32 invalidate_domains,
1832 u32 flush_domains)
1833 {
1834 struct intel_engine_cs *engine = req->engine;
1835 int ret;
1836
1837 ret = intel_ring_begin(req, 2);
1838 if (ret)
1839 return ret;
1840
1841 intel_ring_emit(engine, MI_FLUSH);
1842 intel_ring_emit(engine, MI_NOOP);
1843 intel_ring_advance(engine);
1844 return 0;
1845 }
1846
1847 static int
1848 i9xx_add_request(struct drm_i915_gem_request *req)
1849 {
1850 struct intel_engine_cs *engine = req->engine;
1851 int ret;
1852
1853 ret = intel_ring_begin(req, 4);
1854 if (ret)
1855 return ret;
1856
1857 intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1858 intel_ring_emit(engine,
1859 I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1860 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1861 intel_ring_emit(engine, MI_USER_INTERRUPT);
1862 __intel_ring_advance(engine);
1863
1864 return 0;
1865 }
1866
1867 static bool
1868 gen6_ring_get_irq(struct intel_engine_cs *engine)
1869 {
1870 struct drm_i915_private *dev_priv = engine->i915;
1871 unsigned long flags;
1872
1873 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1874 return false;
1875
1876 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1877 if (engine->irq_refcount++ == 0) {
1878 if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
1879 I915_WRITE_IMR(engine,
1880 ~(engine->irq_enable_mask |
1881 GT_PARITY_ERROR(dev_priv)));
1882 else
1883 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1884 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1885 }
1886 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1887
1888 return true;
1889 }
1890
1891 static void
1892 gen6_ring_put_irq(struct intel_engine_cs *engine)
1893 {
1894 struct drm_i915_private *dev_priv = engine->i915;
1895 unsigned long flags;
1896
1897 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1898 if (--engine->irq_refcount == 0) {
1899 if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
1900 I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
1901 else
1902 I915_WRITE_IMR(engine, ~0);
1903 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1904 }
1905 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1906 }
1907
1908 static bool
1909 hsw_vebox_get_irq(struct intel_engine_cs *engine)
1910 {
1911 struct drm_i915_private *dev_priv = engine->i915;
1912 unsigned long flags;
1913
1914 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1915 return false;
1916
1917 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1918 if (engine->irq_refcount++ == 0) {
1919 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1920 gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
1921 }
1922 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1923
1924 return true;
1925 }
1926
1927 static void
1928 hsw_vebox_put_irq(struct intel_engine_cs *engine)
1929 {
1930 struct drm_i915_private *dev_priv = engine->i915;
1931 unsigned long flags;
1932
1933 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1934 if (--engine->irq_refcount == 0) {
1935 I915_WRITE_IMR(engine, ~0);
1936 gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
1937 }
1938 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1939 }
1940
1941 static bool
1942 gen8_ring_get_irq(struct intel_engine_cs *engine)
1943 {
1944 struct drm_i915_private *dev_priv = engine->i915;
1945 unsigned long flags;
1946
1947 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1948 return false;
1949
1950 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1951 if (engine->irq_refcount++ == 0) {
1952 if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
1953 I915_WRITE_IMR(engine,
1954 ~(engine->irq_enable_mask |
1955 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1956 } else {
1957 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1958 }
1959 POSTING_READ(RING_IMR(engine->mmio_base));
1960 }
1961 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1962
1963 return true;
1964 }
1965
1966 static void
1967 gen8_ring_put_irq(struct intel_engine_cs *engine)
1968 {
1969 struct drm_i915_private *dev_priv = engine->i915;
1970 unsigned long flags;
1971
1972 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1973 if (--engine->irq_refcount == 0) {
1974 if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
1975 I915_WRITE_IMR(engine,
1976 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1977 } else {
1978 I915_WRITE_IMR(engine, ~0);
1979 }
1980 POSTING_READ(RING_IMR(engine->mmio_base));
1981 }
1982 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1983 }
1984
1985 static int
1986 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1987 u64 offset, u32 length,
1988 unsigned dispatch_flags)
1989 {
1990 struct intel_engine_cs *engine = req->engine;
1991 int ret;
1992
1993 ret = intel_ring_begin(req, 2);
1994 if (ret)
1995 return ret;
1996
1997 intel_ring_emit(engine,
1998 MI_BATCH_BUFFER_START |
1999 MI_BATCH_GTT |
2000 (dispatch_flags & I915_DISPATCH_SECURE ?
2001 0 : MI_BATCH_NON_SECURE_I965));
2002 intel_ring_emit(engine, offset);
2003 intel_ring_advance(engine);
2004
2005 return 0;
2006 }
2007
2008 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
2009 #define I830_BATCH_LIMIT (256*1024)
2010 #define I830_TLB_ENTRIES (2)
2011 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
2012 static int
2013 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
2014 u64 offset, u32 len,
2015 unsigned dispatch_flags)
2016 {
2017 struct intel_engine_cs *engine = req->engine;
2018 u32 cs_offset = engine->scratch.gtt_offset;
2019 int ret;
2020
2021 ret = intel_ring_begin(req, 6);
2022 if (ret)
2023 return ret;
2024
2025 /* Evict the invalid PTE TLBs */
2026 intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
2027 intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
2028 intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
2029 intel_ring_emit(engine, cs_offset);
2030 intel_ring_emit(engine, 0xdeadbeef);
2031 intel_ring_emit(engine, MI_NOOP);
2032 intel_ring_advance(engine);
2033
2034 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
2035 if (len > I830_BATCH_LIMIT)
2036 return -ENOSPC;
2037
2038 ret = intel_ring_begin(req, 6 + 2);
2039 if (ret)
2040 return ret;
2041
2042 /* Blit the batch (which has now all relocs applied) to the
2043 * stable batch scratch bo area (so that the CS never
2044 * stumbles over its tlb invalidation bug) ...
2045 */
2046 intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
2047 intel_ring_emit(engine,
2048 BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
2049 intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
2050 intel_ring_emit(engine, cs_offset);
2051 intel_ring_emit(engine, 4096);
2052 intel_ring_emit(engine, offset);
2053
2054 intel_ring_emit(engine, MI_FLUSH);
2055 intel_ring_emit(engine, MI_NOOP);
2056 intel_ring_advance(engine);
2057
2058 /* ... and execute it. */
2059 offset = cs_offset;
2060 }
2061
2062 ret = intel_ring_begin(req, 2);
2063 if (ret)
2064 return ret;
2065
2066 intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
2067 intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
2068 0 : MI_BATCH_NON_SECURE));
2069 intel_ring_advance(engine);
2070
2071 return 0;
2072 }
2073
2074 static int
2075 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
2076 u64 offset, u32 len,
2077 unsigned dispatch_flags)
2078 {
2079 struct intel_engine_cs *engine = req->engine;
2080 int ret;
2081
2082 ret = intel_ring_begin(req, 2);
2083 if (ret)
2084 return ret;
2085
2086 intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
2087 intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
2088 0 : MI_BATCH_NON_SECURE));
2089 intel_ring_advance(engine);
2090
2091 return 0;
2092 }
2093
2094 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
2095 {
2096 struct drm_i915_private *dev_priv = engine->i915;
2097
2098 if (!dev_priv->status_page_dmah)
2099 return;
2100
2101 drm_pci_free(dev_priv->dev, dev_priv->status_page_dmah);
2102 engine->status_page.page_addr = NULL;
2103 }
2104
2105 static void cleanup_status_page(struct intel_engine_cs *engine)
2106 {
2107 struct drm_i915_gem_object *obj;
2108
2109 obj = engine->status_page.obj;
2110 if (obj == NULL)
2111 return;
2112
2113 kunmap(sg_page(obj->pages->sgl));
2114 i915_gem_object_ggtt_unpin(obj);
2115 drm_gem_object_unreference(&obj->base);
2116 engine->status_page.obj = NULL;
2117 }
2118
2119 static int init_status_page(struct intel_engine_cs *engine)
2120 {
2121 struct drm_i915_gem_object *obj = engine->status_page.obj;
2122
2123 if (obj == NULL) {
2124 unsigned flags;
2125 int ret;
2126
2127 obj = i915_gem_object_create(engine->i915->dev, 4096);
2128 if (IS_ERR(obj)) {
2129 DRM_ERROR("Failed to allocate status page\n");
2130 return PTR_ERR(obj);
2131 }
2132
2133 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2134 if (ret)
2135 goto err_unref;
2136
2137 flags = 0;
2138 if (!HAS_LLC(engine->i915))
2139 /* On g33, we cannot place HWS above 256MiB, so
2140 * restrict its pinning to the low mappable arena.
2141 * Though this restriction is not documented for
2142 * gen4, gen5, or byt, they also behave similarly
2143 * and hang if the HWS is placed at the top of the
2144 * GTT. To generalise, it appears that all !llc
2145 * platforms have issues with us placing the HWS
2146 * above the mappable region (even though we never
2147 * actualy map it).
2148 */
2149 flags |= PIN_MAPPABLE;
2150 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
2151 if (ret) {
2152 err_unref:
2153 drm_gem_object_unreference(&obj->base);
2154 return ret;
2155 }
2156
2157 engine->status_page.obj = obj;
2158 }
2159
2160 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
2161 engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
2162 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2163
2164 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2165 engine->name, engine->status_page.gfx_addr);
2166
2167 return 0;
2168 }
2169
2170 static int init_phys_status_page(struct intel_engine_cs *engine)
2171 {
2172 struct drm_i915_private *dev_priv = engine->i915;
2173
2174 if (!dev_priv->status_page_dmah) {
2175 dev_priv->status_page_dmah =
2176 drm_pci_alloc(dev_priv->dev, PAGE_SIZE, PAGE_SIZE);
2177 if (!dev_priv->status_page_dmah)
2178 return -ENOMEM;
2179 }
2180
2181 engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2182 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2183
2184 return 0;
2185 }
2186
2187 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2188 {
2189 GEM_BUG_ON(ringbuf->vma == NULL);
2190 GEM_BUG_ON(ringbuf->virtual_start == NULL);
2191
2192 if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2193 i915_gem_object_unpin_map(ringbuf->obj);
2194 else
2195 i915_vma_unpin_iomap(ringbuf->vma);
2196 ringbuf->virtual_start = NULL;
2197
2198 i915_gem_object_ggtt_unpin(ringbuf->obj);
2199 ringbuf->vma = NULL;
2200 }
2201
2202 int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
2203 struct intel_ringbuffer *ringbuf)
2204 {
2205 struct drm_i915_gem_object *obj = ringbuf->obj;
2206 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2207 unsigned flags = PIN_OFFSET_BIAS | 4096;
2208 void *addr;
2209 int ret;
2210
2211 if (HAS_LLC(dev_priv) && !obj->stolen) {
2212 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
2213 if (ret)
2214 return ret;
2215
2216 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2217 if (ret)
2218 goto err_unpin;
2219
2220 addr = i915_gem_object_pin_map(obj);
2221 if (IS_ERR(addr)) {
2222 ret = PTR_ERR(addr);
2223 goto err_unpin;
2224 }
2225 } else {
2226 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
2227 flags | PIN_MAPPABLE);
2228 if (ret)
2229 return ret;
2230
2231 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2232 if (ret)
2233 goto err_unpin;
2234
2235 /* Access through the GTT requires the device to be awake. */
2236 assert_rpm_wakelock_held(dev_priv);
2237
2238 addr = i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
2239 if (IS_ERR(addr)) {
2240 ret = PTR_ERR(addr);
2241 goto err_unpin;
2242 }
2243 }
2244
2245 ringbuf->virtual_start = addr;
2246 ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2247 return 0;
2248
2249 err_unpin:
2250 i915_gem_object_ggtt_unpin(obj);
2251 return ret;
2252 }
2253
2254 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2255 {
2256 drm_gem_object_unreference(&ringbuf->obj->base);
2257 ringbuf->obj = NULL;
2258 }
2259
2260 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2261 struct intel_ringbuffer *ringbuf)
2262 {
2263 struct drm_i915_gem_object *obj;
2264
2265 obj = NULL;
2266 if (!HAS_LLC(dev))
2267 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2268 if (obj == NULL)
2269 obj = i915_gem_object_create(dev, ringbuf->size);
2270 if (IS_ERR(obj))
2271 return PTR_ERR(obj);
2272
2273 /* mark ring buffers as read-only from GPU side by default */
2274 obj->gt_ro = 1;
2275
2276 ringbuf->obj = obj;
2277
2278 return 0;
2279 }
2280
2281 struct intel_ringbuffer *
2282 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2283 {
2284 struct intel_ringbuffer *ring;
2285 int ret;
2286
2287 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2288 if (ring == NULL) {
2289 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2290 engine->name);
2291 return ERR_PTR(-ENOMEM);
2292 }
2293
2294 ring->engine = engine;
2295 list_add(&ring->link, &engine->buffers);
2296
2297 ring->size = size;
2298 /* Workaround an erratum on the i830 which causes a hang if
2299 * the TAIL pointer points to within the last 2 cachelines
2300 * of the buffer.
2301 */
2302 ring->effective_size = size;
2303 if (IS_I830(engine->i915) || IS_845G(engine->i915))
2304 ring->effective_size -= 2 * CACHELINE_BYTES;
2305
2306 ring->last_retired_head = -1;
2307 intel_ring_update_space(ring);
2308
2309 ret = intel_alloc_ringbuffer_obj(engine->i915->dev, ring);
2310 if (ret) {
2311 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2312 engine->name, ret);
2313 list_del(&ring->link);
2314 kfree(ring);
2315 return ERR_PTR(ret);
2316 }
2317
2318 return ring;
2319 }
2320
2321 void
2322 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2323 {
2324 intel_destroy_ringbuffer_obj(ring);
2325 list_del(&ring->link);
2326 kfree(ring);
2327 }
2328
2329 static int intel_ring_context_pin(struct i915_gem_context *ctx,
2330 struct intel_engine_cs *engine)
2331 {
2332 struct intel_context *ce = &ctx->engine[engine->id];
2333 int ret;
2334
2335 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
2336
2337 if (ce->pin_count++)
2338 return 0;
2339
2340 if (ce->state) {
2341 ret = i915_gem_obj_ggtt_pin(ce->state, ctx->ggtt_alignment, 0);
2342 if (ret)
2343 goto error;
2344 }
2345
2346 /* The kernel context is only used as a placeholder for flushing the
2347 * active context. It is never used for submitting user rendering and
2348 * as such never requires the golden render context, and so we can skip
2349 * emitting it when we switch to the kernel context. This is required
2350 * as during eviction we cannot allocate and pin the renderstate in
2351 * order to initialise the context.
2352 */
2353 if (ctx == ctx->i915->kernel_context)
2354 ce->initialised = true;
2355
2356 i915_gem_context_reference(ctx);
2357 return 0;
2358
2359 error:
2360 ce->pin_count = 0;
2361 return ret;
2362 }
2363
2364 static void intel_ring_context_unpin(struct i915_gem_context *ctx,
2365 struct intel_engine_cs *engine)
2366 {
2367 struct intel_context *ce = &ctx->engine[engine->id];
2368
2369 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
2370
2371 if (--ce->pin_count)
2372 return;
2373
2374 if (ce->state)
2375 i915_gem_object_ggtt_unpin(ce->state);
2376
2377 i915_gem_context_unreference(ctx);
2378 }
2379
2380 static int intel_init_ring_buffer(struct drm_device *dev,
2381 struct intel_engine_cs *engine)
2382 {
2383 struct drm_i915_private *dev_priv = to_i915(dev);
2384 struct intel_ringbuffer *ringbuf;
2385 int ret;
2386
2387 WARN_ON(engine->buffer);
2388
2389 engine->i915 = dev_priv;
2390 INIT_LIST_HEAD(&engine->active_list);
2391 INIT_LIST_HEAD(&engine->request_list);
2392 INIT_LIST_HEAD(&engine->execlist_queue);
2393 INIT_LIST_HEAD(&engine->buffers);
2394 i915_gem_batch_pool_init(dev, &engine->batch_pool);
2395 memset(engine->semaphore.sync_seqno, 0,
2396 sizeof(engine->semaphore.sync_seqno));
2397
2398 init_waitqueue_head(&engine->irq_queue);
2399
2400 /* We may need to do things with the shrinker which
2401 * require us to immediately switch back to the default
2402 * context. This can cause a problem as pinning the
2403 * default context also requires GTT space which may not
2404 * be available. To avoid this we always pin the default
2405 * context.
2406 */
2407 ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
2408 if (ret)
2409 goto error;
2410
2411 ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
2412 if (IS_ERR(ringbuf)) {
2413 ret = PTR_ERR(ringbuf);
2414 goto error;
2415 }
2416 engine->buffer = ringbuf;
2417
2418 if (I915_NEED_GFX_HWS(dev_priv)) {
2419 ret = init_status_page(engine);
2420 if (ret)
2421 goto error;
2422 } else {
2423 WARN_ON(engine->id != RCS);
2424 ret = init_phys_status_page(engine);
2425 if (ret)
2426 goto error;
2427 }
2428
2429 ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
2430 if (ret) {
2431 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2432 engine->name, ret);
2433 intel_destroy_ringbuffer_obj(ringbuf);
2434 goto error;
2435 }
2436
2437 ret = i915_cmd_parser_init_ring(engine);
2438 if (ret)
2439 goto error;
2440
2441 return 0;
2442
2443 error:
2444 intel_cleanup_engine(engine);
2445 return ret;
2446 }
2447
2448 void intel_cleanup_engine(struct intel_engine_cs *engine)
2449 {
2450 struct drm_i915_private *dev_priv;
2451
2452 if (!intel_engine_initialized(engine))
2453 return;
2454
2455 dev_priv = engine->i915;
2456
2457 if (engine->buffer) {
2458 intel_stop_engine(engine);
2459 WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2460
2461 intel_unpin_ringbuffer_obj(engine->buffer);
2462 intel_ringbuffer_free(engine->buffer);
2463 engine->buffer = NULL;
2464 }
2465
2466 if (engine->cleanup)
2467 engine->cleanup(engine);
2468
2469 if (I915_NEED_GFX_HWS(dev_priv)) {
2470 cleanup_status_page(engine);
2471 } else {
2472 WARN_ON(engine->id != RCS);
2473 cleanup_phys_status_page(engine);
2474 }
2475
2476 i915_cmd_parser_fini_ring(engine);
2477 i915_gem_batch_pool_fini(&engine->batch_pool);
2478
2479 intel_ring_context_unpin(dev_priv->kernel_context, engine);
2480
2481 engine->i915 = NULL;
2482 }
2483
2484 int intel_engine_idle(struct intel_engine_cs *engine)
2485 {
2486 struct drm_i915_gem_request *req;
2487
2488 /* Wait upon the last request to be completed */
2489 if (list_empty(&engine->request_list))
2490 return 0;
2491
2492 req = list_entry(engine->request_list.prev,
2493 struct drm_i915_gem_request,
2494 list);
2495
2496 /* Make sure we do not trigger any retires */
2497 return __i915_wait_request(req,
2498 req->i915->mm.interruptible,
2499 NULL, NULL);
2500 }
2501
2502 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2503 {
2504 int ret;
2505
2506 /* Flush enough space to reduce the likelihood of waiting after
2507 * we start building the request - in which case we will just
2508 * have to repeat work.
2509 */
2510 request->reserved_space += LEGACY_REQUEST_SIZE;
2511
2512 request->ringbuf = request->engine->buffer;
2513
2514 ret = intel_ring_begin(request, 0);
2515 if (ret)
2516 return ret;
2517
2518 request->reserved_space -= LEGACY_REQUEST_SIZE;
2519 return 0;
2520 }
2521
2522 static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
2523 {
2524 struct intel_ringbuffer *ringbuf = req->ringbuf;
2525 struct intel_engine_cs *engine = req->engine;
2526 struct drm_i915_gem_request *target;
2527
2528 intel_ring_update_space(ringbuf);
2529 if (ringbuf->space >= bytes)
2530 return 0;
2531
2532 /*
2533 * Space is reserved in the ringbuffer for finalising the request,
2534 * as that cannot be allowed to fail. During request finalisation,
2535 * reserved_space is set to 0 to stop the overallocation and the
2536 * assumption is that then we never need to wait (which has the
2537 * risk of failing with EINTR).
2538 *
2539 * See also i915_gem_request_alloc() and i915_add_request().
2540 */
2541 GEM_BUG_ON(!req->reserved_space);
2542
2543 list_for_each_entry(target, &engine->request_list, list) {
2544 unsigned space;
2545
2546 /*
2547 * The request queue is per-engine, so can contain requests
2548 * from multiple ringbuffers. Here, we must ignore any that
2549 * aren't from the ringbuffer we're considering.
2550 */
2551 if (target->ringbuf != ringbuf)
2552 continue;
2553
2554 /* Would completion of this request free enough space? */
2555 space = __intel_ring_space(target->postfix, ringbuf->tail,
2556 ringbuf->size);
2557 if (space >= bytes)
2558 break;
2559 }
2560
2561 if (WARN_ON(&target->list == &engine->request_list))
2562 return -ENOSPC;
2563
2564 return i915_wait_request(target);
2565 }
2566
2567 int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
2568 {
2569 struct intel_ringbuffer *ringbuf = req->ringbuf;
2570 int remain_actual = ringbuf->size - ringbuf->tail;
2571 int remain_usable = ringbuf->effective_size - ringbuf->tail;
2572 int bytes = num_dwords * sizeof(u32);
2573 int total_bytes, wait_bytes;
2574 bool need_wrap = false;
2575
2576 total_bytes = bytes + req->reserved_space;
2577
2578 if (unlikely(bytes > remain_usable)) {
2579 /*
2580 * Not enough space for the basic request. So need to flush
2581 * out the remainder and then wait for base + reserved.
2582 */
2583 wait_bytes = remain_actual + total_bytes;
2584 need_wrap = true;
2585 } else if (unlikely(total_bytes > remain_usable)) {
2586 /*
2587 * The base request will fit but the reserved space
2588 * falls off the end. So we don't need an immediate wrap
2589 * and only need to effectively wait for the reserved
2590 * size space from the start of ringbuffer.
2591 */
2592 wait_bytes = remain_actual + req->reserved_space;
2593 } else {
2594 /* No wrapping required, just waiting. */
2595 wait_bytes = total_bytes;
2596 }
2597
2598 if (wait_bytes > ringbuf->space) {
2599 int ret = wait_for_space(req, wait_bytes);
2600 if (unlikely(ret))
2601 return ret;
2602
2603 intel_ring_update_space(ringbuf);
2604 if (unlikely(ringbuf->space < wait_bytes))
2605 return -EAGAIN;
2606 }
2607
2608 if (unlikely(need_wrap)) {
2609 GEM_BUG_ON(remain_actual > ringbuf->space);
2610 GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
2611
2612 /* Fill the tail with MI_NOOP */
2613 memset(ringbuf->virtual_start + ringbuf->tail,
2614 0, remain_actual);
2615 ringbuf->tail = 0;
2616 ringbuf->space -= remain_actual;
2617 }
2618
2619 ringbuf->space -= bytes;
2620 GEM_BUG_ON(ringbuf->space < 0);
2621 return 0;
2622 }
2623
2624 /* Align the ring tail to a cacheline boundary */
2625 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2626 {
2627 struct intel_engine_cs *engine = req->engine;
2628 int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2629 int ret;
2630
2631 if (num_dwords == 0)
2632 return 0;
2633
2634 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2635 ret = intel_ring_begin(req, num_dwords);
2636 if (ret)
2637 return ret;
2638
2639 while (num_dwords--)
2640 intel_ring_emit(engine, MI_NOOP);
2641
2642 intel_ring_advance(engine);
2643
2644 return 0;
2645 }
2646
2647 void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2648 {
2649 struct drm_i915_private *dev_priv = engine->i915;
2650
2651 /* Our semaphore implementation is strictly monotonic (i.e. we proceed
2652 * so long as the semaphore value in the register/page is greater
2653 * than the sync value), so whenever we reset the seqno,
2654 * so long as we reset the tracking semaphore value to 0, it will
2655 * always be before the next request's seqno. If we don't reset
2656 * the semaphore value, then when the seqno moves backwards all
2657 * future waits will complete instantly (causing rendering corruption).
2658 */
2659 if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
2660 I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
2661 I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2662 if (HAS_VEBOX(dev_priv))
2663 I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2664 }
2665 if (dev_priv->semaphore_obj) {
2666 struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
2667 struct page *page = i915_gem_object_get_dirty_page(obj, 0);
2668 void *semaphores = kmap(page);
2669 memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
2670 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
2671 kunmap(page);
2672 }
2673 memset(engine->semaphore.sync_seqno, 0,
2674 sizeof(engine->semaphore.sync_seqno));
2675
2676 engine->set_seqno(engine, seqno);
2677 engine->last_submitted_seqno = seqno;
2678
2679 engine->hangcheck.seqno = seqno;
2680 }
2681
2682 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
2683 u32 value)
2684 {
2685 struct drm_i915_private *dev_priv = engine->i915;
2686
2687 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2688
2689 /* Every tail move must follow the sequence below */
2690
2691 /* Disable notification that the ring is IDLE. The GT
2692 * will then assume that it is busy and bring it out of rc6.
2693 */
2694 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2695 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2696
2697 /* Clear the context id. Here be magic! */
2698 I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2699
2700 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2701 if (intel_wait_for_register_fw(dev_priv,
2702 GEN6_BSD_SLEEP_PSMI_CONTROL,
2703 GEN6_BSD_SLEEP_INDICATOR,
2704 0,
2705 50))
2706 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2707
2708 /* Now that the ring is fully powered up, update the tail */
2709 I915_WRITE_FW(RING_TAIL(engine->mmio_base), value);
2710 POSTING_READ_FW(RING_TAIL(engine->mmio_base));
2711
2712 /* Let the ring send IDLE messages to the GT again,
2713 * and so let it sleep to conserve power when idle.
2714 */
2715 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2716 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2717
2718 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2719 }
2720
2721 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2722 u32 invalidate, u32 flush)
2723 {
2724 struct intel_engine_cs *engine = req->engine;
2725 uint32_t cmd;
2726 int ret;
2727
2728 ret = intel_ring_begin(req, 4);
2729 if (ret)
2730 return ret;
2731
2732 cmd = MI_FLUSH_DW;
2733 if (INTEL_GEN(req->i915) >= 8)
2734 cmd += 1;
2735
2736 /* We always require a command barrier so that subsequent
2737 * commands, such as breadcrumb interrupts, are strictly ordered
2738 * wrt the contents of the write cache being flushed to memory
2739 * (and thus being coherent from the CPU).
2740 */
2741 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2742
2743 /*
2744 * Bspec vol 1c.5 - video engine command streamer:
2745 * "If ENABLED, all TLBs will be invalidated once the flush
2746 * operation is complete. This bit is only valid when the
2747 * Post-Sync Operation field is a value of 1h or 3h."
2748 */
2749 if (invalidate & I915_GEM_GPU_DOMAINS)
2750 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2751
2752 intel_ring_emit(engine, cmd);
2753 intel_ring_emit(engine,
2754 I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2755 if (INTEL_GEN(req->i915) >= 8) {
2756 intel_ring_emit(engine, 0); /* upper addr */
2757 intel_ring_emit(engine, 0); /* value */
2758 } else {
2759 intel_ring_emit(engine, 0);
2760 intel_ring_emit(engine, MI_NOOP);
2761 }
2762 intel_ring_advance(engine);
2763 return 0;
2764 }
2765
2766 static int
2767 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2768 u64 offset, u32 len,
2769 unsigned dispatch_flags)
2770 {
2771 struct intel_engine_cs *engine = req->engine;
2772 bool ppgtt = USES_PPGTT(engine->dev) &&
2773 !(dispatch_flags & I915_DISPATCH_SECURE);
2774 int ret;
2775
2776 ret = intel_ring_begin(req, 4);
2777 if (ret)
2778 return ret;
2779
2780 /* FIXME(BDW): Address space and security selectors. */
2781 intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2782 (dispatch_flags & I915_DISPATCH_RS ?
2783 MI_BATCH_RESOURCE_STREAMER : 0));
2784 intel_ring_emit(engine, lower_32_bits(offset));
2785 intel_ring_emit(engine, upper_32_bits(offset));
2786 intel_ring_emit(engine, MI_NOOP);
2787 intel_ring_advance(engine);
2788
2789 return 0;
2790 }
2791
2792 static int
2793 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2794 u64 offset, u32 len,
2795 unsigned dispatch_flags)
2796 {
2797 struct intel_engine_cs *engine = req->engine;
2798 int ret;
2799
2800 ret = intel_ring_begin(req, 2);
2801 if (ret)
2802 return ret;
2803
2804 intel_ring_emit(engine,
2805 MI_BATCH_BUFFER_START |
2806 (dispatch_flags & I915_DISPATCH_SECURE ?
2807 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2808 (dispatch_flags & I915_DISPATCH_RS ?
2809 MI_BATCH_RESOURCE_STREAMER : 0));
2810 /* bit0-7 is the length on GEN6+ */
2811 intel_ring_emit(engine, offset);
2812 intel_ring_advance(engine);
2813
2814 return 0;
2815 }
2816
2817 static int
2818 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2819 u64 offset, u32 len,
2820 unsigned dispatch_flags)
2821 {
2822 struct intel_engine_cs *engine = req->engine;
2823 int ret;
2824
2825 ret = intel_ring_begin(req, 2);
2826 if (ret)
2827 return ret;
2828
2829 intel_ring_emit(engine,
2830 MI_BATCH_BUFFER_START |
2831 (dispatch_flags & I915_DISPATCH_SECURE ?
2832 0 : MI_BATCH_NON_SECURE_I965));
2833 /* bit0-7 is the length on GEN6+ */
2834 intel_ring_emit(engine, offset);
2835 intel_ring_advance(engine);
2836
2837 return 0;
2838 }
2839
2840 /* Blitter support (SandyBridge+) */
2841
2842 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2843 u32 invalidate, u32 flush)
2844 {
2845 struct intel_engine_cs *engine = req->engine;
2846 uint32_t cmd;
2847 int ret;
2848
2849 ret = intel_ring_begin(req, 4);
2850 if (ret)
2851 return ret;
2852
2853 cmd = MI_FLUSH_DW;
2854 if (INTEL_GEN(req->i915) >= 8)
2855 cmd += 1;
2856
2857 /* We always require a command barrier so that subsequent
2858 * commands, such as breadcrumb interrupts, are strictly ordered
2859 * wrt the contents of the write cache being flushed to memory
2860 * (and thus being coherent from the CPU).
2861 */
2862 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2863
2864 /*
2865 * Bspec vol 1c.3 - blitter engine command streamer:
2866 * "If ENABLED, all TLBs will be invalidated once the flush
2867 * operation is complete. This bit is only valid when the
2868 * Post-Sync Operation field is a value of 1h or 3h."
2869 */
2870 if (invalidate & I915_GEM_DOMAIN_RENDER)
2871 cmd |= MI_INVALIDATE_TLB;
2872 intel_ring_emit(engine, cmd);
2873 intel_ring_emit(engine,
2874 I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2875 if (INTEL_GEN(req->i915) >= 8) {
2876 intel_ring_emit(engine, 0); /* upper addr */
2877 intel_ring_emit(engine, 0); /* value */
2878 } else {
2879 intel_ring_emit(engine, 0);
2880 intel_ring_emit(engine, MI_NOOP);
2881 }
2882 intel_ring_advance(engine);
2883
2884 return 0;
2885 }
2886
2887 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2888 struct intel_engine_cs *engine)
2889 {
2890 engine->write_tail = ring_write_tail;
2891 engine->get_seqno = ring_get_seqno;
2892 engine->set_seqno = ring_set_seqno;
2893
2894 if (INTEL_GEN(dev_priv) >= 6) {
2895 engine->add_request = gen6_add_request;
2896 engine->irq_seqno_barrier = gen6_seqno_barrier;
2897 } else {
2898 engine->add_request = i9xx_add_request;
2899 }
2900
2901 if (INTEL_GEN(dev_priv) >= 8) {
2902 engine->irq_get = gen8_ring_get_irq;
2903 engine->irq_put = gen8_ring_put_irq;
2904 } else if (INTEL_GEN(dev_priv) >= 6) {
2905 engine->irq_get = gen6_ring_get_irq;
2906 engine->irq_put = gen6_ring_put_irq;
2907 } else if (INTEL_GEN(dev_priv) >= 5) {
2908 engine->irq_get = gen5_ring_get_irq;
2909 engine->irq_put = gen5_ring_put_irq;
2910 } else if (INTEL_GEN(dev_priv) >= 3) {
2911 engine->irq_get = i9xx_ring_get_irq;
2912 engine->irq_put = i9xx_ring_put_irq;
2913 } else {
2914 engine->irq_get = i8xx_ring_get_irq;
2915 engine->irq_put = i8xx_ring_put_irq;
2916 }
2917 }
2918
2919 int intel_init_render_ring_buffer(struct drm_device *dev)
2920 {
2921 struct drm_i915_private *dev_priv = dev->dev_private;
2922 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2923 struct drm_i915_gem_object *obj;
2924 int ret;
2925
2926 engine->name = "render ring";
2927 engine->id = RCS;
2928 engine->exec_id = I915_EXEC_RENDER;
2929 engine->hw_id = 0;
2930 engine->mmio_base = RENDER_RING_BASE;
2931
2932 intel_ring_default_vfuncs(dev_priv, engine);
2933
2934 if (INTEL_GEN(dev_priv) >= 8) {
2935 if (i915_semaphore_is_enabled(dev_priv)) {
2936 obj = i915_gem_object_create(dev, 4096);
2937 if (IS_ERR(obj)) {
2938 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2939 i915.semaphores = 0;
2940 } else {
2941 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2942 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2943 if (ret != 0) {
2944 drm_gem_object_unreference(&obj->base);
2945 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2946 i915.semaphores = 0;
2947 } else
2948 dev_priv->semaphore_obj = obj;
2949 }
2950 }
2951
2952 engine->init_context = intel_rcs_ctx_init;
2953 engine->add_request = gen8_render_add_request;
2954 engine->flush = gen8_render_ring_flush;
2955 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2956 if (i915_semaphore_is_enabled(dev_priv)) {
2957 WARN_ON(!dev_priv->semaphore_obj);
2958 engine->semaphore.sync_to = gen8_ring_sync;
2959 engine->semaphore.signal = gen8_rcs_signal;
2960 GEN8_RING_SEMAPHORE_INIT(engine);
2961 }
2962 } else if (INTEL_GEN(dev_priv) >= 6) {
2963 engine->init_context = intel_rcs_ctx_init;
2964 engine->flush = gen7_render_ring_flush;
2965 if (IS_GEN6(dev_priv))
2966 engine->flush = gen6_render_ring_flush;
2967 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2968 if (i915_semaphore_is_enabled(dev_priv)) {
2969 engine->semaphore.sync_to = gen6_ring_sync;
2970 engine->semaphore.signal = gen6_signal;
2971 /*
2972 * The current semaphore is only applied on pre-gen8
2973 * platform. And there is no VCS2 ring on the pre-gen8
2974 * platform. So the semaphore between RCS and VCS2 is
2975 * initialized as INVALID. Gen8 will initialize the
2976 * sema between VCS2 and RCS later.
2977 */
2978 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2979 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2980 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2981 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2982 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2983 engine->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2984 engine->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2985 engine->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2986 engine->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2987 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2988 }
2989 } else if (IS_GEN5(dev_priv)) {
2990 engine->add_request = pc_render_add_request;
2991 engine->flush = gen4_render_ring_flush;
2992 engine->get_seqno = pc_render_get_seqno;
2993 engine->set_seqno = pc_render_set_seqno;
2994 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2995 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2996 } else {
2997 if (INTEL_GEN(dev_priv) < 4)
2998 engine->flush = gen2_render_ring_flush;
2999 else
3000 engine->flush = gen4_render_ring_flush;
3001 engine->irq_enable_mask = I915_USER_INTERRUPT;
3002 }
3003
3004 if (IS_HASWELL(dev_priv))
3005 engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
3006 else if (IS_GEN8(dev_priv))
3007 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3008 else if (INTEL_GEN(dev_priv) >= 6)
3009 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3010 else if (INTEL_GEN(dev_priv) >= 4)
3011 engine->dispatch_execbuffer = i965_dispatch_execbuffer;
3012 else if (IS_I830(dev_priv) || IS_845G(dev_priv))
3013 engine->dispatch_execbuffer = i830_dispatch_execbuffer;
3014 else
3015 engine->dispatch_execbuffer = i915_dispatch_execbuffer;
3016 engine->init_hw = init_render_ring;
3017 engine->cleanup = render_ring_cleanup;
3018
3019 /* Workaround batchbuffer to combat CS tlb bug. */
3020 if (HAS_BROKEN_CS_TLB(dev_priv)) {
3021 obj = i915_gem_object_create(dev, I830_WA_SIZE);
3022 if (IS_ERR(obj)) {
3023 DRM_ERROR("Failed to allocate batch bo\n");
3024 return PTR_ERR(obj);
3025 }
3026
3027 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
3028 if (ret != 0) {
3029 drm_gem_object_unreference(&obj->base);
3030 DRM_ERROR("Failed to ping batch bo\n");
3031 return ret;
3032 }
3033
3034 engine->scratch.obj = obj;
3035 engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
3036 }
3037
3038 ret = intel_init_ring_buffer(dev, engine);
3039 if (ret)
3040 return ret;
3041
3042 if (INTEL_GEN(dev_priv) >= 5) {
3043 ret = intel_init_pipe_control(engine);
3044 if (ret)
3045 return ret;
3046 }
3047
3048 return 0;
3049 }
3050
3051 int intel_init_bsd_ring_buffer(struct drm_device *dev)
3052 {
3053 struct drm_i915_private *dev_priv = dev->dev_private;
3054 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
3055
3056 engine->name = "bsd ring";
3057 engine->id = VCS;
3058 engine->exec_id = I915_EXEC_BSD;
3059 engine->hw_id = 1;
3060
3061 intel_ring_default_vfuncs(dev_priv, engine);
3062
3063 if (INTEL_GEN(dev_priv) >= 6) {
3064 engine->mmio_base = GEN6_BSD_RING_BASE;
3065 /* gen6 bsd needs a special wa for tail updates */
3066 if (IS_GEN6(dev_priv))
3067 engine->write_tail = gen6_bsd_ring_write_tail;
3068 engine->flush = gen6_bsd_ring_flush;
3069 if (INTEL_GEN(dev_priv) >= 8) {
3070 engine->irq_enable_mask =
3071 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
3072 engine->dispatch_execbuffer =
3073 gen8_ring_dispatch_execbuffer;
3074 if (i915_semaphore_is_enabled(dev_priv)) {
3075 engine->semaphore.sync_to = gen8_ring_sync;
3076 engine->semaphore.signal = gen8_xcs_signal;
3077 GEN8_RING_SEMAPHORE_INIT(engine);
3078 }
3079 } else {
3080 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
3081 engine->dispatch_execbuffer =
3082 gen6_ring_dispatch_execbuffer;
3083 if (i915_semaphore_is_enabled(dev_priv)) {
3084 engine->semaphore.sync_to = gen6_ring_sync;
3085 engine->semaphore.signal = gen6_signal;
3086 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
3087 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
3088 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
3089 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
3090 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3091 engine->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
3092 engine->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
3093 engine->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
3094 engine->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
3095 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3096 }
3097 }
3098 } else {
3099 engine->mmio_base = BSD_RING_BASE;
3100 engine->flush = bsd_ring_flush;
3101 if (IS_GEN5(dev_priv)) {
3102 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
3103 } else {
3104 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
3105 }
3106 engine->dispatch_execbuffer = i965_dispatch_execbuffer;
3107 }
3108 engine->init_hw = init_ring_common;
3109
3110 return intel_init_ring_buffer(dev, engine);
3111 }
3112
3113 /**
3114 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
3115 */
3116 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
3117 {
3118 struct drm_i915_private *dev_priv = dev->dev_private;
3119 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
3120
3121 engine->name = "bsd2 ring";
3122 engine->id = VCS2;
3123 engine->exec_id = I915_EXEC_BSD;
3124 engine->hw_id = 4;
3125 engine->mmio_base = GEN8_BSD2_RING_BASE;
3126
3127 intel_ring_default_vfuncs(dev_priv, engine);
3128
3129 engine->flush = gen6_bsd_ring_flush;
3130 engine->irq_enable_mask =
3131 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
3132 engine->dispatch_execbuffer =
3133 gen8_ring_dispatch_execbuffer;
3134 if (i915_semaphore_is_enabled(dev_priv)) {
3135 engine->semaphore.sync_to = gen8_ring_sync;
3136 engine->semaphore.signal = gen8_xcs_signal;
3137 GEN8_RING_SEMAPHORE_INIT(engine);
3138 }
3139 engine->init_hw = init_ring_common;
3140
3141 return intel_init_ring_buffer(dev, engine);
3142 }
3143
3144 int intel_init_blt_ring_buffer(struct drm_device *dev)
3145 {
3146 struct drm_i915_private *dev_priv = dev->dev_private;
3147 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
3148
3149 engine->name = "blitter ring";
3150 engine->id = BCS;
3151 engine->exec_id = I915_EXEC_BLT;
3152 engine->hw_id = 2;
3153 engine->mmio_base = BLT_RING_BASE;
3154
3155 intel_ring_default_vfuncs(dev_priv, engine);
3156
3157 engine->flush = gen6_ring_flush;
3158 if (INTEL_GEN(dev_priv) >= 8) {
3159 engine->irq_enable_mask =
3160 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
3161 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3162 if (i915_semaphore_is_enabled(dev_priv)) {
3163 engine->semaphore.sync_to = gen8_ring_sync;
3164 engine->semaphore.signal = gen8_xcs_signal;
3165 GEN8_RING_SEMAPHORE_INIT(engine);
3166 }
3167 } else {
3168 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
3169 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3170 if (i915_semaphore_is_enabled(dev_priv)) {
3171 engine->semaphore.signal = gen6_signal;
3172 engine->semaphore.sync_to = gen6_ring_sync;
3173 /*
3174 * The current semaphore is only applied on pre-gen8
3175 * platform. And there is no VCS2 ring on the pre-gen8
3176 * platform. So the semaphore between BCS and VCS2 is
3177 * initialized as INVALID. Gen8 will initialize the
3178 * sema between BCS and VCS2 later.
3179 */
3180 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
3181 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
3182 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
3183 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
3184 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3185 engine->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
3186 engine->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
3187 engine->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
3188 engine->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
3189 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3190 }
3191 }
3192 engine->init_hw = init_ring_common;
3193
3194 return intel_init_ring_buffer(dev, engine);
3195 }
3196
3197 int intel_init_vebox_ring_buffer(struct drm_device *dev)
3198 {
3199 struct drm_i915_private *dev_priv = dev->dev_private;
3200 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
3201
3202 engine->name = "video enhancement ring";
3203 engine->id = VECS;
3204 engine->exec_id = I915_EXEC_VEBOX;
3205 engine->hw_id = 3;
3206 engine->mmio_base = VEBOX_RING_BASE;
3207
3208 intel_ring_default_vfuncs(dev_priv, engine);
3209
3210 engine->flush = gen6_ring_flush;
3211
3212 if (INTEL_GEN(dev_priv) >= 8) {
3213 engine->irq_enable_mask =
3214 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3215 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3216 if (i915_semaphore_is_enabled(dev_priv)) {
3217 engine->semaphore.sync_to = gen8_ring_sync;
3218 engine->semaphore.signal = gen8_xcs_signal;
3219 GEN8_RING_SEMAPHORE_INIT(engine);
3220 }
3221 } else {
3222 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3223 engine->irq_get = hsw_vebox_get_irq;
3224 engine->irq_put = hsw_vebox_put_irq;
3225 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3226 if (i915_semaphore_is_enabled(dev_priv)) {
3227 engine->semaphore.sync_to = gen6_ring_sync;
3228 engine->semaphore.signal = gen6_signal;
3229 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
3230 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
3231 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3232 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3233 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3234 engine->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3235 engine->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3236 engine->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3237 engine->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3238 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3239 }
3240 }
3241 engine->init_hw = init_ring_common;
3242
3243 return intel_init_ring_buffer(dev, engine);
3244 }
3245
3246 int
3247 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3248 {
3249 struct intel_engine_cs *engine = req->engine;
3250 int ret;
3251
3252 if (!engine->gpu_caches_dirty)
3253 return 0;
3254
3255 ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
3256 if (ret)
3257 return ret;
3258
3259 trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3260
3261 engine->gpu_caches_dirty = false;
3262 return 0;
3263 }
3264
3265 int
3266 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3267 {
3268 struct intel_engine_cs *engine = req->engine;
3269 uint32_t flush_domains;
3270 int ret;
3271
3272 flush_domains = 0;
3273 if (engine->gpu_caches_dirty)
3274 flush_domains = I915_GEM_GPU_DOMAINS;
3275
3276 ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3277 if (ret)
3278 return ret;
3279
3280 trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3281
3282 engine->gpu_caches_dirty = false;
3283 return 0;
3284 }
3285
3286 void
3287 intel_stop_engine(struct intel_engine_cs *engine)
3288 {
3289 int ret;
3290
3291 if (!intel_engine_initialized(engine))
3292 return;
3293
3294 ret = intel_engine_idle(engine);
3295 if (ret)
3296 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3297 engine->name, ret);
3298
3299 stop_ring(engine);
3300 }
This page took 0.095974 seconds and 6 git commands to generate.