drm/i915/kbl: Add WaDisableDynamicCreditSharing
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 /* Rough estimate of the typical request size, performing a flush,
38 * set-context and then emitting the batch.
39 */
40 #define LEGACY_REQUEST_SIZE 200
41
42 int __intel_ring_space(int head, int tail, int size)
43 {
44 int space = head - tail;
45 if (space <= 0)
46 space += size;
47 return space - I915_RING_FREE_SPACE;
48 }
49
50 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
51 {
52 if (ringbuf->last_retired_head != -1) {
53 ringbuf->head = ringbuf->last_retired_head;
54 ringbuf->last_retired_head = -1;
55 }
56
57 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
58 ringbuf->tail, ringbuf->size);
59 }
60
61 bool intel_engine_stopped(struct intel_engine_cs *engine)
62 {
63 struct drm_i915_private *dev_priv = engine->i915;
64 return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
65 }
66
67 static void __intel_ring_advance(struct intel_engine_cs *engine)
68 {
69 struct intel_ringbuffer *ringbuf = engine->buffer;
70 ringbuf->tail &= ringbuf->size - 1;
71 if (intel_engine_stopped(engine))
72 return;
73 engine->write_tail(engine, ringbuf->tail);
74 }
75
76 static int
77 gen2_render_ring_flush(struct drm_i915_gem_request *req,
78 u32 invalidate_domains,
79 u32 flush_domains)
80 {
81 struct intel_engine_cs *engine = req->engine;
82 u32 cmd;
83 int ret;
84
85 cmd = MI_FLUSH;
86 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
87 cmd |= MI_NO_WRITE_FLUSH;
88
89 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
90 cmd |= MI_READ_FLUSH;
91
92 ret = intel_ring_begin(req, 2);
93 if (ret)
94 return ret;
95
96 intel_ring_emit(engine, cmd);
97 intel_ring_emit(engine, MI_NOOP);
98 intel_ring_advance(engine);
99
100 return 0;
101 }
102
103 static int
104 gen4_render_ring_flush(struct drm_i915_gem_request *req,
105 u32 invalidate_domains,
106 u32 flush_domains)
107 {
108 struct intel_engine_cs *engine = req->engine;
109 u32 cmd;
110 int ret;
111
112 /*
113 * read/write caches:
114 *
115 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
116 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
117 * also flushed at 2d versus 3d pipeline switches.
118 *
119 * read-only caches:
120 *
121 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
122 * MI_READ_FLUSH is set, and is always flushed on 965.
123 *
124 * I915_GEM_DOMAIN_COMMAND may not exist?
125 *
126 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
127 * invalidated when MI_EXE_FLUSH is set.
128 *
129 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
130 * invalidated with every MI_FLUSH.
131 *
132 * TLBs:
133 *
134 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
135 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
136 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
137 * are flushed at any MI_FLUSH.
138 */
139
140 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
141 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
142 cmd &= ~MI_NO_WRITE_FLUSH;
143 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
144 cmd |= MI_EXE_FLUSH;
145
146 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
147 (IS_G4X(req->i915) || IS_GEN5(req->i915)))
148 cmd |= MI_INVALIDATE_ISP;
149
150 ret = intel_ring_begin(req, 2);
151 if (ret)
152 return ret;
153
154 intel_ring_emit(engine, cmd);
155 intel_ring_emit(engine, MI_NOOP);
156 intel_ring_advance(engine);
157
158 return 0;
159 }
160
161 /**
162 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
163 * implementing two workarounds on gen6. From section 1.4.7.1
164 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
165 *
166 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
167 * produced by non-pipelined state commands), software needs to first
168 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
169 * 0.
170 *
171 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
172 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
173 *
174 * And the workaround for these two requires this workaround first:
175 *
176 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
177 * BEFORE the pipe-control with a post-sync op and no write-cache
178 * flushes.
179 *
180 * And this last workaround is tricky because of the requirements on
181 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
182 * volume 2 part 1:
183 *
184 * "1 of the following must also be set:
185 * - Render Target Cache Flush Enable ([12] of DW1)
186 * - Depth Cache Flush Enable ([0] of DW1)
187 * - Stall at Pixel Scoreboard ([1] of DW1)
188 * - Depth Stall ([13] of DW1)
189 * - Post-Sync Operation ([13] of DW1)
190 * - Notify Enable ([8] of DW1)"
191 *
192 * The cache flushes require the workaround flush that triggered this
193 * one, so we can't use it. Depth stall would trigger the same.
194 * Post-sync nonzero is what triggered this second workaround, so we
195 * can't use that one either. Notify enable is IRQs, which aren't
196 * really our business. That leaves only stall at scoreboard.
197 */
198 static int
199 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
200 {
201 struct intel_engine_cs *engine = req->engine;
202 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
203 int ret;
204
205 ret = intel_ring_begin(req, 6);
206 if (ret)
207 return ret;
208
209 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
210 intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
211 PIPE_CONTROL_STALL_AT_SCOREBOARD);
212 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
213 intel_ring_emit(engine, 0); /* low dword */
214 intel_ring_emit(engine, 0); /* high dword */
215 intel_ring_emit(engine, MI_NOOP);
216 intel_ring_advance(engine);
217
218 ret = intel_ring_begin(req, 6);
219 if (ret)
220 return ret;
221
222 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
223 intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
224 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
225 intel_ring_emit(engine, 0);
226 intel_ring_emit(engine, 0);
227 intel_ring_emit(engine, MI_NOOP);
228 intel_ring_advance(engine);
229
230 return 0;
231 }
232
233 static int
234 gen6_render_ring_flush(struct drm_i915_gem_request *req,
235 u32 invalidate_domains, u32 flush_domains)
236 {
237 struct intel_engine_cs *engine = req->engine;
238 u32 flags = 0;
239 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
240 int ret;
241
242 /* Force SNB workarounds for PIPE_CONTROL flushes */
243 ret = intel_emit_post_sync_nonzero_flush(req);
244 if (ret)
245 return ret;
246
247 /* Just flush everything. Experiments have shown that reducing the
248 * number of bits based on the write domains has little performance
249 * impact.
250 */
251 if (flush_domains) {
252 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
253 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
254 /*
255 * Ensure that any following seqno writes only happen
256 * when the render cache is indeed flushed.
257 */
258 flags |= PIPE_CONTROL_CS_STALL;
259 }
260 if (invalidate_domains) {
261 flags |= PIPE_CONTROL_TLB_INVALIDATE;
262 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
263 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
264 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
265 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
266 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
267 /*
268 * TLB invalidate requires a post-sync write.
269 */
270 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
271 }
272
273 ret = intel_ring_begin(req, 4);
274 if (ret)
275 return ret;
276
277 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
278 intel_ring_emit(engine, flags);
279 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
280 intel_ring_emit(engine, 0);
281 intel_ring_advance(engine);
282
283 return 0;
284 }
285
286 static int
287 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
288 {
289 struct intel_engine_cs *engine = req->engine;
290 int ret;
291
292 ret = intel_ring_begin(req, 4);
293 if (ret)
294 return ret;
295
296 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
297 intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
298 PIPE_CONTROL_STALL_AT_SCOREBOARD);
299 intel_ring_emit(engine, 0);
300 intel_ring_emit(engine, 0);
301 intel_ring_advance(engine);
302
303 return 0;
304 }
305
306 static int
307 gen7_render_ring_flush(struct drm_i915_gem_request *req,
308 u32 invalidate_domains, u32 flush_domains)
309 {
310 struct intel_engine_cs *engine = req->engine;
311 u32 flags = 0;
312 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
313 int ret;
314
315 /*
316 * Ensure that any following seqno writes only happen when the render
317 * cache is indeed flushed.
318 *
319 * Workaround: 4th PIPE_CONTROL command (except the ones with only
320 * read-cache invalidate bits set) must have the CS_STALL bit set. We
321 * don't try to be clever and just set it unconditionally.
322 */
323 flags |= PIPE_CONTROL_CS_STALL;
324
325 /* Just flush everything. Experiments have shown that reducing the
326 * number of bits based on the write domains has little performance
327 * impact.
328 */
329 if (flush_domains) {
330 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
331 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
332 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
333 flags |= PIPE_CONTROL_FLUSH_ENABLE;
334 }
335 if (invalidate_domains) {
336 flags |= PIPE_CONTROL_TLB_INVALIDATE;
337 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
338 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
339 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
340 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
341 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
342 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
343 /*
344 * TLB invalidate requires a post-sync write.
345 */
346 flags |= PIPE_CONTROL_QW_WRITE;
347 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
348
349 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
350
351 /* Workaround: we must issue a pipe_control with CS-stall bit
352 * set before a pipe_control command that has the state cache
353 * invalidate bit set. */
354 gen7_render_ring_cs_stall_wa(req);
355 }
356
357 ret = intel_ring_begin(req, 4);
358 if (ret)
359 return ret;
360
361 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
362 intel_ring_emit(engine, flags);
363 intel_ring_emit(engine, scratch_addr);
364 intel_ring_emit(engine, 0);
365 intel_ring_advance(engine);
366
367 return 0;
368 }
369
370 static int
371 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
372 u32 flags, u32 scratch_addr)
373 {
374 struct intel_engine_cs *engine = req->engine;
375 int ret;
376
377 ret = intel_ring_begin(req, 6);
378 if (ret)
379 return ret;
380
381 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
382 intel_ring_emit(engine, flags);
383 intel_ring_emit(engine, scratch_addr);
384 intel_ring_emit(engine, 0);
385 intel_ring_emit(engine, 0);
386 intel_ring_emit(engine, 0);
387 intel_ring_advance(engine);
388
389 return 0;
390 }
391
392 static int
393 gen8_render_ring_flush(struct drm_i915_gem_request *req,
394 u32 invalidate_domains, u32 flush_domains)
395 {
396 u32 flags = 0;
397 u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
398 int ret;
399
400 flags |= PIPE_CONTROL_CS_STALL;
401
402 if (flush_domains) {
403 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
404 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
405 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
406 flags |= PIPE_CONTROL_FLUSH_ENABLE;
407 }
408 if (invalidate_domains) {
409 flags |= PIPE_CONTROL_TLB_INVALIDATE;
410 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
411 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
412 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
413 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
414 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
415 flags |= PIPE_CONTROL_QW_WRITE;
416 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
417
418 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
419 ret = gen8_emit_pipe_control(req,
420 PIPE_CONTROL_CS_STALL |
421 PIPE_CONTROL_STALL_AT_SCOREBOARD,
422 0);
423 if (ret)
424 return ret;
425 }
426
427 return gen8_emit_pipe_control(req, flags, scratch_addr);
428 }
429
430 static void ring_write_tail(struct intel_engine_cs *engine,
431 u32 value)
432 {
433 struct drm_i915_private *dev_priv = engine->i915;
434 I915_WRITE_TAIL(engine, value);
435 }
436
437 u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
438 {
439 struct drm_i915_private *dev_priv = engine->i915;
440 u64 acthd;
441
442 if (INTEL_GEN(dev_priv) >= 8)
443 acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
444 RING_ACTHD_UDW(engine->mmio_base));
445 else if (INTEL_GEN(dev_priv) >= 4)
446 acthd = I915_READ(RING_ACTHD(engine->mmio_base));
447 else
448 acthd = I915_READ(ACTHD);
449
450 return acthd;
451 }
452
453 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
454 {
455 struct drm_i915_private *dev_priv = engine->i915;
456 u32 addr;
457
458 addr = dev_priv->status_page_dmah->busaddr;
459 if (INTEL_GEN(dev_priv) >= 4)
460 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
461 I915_WRITE(HWS_PGA, addr);
462 }
463
464 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
465 {
466 struct drm_i915_private *dev_priv = engine->i915;
467 i915_reg_t mmio;
468
469 /* The ring status page addresses are no longer next to the rest of
470 * the ring registers as of gen7.
471 */
472 if (IS_GEN7(dev_priv)) {
473 switch (engine->id) {
474 case RCS:
475 mmio = RENDER_HWS_PGA_GEN7;
476 break;
477 case BCS:
478 mmio = BLT_HWS_PGA_GEN7;
479 break;
480 /*
481 * VCS2 actually doesn't exist on Gen7. Only shut up
482 * gcc switch check warning
483 */
484 case VCS2:
485 case VCS:
486 mmio = BSD_HWS_PGA_GEN7;
487 break;
488 case VECS:
489 mmio = VEBOX_HWS_PGA_GEN7;
490 break;
491 }
492 } else if (IS_GEN6(dev_priv)) {
493 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
494 } else {
495 /* XXX: gen8 returns to sanity */
496 mmio = RING_HWS_PGA(engine->mmio_base);
497 }
498
499 I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
500 POSTING_READ(mmio);
501
502 /*
503 * Flush the TLB for this page
504 *
505 * FIXME: These two bits have disappeared on gen8, so a question
506 * arises: do we still need this and if so how should we go about
507 * invalidating the TLB?
508 */
509 if (IS_GEN(dev_priv, 6, 7)) {
510 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
511
512 /* ring should be idle before issuing a sync flush*/
513 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
514
515 I915_WRITE(reg,
516 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
517 INSTPM_SYNC_FLUSH));
518 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
519 1000))
520 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
521 engine->name);
522 }
523 }
524
525 static bool stop_ring(struct intel_engine_cs *engine)
526 {
527 struct drm_i915_private *dev_priv = engine->i915;
528
529 if (!IS_GEN2(dev_priv)) {
530 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
531 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
532 DRM_ERROR("%s : timed out trying to stop ring\n",
533 engine->name);
534 /* Sometimes we observe that the idle flag is not
535 * set even though the ring is empty. So double
536 * check before giving up.
537 */
538 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
539 return false;
540 }
541 }
542
543 I915_WRITE_CTL(engine, 0);
544 I915_WRITE_HEAD(engine, 0);
545 engine->write_tail(engine, 0);
546
547 if (!IS_GEN2(dev_priv)) {
548 (void)I915_READ_CTL(engine);
549 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
550 }
551
552 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
553 }
554
555 void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
556 {
557 memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
558 }
559
560 static int init_ring_common(struct intel_engine_cs *engine)
561 {
562 struct drm_i915_private *dev_priv = engine->i915;
563 struct intel_ringbuffer *ringbuf = engine->buffer;
564 struct drm_i915_gem_object *obj = ringbuf->obj;
565 int ret = 0;
566
567 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
568
569 if (!stop_ring(engine)) {
570 /* G45 ring initialization often fails to reset head to zero */
571 DRM_DEBUG_KMS("%s head not reset to zero "
572 "ctl %08x head %08x tail %08x start %08x\n",
573 engine->name,
574 I915_READ_CTL(engine),
575 I915_READ_HEAD(engine),
576 I915_READ_TAIL(engine),
577 I915_READ_START(engine));
578
579 if (!stop_ring(engine)) {
580 DRM_ERROR("failed to set %s head to zero "
581 "ctl %08x head %08x tail %08x start %08x\n",
582 engine->name,
583 I915_READ_CTL(engine),
584 I915_READ_HEAD(engine),
585 I915_READ_TAIL(engine),
586 I915_READ_START(engine));
587 ret = -EIO;
588 goto out;
589 }
590 }
591
592 if (I915_NEED_GFX_HWS(dev_priv))
593 intel_ring_setup_status_page(engine);
594 else
595 ring_setup_phys_status_page(engine);
596
597 /* Enforce ordering by reading HEAD register back */
598 I915_READ_HEAD(engine);
599
600 /* Initialize the ring. This must happen _after_ we've cleared the ring
601 * registers with the above sequence (the readback of the HEAD registers
602 * also enforces ordering), otherwise the hw might lose the new ring
603 * register values. */
604 I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
605
606 /* WaClearRingBufHeadRegAtInit:ctg,elk */
607 if (I915_READ_HEAD(engine))
608 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
609 engine->name, I915_READ_HEAD(engine));
610 I915_WRITE_HEAD(engine, 0);
611 (void)I915_READ_HEAD(engine);
612
613 I915_WRITE_CTL(engine,
614 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
615 | RING_VALID);
616
617 /* If the head is still not zero, the ring is dead */
618 if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
619 I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
620 (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
621 DRM_ERROR("%s initialization failed "
622 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
623 engine->name,
624 I915_READ_CTL(engine),
625 I915_READ_CTL(engine) & RING_VALID,
626 I915_READ_HEAD(engine), I915_READ_TAIL(engine),
627 I915_READ_START(engine),
628 (unsigned long)i915_gem_obj_ggtt_offset(obj));
629 ret = -EIO;
630 goto out;
631 }
632
633 ringbuf->last_retired_head = -1;
634 ringbuf->head = I915_READ_HEAD(engine);
635 ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
636 intel_ring_update_space(ringbuf);
637
638 intel_engine_init_hangcheck(engine);
639
640 out:
641 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
642
643 return ret;
644 }
645
646 void
647 intel_fini_pipe_control(struct intel_engine_cs *engine)
648 {
649 if (engine->scratch.obj == NULL)
650 return;
651
652 if (INTEL_GEN(engine->i915) >= 5) {
653 kunmap(sg_page(engine->scratch.obj->pages->sgl));
654 i915_gem_object_ggtt_unpin(engine->scratch.obj);
655 }
656
657 drm_gem_object_unreference(&engine->scratch.obj->base);
658 engine->scratch.obj = NULL;
659 }
660
661 int
662 intel_init_pipe_control(struct intel_engine_cs *engine)
663 {
664 int ret;
665
666 WARN_ON(engine->scratch.obj);
667
668 engine->scratch.obj = i915_gem_object_create(engine->i915->dev, 4096);
669 if (IS_ERR(engine->scratch.obj)) {
670 DRM_ERROR("Failed to allocate seqno page\n");
671 ret = PTR_ERR(engine->scratch.obj);
672 engine->scratch.obj = NULL;
673 goto err;
674 }
675
676 ret = i915_gem_object_set_cache_level(engine->scratch.obj,
677 I915_CACHE_LLC);
678 if (ret)
679 goto err_unref;
680
681 ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
682 if (ret)
683 goto err_unref;
684
685 engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
686 engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
687 if (engine->scratch.cpu_page == NULL) {
688 ret = -ENOMEM;
689 goto err_unpin;
690 }
691
692 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
693 engine->name, engine->scratch.gtt_offset);
694 return 0;
695
696 err_unpin:
697 i915_gem_object_ggtt_unpin(engine->scratch.obj);
698 err_unref:
699 drm_gem_object_unreference(&engine->scratch.obj->base);
700 err:
701 return ret;
702 }
703
704 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
705 {
706 struct intel_engine_cs *engine = req->engine;
707 struct i915_workarounds *w = &req->i915->workarounds;
708 int ret, i;
709
710 if (w->count == 0)
711 return 0;
712
713 engine->gpu_caches_dirty = true;
714 ret = intel_ring_flush_all_caches(req);
715 if (ret)
716 return ret;
717
718 ret = intel_ring_begin(req, (w->count * 2 + 2));
719 if (ret)
720 return ret;
721
722 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
723 for (i = 0; i < w->count; i++) {
724 intel_ring_emit_reg(engine, w->reg[i].addr);
725 intel_ring_emit(engine, w->reg[i].value);
726 }
727 intel_ring_emit(engine, MI_NOOP);
728
729 intel_ring_advance(engine);
730
731 engine->gpu_caches_dirty = true;
732 ret = intel_ring_flush_all_caches(req);
733 if (ret)
734 return ret;
735
736 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
737
738 return 0;
739 }
740
741 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
742 {
743 int ret;
744
745 ret = intel_ring_workarounds_emit(req);
746 if (ret != 0)
747 return ret;
748
749 ret = i915_gem_render_state_init(req);
750 if (ret)
751 return ret;
752
753 return 0;
754 }
755
756 static int wa_add(struct drm_i915_private *dev_priv,
757 i915_reg_t addr,
758 const u32 mask, const u32 val)
759 {
760 const u32 idx = dev_priv->workarounds.count;
761
762 if (WARN_ON(idx >= I915_MAX_WA_REGS))
763 return -ENOSPC;
764
765 dev_priv->workarounds.reg[idx].addr = addr;
766 dev_priv->workarounds.reg[idx].value = val;
767 dev_priv->workarounds.reg[idx].mask = mask;
768
769 dev_priv->workarounds.count++;
770
771 return 0;
772 }
773
774 #define WA_REG(addr, mask, val) do { \
775 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
776 if (r) \
777 return r; \
778 } while (0)
779
780 #define WA_SET_BIT_MASKED(addr, mask) \
781 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
782
783 #define WA_CLR_BIT_MASKED(addr, mask) \
784 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
785
786 #define WA_SET_FIELD_MASKED(addr, mask, value) \
787 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
788
789 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
790 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
791
792 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
793
794 static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
795 i915_reg_t reg)
796 {
797 struct drm_i915_private *dev_priv = engine->i915;
798 struct i915_workarounds *wa = &dev_priv->workarounds;
799 const uint32_t index = wa->hw_whitelist_count[engine->id];
800
801 if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
802 return -EINVAL;
803
804 WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
805 i915_mmio_reg_offset(reg));
806 wa->hw_whitelist_count[engine->id]++;
807
808 return 0;
809 }
810
811 static int gen8_init_workarounds(struct intel_engine_cs *engine)
812 {
813 struct drm_i915_private *dev_priv = engine->i915;
814
815 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
816
817 /* WaDisableAsyncFlipPerfMode:bdw,chv */
818 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
819
820 /* WaDisablePartialInstShootdown:bdw,chv */
821 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
822 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
823
824 /* Use Force Non-Coherent whenever executing a 3D context. This is a
825 * workaround for for a possible hang in the unlikely event a TLB
826 * invalidation occurs during a PSD flush.
827 */
828 /* WaForceEnableNonCoherent:bdw,chv */
829 /* WaHdcDisableFetchWhenMasked:bdw,chv */
830 WA_SET_BIT_MASKED(HDC_CHICKEN0,
831 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
832 HDC_FORCE_NON_COHERENT);
833
834 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
835 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
836 * polygons in the same 8x4 pixel/sample area to be processed without
837 * stalling waiting for the earlier ones to write to Hierarchical Z
838 * buffer."
839 *
840 * This optimization is off by default for BDW and CHV; turn it on.
841 */
842 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
843
844 /* Wa4x4STCOptimizationDisable:bdw,chv */
845 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
846
847 /*
848 * BSpec recommends 8x4 when MSAA is used,
849 * however in practice 16x4 seems fastest.
850 *
851 * Note that PS/WM thread counts depend on the WIZ hashing
852 * disable bit, which we don't touch here, but it's good
853 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
854 */
855 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
856 GEN6_WIZ_HASHING_MASK,
857 GEN6_WIZ_HASHING_16x4);
858
859 return 0;
860 }
861
862 static int bdw_init_workarounds(struct intel_engine_cs *engine)
863 {
864 struct drm_i915_private *dev_priv = engine->i915;
865 int ret;
866
867 ret = gen8_init_workarounds(engine);
868 if (ret)
869 return ret;
870
871 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
872 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
873
874 /* WaDisableDopClockGating:bdw */
875 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
876 DOP_CLOCK_GATING_DISABLE);
877
878 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
879 GEN8_SAMPLER_POWER_BYPASS_DIS);
880
881 WA_SET_BIT_MASKED(HDC_CHICKEN0,
882 /* WaForceContextSaveRestoreNonCoherent:bdw */
883 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
884 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
885 (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
886
887 return 0;
888 }
889
890 static int chv_init_workarounds(struct intel_engine_cs *engine)
891 {
892 struct drm_i915_private *dev_priv = engine->i915;
893 int ret;
894
895 ret = gen8_init_workarounds(engine);
896 if (ret)
897 return ret;
898
899 /* WaDisableThreadStallDopClockGating:chv */
900 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
901
902 /* Improve HiZ throughput on CHV. */
903 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
904
905 return 0;
906 }
907
908 static int gen9_init_workarounds(struct intel_engine_cs *engine)
909 {
910 struct drm_i915_private *dev_priv = engine->i915;
911 int ret;
912
913 /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
914 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
915 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
916
917 /* WaDisableKillLogic:bxt,skl,kbl */
918 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
919 ECOCHK_DIS_TLB);
920
921 /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
922 /* WaDisablePartialInstShootdown:skl,bxt,kbl */
923 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
924 FLOW_CONTROL_ENABLE |
925 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
926
927 /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
928 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
929 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
930
931 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
932 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
933 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
934 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
935 GEN9_DG_MIRROR_FIX_ENABLE);
936
937 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
938 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
939 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
940 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
941 GEN9_RHWO_OPTIMIZATION_DISABLE);
942 /*
943 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
944 * but we do that in per ctx batchbuffer as there is an issue
945 * with this register not getting restored on ctx restore
946 */
947 }
948
949 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
950 /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
951 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
952 GEN9_ENABLE_YV12_BUGFIX |
953 GEN9_ENABLE_GPGPU_PREEMPTION);
954
955 /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
956 /* WaDisablePartialResolveInVc:skl,bxt,kbl */
957 WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
958 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
959
960 /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
961 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
962 GEN9_CCS_TLB_PREFETCH_ENABLE);
963
964 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
965 if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
966 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
967 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
968 PIXEL_MASK_CAMMING_DISABLE);
969
970 /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
971 WA_SET_BIT_MASKED(HDC_CHICKEN0,
972 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
973 HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
974
975 /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
976 * both tied to WaForceContextSaveRestoreNonCoherent
977 * in some hsds for skl. We keep the tie for all gen9. The
978 * documentation is a bit hazy and so we want to get common behaviour,
979 * even though there is no clear evidence we would need both on kbl/bxt.
980 * This area has been source of system hangs so we play it safe
981 * and mimic the skl regardless of what bspec says.
982 *
983 * Use Force Non-Coherent whenever executing a 3D context. This
984 * is a workaround for a possible hang in the unlikely event
985 * a TLB invalidation occurs during a PSD flush.
986 */
987
988 /* WaForceEnableNonCoherent:skl,bxt,kbl */
989 WA_SET_BIT_MASKED(HDC_CHICKEN0,
990 HDC_FORCE_NON_COHERENT);
991
992 /* WaDisableHDCInvalidation:skl,bxt,kbl */
993 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
994 BDW_DISABLE_HDC_INVALIDATION);
995
996 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
997 if (IS_SKYLAKE(dev_priv) ||
998 IS_KABYLAKE(dev_priv) ||
999 IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
1000 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
1001 GEN8_SAMPLER_POWER_BYPASS_DIS);
1002
1003 /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
1004 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
1005
1006 /* WaOCLCoherentLineFlush:skl,bxt,kbl */
1007 I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
1008 GEN8_LQSC_FLUSH_COHERENT_LINES));
1009
1010 /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
1011 ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
1012 if (ret)
1013 return ret;
1014
1015 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
1016 ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
1017 if (ret)
1018 return ret;
1019
1020 /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
1021 ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
1022 if (ret)
1023 return ret;
1024
1025 return 0;
1026 }
1027
1028 static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
1029 {
1030 struct drm_i915_private *dev_priv = engine->i915;
1031 u8 vals[3] = { 0, 0, 0 };
1032 unsigned int i;
1033
1034 for (i = 0; i < 3; i++) {
1035 u8 ss;
1036
1037 /*
1038 * Only consider slices where one, and only one, subslice has 7
1039 * EUs
1040 */
1041 if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1042 continue;
1043
1044 /*
1045 * subslice_7eu[i] != 0 (because of the check above) and
1046 * ss_max == 4 (maximum number of subslices possible per slice)
1047 *
1048 * -> 0 <= ss <= 3;
1049 */
1050 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1051 vals[i] = 3 - ss;
1052 }
1053
1054 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1055 return 0;
1056
1057 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1058 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1059 GEN9_IZ_HASHING_MASK(2) |
1060 GEN9_IZ_HASHING_MASK(1) |
1061 GEN9_IZ_HASHING_MASK(0),
1062 GEN9_IZ_HASHING(2, vals[2]) |
1063 GEN9_IZ_HASHING(1, vals[1]) |
1064 GEN9_IZ_HASHING(0, vals[0]));
1065
1066 return 0;
1067 }
1068
1069 static int skl_init_workarounds(struct intel_engine_cs *engine)
1070 {
1071 struct drm_i915_private *dev_priv = engine->i915;
1072 int ret;
1073
1074 ret = gen9_init_workarounds(engine);
1075 if (ret)
1076 return ret;
1077
1078 /*
1079 * Actual WA is to disable percontext preemption granularity control
1080 * until D0 which is the default case so this is equivalent to
1081 * !WaDisablePerCtxtPreemptionGranularityControl:skl
1082 */
1083 if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
1084 I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1085 _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1086 }
1087
1088 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0)) {
1089 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1090 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1091 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1092 }
1093
1094 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1095 * involving this register should also be added to WA batch as required.
1096 */
1097 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1098 /* WaDisableLSQCROPERFforOCL:skl */
1099 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1100 GEN8_LQSC_RO_PERF_DIS);
1101
1102 /* WaEnableGapsTsvCreditFix:skl */
1103 if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
1104 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1105 GEN9_GAPS_TSV_CREDIT_DISABLE));
1106 }
1107
1108 /* WaDisablePowerCompilerClockGating:skl */
1109 if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
1110 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1111 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1112
1113 /* WaBarrierPerformanceFixDisable:skl */
1114 if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1115 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1116 HDC_FENCE_DEST_SLM_DISABLE |
1117 HDC_BARRIER_PERFORMANCE_DISABLE);
1118
1119 /* WaDisableSbeCacheDispatchPortSharing:skl */
1120 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1121 WA_SET_BIT_MASKED(
1122 GEN7_HALF_SLICE_CHICKEN1,
1123 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1124
1125 /* WaDisableGafsUnitClkGating:skl */
1126 WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1127
1128 /* WaDisableLSQCROPERFforOCL:skl */
1129 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1130 if (ret)
1131 return ret;
1132
1133 return skl_tune_iz_hashing(engine);
1134 }
1135
1136 static int bxt_init_workarounds(struct intel_engine_cs *engine)
1137 {
1138 struct drm_i915_private *dev_priv = engine->i915;
1139 int ret;
1140
1141 ret = gen9_init_workarounds(engine);
1142 if (ret)
1143 return ret;
1144
1145 /* WaStoreMultiplePTEenable:bxt */
1146 /* This is a requirement according to Hardware specification */
1147 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1148 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1149
1150 /* WaSetClckGatingDisableMedia:bxt */
1151 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1152 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1153 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1154 }
1155
1156 /* WaDisableThreadStallDopClockGating:bxt */
1157 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1158 STALL_DOP_GATING_DISABLE);
1159
1160 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1161 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1162 WA_SET_BIT_MASKED(
1163 GEN7_HALF_SLICE_CHICKEN1,
1164 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1165 }
1166
1167 /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1168 /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1169 /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1170 /* WaDisableLSQCROPERFforOCL:bxt */
1171 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1172 ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1173 if (ret)
1174 return ret;
1175
1176 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1177 if (ret)
1178 return ret;
1179 }
1180
1181 /* WaProgramL3SqcReg1DefaultForPerf:bxt */
1182 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1183 I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
1184 L3_HIGH_PRIO_CREDITS(2));
1185
1186 return 0;
1187 }
1188
1189 static int kbl_init_workarounds(struct intel_engine_cs *engine)
1190 {
1191 struct drm_i915_private *dev_priv = engine->i915;
1192 int ret;
1193
1194 ret = gen9_init_workarounds(engine);
1195 if (ret)
1196 return ret;
1197
1198 /* WaEnableGapsTsvCreditFix:kbl */
1199 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1200 GEN9_GAPS_TSV_CREDIT_DISABLE));
1201
1202 /* WaDisableDynamicCreditSharing:kbl */
1203 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1204 WA_SET_BIT(GAMT_CHKN_BIT_REG,
1205 GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1206
1207 /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
1208 if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
1209 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1210 HDC_FENCE_DEST_SLM_DISABLE);
1211
1212 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1213 * involving this register should also be added to WA batch as required.
1214 */
1215 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
1216 /* WaDisableLSQCROPERFforOCL:kbl */
1217 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1218 GEN8_LQSC_RO_PERF_DIS);
1219
1220 /* WaDisableLSQCROPERFforOCL:kbl */
1221 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1222 if (ret)
1223 return ret;
1224
1225 return 0;
1226 }
1227
1228 int init_workarounds_ring(struct intel_engine_cs *engine)
1229 {
1230 struct drm_i915_private *dev_priv = engine->i915;
1231
1232 WARN_ON(engine->id != RCS);
1233
1234 dev_priv->workarounds.count = 0;
1235 dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1236
1237 if (IS_BROADWELL(dev_priv))
1238 return bdw_init_workarounds(engine);
1239
1240 if (IS_CHERRYVIEW(dev_priv))
1241 return chv_init_workarounds(engine);
1242
1243 if (IS_SKYLAKE(dev_priv))
1244 return skl_init_workarounds(engine);
1245
1246 if (IS_BROXTON(dev_priv))
1247 return bxt_init_workarounds(engine);
1248
1249 if (IS_KABYLAKE(dev_priv))
1250 return kbl_init_workarounds(engine);
1251
1252 return 0;
1253 }
1254
1255 static int init_render_ring(struct intel_engine_cs *engine)
1256 {
1257 struct drm_i915_private *dev_priv = engine->i915;
1258 int ret = init_ring_common(engine);
1259 if (ret)
1260 return ret;
1261
1262 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1263 if (IS_GEN(dev_priv, 4, 6))
1264 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1265
1266 /* We need to disable the AsyncFlip performance optimisations in order
1267 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1268 * programmed to '1' on all products.
1269 *
1270 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1271 */
1272 if (IS_GEN(dev_priv, 6, 7))
1273 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1274
1275 /* Required for the hardware to program scanline values for waiting */
1276 /* WaEnableFlushTlbInvalidationMode:snb */
1277 if (IS_GEN6(dev_priv))
1278 I915_WRITE(GFX_MODE,
1279 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1280
1281 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1282 if (IS_GEN7(dev_priv))
1283 I915_WRITE(GFX_MODE_GEN7,
1284 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1285 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1286
1287 if (IS_GEN6(dev_priv)) {
1288 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1289 * "If this bit is set, STCunit will have LRA as replacement
1290 * policy. [...] This bit must be reset. LRA replacement
1291 * policy is not supported."
1292 */
1293 I915_WRITE(CACHE_MODE_0,
1294 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1295 }
1296
1297 if (IS_GEN(dev_priv, 6, 7))
1298 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1299
1300 if (HAS_L3_DPF(dev_priv))
1301 I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
1302
1303 return init_workarounds_ring(engine);
1304 }
1305
1306 static void render_ring_cleanup(struct intel_engine_cs *engine)
1307 {
1308 struct drm_i915_private *dev_priv = engine->i915;
1309
1310 if (dev_priv->semaphore_obj) {
1311 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1312 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1313 dev_priv->semaphore_obj = NULL;
1314 }
1315
1316 intel_fini_pipe_control(engine);
1317 }
1318
1319 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1320 unsigned int num_dwords)
1321 {
1322 #define MBOX_UPDATE_DWORDS 8
1323 struct intel_engine_cs *signaller = signaller_req->engine;
1324 struct drm_i915_private *dev_priv = signaller_req->i915;
1325 struct intel_engine_cs *waiter;
1326 enum intel_engine_id id;
1327 int ret, num_rings;
1328
1329 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1330 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1331 #undef MBOX_UPDATE_DWORDS
1332
1333 ret = intel_ring_begin(signaller_req, num_dwords);
1334 if (ret)
1335 return ret;
1336
1337 for_each_engine_id(waiter, dev_priv, id) {
1338 u32 seqno;
1339 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1340 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1341 continue;
1342
1343 seqno = i915_gem_request_get_seqno(signaller_req);
1344 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1345 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1346 PIPE_CONTROL_QW_WRITE |
1347 PIPE_CONTROL_CS_STALL);
1348 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1349 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1350 intel_ring_emit(signaller, seqno);
1351 intel_ring_emit(signaller, 0);
1352 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1353 MI_SEMAPHORE_TARGET(waiter->hw_id));
1354 intel_ring_emit(signaller, 0);
1355 }
1356
1357 return 0;
1358 }
1359
1360 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1361 unsigned int num_dwords)
1362 {
1363 #define MBOX_UPDATE_DWORDS 6
1364 struct intel_engine_cs *signaller = signaller_req->engine;
1365 struct drm_i915_private *dev_priv = signaller_req->i915;
1366 struct intel_engine_cs *waiter;
1367 enum intel_engine_id id;
1368 int ret, num_rings;
1369
1370 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1371 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1372 #undef MBOX_UPDATE_DWORDS
1373
1374 ret = intel_ring_begin(signaller_req, num_dwords);
1375 if (ret)
1376 return ret;
1377
1378 for_each_engine_id(waiter, dev_priv, id) {
1379 u32 seqno;
1380 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1381 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1382 continue;
1383
1384 seqno = i915_gem_request_get_seqno(signaller_req);
1385 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1386 MI_FLUSH_DW_OP_STOREDW);
1387 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1388 MI_FLUSH_DW_USE_GTT);
1389 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1390 intel_ring_emit(signaller, seqno);
1391 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1392 MI_SEMAPHORE_TARGET(waiter->hw_id));
1393 intel_ring_emit(signaller, 0);
1394 }
1395
1396 return 0;
1397 }
1398
1399 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1400 unsigned int num_dwords)
1401 {
1402 struct intel_engine_cs *signaller = signaller_req->engine;
1403 struct drm_i915_private *dev_priv = signaller_req->i915;
1404 struct intel_engine_cs *useless;
1405 enum intel_engine_id id;
1406 int ret, num_rings;
1407
1408 #define MBOX_UPDATE_DWORDS 3
1409 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1410 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1411 #undef MBOX_UPDATE_DWORDS
1412
1413 ret = intel_ring_begin(signaller_req, num_dwords);
1414 if (ret)
1415 return ret;
1416
1417 for_each_engine_id(useless, dev_priv, id) {
1418 i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
1419
1420 if (i915_mmio_reg_valid(mbox_reg)) {
1421 u32 seqno = i915_gem_request_get_seqno(signaller_req);
1422
1423 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1424 intel_ring_emit_reg(signaller, mbox_reg);
1425 intel_ring_emit(signaller, seqno);
1426 }
1427 }
1428
1429 /* If num_dwords was rounded, make sure the tail pointer is correct */
1430 if (num_rings % 2 == 0)
1431 intel_ring_emit(signaller, MI_NOOP);
1432
1433 return 0;
1434 }
1435
1436 /**
1437 * gen6_add_request - Update the semaphore mailbox registers
1438 *
1439 * @request - request to write to the ring
1440 *
1441 * Update the mailbox registers in the *other* rings with the current seqno.
1442 * This acts like a signal in the canonical semaphore.
1443 */
1444 static int
1445 gen6_add_request(struct drm_i915_gem_request *req)
1446 {
1447 struct intel_engine_cs *engine = req->engine;
1448 int ret;
1449
1450 if (engine->semaphore.signal)
1451 ret = engine->semaphore.signal(req, 4);
1452 else
1453 ret = intel_ring_begin(req, 4);
1454
1455 if (ret)
1456 return ret;
1457
1458 intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1459 intel_ring_emit(engine,
1460 I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1461 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1462 intel_ring_emit(engine, MI_USER_INTERRUPT);
1463 __intel_ring_advance(engine);
1464
1465 return 0;
1466 }
1467
1468 static int
1469 gen8_render_add_request(struct drm_i915_gem_request *req)
1470 {
1471 struct intel_engine_cs *engine = req->engine;
1472 int ret;
1473
1474 if (engine->semaphore.signal)
1475 ret = engine->semaphore.signal(req, 8);
1476 else
1477 ret = intel_ring_begin(req, 8);
1478 if (ret)
1479 return ret;
1480
1481 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
1482 intel_ring_emit(engine, (PIPE_CONTROL_GLOBAL_GTT_IVB |
1483 PIPE_CONTROL_CS_STALL |
1484 PIPE_CONTROL_QW_WRITE));
1485 intel_ring_emit(engine, intel_hws_seqno_address(req->engine));
1486 intel_ring_emit(engine, 0);
1487 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1488 /* We're thrashing one dword of HWS. */
1489 intel_ring_emit(engine, 0);
1490 intel_ring_emit(engine, MI_USER_INTERRUPT);
1491 intel_ring_emit(engine, MI_NOOP);
1492 __intel_ring_advance(engine);
1493
1494 return 0;
1495 }
1496
1497 static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
1498 u32 seqno)
1499 {
1500 return dev_priv->last_seqno < seqno;
1501 }
1502
1503 /**
1504 * intel_ring_sync - sync the waiter to the signaller on seqno
1505 *
1506 * @waiter - ring that is waiting
1507 * @signaller - ring which has, or will signal
1508 * @seqno - seqno which the waiter will block on
1509 */
1510
1511 static int
1512 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1513 struct intel_engine_cs *signaller,
1514 u32 seqno)
1515 {
1516 struct intel_engine_cs *waiter = waiter_req->engine;
1517 struct drm_i915_private *dev_priv = waiter_req->i915;
1518 struct i915_hw_ppgtt *ppgtt;
1519 int ret;
1520
1521 ret = intel_ring_begin(waiter_req, 4);
1522 if (ret)
1523 return ret;
1524
1525 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1526 MI_SEMAPHORE_GLOBAL_GTT |
1527 MI_SEMAPHORE_SAD_GTE_SDD);
1528 intel_ring_emit(waiter, seqno);
1529 intel_ring_emit(waiter,
1530 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1531 intel_ring_emit(waiter,
1532 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1533 intel_ring_advance(waiter);
1534
1535 /* When the !RCS engines idle waiting upon a semaphore, they lose their
1536 * pagetables and we must reload them before executing the batch.
1537 * We do this on the i915_switch_context() following the wait and
1538 * before the dispatch.
1539 */
1540 ppgtt = waiter_req->ctx->ppgtt;
1541 if (ppgtt && waiter_req->engine->id != RCS)
1542 ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
1543 return 0;
1544 }
1545
1546 static int
1547 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1548 struct intel_engine_cs *signaller,
1549 u32 seqno)
1550 {
1551 struct intel_engine_cs *waiter = waiter_req->engine;
1552 u32 dw1 = MI_SEMAPHORE_MBOX |
1553 MI_SEMAPHORE_COMPARE |
1554 MI_SEMAPHORE_REGISTER;
1555 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1556 int ret;
1557
1558 /* Throughout all of the GEM code, seqno passed implies our current
1559 * seqno is >= the last seqno executed. However for hardware the
1560 * comparison is strictly greater than.
1561 */
1562 seqno -= 1;
1563
1564 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1565
1566 ret = intel_ring_begin(waiter_req, 4);
1567 if (ret)
1568 return ret;
1569
1570 /* If seqno wrap happened, omit the wait with no-ops */
1571 if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
1572 intel_ring_emit(waiter, dw1 | wait_mbox);
1573 intel_ring_emit(waiter, seqno);
1574 intel_ring_emit(waiter, 0);
1575 intel_ring_emit(waiter, MI_NOOP);
1576 } else {
1577 intel_ring_emit(waiter, MI_NOOP);
1578 intel_ring_emit(waiter, MI_NOOP);
1579 intel_ring_emit(waiter, MI_NOOP);
1580 intel_ring_emit(waiter, MI_NOOP);
1581 }
1582 intel_ring_advance(waiter);
1583
1584 return 0;
1585 }
1586
1587 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1588 do { \
1589 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1590 PIPE_CONTROL_DEPTH_STALL); \
1591 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1592 intel_ring_emit(ring__, 0); \
1593 intel_ring_emit(ring__, 0); \
1594 } while (0)
1595
1596 static int
1597 pc_render_add_request(struct drm_i915_gem_request *req)
1598 {
1599 struct intel_engine_cs *engine = req->engine;
1600 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1601 int ret;
1602
1603 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1604 * incoherent with writes to memory, i.e. completely fubar,
1605 * so we need to use PIPE_NOTIFY instead.
1606 *
1607 * However, we also need to workaround the qword write
1608 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1609 * memory before requesting an interrupt.
1610 */
1611 ret = intel_ring_begin(req, 32);
1612 if (ret)
1613 return ret;
1614
1615 intel_ring_emit(engine,
1616 GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1617 PIPE_CONTROL_WRITE_FLUSH |
1618 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1619 intel_ring_emit(engine,
1620 engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1621 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1622 intel_ring_emit(engine, 0);
1623 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1624 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1625 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1626 scratch_addr += 2 * CACHELINE_BYTES;
1627 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1628 scratch_addr += 2 * CACHELINE_BYTES;
1629 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1630 scratch_addr += 2 * CACHELINE_BYTES;
1631 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1632 scratch_addr += 2 * CACHELINE_BYTES;
1633 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1634
1635 intel_ring_emit(engine,
1636 GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1637 PIPE_CONTROL_WRITE_FLUSH |
1638 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1639 PIPE_CONTROL_NOTIFY);
1640 intel_ring_emit(engine,
1641 engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1642 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1643 intel_ring_emit(engine, 0);
1644 __intel_ring_advance(engine);
1645
1646 return 0;
1647 }
1648
1649 static void
1650 gen6_seqno_barrier(struct intel_engine_cs *engine)
1651 {
1652 struct drm_i915_private *dev_priv = engine->i915;
1653
1654 /* Workaround to force correct ordering between irq and seqno writes on
1655 * ivb (and maybe also on snb) by reading from a CS register (like
1656 * ACTHD) before reading the status page.
1657 *
1658 * Note that this effectively stalls the read by the time it takes to
1659 * do a memory transaction, which more or less ensures that the write
1660 * from the GPU has sufficient time to invalidate the CPU cacheline.
1661 * Alternatively we could delay the interrupt from the CS ring to give
1662 * the write time to land, but that would incur a delay after every
1663 * batch i.e. much more frequent than a delay when waiting for the
1664 * interrupt (with the same net latency).
1665 *
1666 * Also note that to prevent whole machine hangs on gen7, we have to
1667 * take the spinlock to guard against concurrent cacheline access.
1668 */
1669 spin_lock_irq(&dev_priv->uncore.lock);
1670 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1671 spin_unlock_irq(&dev_priv->uncore.lock);
1672 }
1673
1674 static u32
1675 ring_get_seqno(struct intel_engine_cs *engine)
1676 {
1677 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1678 }
1679
1680 static void
1681 ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1682 {
1683 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1684 }
1685
1686 static u32
1687 pc_render_get_seqno(struct intel_engine_cs *engine)
1688 {
1689 return engine->scratch.cpu_page[0];
1690 }
1691
1692 static void
1693 pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1694 {
1695 engine->scratch.cpu_page[0] = seqno;
1696 }
1697
1698 static bool
1699 gen5_ring_get_irq(struct intel_engine_cs *engine)
1700 {
1701 struct drm_i915_private *dev_priv = engine->i915;
1702 unsigned long flags;
1703
1704 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1705 return false;
1706
1707 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1708 if (engine->irq_refcount++ == 0)
1709 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1710 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1711
1712 return true;
1713 }
1714
1715 static void
1716 gen5_ring_put_irq(struct intel_engine_cs *engine)
1717 {
1718 struct drm_i915_private *dev_priv = engine->i915;
1719 unsigned long flags;
1720
1721 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1722 if (--engine->irq_refcount == 0)
1723 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1724 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1725 }
1726
1727 static bool
1728 i9xx_ring_get_irq(struct intel_engine_cs *engine)
1729 {
1730 struct drm_i915_private *dev_priv = engine->i915;
1731 unsigned long flags;
1732
1733 if (!intel_irqs_enabled(dev_priv))
1734 return false;
1735
1736 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1737 if (engine->irq_refcount++ == 0) {
1738 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1739 I915_WRITE(IMR, dev_priv->irq_mask);
1740 POSTING_READ(IMR);
1741 }
1742 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1743
1744 return true;
1745 }
1746
1747 static void
1748 i9xx_ring_put_irq(struct intel_engine_cs *engine)
1749 {
1750 struct drm_i915_private *dev_priv = engine->i915;
1751 unsigned long flags;
1752
1753 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1754 if (--engine->irq_refcount == 0) {
1755 dev_priv->irq_mask |= engine->irq_enable_mask;
1756 I915_WRITE(IMR, dev_priv->irq_mask);
1757 POSTING_READ(IMR);
1758 }
1759 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1760 }
1761
1762 static bool
1763 i8xx_ring_get_irq(struct intel_engine_cs *engine)
1764 {
1765 struct drm_i915_private *dev_priv = engine->i915;
1766 unsigned long flags;
1767
1768 if (!intel_irqs_enabled(dev_priv))
1769 return false;
1770
1771 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1772 if (engine->irq_refcount++ == 0) {
1773 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1774 I915_WRITE16(IMR, dev_priv->irq_mask);
1775 POSTING_READ16(IMR);
1776 }
1777 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1778
1779 return true;
1780 }
1781
1782 static void
1783 i8xx_ring_put_irq(struct intel_engine_cs *engine)
1784 {
1785 struct drm_i915_private *dev_priv = engine->i915;
1786 unsigned long flags;
1787
1788 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1789 if (--engine->irq_refcount == 0) {
1790 dev_priv->irq_mask |= engine->irq_enable_mask;
1791 I915_WRITE16(IMR, dev_priv->irq_mask);
1792 POSTING_READ16(IMR);
1793 }
1794 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1795 }
1796
1797 static int
1798 bsd_ring_flush(struct drm_i915_gem_request *req,
1799 u32 invalidate_domains,
1800 u32 flush_domains)
1801 {
1802 struct intel_engine_cs *engine = req->engine;
1803 int ret;
1804
1805 ret = intel_ring_begin(req, 2);
1806 if (ret)
1807 return ret;
1808
1809 intel_ring_emit(engine, MI_FLUSH);
1810 intel_ring_emit(engine, MI_NOOP);
1811 intel_ring_advance(engine);
1812 return 0;
1813 }
1814
1815 static int
1816 i9xx_add_request(struct drm_i915_gem_request *req)
1817 {
1818 struct intel_engine_cs *engine = req->engine;
1819 int ret;
1820
1821 ret = intel_ring_begin(req, 4);
1822 if (ret)
1823 return ret;
1824
1825 intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1826 intel_ring_emit(engine,
1827 I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1828 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1829 intel_ring_emit(engine, MI_USER_INTERRUPT);
1830 __intel_ring_advance(engine);
1831
1832 return 0;
1833 }
1834
1835 static bool
1836 gen6_ring_get_irq(struct intel_engine_cs *engine)
1837 {
1838 struct drm_i915_private *dev_priv = engine->i915;
1839 unsigned long flags;
1840
1841 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1842 return false;
1843
1844 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1845 if (engine->irq_refcount++ == 0) {
1846 if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
1847 I915_WRITE_IMR(engine,
1848 ~(engine->irq_enable_mask |
1849 GT_PARITY_ERROR(dev_priv)));
1850 else
1851 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1852 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1853 }
1854 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1855
1856 return true;
1857 }
1858
1859 static void
1860 gen6_ring_put_irq(struct intel_engine_cs *engine)
1861 {
1862 struct drm_i915_private *dev_priv = engine->i915;
1863 unsigned long flags;
1864
1865 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1866 if (--engine->irq_refcount == 0) {
1867 if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
1868 I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
1869 else
1870 I915_WRITE_IMR(engine, ~0);
1871 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1872 }
1873 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1874 }
1875
1876 static bool
1877 hsw_vebox_get_irq(struct intel_engine_cs *engine)
1878 {
1879 struct drm_i915_private *dev_priv = engine->i915;
1880 unsigned long flags;
1881
1882 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1883 return false;
1884
1885 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1886 if (engine->irq_refcount++ == 0) {
1887 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1888 gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
1889 }
1890 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1891
1892 return true;
1893 }
1894
1895 static void
1896 hsw_vebox_put_irq(struct intel_engine_cs *engine)
1897 {
1898 struct drm_i915_private *dev_priv = engine->i915;
1899 unsigned long flags;
1900
1901 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1902 if (--engine->irq_refcount == 0) {
1903 I915_WRITE_IMR(engine, ~0);
1904 gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
1905 }
1906 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1907 }
1908
1909 static bool
1910 gen8_ring_get_irq(struct intel_engine_cs *engine)
1911 {
1912 struct drm_i915_private *dev_priv = engine->i915;
1913 unsigned long flags;
1914
1915 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1916 return false;
1917
1918 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1919 if (engine->irq_refcount++ == 0) {
1920 if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
1921 I915_WRITE_IMR(engine,
1922 ~(engine->irq_enable_mask |
1923 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1924 } else {
1925 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1926 }
1927 POSTING_READ(RING_IMR(engine->mmio_base));
1928 }
1929 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1930
1931 return true;
1932 }
1933
1934 static void
1935 gen8_ring_put_irq(struct intel_engine_cs *engine)
1936 {
1937 struct drm_i915_private *dev_priv = engine->i915;
1938 unsigned long flags;
1939
1940 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1941 if (--engine->irq_refcount == 0) {
1942 if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
1943 I915_WRITE_IMR(engine,
1944 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1945 } else {
1946 I915_WRITE_IMR(engine, ~0);
1947 }
1948 POSTING_READ(RING_IMR(engine->mmio_base));
1949 }
1950 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1951 }
1952
1953 static int
1954 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1955 u64 offset, u32 length,
1956 unsigned dispatch_flags)
1957 {
1958 struct intel_engine_cs *engine = req->engine;
1959 int ret;
1960
1961 ret = intel_ring_begin(req, 2);
1962 if (ret)
1963 return ret;
1964
1965 intel_ring_emit(engine,
1966 MI_BATCH_BUFFER_START |
1967 MI_BATCH_GTT |
1968 (dispatch_flags & I915_DISPATCH_SECURE ?
1969 0 : MI_BATCH_NON_SECURE_I965));
1970 intel_ring_emit(engine, offset);
1971 intel_ring_advance(engine);
1972
1973 return 0;
1974 }
1975
1976 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1977 #define I830_BATCH_LIMIT (256*1024)
1978 #define I830_TLB_ENTRIES (2)
1979 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1980 static int
1981 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1982 u64 offset, u32 len,
1983 unsigned dispatch_flags)
1984 {
1985 struct intel_engine_cs *engine = req->engine;
1986 u32 cs_offset = engine->scratch.gtt_offset;
1987 int ret;
1988
1989 ret = intel_ring_begin(req, 6);
1990 if (ret)
1991 return ret;
1992
1993 /* Evict the invalid PTE TLBs */
1994 intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1995 intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1996 intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1997 intel_ring_emit(engine, cs_offset);
1998 intel_ring_emit(engine, 0xdeadbeef);
1999 intel_ring_emit(engine, MI_NOOP);
2000 intel_ring_advance(engine);
2001
2002 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
2003 if (len > I830_BATCH_LIMIT)
2004 return -ENOSPC;
2005
2006 ret = intel_ring_begin(req, 6 + 2);
2007 if (ret)
2008 return ret;
2009
2010 /* Blit the batch (which has now all relocs applied) to the
2011 * stable batch scratch bo area (so that the CS never
2012 * stumbles over its tlb invalidation bug) ...
2013 */
2014 intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
2015 intel_ring_emit(engine,
2016 BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
2017 intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
2018 intel_ring_emit(engine, cs_offset);
2019 intel_ring_emit(engine, 4096);
2020 intel_ring_emit(engine, offset);
2021
2022 intel_ring_emit(engine, MI_FLUSH);
2023 intel_ring_emit(engine, MI_NOOP);
2024 intel_ring_advance(engine);
2025
2026 /* ... and execute it. */
2027 offset = cs_offset;
2028 }
2029
2030 ret = intel_ring_begin(req, 2);
2031 if (ret)
2032 return ret;
2033
2034 intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
2035 intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
2036 0 : MI_BATCH_NON_SECURE));
2037 intel_ring_advance(engine);
2038
2039 return 0;
2040 }
2041
2042 static int
2043 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
2044 u64 offset, u32 len,
2045 unsigned dispatch_flags)
2046 {
2047 struct intel_engine_cs *engine = req->engine;
2048 int ret;
2049
2050 ret = intel_ring_begin(req, 2);
2051 if (ret)
2052 return ret;
2053
2054 intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
2055 intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
2056 0 : MI_BATCH_NON_SECURE));
2057 intel_ring_advance(engine);
2058
2059 return 0;
2060 }
2061
2062 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
2063 {
2064 struct drm_i915_private *dev_priv = engine->i915;
2065
2066 if (!dev_priv->status_page_dmah)
2067 return;
2068
2069 drm_pci_free(dev_priv->dev, dev_priv->status_page_dmah);
2070 engine->status_page.page_addr = NULL;
2071 }
2072
2073 static void cleanup_status_page(struct intel_engine_cs *engine)
2074 {
2075 struct drm_i915_gem_object *obj;
2076
2077 obj = engine->status_page.obj;
2078 if (obj == NULL)
2079 return;
2080
2081 kunmap(sg_page(obj->pages->sgl));
2082 i915_gem_object_ggtt_unpin(obj);
2083 drm_gem_object_unreference(&obj->base);
2084 engine->status_page.obj = NULL;
2085 }
2086
2087 static int init_status_page(struct intel_engine_cs *engine)
2088 {
2089 struct drm_i915_gem_object *obj = engine->status_page.obj;
2090
2091 if (obj == NULL) {
2092 unsigned flags;
2093 int ret;
2094
2095 obj = i915_gem_object_create(engine->i915->dev, 4096);
2096 if (IS_ERR(obj)) {
2097 DRM_ERROR("Failed to allocate status page\n");
2098 return PTR_ERR(obj);
2099 }
2100
2101 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2102 if (ret)
2103 goto err_unref;
2104
2105 flags = 0;
2106 if (!HAS_LLC(engine->i915))
2107 /* On g33, we cannot place HWS above 256MiB, so
2108 * restrict its pinning to the low mappable arena.
2109 * Though this restriction is not documented for
2110 * gen4, gen5, or byt, they also behave similarly
2111 * and hang if the HWS is placed at the top of the
2112 * GTT. To generalise, it appears that all !llc
2113 * platforms have issues with us placing the HWS
2114 * above the mappable region (even though we never
2115 * actualy map it).
2116 */
2117 flags |= PIN_MAPPABLE;
2118 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
2119 if (ret) {
2120 err_unref:
2121 drm_gem_object_unreference(&obj->base);
2122 return ret;
2123 }
2124
2125 engine->status_page.obj = obj;
2126 }
2127
2128 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
2129 engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
2130 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2131
2132 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2133 engine->name, engine->status_page.gfx_addr);
2134
2135 return 0;
2136 }
2137
2138 static int init_phys_status_page(struct intel_engine_cs *engine)
2139 {
2140 struct drm_i915_private *dev_priv = engine->i915;
2141
2142 if (!dev_priv->status_page_dmah) {
2143 dev_priv->status_page_dmah =
2144 drm_pci_alloc(dev_priv->dev, PAGE_SIZE, PAGE_SIZE);
2145 if (!dev_priv->status_page_dmah)
2146 return -ENOMEM;
2147 }
2148
2149 engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2150 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2151
2152 return 0;
2153 }
2154
2155 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2156 {
2157 GEM_BUG_ON(ringbuf->vma == NULL);
2158 GEM_BUG_ON(ringbuf->virtual_start == NULL);
2159
2160 if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2161 i915_gem_object_unpin_map(ringbuf->obj);
2162 else
2163 i915_vma_unpin_iomap(ringbuf->vma);
2164 ringbuf->virtual_start = NULL;
2165
2166 i915_gem_object_ggtt_unpin(ringbuf->obj);
2167 ringbuf->vma = NULL;
2168 }
2169
2170 int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
2171 struct intel_ringbuffer *ringbuf)
2172 {
2173 struct drm_i915_gem_object *obj = ringbuf->obj;
2174 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2175 unsigned flags = PIN_OFFSET_BIAS | 4096;
2176 void *addr;
2177 int ret;
2178
2179 if (HAS_LLC(dev_priv) && !obj->stolen) {
2180 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
2181 if (ret)
2182 return ret;
2183
2184 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2185 if (ret)
2186 goto err_unpin;
2187
2188 addr = i915_gem_object_pin_map(obj);
2189 if (IS_ERR(addr)) {
2190 ret = PTR_ERR(addr);
2191 goto err_unpin;
2192 }
2193 } else {
2194 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
2195 flags | PIN_MAPPABLE);
2196 if (ret)
2197 return ret;
2198
2199 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2200 if (ret)
2201 goto err_unpin;
2202
2203 /* Access through the GTT requires the device to be awake. */
2204 assert_rpm_wakelock_held(dev_priv);
2205
2206 addr = i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
2207 if (IS_ERR(addr)) {
2208 ret = PTR_ERR(addr);
2209 goto err_unpin;
2210 }
2211 }
2212
2213 ringbuf->virtual_start = addr;
2214 ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2215 return 0;
2216
2217 err_unpin:
2218 i915_gem_object_ggtt_unpin(obj);
2219 return ret;
2220 }
2221
2222 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2223 {
2224 drm_gem_object_unreference(&ringbuf->obj->base);
2225 ringbuf->obj = NULL;
2226 }
2227
2228 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2229 struct intel_ringbuffer *ringbuf)
2230 {
2231 struct drm_i915_gem_object *obj;
2232
2233 obj = NULL;
2234 if (!HAS_LLC(dev))
2235 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2236 if (obj == NULL)
2237 obj = i915_gem_object_create(dev, ringbuf->size);
2238 if (IS_ERR(obj))
2239 return PTR_ERR(obj);
2240
2241 /* mark ring buffers as read-only from GPU side by default */
2242 obj->gt_ro = 1;
2243
2244 ringbuf->obj = obj;
2245
2246 return 0;
2247 }
2248
2249 struct intel_ringbuffer *
2250 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2251 {
2252 struct intel_ringbuffer *ring;
2253 int ret;
2254
2255 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2256 if (ring == NULL) {
2257 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2258 engine->name);
2259 return ERR_PTR(-ENOMEM);
2260 }
2261
2262 ring->engine = engine;
2263 list_add(&ring->link, &engine->buffers);
2264
2265 ring->size = size;
2266 /* Workaround an erratum on the i830 which causes a hang if
2267 * the TAIL pointer points to within the last 2 cachelines
2268 * of the buffer.
2269 */
2270 ring->effective_size = size;
2271 if (IS_I830(engine->i915) || IS_845G(engine->i915))
2272 ring->effective_size -= 2 * CACHELINE_BYTES;
2273
2274 ring->last_retired_head = -1;
2275 intel_ring_update_space(ring);
2276
2277 ret = intel_alloc_ringbuffer_obj(engine->i915->dev, ring);
2278 if (ret) {
2279 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2280 engine->name, ret);
2281 list_del(&ring->link);
2282 kfree(ring);
2283 return ERR_PTR(ret);
2284 }
2285
2286 return ring;
2287 }
2288
2289 void
2290 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2291 {
2292 intel_destroy_ringbuffer_obj(ring);
2293 list_del(&ring->link);
2294 kfree(ring);
2295 }
2296
2297 static int intel_init_ring_buffer(struct drm_device *dev,
2298 struct intel_engine_cs *engine)
2299 {
2300 struct drm_i915_private *dev_priv = to_i915(dev);
2301 struct intel_ringbuffer *ringbuf;
2302 int ret;
2303
2304 WARN_ON(engine->buffer);
2305
2306 engine->i915 = dev_priv;
2307 INIT_LIST_HEAD(&engine->active_list);
2308 INIT_LIST_HEAD(&engine->request_list);
2309 INIT_LIST_HEAD(&engine->execlist_queue);
2310 INIT_LIST_HEAD(&engine->buffers);
2311 i915_gem_batch_pool_init(dev, &engine->batch_pool);
2312 memset(engine->semaphore.sync_seqno, 0,
2313 sizeof(engine->semaphore.sync_seqno));
2314
2315 init_waitqueue_head(&engine->irq_queue);
2316
2317 ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
2318 if (IS_ERR(ringbuf)) {
2319 ret = PTR_ERR(ringbuf);
2320 goto error;
2321 }
2322 engine->buffer = ringbuf;
2323
2324 if (I915_NEED_GFX_HWS(dev_priv)) {
2325 ret = init_status_page(engine);
2326 if (ret)
2327 goto error;
2328 } else {
2329 WARN_ON(engine->id != RCS);
2330 ret = init_phys_status_page(engine);
2331 if (ret)
2332 goto error;
2333 }
2334
2335 ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
2336 if (ret) {
2337 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2338 engine->name, ret);
2339 intel_destroy_ringbuffer_obj(ringbuf);
2340 goto error;
2341 }
2342
2343 ret = i915_cmd_parser_init_ring(engine);
2344 if (ret)
2345 goto error;
2346
2347 return 0;
2348
2349 error:
2350 intel_cleanup_engine(engine);
2351 return ret;
2352 }
2353
2354 void intel_cleanup_engine(struct intel_engine_cs *engine)
2355 {
2356 struct drm_i915_private *dev_priv;
2357
2358 if (!intel_engine_initialized(engine))
2359 return;
2360
2361 dev_priv = engine->i915;
2362
2363 if (engine->buffer) {
2364 intel_stop_engine(engine);
2365 WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2366
2367 intel_unpin_ringbuffer_obj(engine->buffer);
2368 intel_ringbuffer_free(engine->buffer);
2369 engine->buffer = NULL;
2370 }
2371
2372 if (engine->cleanup)
2373 engine->cleanup(engine);
2374
2375 if (I915_NEED_GFX_HWS(dev_priv)) {
2376 cleanup_status_page(engine);
2377 } else {
2378 WARN_ON(engine->id != RCS);
2379 cleanup_phys_status_page(engine);
2380 }
2381
2382 i915_cmd_parser_fini_ring(engine);
2383 i915_gem_batch_pool_fini(&engine->batch_pool);
2384 engine->i915 = NULL;
2385 }
2386
2387 int intel_engine_idle(struct intel_engine_cs *engine)
2388 {
2389 struct drm_i915_gem_request *req;
2390
2391 /* Wait upon the last request to be completed */
2392 if (list_empty(&engine->request_list))
2393 return 0;
2394
2395 req = list_entry(engine->request_list.prev,
2396 struct drm_i915_gem_request,
2397 list);
2398
2399 /* Make sure we do not trigger any retires */
2400 return __i915_wait_request(req,
2401 req->i915->mm.interruptible,
2402 NULL, NULL);
2403 }
2404
2405 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2406 {
2407 int ret;
2408
2409 /* Flush enough space to reduce the likelihood of waiting after
2410 * we start building the request - in which case we will just
2411 * have to repeat work.
2412 */
2413 request->reserved_space += LEGACY_REQUEST_SIZE;
2414
2415 request->ringbuf = request->engine->buffer;
2416
2417 ret = intel_ring_begin(request, 0);
2418 if (ret)
2419 return ret;
2420
2421 request->reserved_space -= LEGACY_REQUEST_SIZE;
2422 return 0;
2423 }
2424
2425 static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
2426 {
2427 struct intel_ringbuffer *ringbuf = req->ringbuf;
2428 struct intel_engine_cs *engine = req->engine;
2429 struct drm_i915_gem_request *target;
2430
2431 intel_ring_update_space(ringbuf);
2432 if (ringbuf->space >= bytes)
2433 return 0;
2434
2435 /*
2436 * Space is reserved in the ringbuffer for finalising the request,
2437 * as that cannot be allowed to fail. During request finalisation,
2438 * reserved_space is set to 0 to stop the overallocation and the
2439 * assumption is that then we never need to wait (which has the
2440 * risk of failing with EINTR).
2441 *
2442 * See also i915_gem_request_alloc() and i915_add_request().
2443 */
2444 GEM_BUG_ON(!req->reserved_space);
2445
2446 list_for_each_entry(target, &engine->request_list, list) {
2447 unsigned space;
2448
2449 /*
2450 * The request queue is per-engine, so can contain requests
2451 * from multiple ringbuffers. Here, we must ignore any that
2452 * aren't from the ringbuffer we're considering.
2453 */
2454 if (target->ringbuf != ringbuf)
2455 continue;
2456
2457 /* Would completion of this request free enough space? */
2458 space = __intel_ring_space(target->postfix, ringbuf->tail,
2459 ringbuf->size);
2460 if (space >= bytes)
2461 break;
2462 }
2463
2464 if (WARN_ON(&target->list == &engine->request_list))
2465 return -ENOSPC;
2466
2467 return i915_wait_request(target);
2468 }
2469
2470 int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
2471 {
2472 struct intel_ringbuffer *ringbuf = req->ringbuf;
2473 int remain_actual = ringbuf->size - ringbuf->tail;
2474 int remain_usable = ringbuf->effective_size - ringbuf->tail;
2475 int bytes = num_dwords * sizeof(u32);
2476 int total_bytes, wait_bytes;
2477 bool need_wrap = false;
2478
2479 total_bytes = bytes + req->reserved_space;
2480
2481 if (unlikely(bytes > remain_usable)) {
2482 /*
2483 * Not enough space for the basic request. So need to flush
2484 * out the remainder and then wait for base + reserved.
2485 */
2486 wait_bytes = remain_actual + total_bytes;
2487 need_wrap = true;
2488 } else if (unlikely(total_bytes > remain_usable)) {
2489 /*
2490 * The base request will fit but the reserved space
2491 * falls off the end. So we don't need an immediate wrap
2492 * and only need to effectively wait for the reserved
2493 * size space from the start of ringbuffer.
2494 */
2495 wait_bytes = remain_actual + req->reserved_space;
2496 } else {
2497 /* No wrapping required, just waiting. */
2498 wait_bytes = total_bytes;
2499 }
2500
2501 if (wait_bytes > ringbuf->space) {
2502 int ret = wait_for_space(req, wait_bytes);
2503 if (unlikely(ret))
2504 return ret;
2505
2506 intel_ring_update_space(ringbuf);
2507 if (unlikely(ringbuf->space < wait_bytes))
2508 return -EAGAIN;
2509 }
2510
2511 if (unlikely(need_wrap)) {
2512 GEM_BUG_ON(remain_actual > ringbuf->space);
2513 GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
2514
2515 /* Fill the tail with MI_NOOP */
2516 memset(ringbuf->virtual_start + ringbuf->tail,
2517 0, remain_actual);
2518 ringbuf->tail = 0;
2519 ringbuf->space -= remain_actual;
2520 }
2521
2522 ringbuf->space -= bytes;
2523 GEM_BUG_ON(ringbuf->space < 0);
2524 return 0;
2525 }
2526
2527 /* Align the ring tail to a cacheline boundary */
2528 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2529 {
2530 struct intel_engine_cs *engine = req->engine;
2531 int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2532 int ret;
2533
2534 if (num_dwords == 0)
2535 return 0;
2536
2537 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2538 ret = intel_ring_begin(req, num_dwords);
2539 if (ret)
2540 return ret;
2541
2542 while (num_dwords--)
2543 intel_ring_emit(engine, MI_NOOP);
2544
2545 intel_ring_advance(engine);
2546
2547 return 0;
2548 }
2549
2550 void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2551 {
2552 struct drm_i915_private *dev_priv = engine->i915;
2553
2554 /* Our semaphore implementation is strictly monotonic (i.e. we proceed
2555 * so long as the semaphore value in the register/page is greater
2556 * than the sync value), so whenever we reset the seqno,
2557 * so long as we reset the tracking semaphore value to 0, it will
2558 * always be before the next request's seqno. If we don't reset
2559 * the semaphore value, then when the seqno moves backwards all
2560 * future waits will complete instantly (causing rendering corruption).
2561 */
2562 if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
2563 I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
2564 I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2565 if (HAS_VEBOX(dev_priv))
2566 I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2567 }
2568 if (dev_priv->semaphore_obj) {
2569 struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
2570 struct page *page = i915_gem_object_get_dirty_page(obj, 0);
2571 void *semaphores = kmap(page);
2572 memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
2573 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
2574 kunmap(page);
2575 }
2576 memset(engine->semaphore.sync_seqno, 0,
2577 sizeof(engine->semaphore.sync_seqno));
2578
2579 engine->set_seqno(engine, seqno);
2580 engine->last_submitted_seqno = seqno;
2581
2582 engine->hangcheck.seqno = seqno;
2583 }
2584
2585 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
2586 u32 value)
2587 {
2588 struct drm_i915_private *dev_priv = engine->i915;
2589
2590 /* Every tail move must follow the sequence below */
2591
2592 /* Disable notification that the ring is IDLE. The GT
2593 * will then assume that it is busy and bring it out of rc6.
2594 */
2595 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2596 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2597
2598 /* Clear the context id. Here be magic! */
2599 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2600
2601 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2602 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2603 GEN6_BSD_SLEEP_INDICATOR) == 0,
2604 50))
2605 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2606
2607 /* Now that the ring is fully powered up, update the tail */
2608 I915_WRITE_TAIL(engine, value);
2609 POSTING_READ(RING_TAIL(engine->mmio_base));
2610
2611 /* Let the ring send IDLE messages to the GT again,
2612 * and so let it sleep to conserve power when idle.
2613 */
2614 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2615 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2616 }
2617
2618 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2619 u32 invalidate, u32 flush)
2620 {
2621 struct intel_engine_cs *engine = req->engine;
2622 uint32_t cmd;
2623 int ret;
2624
2625 ret = intel_ring_begin(req, 4);
2626 if (ret)
2627 return ret;
2628
2629 cmd = MI_FLUSH_DW;
2630 if (INTEL_GEN(req->i915) >= 8)
2631 cmd += 1;
2632
2633 /* We always require a command barrier so that subsequent
2634 * commands, such as breadcrumb interrupts, are strictly ordered
2635 * wrt the contents of the write cache being flushed to memory
2636 * (and thus being coherent from the CPU).
2637 */
2638 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2639
2640 /*
2641 * Bspec vol 1c.5 - video engine command streamer:
2642 * "If ENABLED, all TLBs will be invalidated once the flush
2643 * operation is complete. This bit is only valid when the
2644 * Post-Sync Operation field is a value of 1h or 3h."
2645 */
2646 if (invalidate & I915_GEM_GPU_DOMAINS)
2647 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2648
2649 intel_ring_emit(engine, cmd);
2650 intel_ring_emit(engine,
2651 I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2652 if (INTEL_GEN(req->i915) >= 8) {
2653 intel_ring_emit(engine, 0); /* upper addr */
2654 intel_ring_emit(engine, 0); /* value */
2655 } else {
2656 intel_ring_emit(engine, 0);
2657 intel_ring_emit(engine, MI_NOOP);
2658 }
2659 intel_ring_advance(engine);
2660 return 0;
2661 }
2662
2663 static int
2664 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2665 u64 offset, u32 len,
2666 unsigned dispatch_flags)
2667 {
2668 struct intel_engine_cs *engine = req->engine;
2669 bool ppgtt = USES_PPGTT(engine->dev) &&
2670 !(dispatch_flags & I915_DISPATCH_SECURE);
2671 int ret;
2672
2673 ret = intel_ring_begin(req, 4);
2674 if (ret)
2675 return ret;
2676
2677 /* FIXME(BDW): Address space and security selectors. */
2678 intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2679 (dispatch_flags & I915_DISPATCH_RS ?
2680 MI_BATCH_RESOURCE_STREAMER : 0));
2681 intel_ring_emit(engine, lower_32_bits(offset));
2682 intel_ring_emit(engine, upper_32_bits(offset));
2683 intel_ring_emit(engine, MI_NOOP);
2684 intel_ring_advance(engine);
2685
2686 return 0;
2687 }
2688
2689 static int
2690 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2691 u64 offset, u32 len,
2692 unsigned dispatch_flags)
2693 {
2694 struct intel_engine_cs *engine = req->engine;
2695 int ret;
2696
2697 ret = intel_ring_begin(req, 2);
2698 if (ret)
2699 return ret;
2700
2701 intel_ring_emit(engine,
2702 MI_BATCH_BUFFER_START |
2703 (dispatch_flags & I915_DISPATCH_SECURE ?
2704 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2705 (dispatch_flags & I915_DISPATCH_RS ?
2706 MI_BATCH_RESOURCE_STREAMER : 0));
2707 /* bit0-7 is the length on GEN6+ */
2708 intel_ring_emit(engine, offset);
2709 intel_ring_advance(engine);
2710
2711 return 0;
2712 }
2713
2714 static int
2715 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2716 u64 offset, u32 len,
2717 unsigned dispatch_flags)
2718 {
2719 struct intel_engine_cs *engine = req->engine;
2720 int ret;
2721
2722 ret = intel_ring_begin(req, 2);
2723 if (ret)
2724 return ret;
2725
2726 intel_ring_emit(engine,
2727 MI_BATCH_BUFFER_START |
2728 (dispatch_flags & I915_DISPATCH_SECURE ?
2729 0 : MI_BATCH_NON_SECURE_I965));
2730 /* bit0-7 is the length on GEN6+ */
2731 intel_ring_emit(engine, offset);
2732 intel_ring_advance(engine);
2733
2734 return 0;
2735 }
2736
2737 /* Blitter support (SandyBridge+) */
2738
2739 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2740 u32 invalidate, u32 flush)
2741 {
2742 struct intel_engine_cs *engine = req->engine;
2743 uint32_t cmd;
2744 int ret;
2745
2746 ret = intel_ring_begin(req, 4);
2747 if (ret)
2748 return ret;
2749
2750 cmd = MI_FLUSH_DW;
2751 if (INTEL_GEN(req->i915) >= 8)
2752 cmd += 1;
2753
2754 /* We always require a command barrier so that subsequent
2755 * commands, such as breadcrumb interrupts, are strictly ordered
2756 * wrt the contents of the write cache being flushed to memory
2757 * (and thus being coherent from the CPU).
2758 */
2759 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2760
2761 /*
2762 * Bspec vol 1c.3 - blitter engine command streamer:
2763 * "If ENABLED, all TLBs will be invalidated once the flush
2764 * operation is complete. This bit is only valid when the
2765 * Post-Sync Operation field is a value of 1h or 3h."
2766 */
2767 if (invalidate & I915_GEM_DOMAIN_RENDER)
2768 cmd |= MI_INVALIDATE_TLB;
2769 intel_ring_emit(engine, cmd);
2770 intel_ring_emit(engine,
2771 I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2772 if (INTEL_GEN(req->i915) >= 8) {
2773 intel_ring_emit(engine, 0); /* upper addr */
2774 intel_ring_emit(engine, 0); /* value */
2775 } else {
2776 intel_ring_emit(engine, 0);
2777 intel_ring_emit(engine, MI_NOOP);
2778 }
2779 intel_ring_advance(engine);
2780
2781 return 0;
2782 }
2783
2784 int intel_init_render_ring_buffer(struct drm_device *dev)
2785 {
2786 struct drm_i915_private *dev_priv = dev->dev_private;
2787 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2788 struct drm_i915_gem_object *obj;
2789 int ret;
2790
2791 engine->name = "render ring";
2792 engine->id = RCS;
2793 engine->exec_id = I915_EXEC_RENDER;
2794 engine->hw_id = 0;
2795 engine->mmio_base = RENDER_RING_BASE;
2796
2797 if (INTEL_GEN(dev_priv) >= 8) {
2798 if (i915_semaphore_is_enabled(dev_priv)) {
2799 obj = i915_gem_object_create(dev, 4096);
2800 if (IS_ERR(obj)) {
2801 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2802 i915.semaphores = 0;
2803 } else {
2804 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2805 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2806 if (ret != 0) {
2807 drm_gem_object_unreference(&obj->base);
2808 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2809 i915.semaphores = 0;
2810 } else
2811 dev_priv->semaphore_obj = obj;
2812 }
2813 }
2814
2815 engine->init_context = intel_rcs_ctx_init;
2816 engine->add_request = gen8_render_add_request;
2817 engine->flush = gen8_render_ring_flush;
2818 engine->irq_get = gen8_ring_get_irq;
2819 engine->irq_put = gen8_ring_put_irq;
2820 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2821 engine->get_seqno = ring_get_seqno;
2822 engine->set_seqno = ring_set_seqno;
2823 if (i915_semaphore_is_enabled(dev_priv)) {
2824 WARN_ON(!dev_priv->semaphore_obj);
2825 engine->semaphore.sync_to = gen8_ring_sync;
2826 engine->semaphore.signal = gen8_rcs_signal;
2827 GEN8_RING_SEMAPHORE_INIT(engine);
2828 }
2829 } else if (INTEL_GEN(dev_priv) >= 6) {
2830 engine->init_context = intel_rcs_ctx_init;
2831 engine->add_request = gen6_add_request;
2832 engine->flush = gen7_render_ring_flush;
2833 if (IS_GEN6(dev_priv))
2834 engine->flush = gen6_render_ring_flush;
2835 engine->irq_get = gen6_ring_get_irq;
2836 engine->irq_put = gen6_ring_put_irq;
2837 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2838 engine->irq_seqno_barrier = gen6_seqno_barrier;
2839 engine->get_seqno = ring_get_seqno;
2840 engine->set_seqno = ring_set_seqno;
2841 if (i915_semaphore_is_enabled(dev_priv)) {
2842 engine->semaphore.sync_to = gen6_ring_sync;
2843 engine->semaphore.signal = gen6_signal;
2844 /*
2845 * The current semaphore is only applied on pre-gen8
2846 * platform. And there is no VCS2 ring on the pre-gen8
2847 * platform. So the semaphore between RCS and VCS2 is
2848 * initialized as INVALID. Gen8 will initialize the
2849 * sema between VCS2 and RCS later.
2850 */
2851 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2852 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2853 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2854 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2855 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2856 engine->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2857 engine->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2858 engine->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2859 engine->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2860 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2861 }
2862 } else if (IS_GEN5(dev_priv)) {
2863 engine->add_request = pc_render_add_request;
2864 engine->flush = gen4_render_ring_flush;
2865 engine->get_seqno = pc_render_get_seqno;
2866 engine->set_seqno = pc_render_set_seqno;
2867 engine->irq_get = gen5_ring_get_irq;
2868 engine->irq_put = gen5_ring_put_irq;
2869 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2870 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2871 } else {
2872 engine->add_request = i9xx_add_request;
2873 if (INTEL_GEN(dev_priv) < 4)
2874 engine->flush = gen2_render_ring_flush;
2875 else
2876 engine->flush = gen4_render_ring_flush;
2877 engine->get_seqno = ring_get_seqno;
2878 engine->set_seqno = ring_set_seqno;
2879 if (IS_GEN2(dev_priv)) {
2880 engine->irq_get = i8xx_ring_get_irq;
2881 engine->irq_put = i8xx_ring_put_irq;
2882 } else {
2883 engine->irq_get = i9xx_ring_get_irq;
2884 engine->irq_put = i9xx_ring_put_irq;
2885 }
2886 engine->irq_enable_mask = I915_USER_INTERRUPT;
2887 }
2888 engine->write_tail = ring_write_tail;
2889
2890 if (IS_HASWELL(dev_priv))
2891 engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2892 else if (IS_GEN8(dev_priv))
2893 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2894 else if (INTEL_GEN(dev_priv) >= 6)
2895 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2896 else if (INTEL_GEN(dev_priv) >= 4)
2897 engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2898 else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2899 engine->dispatch_execbuffer = i830_dispatch_execbuffer;
2900 else
2901 engine->dispatch_execbuffer = i915_dispatch_execbuffer;
2902 engine->init_hw = init_render_ring;
2903 engine->cleanup = render_ring_cleanup;
2904
2905 /* Workaround batchbuffer to combat CS tlb bug. */
2906 if (HAS_BROKEN_CS_TLB(dev_priv)) {
2907 obj = i915_gem_object_create(dev, I830_WA_SIZE);
2908 if (IS_ERR(obj)) {
2909 DRM_ERROR("Failed to allocate batch bo\n");
2910 return PTR_ERR(obj);
2911 }
2912
2913 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2914 if (ret != 0) {
2915 drm_gem_object_unreference(&obj->base);
2916 DRM_ERROR("Failed to ping batch bo\n");
2917 return ret;
2918 }
2919
2920 engine->scratch.obj = obj;
2921 engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2922 }
2923
2924 ret = intel_init_ring_buffer(dev, engine);
2925 if (ret)
2926 return ret;
2927
2928 if (INTEL_GEN(dev_priv) >= 5) {
2929 ret = intel_init_pipe_control(engine);
2930 if (ret)
2931 return ret;
2932 }
2933
2934 return 0;
2935 }
2936
2937 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2938 {
2939 struct drm_i915_private *dev_priv = dev->dev_private;
2940 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2941
2942 engine->name = "bsd ring";
2943 engine->id = VCS;
2944 engine->exec_id = I915_EXEC_BSD;
2945 engine->hw_id = 1;
2946
2947 engine->write_tail = ring_write_tail;
2948 if (INTEL_GEN(dev_priv) >= 6) {
2949 engine->mmio_base = GEN6_BSD_RING_BASE;
2950 /* gen6 bsd needs a special wa for tail updates */
2951 if (IS_GEN6(dev_priv))
2952 engine->write_tail = gen6_bsd_ring_write_tail;
2953 engine->flush = gen6_bsd_ring_flush;
2954 engine->add_request = gen6_add_request;
2955 engine->irq_seqno_barrier = gen6_seqno_barrier;
2956 engine->get_seqno = ring_get_seqno;
2957 engine->set_seqno = ring_set_seqno;
2958 if (INTEL_GEN(dev_priv) >= 8) {
2959 engine->irq_enable_mask =
2960 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2961 engine->irq_get = gen8_ring_get_irq;
2962 engine->irq_put = gen8_ring_put_irq;
2963 engine->dispatch_execbuffer =
2964 gen8_ring_dispatch_execbuffer;
2965 if (i915_semaphore_is_enabled(dev_priv)) {
2966 engine->semaphore.sync_to = gen8_ring_sync;
2967 engine->semaphore.signal = gen8_xcs_signal;
2968 GEN8_RING_SEMAPHORE_INIT(engine);
2969 }
2970 } else {
2971 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2972 engine->irq_get = gen6_ring_get_irq;
2973 engine->irq_put = gen6_ring_put_irq;
2974 engine->dispatch_execbuffer =
2975 gen6_ring_dispatch_execbuffer;
2976 if (i915_semaphore_is_enabled(dev_priv)) {
2977 engine->semaphore.sync_to = gen6_ring_sync;
2978 engine->semaphore.signal = gen6_signal;
2979 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2980 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2981 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2982 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2983 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2984 engine->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2985 engine->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2986 engine->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2987 engine->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2988 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2989 }
2990 }
2991 } else {
2992 engine->mmio_base = BSD_RING_BASE;
2993 engine->flush = bsd_ring_flush;
2994 engine->add_request = i9xx_add_request;
2995 engine->get_seqno = ring_get_seqno;
2996 engine->set_seqno = ring_set_seqno;
2997 if (IS_GEN5(dev_priv)) {
2998 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2999 engine->irq_get = gen5_ring_get_irq;
3000 engine->irq_put = gen5_ring_put_irq;
3001 } else {
3002 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
3003 engine->irq_get = i9xx_ring_get_irq;
3004 engine->irq_put = i9xx_ring_put_irq;
3005 }
3006 engine->dispatch_execbuffer = i965_dispatch_execbuffer;
3007 }
3008 engine->init_hw = init_ring_common;
3009
3010 return intel_init_ring_buffer(dev, engine);
3011 }
3012
3013 /**
3014 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
3015 */
3016 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
3017 {
3018 struct drm_i915_private *dev_priv = dev->dev_private;
3019 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
3020
3021 engine->name = "bsd2 ring";
3022 engine->id = VCS2;
3023 engine->exec_id = I915_EXEC_BSD;
3024 engine->hw_id = 4;
3025
3026 engine->write_tail = ring_write_tail;
3027 engine->mmio_base = GEN8_BSD2_RING_BASE;
3028 engine->flush = gen6_bsd_ring_flush;
3029 engine->add_request = gen6_add_request;
3030 engine->irq_seqno_barrier = gen6_seqno_barrier;
3031 engine->get_seqno = ring_get_seqno;
3032 engine->set_seqno = ring_set_seqno;
3033 engine->irq_enable_mask =
3034 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
3035 engine->irq_get = gen8_ring_get_irq;
3036 engine->irq_put = gen8_ring_put_irq;
3037 engine->dispatch_execbuffer =
3038 gen8_ring_dispatch_execbuffer;
3039 if (i915_semaphore_is_enabled(dev_priv)) {
3040 engine->semaphore.sync_to = gen8_ring_sync;
3041 engine->semaphore.signal = gen8_xcs_signal;
3042 GEN8_RING_SEMAPHORE_INIT(engine);
3043 }
3044 engine->init_hw = init_ring_common;
3045
3046 return intel_init_ring_buffer(dev, engine);
3047 }
3048
3049 int intel_init_blt_ring_buffer(struct drm_device *dev)
3050 {
3051 struct drm_i915_private *dev_priv = dev->dev_private;
3052 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
3053
3054 engine->name = "blitter ring";
3055 engine->id = BCS;
3056 engine->exec_id = I915_EXEC_BLT;
3057 engine->hw_id = 2;
3058
3059 engine->mmio_base = BLT_RING_BASE;
3060 engine->write_tail = ring_write_tail;
3061 engine->flush = gen6_ring_flush;
3062 engine->add_request = gen6_add_request;
3063 engine->irq_seqno_barrier = gen6_seqno_barrier;
3064 engine->get_seqno = ring_get_seqno;
3065 engine->set_seqno = ring_set_seqno;
3066 if (INTEL_GEN(dev_priv) >= 8) {
3067 engine->irq_enable_mask =
3068 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
3069 engine->irq_get = gen8_ring_get_irq;
3070 engine->irq_put = gen8_ring_put_irq;
3071 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3072 if (i915_semaphore_is_enabled(dev_priv)) {
3073 engine->semaphore.sync_to = gen8_ring_sync;
3074 engine->semaphore.signal = gen8_xcs_signal;
3075 GEN8_RING_SEMAPHORE_INIT(engine);
3076 }
3077 } else {
3078 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
3079 engine->irq_get = gen6_ring_get_irq;
3080 engine->irq_put = gen6_ring_put_irq;
3081 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3082 if (i915_semaphore_is_enabled(dev_priv)) {
3083 engine->semaphore.signal = gen6_signal;
3084 engine->semaphore.sync_to = gen6_ring_sync;
3085 /*
3086 * The current semaphore is only applied on pre-gen8
3087 * platform. And there is no VCS2 ring on the pre-gen8
3088 * platform. So the semaphore between BCS and VCS2 is
3089 * initialized as INVALID. Gen8 will initialize the
3090 * sema between BCS and VCS2 later.
3091 */
3092 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
3093 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
3094 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
3095 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
3096 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3097 engine->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
3098 engine->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
3099 engine->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
3100 engine->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
3101 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3102 }
3103 }
3104 engine->init_hw = init_ring_common;
3105
3106 return intel_init_ring_buffer(dev, engine);
3107 }
3108
3109 int intel_init_vebox_ring_buffer(struct drm_device *dev)
3110 {
3111 struct drm_i915_private *dev_priv = dev->dev_private;
3112 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
3113
3114 engine->name = "video enhancement ring";
3115 engine->id = VECS;
3116 engine->exec_id = I915_EXEC_VEBOX;
3117 engine->hw_id = 3;
3118
3119 engine->mmio_base = VEBOX_RING_BASE;
3120 engine->write_tail = ring_write_tail;
3121 engine->flush = gen6_ring_flush;
3122 engine->add_request = gen6_add_request;
3123 engine->irq_seqno_barrier = gen6_seqno_barrier;
3124 engine->get_seqno = ring_get_seqno;
3125 engine->set_seqno = ring_set_seqno;
3126
3127 if (INTEL_GEN(dev_priv) >= 8) {
3128 engine->irq_enable_mask =
3129 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3130 engine->irq_get = gen8_ring_get_irq;
3131 engine->irq_put = gen8_ring_put_irq;
3132 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3133 if (i915_semaphore_is_enabled(dev_priv)) {
3134 engine->semaphore.sync_to = gen8_ring_sync;
3135 engine->semaphore.signal = gen8_xcs_signal;
3136 GEN8_RING_SEMAPHORE_INIT(engine);
3137 }
3138 } else {
3139 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3140 engine->irq_get = hsw_vebox_get_irq;
3141 engine->irq_put = hsw_vebox_put_irq;
3142 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3143 if (i915_semaphore_is_enabled(dev_priv)) {
3144 engine->semaphore.sync_to = gen6_ring_sync;
3145 engine->semaphore.signal = gen6_signal;
3146 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
3147 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
3148 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3149 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3150 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3151 engine->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3152 engine->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3153 engine->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3154 engine->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3155 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3156 }
3157 }
3158 engine->init_hw = init_ring_common;
3159
3160 return intel_init_ring_buffer(dev, engine);
3161 }
3162
3163 int
3164 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3165 {
3166 struct intel_engine_cs *engine = req->engine;
3167 int ret;
3168
3169 if (!engine->gpu_caches_dirty)
3170 return 0;
3171
3172 ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
3173 if (ret)
3174 return ret;
3175
3176 trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3177
3178 engine->gpu_caches_dirty = false;
3179 return 0;
3180 }
3181
3182 int
3183 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3184 {
3185 struct intel_engine_cs *engine = req->engine;
3186 uint32_t flush_domains;
3187 int ret;
3188
3189 flush_domains = 0;
3190 if (engine->gpu_caches_dirty)
3191 flush_domains = I915_GEM_GPU_DOMAINS;
3192
3193 ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3194 if (ret)
3195 return ret;
3196
3197 trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3198
3199 engine->gpu_caches_dirty = false;
3200 return 0;
3201 }
3202
3203 void
3204 intel_stop_engine(struct intel_engine_cs *engine)
3205 {
3206 int ret;
3207
3208 if (!intel_engine_initialized(engine))
3209 return;
3210
3211 ret = intel_engine_idle(engine);
3212 if (ret)
3213 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3214 engine->name, ret);
3215
3216 stop_ring(engine);
3217 }
This page took 0.356697 seconds and 6 git commands to generate.