Merge branch 'drm-fixes-3.18' of git://people.freedesktop.org/~agd5f/linux into drm...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 struct drm_device *dev = ring->dev;
40
41 if (!dev)
42 return false;
43
44 if (i915.enable_execlists) {
45 struct intel_context *dctx = ring->default_context;
46 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48 return ringbuf->obj;
49 } else
50 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55 int space = head - (tail + I915_RING_FREE_SPACE);
56 if (space < 0)
57 space += size;
58 return space;
59 }
60
61 int intel_ring_space(struct intel_ringbuffer *ringbuf)
62 {
63 return __intel_ring_space(ringbuf->head & HEAD_ADDR,
64 ringbuf->tail, ringbuf->size);
65 }
66
67 bool intel_ring_stopped(struct intel_engine_cs *ring)
68 {
69 struct drm_i915_private *dev_priv = ring->dev->dev_private;
70 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
71 }
72
73 void __intel_ring_advance(struct intel_engine_cs *ring)
74 {
75 struct intel_ringbuffer *ringbuf = ring->buffer;
76 ringbuf->tail &= ringbuf->size - 1;
77 if (intel_ring_stopped(ring))
78 return;
79 ring->write_tail(ring, ringbuf->tail);
80 }
81
82 static int
83 gen2_render_ring_flush(struct intel_engine_cs *ring,
84 u32 invalidate_domains,
85 u32 flush_domains)
86 {
87 u32 cmd;
88 int ret;
89
90 cmd = MI_FLUSH;
91 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
92 cmd |= MI_NO_WRITE_FLUSH;
93
94 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
95 cmd |= MI_READ_FLUSH;
96
97 ret = intel_ring_begin(ring, 2);
98 if (ret)
99 return ret;
100
101 intel_ring_emit(ring, cmd);
102 intel_ring_emit(ring, MI_NOOP);
103 intel_ring_advance(ring);
104
105 return 0;
106 }
107
108 static int
109 gen4_render_ring_flush(struct intel_engine_cs *ring,
110 u32 invalidate_domains,
111 u32 flush_domains)
112 {
113 struct drm_device *dev = ring->dev;
114 u32 cmd;
115 int ret;
116
117 /*
118 * read/write caches:
119 *
120 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
121 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
122 * also flushed at 2d versus 3d pipeline switches.
123 *
124 * read-only caches:
125 *
126 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
127 * MI_READ_FLUSH is set, and is always flushed on 965.
128 *
129 * I915_GEM_DOMAIN_COMMAND may not exist?
130 *
131 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
132 * invalidated when MI_EXE_FLUSH is set.
133 *
134 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
135 * invalidated with every MI_FLUSH.
136 *
137 * TLBs:
138 *
139 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
140 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
141 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
142 * are flushed at any MI_FLUSH.
143 */
144
145 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
146 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
147 cmd &= ~MI_NO_WRITE_FLUSH;
148 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
149 cmd |= MI_EXE_FLUSH;
150
151 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
152 (IS_G4X(dev) || IS_GEN5(dev)))
153 cmd |= MI_INVALIDATE_ISP;
154
155 ret = intel_ring_begin(ring, 2);
156 if (ret)
157 return ret;
158
159 intel_ring_emit(ring, cmd);
160 intel_ring_emit(ring, MI_NOOP);
161 intel_ring_advance(ring);
162
163 return 0;
164 }
165
166 /**
167 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
168 * implementing two workarounds on gen6. From section 1.4.7.1
169 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
170 *
171 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
172 * produced by non-pipelined state commands), software needs to first
173 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
174 * 0.
175 *
176 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
177 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
178 *
179 * And the workaround for these two requires this workaround first:
180 *
181 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
182 * BEFORE the pipe-control with a post-sync op and no write-cache
183 * flushes.
184 *
185 * And this last workaround is tricky because of the requirements on
186 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
187 * volume 2 part 1:
188 *
189 * "1 of the following must also be set:
190 * - Render Target Cache Flush Enable ([12] of DW1)
191 * - Depth Cache Flush Enable ([0] of DW1)
192 * - Stall at Pixel Scoreboard ([1] of DW1)
193 * - Depth Stall ([13] of DW1)
194 * - Post-Sync Operation ([13] of DW1)
195 * - Notify Enable ([8] of DW1)"
196 *
197 * The cache flushes require the workaround flush that triggered this
198 * one, so we can't use it. Depth stall would trigger the same.
199 * Post-sync nonzero is what triggered this second workaround, so we
200 * can't use that one either. Notify enable is IRQs, which aren't
201 * really our business. That leaves only stall at scoreboard.
202 */
203 static int
204 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
205 {
206 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
207 int ret;
208
209
210 ret = intel_ring_begin(ring, 6);
211 if (ret)
212 return ret;
213
214 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
215 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
216 PIPE_CONTROL_STALL_AT_SCOREBOARD);
217 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
218 intel_ring_emit(ring, 0); /* low dword */
219 intel_ring_emit(ring, 0); /* high dword */
220 intel_ring_emit(ring, MI_NOOP);
221 intel_ring_advance(ring);
222
223 ret = intel_ring_begin(ring, 6);
224 if (ret)
225 return ret;
226
227 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
229 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
230 intel_ring_emit(ring, 0);
231 intel_ring_emit(ring, 0);
232 intel_ring_emit(ring, MI_NOOP);
233 intel_ring_advance(ring);
234
235 return 0;
236 }
237
238 static int
239 gen6_render_ring_flush(struct intel_engine_cs *ring,
240 u32 invalidate_domains, u32 flush_domains)
241 {
242 u32 flags = 0;
243 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
244 int ret;
245
246 /* Force SNB workarounds for PIPE_CONTROL flushes */
247 ret = intel_emit_post_sync_nonzero_flush(ring);
248 if (ret)
249 return ret;
250
251 /* Just flush everything. Experiments have shown that reducing the
252 * number of bits based on the write domains has little performance
253 * impact.
254 */
255 if (flush_domains) {
256 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
257 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
258 /*
259 * Ensure that any following seqno writes only happen
260 * when the render cache is indeed flushed.
261 */
262 flags |= PIPE_CONTROL_CS_STALL;
263 }
264 if (invalidate_domains) {
265 flags |= PIPE_CONTROL_TLB_INVALIDATE;
266 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
267 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
268 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
269 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
270 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
271 /*
272 * TLB invalidate requires a post-sync write.
273 */
274 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
275 }
276
277 ret = intel_ring_begin(ring, 4);
278 if (ret)
279 return ret;
280
281 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
282 intel_ring_emit(ring, flags);
283 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
284 intel_ring_emit(ring, 0);
285 intel_ring_advance(ring);
286
287 return 0;
288 }
289
290 static int
291 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
292 {
293 int ret;
294
295 ret = intel_ring_begin(ring, 4);
296 if (ret)
297 return ret;
298
299 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
300 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
301 PIPE_CONTROL_STALL_AT_SCOREBOARD);
302 intel_ring_emit(ring, 0);
303 intel_ring_emit(ring, 0);
304 intel_ring_advance(ring);
305
306 return 0;
307 }
308
309 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
310 {
311 int ret;
312
313 if (!ring->fbc_dirty)
314 return 0;
315
316 ret = intel_ring_begin(ring, 6);
317 if (ret)
318 return ret;
319 /* WaFbcNukeOn3DBlt:ivb/hsw */
320 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
321 intel_ring_emit(ring, MSG_FBC_REND_STATE);
322 intel_ring_emit(ring, value);
323 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
324 intel_ring_emit(ring, MSG_FBC_REND_STATE);
325 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
326 intel_ring_advance(ring);
327
328 ring->fbc_dirty = false;
329 return 0;
330 }
331
332 static int
333 gen7_render_ring_flush(struct intel_engine_cs *ring,
334 u32 invalidate_domains, u32 flush_domains)
335 {
336 u32 flags = 0;
337 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
338 int ret;
339
340 /*
341 * Ensure that any following seqno writes only happen when the render
342 * cache is indeed flushed.
343 *
344 * Workaround: 4th PIPE_CONTROL command (except the ones with only
345 * read-cache invalidate bits set) must have the CS_STALL bit set. We
346 * don't try to be clever and just set it unconditionally.
347 */
348 flags |= PIPE_CONTROL_CS_STALL;
349
350 /* Just flush everything. Experiments have shown that reducing the
351 * number of bits based on the write domains has little performance
352 * impact.
353 */
354 if (flush_domains) {
355 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
356 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
357 }
358 if (invalidate_domains) {
359 flags |= PIPE_CONTROL_TLB_INVALIDATE;
360 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
361 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
362 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
363 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
364 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
365 /*
366 * TLB invalidate requires a post-sync write.
367 */
368 flags |= PIPE_CONTROL_QW_WRITE;
369 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
370
371 /* Workaround: we must issue a pipe_control with CS-stall bit
372 * set before a pipe_control command that has the state cache
373 * invalidate bit set. */
374 gen7_render_ring_cs_stall_wa(ring);
375 }
376
377 ret = intel_ring_begin(ring, 4);
378 if (ret)
379 return ret;
380
381 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
382 intel_ring_emit(ring, flags);
383 intel_ring_emit(ring, scratch_addr);
384 intel_ring_emit(ring, 0);
385 intel_ring_advance(ring);
386
387 if (!invalidate_domains && flush_domains)
388 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
389
390 return 0;
391 }
392
393 static int
394 gen8_emit_pipe_control(struct intel_engine_cs *ring,
395 u32 flags, u32 scratch_addr)
396 {
397 int ret;
398
399 ret = intel_ring_begin(ring, 6);
400 if (ret)
401 return ret;
402
403 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
404 intel_ring_emit(ring, flags);
405 intel_ring_emit(ring, scratch_addr);
406 intel_ring_emit(ring, 0);
407 intel_ring_emit(ring, 0);
408 intel_ring_emit(ring, 0);
409 intel_ring_advance(ring);
410
411 return 0;
412 }
413
414 static int
415 gen8_render_ring_flush(struct intel_engine_cs *ring,
416 u32 invalidate_domains, u32 flush_domains)
417 {
418 u32 flags = 0;
419 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
420 int ret;
421
422 flags |= PIPE_CONTROL_CS_STALL;
423
424 if (flush_domains) {
425 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
426 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
427 }
428 if (invalidate_domains) {
429 flags |= PIPE_CONTROL_TLB_INVALIDATE;
430 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
431 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
432 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
433 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
434 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
435 flags |= PIPE_CONTROL_QW_WRITE;
436 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
437
438 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
439 ret = gen8_emit_pipe_control(ring,
440 PIPE_CONTROL_CS_STALL |
441 PIPE_CONTROL_STALL_AT_SCOREBOARD,
442 0);
443 if (ret)
444 return ret;
445 }
446
447 ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
448 if (ret)
449 return ret;
450
451 if (!invalidate_domains && flush_domains)
452 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
453
454 return 0;
455 }
456
457 static void ring_write_tail(struct intel_engine_cs *ring,
458 u32 value)
459 {
460 struct drm_i915_private *dev_priv = ring->dev->dev_private;
461 I915_WRITE_TAIL(ring, value);
462 }
463
464 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
465 {
466 struct drm_i915_private *dev_priv = ring->dev->dev_private;
467 u64 acthd;
468
469 if (INTEL_INFO(ring->dev)->gen >= 8)
470 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
471 RING_ACTHD_UDW(ring->mmio_base));
472 else if (INTEL_INFO(ring->dev)->gen >= 4)
473 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
474 else
475 acthd = I915_READ(ACTHD);
476
477 return acthd;
478 }
479
480 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
481 {
482 struct drm_i915_private *dev_priv = ring->dev->dev_private;
483 u32 addr;
484
485 addr = dev_priv->status_page_dmah->busaddr;
486 if (INTEL_INFO(ring->dev)->gen >= 4)
487 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
488 I915_WRITE(HWS_PGA, addr);
489 }
490
491 static bool stop_ring(struct intel_engine_cs *ring)
492 {
493 struct drm_i915_private *dev_priv = to_i915(ring->dev);
494
495 if (!IS_GEN2(ring->dev)) {
496 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
497 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
498 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
499 /* Sometimes we observe that the idle flag is not
500 * set even though the ring is empty. So double
501 * check before giving up.
502 */
503 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
504 return false;
505 }
506 }
507
508 I915_WRITE_CTL(ring, 0);
509 I915_WRITE_HEAD(ring, 0);
510 ring->write_tail(ring, 0);
511
512 if (!IS_GEN2(ring->dev)) {
513 (void)I915_READ_CTL(ring);
514 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
515 }
516
517 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
518 }
519
520 static int init_ring_common(struct intel_engine_cs *ring)
521 {
522 struct drm_device *dev = ring->dev;
523 struct drm_i915_private *dev_priv = dev->dev_private;
524 struct intel_ringbuffer *ringbuf = ring->buffer;
525 struct drm_i915_gem_object *obj = ringbuf->obj;
526 int ret = 0;
527
528 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
529
530 if (!stop_ring(ring)) {
531 /* G45 ring initialization often fails to reset head to zero */
532 DRM_DEBUG_KMS("%s head not reset to zero "
533 "ctl %08x head %08x tail %08x start %08x\n",
534 ring->name,
535 I915_READ_CTL(ring),
536 I915_READ_HEAD(ring),
537 I915_READ_TAIL(ring),
538 I915_READ_START(ring));
539
540 if (!stop_ring(ring)) {
541 DRM_ERROR("failed to set %s head to zero "
542 "ctl %08x head %08x tail %08x start %08x\n",
543 ring->name,
544 I915_READ_CTL(ring),
545 I915_READ_HEAD(ring),
546 I915_READ_TAIL(ring),
547 I915_READ_START(ring));
548 ret = -EIO;
549 goto out;
550 }
551 }
552
553 if (I915_NEED_GFX_HWS(dev))
554 intel_ring_setup_status_page(ring);
555 else
556 ring_setup_phys_status_page(ring);
557
558 /* Enforce ordering by reading HEAD register back */
559 I915_READ_HEAD(ring);
560
561 /* Initialize the ring. This must happen _after_ we've cleared the ring
562 * registers with the above sequence (the readback of the HEAD registers
563 * also enforces ordering), otherwise the hw might lose the new ring
564 * register values. */
565 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
566
567 /* WaClearRingBufHeadRegAtInit:ctg,elk */
568 if (I915_READ_HEAD(ring))
569 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
570 ring->name, I915_READ_HEAD(ring));
571 I915_WRITE_HEAD(ring, 0);
572 (void)I915_READ_HEAD(ring);
573
574 I915_WRITE_CTL(ring,
575 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
576 | RING_VALID);
577
578 /* If the head is still not zero, the ring is dead */
579 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
580 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
581 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
582 DRM_ERROR("%s initialization failed "
583 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
584 ring->name,
585 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
586 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
587 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
588 ret = -EIO;
589 goto out;
590 }
591
592 if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
593 i915_kernel_lost_context(ring->dev);
594 else {
595 ringbuf->head = I915_READ_HEAD(ring);
596 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
597 ringbuf->space = intel_ring_space(ringbuf);
598 ringbuf->last_retired_head = -1;
599 }
600
601 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
602
603 out:
604 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
605
606 return ret;
607 }
608
609 void
610 intel_fini_pipe_control(struct intel_engine_cs *ring)
611 {
612 struct drm_device *dev = ring->dev;
613
614 if (ring->scratch.obj == NULL)
615 return;
616
617 if (INTEL_INFO(dev)->gen >= 5) {
618 kunmap(sg_page(ring->scratch.obj->pages->sgl));
619 i915_gem_object_ggtt_unpin(ring->scratch.obj);
620 }
621
622 drm_gem_object_unreference(&ring->scratch.obj->base);
623 ring->scratch.obj = NULL;
624 }
625
626 int
627 intel_init_pipe_control(struct intel_engine_cs *ring)
628 {
629 int ret;
630
631 if (ring->scratch.obj)
632 return 0;
633
634 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
635 if (ring->scratch.obj == NULL) {
636 DRM_ERROR("Failed to allocate seqno page\n");
637 ret = -ENOMEM;
638 goto err;
639 }
640
641 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
642 if (ret)
643 goto err_unref;
644
645 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
646 if (ret)
647 goto err_unref;
648
649 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
650 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
651 if (ring->scratch.cpu_page == NULL) {
652 ret = -ENOMEM;
653 goto err_unpin;
654 }
655
656 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
657 ring->name, ring->scratch.gtt_offset);
658 return 0;
659
660 err_unpin:
661 i915_gem_object_ggtt_unpin(ring->scratch.obj);
662 err_unref:
663 drm_gem_object_unreference(&ring->scratch.obj->base);
664 err:
665 return ret;
666 }
667
668 static inline void intel_ring_emit_wa(struct intel_engine_cs *ring,
669 u32 addr, u32 value)
670 {
671 struct drm_device *dev = ring->dev;
672 struct drm_i915_private *dev_priv = dev->dev_private;
673
674 if (WARN_ON(dev_priv->num_wa_regs >= I915_MAX_WA_REGS))
675 return;
676
677 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
678 intel_ring_emit(ring, addr);
679 intel_ring_emit(ring, value);
680
681 dev_priv->intel_wa_regs[dev_priv->num_wa_regs].addr = addr;
682 dev_priv->intel_wa_regs[dev_priv->num_wa_regs].mask = value & 0xFFFF;
683 /* value is updated with the status of remaining bits of this
684 * register when it is read from debugfs file
685 */
686 dev_priv->intel_wa_regs[dev_priv->num_wa_regs].value = value;
687 dev_priv->num_wa_regs++;
688
689 return;
690 }
691
692 static int bdw_init_workarounds(struct intel_engine_cs *ring)
693 {
694 int ret;
695 struct drm_device *dev = ring->dev;
696 struct drm_i915_private *dev_priv = dev->dev_private;
697
698 /*
699 * workarounds applied in this fn are part of register state context,
700 * they need to be re-initialized followed by gpu reset, suspend/resume,
701 * module reload.
702 */
703 dev_priv->num_wa_regs = 0;
704 memset(dev_priv->intel_wa_regs, 0, sizeof(dev_priv->intel_wa_regs));
705
706 /*
707 * update the number of dwords required based on the
708 * actual number of workarounds applied
709 */
710 ret = intel_ring_begin(ring, 18);
711 if (ret)
712 return ret;
713
714 /* WaDisablePartialInstShootdown:bdw */
715 /* WaDisableThreadStallDopClockGating:bdw */
716 /* FIXME: Unclear whether we really need this on production bdw. */
717 intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
718 _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE
719 | STALL_DOP_GATING_DISABLE));
720
721 /* WaDisableDopClockGating:bdw May not be needed for production */
722 intel_ring_emit_wa(ring, GEN7_ROW_CHICKEN2,
723 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
724
725 intel_ring_emit_wa(ring, HALF_SLICE_CHICKEN3,
726 _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
727
728 /* Use Force Non-Coherent whenever executing a 3D context. This is a
729 * workaround for for a possible hang in the unlikely event a TLB
730 * invalidation occurs during a PSD flush.
731 */
732 intel_ring_emit_wa(ring, HDC_CHICKEN0,
733 _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
734
735 /* Wa4x4STCOptimizationDisable:bdw */
736 intel_ring_emit_wa(ring, CACHE_MODE_1,
737 _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
738
739 /*
740 * BSpec recommends 8x4 when MSAA is used,
741 * however in practice 16x4 seems fastest.
742 *
743 * Note that PS/WM thread counts depend on the WIZ hashing
744 * disable bit, which we don't touch here, but it's good
745 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
746 */
747 intel_ring_emit_wa(ring, GEN7_GT_MODE,
748 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
749
750 intel_ring_advance(ring);
751
752 DRM_DEBUG_DRIVER("Number of Workarounds applied: %d\n",
753 dev_priv->num_wa_regs);
754
755 return 0;
756 }
757
758 static int chv_init_workarounds(struct intel_engine_cs *ring)
759 {
760 int ret;
761 struct drm_device *dev = ring->dev;
762 struct drm_i915_private *dev_priv = dev->dev_private;
763
764 /*
765 * workarounds applied in this fn are part of register state context,
766 * they need to be re-initialized followed by gpu reset, suspend/resume,
767 * module reload.
768 */
769 dev_priv->num_wa_regs = 0;
770 memset(dev_priv->intel_wa_regs, 0, sizeof(dev_priv->intel_wa_regs));
771
772 ret = intel_ring_begin(ring, 12);
773 if (ret)
774 return ret;
775
776 /* WaDisablePartialInstShootdown:chv */
777 intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
778 _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
779
780 /* WaDisableThreadStallDopClockGating:chv */
781 intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
782 _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
783
784 /* WaDisableDopClockGating:chv (pre-production hw) */
785 intel_ring_emit_wa(ring, GEN7_ROW_CHICKEN2,
786 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
787
788 /* WaDisableSamplerPowerBypass:chv (pre-production hw) */
789 intel_ring_emit_wa(ring, HALF_SLICE_CHICKEN3,
790 _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
791
792 intel_ring_advance(ring);
793
794 return 0;
795 }
796
797 static int init_render_ring(struct intel_engine_cs *ring)
798 {
799 struct drm_device *dev = ring->dev;
800 struct drm_i915_private *dev_priv = dev->dev_private;
801 int ret = init_ring_common(ring);
802 if (ret)
803 return ret;
804
805 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
806 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
807 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
808
809 /* We need to disable the AsyncFlip performance optimisations in order
810 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
811 * programmed to '1' on all products.
812 *
813 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
814 */
815 if (INTEL_INFO(dev)->gen >= 6)
816 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
817
818 /* Required for the hardware to program scanline values for waiting */
819 /* WaEnableFlushTlbInvalidationMode:snb */
820 if (INTEL_INFO(dev)->gen == 6)
821 I915_WRITE(GFX_MODE,
822 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
823
824 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
825 if (IS_GEN7(dev))
826 I915_WRITE(GFX_MODE_GEN7,
827 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
828 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
829
830 if (INTEL_INFO(dev)->gen >= 5) {
831 ret = intel_init_pipe_control(ring);
832 if (ret)
833 return ret;
834 }
835
836 if (IS_GEN6(dev)) {
837 /* From the Sandybridge PRM, volume 1 part 3, page 24:
838 * "If this bit is set, STCunit will have LRA as replacement
839 * policy. [...] This bit must be reset. LRA replacement
840 * policy is not supported."
841 */
842 I915_WRITE(CACHE_MODE_0,
843 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
844 }
845
846 if (INTEL_INFO(dev)->gen >= 6)
847 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
848
849 if (HAS_L3_DPF(dev))
850 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
851
852 return ret;
853 }
854
855 static void render_ring_cleanup(struct intel_engine_cs *ring)
856 {
857 struct drm_device *dev = ring->dev;
858 struct drm_i915_private *dev_priv = dev->dev_private;
859
860 if (dev_priv->semaphore_obj) {
861 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
862 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
863 dev_priv->semaphore_obj = NULL;
864 }
865
866 intel_fini_pipe_control(ring);
867 }
868
869 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
870 unsigned int num_dwords)
871 {
872 #define MBOX_UPDATE_DWORDS 8
873 struct drm_device *dev = signaller->dev;
874 struct drm_i915_private *dev_priv = dev->dev_private;
875 struct intel_engine_cs *waiter;
876 int i, ret, num_rings;
877
878 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
879 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
880 #undef MBOX_UPDATE_DWORDS
881
882 ret = intel_ring_begin(signaller, num_dwords);
883 if (ret)
884 return ret;
885
886 for_each_ring(waiter, dev_priv, i) {
887 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
888 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
889 continue;
890
891 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
892 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
893 PIPE_CONTROL_QW_WRITE |
894 PIPE_CONTROL_FLUSH_ENABLE);
895 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
896 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
897 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
898 intel_ring_emit(signaller, 0);
899 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
900 MI_SEMAPHORE_TARGET(waiter->id));
901 intel_ring_emit(signaller, 0);
902 }
903
904 return 0;
905 }
906
907 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
908 unsigned int num_dwords)
909 {
910 #define MBOX_UPDATE_DWORDS 6
911 struct drm_device *dev = signaller->dev;
912 struct drm_i915_private *dev_priv = dev->dev_private;
913 struct intel_engine_cs *waiter;
914 int i, ret, num_rings;
915
916 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
917 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
918 #undef MBOX_UPDATE_DWORDS
919
920 ret = intel_ring_begin(signaller, num_dwords);
921 if (ret)
922 return ret;
923
924 for_each_ring(waiter, dev_priv, i) {
925 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
926 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
927 continue;
928
929 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
930 MI_FLUSH_DW_OP_STOREDW);
931 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
932 MI_FLUSH_DW_USE_GTT);
933 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
934 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
935 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
936 MI_SEMAPHORE_TARGET(waiter->id));
937 intel_ring_emit(signaller, 0);
938 }
939
940 return 0;
941 }
942
943 static int gen6_signal(struct intel_engine_cs *signaller,
944 unsigned int num_dwords)
945 {
946 struct drm_device *dev = signaller->dev;
947 struct drm_i915_private *dev_priv = dev->dev_private;
948 struct intel_engine_cs *useless;
949 int i, ret, num_rings;
950
951 #define MBOX_UPDATE_DWORDS 3
952 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
953 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
954 #undef MBOX_UPDATE_DWORDS
955
956 ret = intel_ring_begin(signaller, num_dwords);
957 if (ret)
958 return ret;
959
960 for_each_ring(useless, dev_priv, i) {
961 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
962 if (mbox_reg != GEN6_NOSYNC) {
963 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
964 intel_ring_emit(signaller, mbox_reg);
965 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
966 }
967 }
968
969 /* If num_dwords was rounded, make sure the tail pointer is correct */
970 if (num_rings % 2 == 0)
971 intel_ring_emit(signaller, MI_NOOP);
972
973 return 0;
974 }
975
976 /**
977 * gen6_add_request - Update the semaphore mailbox registers
978 *
979 * @ring - ring that is adding a request
980 * @seqno - return seqno stuck into the ring
981 *
982 * Update the mailbox registers in the *other* rings with the current seqno.
983 * This acts like a signal in the canonical semaphore.
984 */
985 static int
986 gen6_add_request(struct intel_engine_cs *ring)
987 {
988 int ret;
989
990 if (ring->semaphore.signal)
991 ret = ring->semaphore.signal(ring, 4);
992 else
993 ret = intel_ring_begin(ring, 4);
994
995 if (ret)
996 return ret;
997
998 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
999 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1000 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1001 intel_ring_emit(ring, MI_USER_INTERRUPT);
1002 __intel_ring_advance(ring);
1003
1004 return 0;
1005 }
1006
1007 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1008 u32 seqno)
1009 {
1010 struct drm_i915_private *dev_priv = dev->dev_private;
1011 return dev_priv->last_seqno < seqno;
1012 }
1013
1014 /**
1015 * intel_ring_sync - sync the waiter to the signaller on seqno
1016 *
1017 * @waiter - ring that is waiting
1018 * @signaller - ring which has, or will signal
1019 * @seqno - seqno which the waiter will block on
1020 */
1021
1022 static int
1023 gen8_ring_sync(struct intel_engine_cs *waiter,
1024 struct intel_engine_cs *signaller,
1025 u32 seqno)
1026 {
1027 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1028 int ret;
1029
1030 ret = intel_ring_begin(waiter, 4);
1031 if (ret)
1032 return ret;
1033
1034 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1035 MI_SEMAPHORE_GLOBAL_GTT |
1036 MI_SEMAPHORE_POLL |
1037 MI_SEMAPHORE_SAD_GTE_SDD);
1038 intel_ring_emit(waiter, seqno);
1039 intel_ring_emit(waiter,
1040 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1041 intel_ring_emit(waiter,
1042 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1043 intel_ring_advance(waiter);
1044 return 0;
1045 }
1046
1047 static int
1048 gen6_ring_sync(struct intel_engine_cs *waiter,
1049 struct intel_engine_cs *signaller,
1050 u32 seqno)
1051 {
1052 u32 dw1 = MI_SEMAPHORE_MBOX |
1053 MI_SEMAPHORE_COMPARE |
1054 MI_SEMAPHORE_REGISTER;
1055 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1056 int ret;
1057
1058 /* Throughout all of the GEM code, seqno passed implies our current
1059 * seqno is >= the last seqno executed. However for hardware the
1060 * comparison is strictly greater than.
1061 */
1062 seqno -= 1;
1063
1064 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1065
1066 ret = intel_ring_begin(waiter, 4);
1067 if (ret)
1068 return ret;
1069
1070 /* If seqno wrap happened, omit the wait with no-ops */
1071 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1072 intel_ring_emit(waiter, dw1 | wait_mbox);
1073 intel_ring_emit(waiter, seqno);
1074 intel_ring_emit(waiter, 0);
1075 intel_ring_emit(waiter, MI_NOOP);
1076 } else {
1077 intel_ring_emit(waiter, MI_NOOP);
1078 intel_ring_emit(waiter, MI_NOOP);
1079 intel_ring_emit(waiter, MI_NOOP);
1080 intel_ring_emit(waiter, MI_NOOP);
1081 }
1082 intel_ring_advance(waiter);
1083
1084 return 0;
1085 }
1086
1087 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1088 do { \
1089 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1090 PIPE_CONTROL_DEPTH_STALL); \
1091 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1092 intel_ring_emit(ring__, 0); \
1093 intel_ring_emit(ring__, 0); \
1094 } while (0)
1095
1096 static int
1097 pc_render_add_request(struct intel_engine_cs *ring)
1098 {
1099 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1100 int ret;
1101
1102 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1103 * incoherent with writes to memory, i.e. completely fubar,
1104 * so we need to use PIPE_NOTIFY instead.
1105 *
1106 * However, we also need to workaround the qword write
1107 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1108 * memory before requesting an interrupt.
1109 */
1110 ret = intel_ring_begin(ring, 32);
1111 if (ret)
1112 return ret;
1113
1114 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1115 PIPE_CONTROL_WRITE_FLUSH |
1116 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1117 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1118 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1119 intel_ring_emit(ring, 0);
1120 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1121 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1122 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1123 scratch_addr += 2 * CACHELINE_BYTES;
1124 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1125 scratch_addr += 2 * CACHELINE_BYTES;
1126 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1127 scratch_addr += 2 * CACHELINE_BYTES;
1128 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1129 scratch_addr += 2 * CACHELINE_BYTES;
1130 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1131
1132 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1133 PIPE_CONTROL_WRITE_FLUSH |
1134 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1135 PIPE_CONTROL_NOTIFY);
1136 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1137 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1138 intel_ring_emit(ring, 0);
1139 __intel_ring_advance(ring);
1140
1141 return 0;
1142 }
1143
1144 static u32
1145 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1146 {
1147 /* Workaround to force correct ordering between irq and seqno writes on
1148 * ivb (and maybe also on snb) by reading from a CS register (like
1149 * ACTHD) before reading the status page. */
1150 if (!lazy_coherency) {
1151 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1152 POSTING_READ(RING_ACTHD(ring->mmio_base));
1153 }
1154
1155 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1156 }
1157
1158 static u32
1159 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1160 {
1161 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1162 }
1163
1164 static void
1165 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1166 {
1167 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1168 }
1169
1170 static u32
1171 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1172 {
1173 return ring->scratch.cpu_page[0];
1174 }
1175
1176 static void
1177 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1178 {
1179 ring->scratch.cpu_page[0] = seqno;
1180 }
1181
1182 static bool
1183 gen5_ring_get_irq(struct intel_engine_cs *ring)
1184 {
1185 struct drm_device *dev = ring->dev;
1186 struct drm_i915_private *dev_priv = dev->dev_private;
1187 unsigned long flags;
1188
1189 if (!dev->irq_enabled)
1190 return false;
1191
1192 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1193 if (ring->irq_refcount++ == 0)
1194 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1195 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1196
1197 return true;
1198 }
1199
1200 static void
1201 gen5_ring_put_irq(struct intel_engine_cs *ring)
1202 {
1203 struct drm_device *dev = ring->dev;
1204 struct drm_i915_private *dev_priv = dev->dev_private;
1205 unsigned long flags;
1206
1207 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1208 if (--ring->irq_refcount == 0)
1209 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1210 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1211 }
1212
1213 static bool
1214 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1215 {
1216 struct drm_device *dev = ring->dev;
1217 struct drm_i915_private *dev_priv = dev->dev_private;
1218 unsigned long flags;
1219
1220 if (!dev->irq_enabled)
1221 return false;
1222
1223 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1224 if (ring->irq_refcount++ == 0) {
1225 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1226 I915_WRITE(IMR, dev_priv->irq_mask);
1227 POSTING_READ(IMR);
1228 }
1229 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1230
1231 return true;
1232 }
1233
1234 static void
1235 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1236 {
1237 struct drm_device *dev = ring->dev;
1238 struct drm_i915_private *dev_priv = dev->dev_private;
1239 unsigned long flags;
1240
1241 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1242 if (--ring->irq_refcount == 0) {
1243 dev_priv->irq_mask |= ring->irq_enable_mask;
1244 I915_WRITE(IMR, dev_priv->irq_mask);
1245 POSTING_READ(IMR);
1246 }
1247 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1248 }
1249
1250 static bool
1251 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1252 {
1253 struct drm_device *dev = ring->dev;
1254 struct drm_i915_private *dev_priv = dev->dev_private;
1255 unsigned long flags;
1256
1257 if (!dev->irq_enabled)
1258 return false;
1259
1260 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1261 if (ring->irq_refcount++ == 0) {
1262 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1263 I915_WRITE16(IMR, dev_priv->irq_mask);
1264 POSTING_READ16(IMR);
1265 }
1266 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1267
1268 return true;
1269 }
1270
1271 static void
1272 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1273 {
1274 struct drm_device *dev = ring->dev;
1275 struct drm_i915_private *dev_priv = dev->dev_private;
1276 unsigned long flags;
1277
1278 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1279 if (--ring->irq_refcount == 0) {
1280 dev_priv->irq_mask |= ring->irq_enable_mask;
1281 I915_WRITE16(IMR, dev_priv->irq_mask);
1282 POSTING_READ16(IMR);
1283 }
1284 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1285 }
1286
1287 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
1288 {
1289 struct drm_device *dev = ring->dev;
1290 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1291 u32 mmio = 0;
1292
1293 /* The ring status page addresses are no longer next to the rest of
1294 * the ring registers as of gen7.
1295 */
1296 if (IS_GEN7(dev)) {
1297 switch (ring->id) {
1298 case RCS:
1299 mmio = RENDER_HWS_PGA_GEN7;
1300 break;
1301 case BCS:
1302 mmio = BLT_HWS_PGA_GEN7;
1303 break;
1304 /*
1305 * VCS2 actually doesn't exist on Gen7. Only shut up
1306 * gcc switch check warning
1307 */
1308 case VCS2:
1309 case VCS:
1310 mmio = BSD_HWS_PGA_GEN7;
1311 break;
1312 case VECS:
1313 mmio = VEBOX_HWS_PGA_GEN7;
1314 break;
1315 }
1316 } else if (IS_GEN6(ring->dev)) {
1317 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1318 } else {
1319 /* XXX: gen8 returns to sanity */
1320 mmio = RING_HWS_PGA(ring->mmio_base);
1321 }
1322
1323 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1324 POSTING_READ(mmio);
1325
1326 /*
1327 * Flush the TLB for this page
1328 *
1329 * FIXME: These two bits have disappeared on gen8, so a question
1330 * arises: do we still need this and if so how should we go about
1331 * invalidating the TLB?
1332 */
1333 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1334 u32 reg = RING_INSTPM(ring->mmio_base);
1335
1336 /* ring should be idle before issuing a sync flush*/
1337 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1338
1339 I915_WRITE(reg,
1340 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1341 INSTPM_SYNC_FLUSH));
1342 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1343 1000))
1344 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1345 ring->name);
1346 }
1347 }
1348
1349 static int
1350 bsd_ring_flush(struct intel_engine_cs *ring,
1351 u32 invalidate_domains,
1352 u32 flush_domains)
1353 {
1354 int ret;
1355
1356 ret = intel_ring_begin(ring, 2);
1357 if (ret)
1358 return ret;
1359
1360 intel_ring_emit(ring, MI_FLUSH);
1361 intel_ring_emit(ring, MI_NOOP);
1362 intel_ring_advance(ring);
1363 return 0;
1364 }
1365
1366 static int
1367 i9xx_add_request(struct intel_engine_cs *ring)
1368 {
1369 int ret;
1370
1371 ret = intel_ring_begin(ring, 4);
1372 if (ret)
1373 return ret;
1374
1375 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1376 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1377 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1378 intel_ring_emit(ring, MI_USER_INTERRUPT);
1379 __intel_ring_advance(ring);
1380
1381 return 0;
1382 }
1383
1384 static bool
1385 gen6_ring_get_irq(struct intel_engine_cs *ring)
1386 {
1387 struct drm_device *dev = ring->dev;
1388 struct drm_i915_private *dev_priv = dev->dev_private;
1389 unsigned long flags;
1390
1391 if (!dev->irq_enabled)
1392 return false;
1393
1394 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1395 if (ring->irq_refcount++ == 0) {
1396 if (HAS_L3_DPF(dev) && ring->id == RCS)
1397 I915_WRITE_IMR(ring,
1398 ~(ring->irq_enable_mask |
1399 GT_PARITY_ERROR(dev)));
1400 else
1401 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1402 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1403 }
1404 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1405
1406 return true;
1407 }
1408
1409 static void
1410 gen6_ring_put_irq(struct intel_engine_cs *ring)
1411 {
1412 struct drm_device *dev = ring->dev;
1413 struct drm_i915_private *dev_priv = dev->dev_private;
1414 unsigned long flags;
1415
1416 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1417 if (--ring->irq_refcount == 0) {
1418 if (HAS_L3_DPF(dev) && ring->id == RCS)
1419 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1420 else
1421 I915_WRITE_IMR(ring, ~0);
1422 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1423 }
1424 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1425 }
1426
1427 static bool
1428 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1429 {
1430 struct drm_device *dev = ring->dev;
1431 struct drm_i915_private *dev_priv = dev->dev_private;
1432 unsigned long flags;
1433
1434 if (!dev->irq_enabled)
1435 return false;
1436
1437 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1438 if (ring->irq_refcount++ == 0) {
1439 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1440 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1441 }
1442 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1443
1444 return true;
1445 }
1446
1447 static void
1448 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1449 {
1450 struct drm_device *dev = ring->dev;
1451 struct drm_i915_private *dev_priv = dev->dev_private;
1452 unsigned long flags;
1453
1454 if (!dev->irq_enabled)
1455 return;
1456
1457 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1458 if (--ring->irq_refcount == 0) {
1459 I915_WRITE_IMR(ring, ~0);
1460 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1461 }
1462 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1463 }
1464
1465 static bool
1466 gen8_ring_get_irq(struct intel_engine_cs *ring)
1467 {
1468 struct drm_device *dev = ring->dev;
1469 struct drm_i915_private *dev_priv = dev->dev_private;
1470 unsigned long flags;
1471
1472 if (!dev->irq_enabled)
1473 return false;
1474
1475 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1476 if (ring->irq_refcount++ == 0) {
1477 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1478 I915_WRITE_IMR(ring,
1479 ~(ring->irq_enable_mask |
1480 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1481 } else {
1482 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1483 }
1484 POSTING_READ(RING_IMR(ring->mmio_base));
1485 }
1486 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1487
1488 return true;
1489 }
1490
1491 static void
1492 gen8_ring_put_irq(struct intel_engine_cs *ring)
1493 {
1494 struct drm_device *dev = ring->dev;
1495 struct drm_i915_private *dev_priv = dev->dev_private;
1496 unsigned long flags;
1497
1498 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1499 if (--ring->irq_refcount == 0) {
1500 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1501 I915_WRITE_IMR(ring,
1502 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1503 } else {
1504 I915_WRITE_IMR(ring, ~0);
1505 }
1506 POSTING_READ(RING_IMR(ring->mmio_base));
1507 }
1508 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1509 }
1510
1511 static int
1512 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1513 u64 offset, u32 length,
1514 unsigned flags)
1515 {
1516 int ret;
1517
1518 ret = intel_ring_begin(ring, 2);
1519 if (ret)
1520 return ret;
1521
1522 intel_ring_emit(ring,
1523 MI_BATCH_BUFFER_START |
1524 MI_BATCH_GTT |
1525 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1526 intel_ring_emit(ring, offset);
1527 intel_ring_advance(ring);
1528
1529 return 0;
1530 }
1531
1532 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1533 #define I830_BATCH_LIMIT (256*1024)
1534 #define I830_TLB_ENTRIES (2)
1535 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1536 static int
1537 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1538 u64 offset, u32 len,
1539 unsigned flags)
1540 {
1541 u32 cs_offset = ring->scratch.gtt_offset;
1542 int ret;
1543
1544 ret = intel_ring_begin(ring, 6);
1545 if (ret)
1546 return ret;
1547
1548 /* Evict the invalid PTE TLBs */
1549 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1550 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1551 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1552 intel_ring_emit(ring, cs_offset);
1553 intel_ring_emit(ring, 0xdeadbeef);
1554 intel_ring_emit(ring, MI_NOOP);
1555 intel_ring_advance(ring);
1556
1557 if ((flags & I915_DISPATCH_PINNED) == 0) {
1558 if (len > I830_BATCH_LIMIT)
1559 return -ENOSPC;
1560
1561 ret = intel_ring_begin(ring, 6 + 2);
1562 if (ret)
1563 return ret;
1564
1565 /* Blit the batch (which has now all relocs applied) to the
1566 * stable batch scratch bo area (so that the CS never
1567 * stumbles over its tlb invalidation bug) ...
1568 */
1569 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1570 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1571 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1572 intel_ring_emit(ring, cs_offset);
1573 intel_ring_emit(ring, 4096);
1574 intel_ring_emit(ring, offset);
1575
1576 intel_ring_emit(ring, MI_FLUSH);
1577 intel_ring_emit(ring, MI_NOOP);
1578 intel_ring_advance(ring);
1579
1580 /* ... and execute it. */
1581 offset = cs_offset;
1582 }
1583
1584 ret = intel_ring_begin(ring, 4);
1585 if (ret)
1586 return ret;
1587
1588 intel_ring_emit(ring, MI_BATCH_BUFFER);
1589 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1590 intel_ring_emit(ring, offset + len - 8);
1591 intel_ring_emit(ring, MI_NOOP);
1592 intel_ring_advance(ring);
1593
1594 return 0;
1595 }
1596
1597 static int
1598 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1599 u64 offset, u32 len,
1600 unsigned flags)
1601 {
1602 int ret;
1603
1604 ret = intel_ring_begin(ring, 2);
1605 if (ret)
1606 return ret;
1607
1608 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1609 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1610 intel_ring_advance(ring);
1611
1612 return 0;
1613 }
1614
1615 static void cleanup_status_page(struct intel_engine_cs *ring)
1616 {
1617 struct drm_i915_gem_object *obj;
1618
1619 obj = ring->status_page.obj;
1620 if (obj == NULL)
1621 return;
1622
1623 kunmap(sg_page(obj->pages->sgl));
1624 i915_gem_object_ggtt_unpin(obj);
1625 drm_gem_object_unreference(&obj->base);
1626 ring->status_page.obj = NULL;
1627 }
1628
1629 static int init_status_page(struct intel_engine_cs *ring)
1630 {
1631 struct drm_i915_gem_object *obj;
1632
1633 if ((obj = ring->status_page.obj) == NULL) {
1634 unsigned flags;
1635 int ret;
1636
1637 obj = i915_gem_alloc_object(ring->dev, 4096);
1638 if (obj == NULL) {
1639 DRM_ERROR("Failed to allocate status page\n");
1640 return -ENOMEM;
1641 }
1642
1643 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1644 if (ret)
1645 goto err_unref;
1646
1647 flags = 0;
1648 if (!HAS_LLC(ring->dev))
1649 /* On g33, we cannot place HWS above 256MiB, so
1650 * restrict its pinning to the low mappable arena.
1651 * Though this restriction is not documented for
1652 * gen4, gen5, or byt, they also behave similarly
1653 * and hang if the HWS is placed at the top of the
1654 * GTT. To generalise, it appears that all !llc
1655 * platforms have issues with us placing the HWS
1656 * above the mappable region (even though we never
1657 * actualy map it).
1658 */
1659 flags |= PIN_MAPPABLE;
1660 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1661 if (ret) {
1662 err_unref:
1663 drm_gem_object_unreference(&obj->base);
1664 return ret;
1665 }
1666
1667 ring->status_page.obj = obj;
1668 }
1669
1670 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1671 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1672 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1673
1674 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1675 ring->name, ring->status_page.gfx_addr);
1676
1677 return 0;
1678 }
1679
1680 static int init_phys_status_page(struct intel_engine_cs *ring)
1681 {
1682 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1683
1684 if (!dev_priv->status_page_dmah) {
1685 dev_priv->status_page_dmah =
1686 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1687 if (!dev_priv->status_page_dmah)
1688 return -ENOMEM;
1689 }
1690
1691 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1692 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1693
1694 return 0;
1695 }
1696
1697 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1698 {
1699 if (!ringbuf->obj)
1700 return;
1701
1702 iounmap(ringbuf->virtual_start);
1703 i915_gem_object_ggtt_unpin(ringbuf->obj);
1704 drm_gem_object_unreference(&ringbuf->obj->base);
1705 ringbuf->obj = NULL;
1706 }
1707
1708 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1709 struct intel_ringbuffer *ringbuf)
1710 {
1711 struct drm_i915_private *dev_priv = to_i915(dev);
1712 struct drm_i915_gem_object *obj;
1713 int ret;
1714
1715 if (ringbuf->obj)
1716 return 0;
1717
1718 obj = NULL;
1719 if (!HAS_LLC(dev))
1720 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1721 if (obj == NULL)
1722 obj = i915_gem_alloc_object(dev, ringbuf->size);
1723 if (obj == NULL)
1724 return -ENOMEM;
1725
1726 /* mark ring buffers as read-only from GPU side by default */
1727 obj->gt_ro = 1;
1728
1729 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1730 if (ret)
1731 goto err_unref;
1732
1733 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1734 if (ret)
1735 goto err_unpin;
1736
1737 ringbuf->virtual_start =
1738 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1739 ringbuf->size);
1740 if (ringbuf->virtual_start == NULL) {
1741 ret = -EINVAL;
1742 goto err_unpin;
1743 }
1744
1745 ringbuf->obj = obj;
1746 return 0;
1747
1748 err_unpin:
1749 i915_gem_object_ggtt_unpin(obj);
1750 err_unref:
1751 drm_gem_object_unreference(&obj->base);
1752 return ret;
1753 }
1754
1755 static int intel_init_ring_buffer(struct drm_device *dev,
1756 struct intel_engine_cs *ring)
1757 {
1758 struct intel_ringbuffer *ringbuf = ring->buffer;
1759 int ret;
1760
1761 if (ringbuf == NULL) {
1762 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1763 if (!ringbuf)
1764 return -ENOMEM;
1765 ring->buffer = ringbuf;
1766 }
1767
1768 ring->dev = dev;
1769 INIT_LIST_HEAD(&ring->active_list);
1770 INIT_LIST_HEAD(&ring->request_list);
1771 INIT_LIST_HEAD(&ring->execlist_queue);
1772 ringbuf->size = 32 * PAGE_SIZE;
1773 ringbuf->ring = ring;
1774 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1775
1776 init_waitqueue_head(&ring->irq_queue);
1777
1778 if (I915_NEED_GFX_HWS(dev)) {
1779 ret = init_status_page(ring);
1780 if (ret)
1781 goto error;
1782 } else {
1783 BUG_ON(ring->id != RCS);
1784 ret = init_phys_status_page(ring);
1785 if (ret)
1786 goto error;
1787 }
1788
1789 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1790 if (ret) {
1791 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1792 goto error;
1793 }
1794
1795 /* Workaround an erratum on the i830 which causes a hang if
1796 * the TAIL pointer points to within the last 2 cachelines
1797 * of the buffer.
1798 */
1799 ringbuf->effective_size = ringbuf->size;
1800 if (IS_I830(dev) || IS_845G(dev))
1801 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1802
1803 ret = i915_cmd_parser_init_ring(ring);
1804 if (ret)
1805 goto error;
1806
1807 ret = ring->init(ring);
1808 if (ret)
1809 goto error;
1810
1811 return 0;
1812
1813 error:
1814 kfree(ringbuf);
1815 ring->buffer = NULL;
1816 return ret;
1817 }
1818
1819 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1820 {
1821 struct drm_i915_private *dev_priv = to_i915(ring->dev);
1822 struct intel_ringbuffer *ringbuf = ring->buffer;
1823
1824 if (!intel_ring_initialized(ring))
1825 return;
1826
1827 intel_stop_ring_buffer(ring);
1828 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1829
1830 intel_destroy_ringbuffer_obj(ringbuf);
1831 ring->preallocated_lazy_request = NULL;
1832 ring->outstanding_lazy_seqno = 0;
1833
1834 if (ring->cleanup)
1835 ring->cleanup(ring);
1836
1837 cleanup_status_page(ring);
1838
1839 i915_cmd_parser_fini_ring(ring);
1840
1841 kfree(ringbuf);
1842 ring->buffer = NULL;
1843 }
1844
1845 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1846 {
1847 struct intel_ringbuffer *ringbuf = ring->buffer;
1848 struct drm_i915_gem_request *request;
1849 u32 seqno = 0;
1850 int ret;
1851
1852 if (ringbuf->last_retired_head != -1) {
1853 ringbuf->head = ringbuf->last_retired_head;
1854 ringbuf->last_retired_head = -1;
1855
1856 ringbuf->space = intel_ring_space(ringbuf);
1857 if (ringbuf->space >= n)
1858 return 0;
1859 }
1860
1861 list_for_each_entry(request, &ring->request_list, list) {
1862 if (__intel_ring_space(request->tail, ringbuf->tail,
1863 ringbuf->size) >= n) {
1864 seqno = request->seqno;
1865 break;
1866 }
1867 }
1868
1869 if (seqno == 0)
1870 return -ENOSPC;
1871
1872 ret = i915_wait_seqno(ring, seqno);
1873 if (ret)
1874 return ret;
1875
1876 i915_gem_retire_requests_ring(ring);
1877 ringbuf->head = ringbuf->last_retired_head;
1878 ringbuf->last_retired_head = -1;
1879
1880 ringbuf->space = intel_ring_space(ringbuf);
1881 return 0;
1882 }
1883
1884 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1885 {
1886 struct drm_device *dev = ring->dev;
1887 struct drm_i915_private *dev_priv = dev->dev_private;
1888 struct intel_ringbuffer *ringbuf = ring->buffer;
1889 unsigned long end;
1890 int ret;
1891
1892 ret = intel_ring_wait_request(ring, n);
1893 if (ret != -ENOSPC)
1894 return ret;
1895
1896 /* force the tail write in case we have been skipping them */
1897 __intel_ring_advance(ring);
1898
1899 /* With GEM the hangcheck timer should kick us out of the loop,
1900 * leaving it early runs the risk of corrupting GEM state (due
1901 * to running on almost untested codepaths). But on resume
1902 * timers don't work yet, so prevent a complete hang in that
1903 * case by choosing an insanely large timeout. */
1904 end = jiffies + 60 * HZ;
1905
1906 trace_i915_ring_wait_begin(ring);
1907 do {
1908 ringbuf->head = I915_READ_HEAD(ring);
1909 ringbuf->space = intel_ring_space(ringbuf);
1910 if (ringbuf->space >= n) {
1911 ret = 0;
1912 break;
1913 }
1914
1915 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1916 dev->primary->master) {
1917 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1918 if (master_priv->sarea_priv)
1919 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1920 }
1921
1922 msleep(1);
1923
1924 if (dev_priv->mm.interruptible && signal_pending(current)) {
1925 ret = -ERESTARTSYS;
1926 break;
1927 }
1928
1929 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1930 dev_priv->mm.interruptible);
1931 if (ret)
1932 break;
1933
1934 if (time_after(jiffies, end)) {
1935 ret = -EBUSY;
1936 break;
1937 }
1938 } while (1);
1939 trace_i915_ring_wait_end(ring);
1940 return ret;
1941 }
1942
1943 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1944 {
1945 uint32_t __iomem *virt;
1946 struct intel_ringbuffer *ringbuf = ring->buffer;
1947 int rem = ringbuf->size - ringbuf->tail;
1948
1949 if (ringbuf->space < rem) {
1950 int ret = ring_wait_for_space(ring, rem);
1951 if (ret)
1952 return ret;
1953 }
1954
1955 virt = ringbuf->virtual_start + ringbuf->tail;
1956 rem /= 4;
1957 while (rem--)
1958 iowrite32(MI_NOOP, virt++);
1959
1960 ringbuf->tail = 0;
1961 ringbuf->space = intel_ring_space(ringbuf);
1962
1963 return 0;
1964 }
1965
1966 int intel_ring_idle(struct intel_engine_cs *ring)
1967 {
1968 u32 seqno;
1969 int ret;
1970
1971 /* We need to add any requests required to flush the objects and ring */
1972 if (ring->outstanding_lazy_seqno) {
1973 ret = i915_add_request(ring, NULL);
1974 if (ret)
1975 return ret;
1976 }
1977
1978 /* Wait upon the last request to be completed */
1979 if (list_empty(&ring->request_list))
1980 return 0;
1981
1982 seqno = list_entry(ring->request_list.prev,
1983 struct drm_i915_gem_request,
1984 list)->seqno;
1985
1986 return i915_wait_seqno(ring, seqno);
1987 }
1988
1989 static int
1990 intel_ring_alloc_seqno(struct intel_engine_cs *ring)
1991 {
1992 if (ring->outstanding_lazy_seqno)
1993 return 0;
1994
1995 if (ring->preallocated_lazy_request == NULL) {
1996 struct drm_i915_gem_request *request;
1997
1998 request = kmalloc(sizeof(*request), GFP_KERNEL);
1999 if (request == NULL)
2000 return -ENOMEM;
2001
2002 ring->preallocated_lazy_request = request;
2003 }
2004
2005 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
2006 }
2007
2008 static int __intel_ring_prepare(struct intel_engine_cs *ring,
2009 int bytes)
2010 {
2011 struct intel_ringbuffer *ringbuf = ring->buffer;
2012 int ret;
2013
2014 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2015 ret = intel_wrap_ring_buffer(ring);
2016 if (unlikely(ret))
2017 return ret;
2018 }
2019
2020 if (unlikely(ringbuf->space < bytes)) {
2021 ret = ring_wait_for_space(ring, bytes);
2022 if (unlikely(ret))
2023 return ret;
2024 }
2025
2026 return 0;
2027 }
2028
2029 int intel_ring_begin(struct intel_engine_cs *ring,
2030 int num_dwords)
2031 {
2032 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2033 int ret;
2034
2035 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2036 dev_priv->mm.interruptible);
2037 if (ret)
2038 return ret;
2039
2040 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2041 if (ret)
2042 return ret;
2043
2044 /* Preallocate the olr before touching the ring */
2045 ret = intel_ring_alloc_seqno(ring);
2046 if (ret)
2047 return ret;
2048
2049 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2050 return 0;
2051 }
2052
2053 /* Align the ring tail to a cacheline boundary */
2054 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2055 {
2056 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2057 int ret;
2058
2059 if (num_dwords == 0)
2060 return 0;
2061
2062 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2063 ret = intel_ring_begin(ring, num_dwords);
2064 if (ret)
2065 return ret;
2066
2067 while (num_dwords--)
2068 intel_ring_emit(ring, MI_NOOP);
2069
2070 intel_ring_advance(ring);
2071
2072 return 0;
2073 }
2074
2075 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2076 {
2077 struct drm_device *dev = ring->dev;
2078 struct drm_i915_private *dev_priv = dev->dev_private;
2079
2080 BUG_ON(ring->outstanding_lazy_seqno);
2081
2082 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2083 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2084 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2085 if (HAS_VEBOX(dev))
2086 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2087 }
2088
2089 ring->set_seqno(ring, seqno);
2090 ring->hangcheck.seqno = seqno;
2091 }
2092
2093 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2094 u32 value)
2095 {
2096 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2097
2098 /* Every tail move must follow the sequence below */
2099
2100 /* Disable notification that the ring is IDLE. The GT
2101 * will then assume that it is busy and bring it out of rc6.
2102 */
2103 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2104 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2105
2106 /* Clear the context id. Here be magic! */
2107 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2108
2109 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2110 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2111 GEN6_BSD_SLEEP_INDICATOR) == 0,
2112 50))
2113 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2114
2115 /* Now that the ring is fully powered up, update the tail */
2116 I915_WRITE_TAIL(ring, value);
2117 POSTING_READ(RING_TAIL(ring->mmio_base));
2118
2119 /* Let the ring send IDLE messages to the GT again,
2120 * and so let it sleep to conserve power when idle.
2121 */
2122 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2123 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2124 }
2125
2126 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2127 u32 invalidate, u32 flush)
2128 {
2129 uint32_t cmd;
2130 int ret;
2131
2132 ret = intel_ring_begin(ring, 4);
2133 if (ret)
2134 return ret;
2135
2136 cmd = MI_FLUSH_DW;
2137 if (INTEL_INFO(ring->dev)->gen >= 8)
2138 cmd += 1;
2139 /*
2140 * Bspec vol 1c.5 - video engine command streamer:
2141 * "If ENABLED, all TLBs will be invalidated once the flush
2142 * operation is complete. This bit is only valid when the
2143 * Post-Sync Operation field is a value of 1h or 3h."
2144 */
2145 if (invalidate & I915_GEM_GPU_DOMAINS)
2146 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
2147 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2148 intel_ring_emit(ring, cmd);
2149 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2150 if (INTEL_INFO(ring->dev)->gen >= 8) {
2151 intel_ring_emit(ring, 0); /* upper addr */
2152 intel_ring_emit(ring, 0); /* value */
2153 } else {
2154 intel_ring_emit(ring, 0);
2155 intel_ring_emit(ring, MI_NOOP);
2156 }
2157 intel_ring_advance(ring);
2158 return 0;
2159 }
2160
2161 static int
2162 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2163 u64 offset, u32 len,
2164 unsigned flags)
2165 {
2166 bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
2167 int ret;
2168
2169 ret = intel_ring_begin(ring, 4);
2170 if (ret)
2171 return ret;
2172
2173 /* FIXME(BDW): Address space and security selectors. */
2174 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2175 intel_ring_emit(ring, lower_32_bits(offset));
2176 intel_ring_emit(ring, upper_32_bits(offset));
2177 intel_ring_emit(ring, MI_NOOP);
2178 intel_ring_advance(ring);
2179
2180 return 0;
2181 }
2182
2183 static int
2184 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2185 u64 offset, u32 len,
2186 unsigned flags)
2187 {
2188 int ret;
2189
2190 ret = intel_ring_begin(ring, 2);
2191 if (ret)
2192 return ret;
2193
2194 intel_ring_emit(ring,
2195 MI_BATCH_BUFFER_START |
2196 (flags & I915_DISPATCH_SECURE ?
2197 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
2198 /* bit0-7 is the length on GEN6+ */
2199 intel_ring_emit(ring, offset);
2200 intel_ring_advance(ring);
2201
2202 return 0;
2203 }
2204
2205 static int
2206 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2207 u64 offset, u32 len,
2208 unsigned flags)
2209 {
2210 int ret;
2211
2212 ret = intel_ring_begin(ring, 2);
2213 if (ret)
2214 return ret;
2215
2216 intel_ring_emit(ring,
2217 MI_BATCH_BUFFER_START |
2218 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2219 /* bit0-7 is the length on GEN6+ */
2220 intel_ring_emit(ring, offset);
2221 intel_ring_advance(ring);
2222
2223 return 0;
2224 }
2225
2226 /* Blitter support (SandyBridge+) */
2227
2228 static int gen6_ring_flush(struct intel_engine_cs *ring,
2229 u32 invalidate, u32 flush)
2230 {
2231 struct drm_device *dev = ring->dev;
2232 uint32_t cmd;
2233 int ret;
2234
2235 ret = intel_ring_begin(ring, 4);
2236 if (ret)
2237 return ret;
2238
2239 cmd = MI_FLUSH_DW;
2240 if (INTEL_INFO(ring->dev)->gen >= 8)
2241 cmd += 1;
2242 /*
2243 * Bspec vol 1c.3 - blitter engine command streamer:
2244 * "If ENABLED, all TLBs will be invalidated once the flush
2245 * operation is complete. This bit is only valid when the
2246 * Post-Sync Operation field is a value of 1h or 3h."
2247 */
2248 if (invalidate & I915_GEM_DOMAIN_RENDER)
2249 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
2250 MI_FLUSH_DW_OP_STOREDW;
2251 intel_ring_emit(ring, cmd);
2252 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2253 if (INTEL_INFO(ring->dev)->gen >= 8) {
2254 intel_ring_emit(ring, 0); /* upper addr */
2255 intel_ring_emit(ring, 0); /* value */
2256 } else {
2257 intel_ring_emit(ring, 0);
2258 intel_ring_emit(ring, MI_NOOP);
2259 }
2260 intel_ring_advance(ring);
2261
2262 if (IS_GEN7(dev) && !invalidate && flush)
2263 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2264
2265 return 0;
2266 }
2267
2268 int intel_init_render_ring_buffer(struct drm_device *dev)
2269 {
2270 struct drm_i915_private *dev_priv = dev->dev_private;
2271 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2272 struct drm_i915_gem_object *obj;
2273 int ret;
2274
2275 ring->name = "render ring";
2276 ring->id = RCS;
2277 ring->mmio_base = RENDER_RING_BASE;
2278
2279 if (INTEL_INFO(dev)->gen >= 8) {
2280 if (i915_semaphore_is_enabled(dev)) {
2281 obj = i915_gem_alloc_object(dev, 4096);
2282 if (obj == NULL) {
2283 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2284 i915.semaphores = 0;
2285 } else {
2286 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2287 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2288 if (ret != 0) {
2289 drm_gem_object_unreference(&obj->base);
2290 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2291 i915.semaphores = 0;
2292 } else
2293 dev_priv->semaphore_obj = obj;
2294 }
2295 }
2296 if (IS_CHERRYVIEW(dev))
2297 ring->init_context = chv_init_workarounds;
2298 else
2299 ring->init_context = bdw_init_workarounds;
2300 ring->add_request = gen6_add_request;
2301 ring->flush = gen8_render_ring_flush;
2302 ring->irq_get = gen8_ring_get_irq;
2303 ring->irq_put = gen8_ring_put_irq;
2304 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2305 ring->get_seqno = gen6_ring_get_seqno;
2306 ring->set_seqno = ring_set_seqno;
2307 if (i915_semaphore_is_enabled(dev)) {
2308 WARN_ON(!dev_priv->semaphore_obj);
2309 ring->semaphore.sync_to = gen8_ring_sync;
2310 ring->semaphore.signal = gen8_rcs_signal;
2311 GEN8_RING_SEMAPHORE_INIT;
2312 }
2313 } else if (INTEL_INFO(dev)->gen >= 6) {
2314 ring->add_request = gen6_add_request;
2315 ring->flush = gen7_render_ring_flush;
2316 if (INTEL_INFO(dev)->gen == 6)
2317 ring->flush = gen6_render_ring_flush;
2318 ring->irq_get = gen6_ring_get_irq;
2319 ring->irq_put = gen6_ring_put_irq;
2320 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2321 ring->get_seqno = gen6_ring_get_seqno;
2322 ring->set_seqno = ring_set_seqno;
2323 if (i915_semaphore_is_enabled(dev)) {
2324 ring->semaphore.sync_to = gen6_ring_sync;
2325 ring->semaphore.signal = gen6_signal;
2326 /*
2327 * The current semaphore is only applied on pre-gen8
2328 * platform. And there is no VCS2 ring on the pre-gen8
2329 * platform. So the semaphore between RCS and VCS2 is
2330 * initialized as INVALID. Gen8 will initialize the
2331 * sema between VCS2 and RCS later.
2332 */
2333 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2334 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2335 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2336 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2337 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2338 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2339 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2340 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2341 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2342 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2343 }
2344 } else if (IS_GEN5(dev)) {
2345 ring->add_request = pc_render_add_request;
2346 ring->flush = gen4_render_ring_flush;
2347 ring->get_seqno = pc_render_get_seqno;
2348 ring->set_seqno = pc_render_set_seqno;
2349 ring->irq_get = gen5_ring_get_irq;
2350 ring->irq_put = gen5_ring_put_irq;
2351 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2352 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2353 } else {
2354 ring->add_request = i9xx_add_request;
2355 if (INTEL_INFO(dev)->gen < 4)
2356 ring->flush = gen2_render_ring_flush;
2357 else
2358 ring->flush = gen4_render_ring_flush;
2359 ring->get_seqno = ring_get_seqno;
2360 ring->set_seqno = ring_set_seqno;
2361 if (IS_GEN2(dev)) {
2362 ring->irq_get = i8xx_ring_get_irq;
2363 ring->irq_put = i8xx_ring_put_irq;
2364 } else {
2365 ring->irq_get = i9xx_ring_get_irq;
2366 ring->irq_put = i9xx_ring_put_irq;
2367 }
2368 ring->irq_enable_mask = I915_USER_INTERRUPT;
2369 }
2370 ring->write_tail = ring_write_tail;
2371
2372 if (IS_HASWELL(dev))
2373 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2374 else if (IS_GEN8(dev))
2375 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2376 else if (INTEL_INFO(dev)->gen >= 6)
2377 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2378 else if (INTEL_INFO(dev)->gen >= 4)
2379 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2380 else if (IS_I830(dev) || IS_845G(dev))
2381 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2382 else
2383 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2384 ring->init = init_render_ring;
2385 ring->cleanup = render_ring_cleanup;
2386
2387 /* Workaround batchbuffer to combat CS tlb bug. */
2388 if (HAS_BROKEN_CS_TLB(dev)) {
2389 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2390 if (obj == NULL) {
2391 DRM_ERROR("Failed to allocate batch bo\n");
2392 return -ENOMEM;
2393 }
2394
2395 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2396 if (ret != 0) {
2397 drm_gem_object_unreference(&obj->base);
2398 DRM_ERROR("Failed to ping batch bo\n");
2399 return ret;
2400 }
2401
2402 ring->scratch.obj = obj;
2403 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2404 }
2405
2406 return intel_init_ring_buffer(dev, ring);
2407 }
2408
2409 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2410 {
2411 struct drm_i915_private *dev_priv = dev->dev_private;
2412 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2413 struct intel_ringbuffer *ringbuf = ring->buffer;
2414 int ret;
2415
2416 if (ringbuf == NULL) {
2417 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2418 if (!ringbuf)
2419 return -ENOMEM;
2420 ring->buffer = ringbuf;
2421 }
2422
2423 ring->name = "render ring";
2424 ring->id = RCS;
2425 ring->mmio_base = RENDER_RING_BASE;
2426
2427 if (INTEL_INFO(dev)->gen >= 6) {
2428 /* non-kms not supported on gen6+ */
2429 ret = -ENODEV;
2430 goto err_ringbuf;
2431 }
2432
2433 /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2434 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2435 * the special gen5 functions. */
2436 ring->add_request = i9xx_add_request;
2437 if (INTEL_INFO(dev)->gen < 4)
2438 ring->flush = gen2_render_ring_flush;
2439 else
2440 ring->flush = gen4_render_ring_flush;
2441 ring->get_seqno = ring_get_seqno;
2442 ring->set_seqno = ring_set_seqno;
2443 if (IS_GEN2(dev)) {
2444 ring->irq_get = i8xx_ring_get_irq;
2445 ring->irq_put = i8xx_ring_put_irq;
2446 } else {
2447 ring->irq_get = i9xx_ring_get_irq;
2448 ring->irq_put = i9xx_ring_put_irq;
2449 }
2450 ring->irq_enable_mask = I915_USER_INTERRUPT;
2451 ring->write_tail = ring_write_tail;
2452 if (INTEL_INFO(dev)->gen >= 4)
2453 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2454 else if (IS_I830(dev) || IS_845G(dev))
2455 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2456 else
2457 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2458 ring->init = init_render_ring;
2459 ring->cleanup = render_ring_cleanup;
2460
2461 ring->dev = dev;
2462 INIT_LIST_HEAD(&ring->active_list);
2463 INIT_LIST_HEAD(&ring->request_list);
2464
2465 ringbuf->size = size;
2466 ringbuf->effective_size = ringbuf->size;
2467 if (IS_I830(ring->dev) || IS_845G(ring->dev))
2468 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2469
2470 ringbuf->virtual_start = ioremap_wc(start, size);
2471 if (ringbuf->virtual_start == NULL) {
2472 DRM_ERROR("can not ioremap virtual address for"
2473 " ring buffer\n");
2474 ret = -ENOMEM;
2475 goto err_ringbuf;
2476 }
2477
2478 if (!I915_NEED_GFX_HWS(dev)) {
2479 ret = init_phys_status_page(ring);
2480 if (ret)
2481 goto err_vstart;
2482 }
2483
2484 return 0;
2485
2486 err_vstart:
2487 iounmap(ringbuf->virtual_start);
2488 err_ringbuf:
2489 kfree(ringbuf);
2490 ring->buffer = NULL;
2491 return ret;
2492 }
2493
2494 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2495 {
2496 struct drm_i915_private *dev_priv = dev->dev_private;
2497 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2498
2499 ring->name = "bsd ring";
2500 ring->id = VCS;
2501
2502 ring->write_tail = ring_write_tail;
2503 if (INTEL_INFO(dev)->gen >= 6) {
2504 ring->mmio_base = GEN6_BSD_RING_BASE;
2505 /* gen6 bsd needs a special wa for tail updates */
2506 if (IS_GEN6(dev))
2507 ring->write_tail = gen6_bsd_ring_write_tail;
2508 ring->flush = gen6_bsd_ring_flush;
2509 ring->add_request = gen6_add_request;
2510 ring->get_seqno = gen6_ring_get_seqno;
2511 ring->set_seqno = ring_set_seqno;
2512 if (INTEL_INFO(dev)->gen >= 8) {
2513 ring->irq_enable_mask =
2514 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2515 ring->irq_get = gen8_ring_get_irq;
2516 ring->irq_put = gen8_ring_put_irq;
2517 ring->dispatch_execbuffer =
2518 gen8_ring_dispatch_execbuffer;
2519 if (i915_semaphore_is_enabled(dev)) {
2520 ring->semaphore.sync_to = gen8_ring_sync;
2521 ring->semaphore.signal = gen8_xcs_signal;
2522 GEN8_RING_SEMAPHORE_INIT;
2523 }
2524 } else {
2525 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2526 ring->irq_get = gen6_ring_get_irq;
2527 ring->irq_put = gen6_ring_put_irq;
2528 ring->dispatch_execbuffer =
2529 gen6_ring_dispatch_execbuffer;
2530 if (i915_semaphore_is_enabled(dev)) {
2531 ring->semaphore.sync_to = gen6_ring_sync;
2532 ring->semaphore.signal = gen6_signal;
2533 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2534 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2535 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2536 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2537 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2538 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2539 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2540 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2541 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2542 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2543 }
2544 }
2545 } else {
2546 ring->mmio_base = BSD_RING_BASE;
2547 ring->flush = bsd_ring_flush;
2548 ring->add_request = i9xx_add_request;
2549 ring->get_seqno = ring_get_seqno;
2550 ring->set_seqno = ring_set_seqno;
2551 if (IS_GEN5(dev)) {
2552 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2553 ring->irq_get = gen5_ring_get_irq;
2554 ring->irq_put = gen5_ring_put_irq;
2555 } else {
2556 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2557 ring->irq_get = i9xx_ring_get_irq;
2558 ring->irq_put = i9xx_ring_put_irq;
2559 }
2560 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2561 }
2562 ring->init = init_ring_common;
2563
2564 return intel_init_ring_buffer(dev, ring);
2565 }
2566
2567 /**
2568 * Initialize the second BSD ring for Broadwell GT3.
2569 * It is noted that this only exists on Broadwell GT3.
2570 */
2571 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2572 {
2573 struct drm_i915_private *dev_priv = dev->dev_private;
2574 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2575
2576 if ((INTEL_INFO(dev)->gen != 8)) {
2577 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2578 return -EINVAL;
2579 }
2580
2581 ring->name = "bsd2 ring";
2582 ring->id = VCS2;
2583
2584 ring->write_tail = ring_write_tail;
2585 ring->mmio_base = GEN8_BSD2_RING_BASE;
2586 ring->flush = gen6_bsd_ring_flush;
2587 ring->add_request = gen6_add_request;
2588 ring->get_seqno = gen6_ring_get_seqno;
2589 ring->set_seqno = ring_set_seqno;
2590 ring->irq_enable_mask =
2591 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2592 ring->irq_get = gen8_ring_get_irq;
2593 ring->irq_put = gen8_ring_put_irq;
2594 ring->dispatch_execbuffer =
2595 gen8_ring_dispatch_execbuffer;
2596 if (i915_semaphore_is_enabled(dev)) {
2597 ring->semaphore.sync_to = gen8_ring_sync;
2598 ring->semaphore.signal = gen8_xcs_signal;
2599 GEN8_RING_SEMAPHORE_INIT;
2600 }
2601 ring->init = init_ring_common;
2602
2603 return intel_init_ring_buffer(dev, ring);
2604 }
2605
2606 int intel_init_blt_ring_buffer(struct drm_device *dev)
2607 {
2608 struct drm_i915_private *dev_priv = dev->dev_private;
2609 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2610
2611 ring->name = "blitter ring";
2612 ring->id = BCS;
2613
2614 ring->mmio_base = BLT_RING_BASE;
2615 ring->write_tail = ring_write_tail;
2616 ring->flush = gen6_ring_flush;
2617 ring->add_request = gen6_add_request;
2618 ring->get_seqno = gen6_ring_get_seqno;
2619 ring->set_seqno = ring_set_seqno;
2620 if (INTEL_INFO(dev)->gen >= 8) {
2621 ring->irq_enable_mask =
2622 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2623 ring->irq_get = gen8_ring_get_irq;
2624 ring->irq_put = gen8_ring_put_irq;
2625 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2626 if (i915_semaphore_is_enabled(dev)) {
2627 ring->semaphore.sync_to = gen8_ring_sync;
2628 ring->semaphore.signal = gen8_xcs_signal;
2629 GEN8_RING_SEMAPHORE_INIT;
2630 }
2631 } else {
2632 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2633 ring->irq_get = gen6_ring_get_irq;
2634 ring->irq_put = gen6_ring_put_irq;
2635 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2636 if (i915_semaphore_is_enabled(dev)) {
2637 ring->semaphore.signal = gen6_signal;
2638 ring->semaphore.sync_to = gen6_ring_sync;
2639 /*
2640 * The current semaphore is only applied on pre-gen8
2641 * platform. And there is no VCS2 ring on the pre-gen8
2642 * platform. So the semaphore between BCS and VCS2 is
2643 * initialized as INVALID. Gen8 will initialize the
2644 * sema between BCS and VCS2 later.
2645 */
2646 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2647 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2648 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2649 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2650 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2651 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2652 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2653 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2654 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2655 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2656 }
2657 }
2658 ring->init = init_ring_common;
2659
2660 return intel_init_ring_buffer(dev, ring);
2661 }
2662
2663 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2664 {
2665 struct drm_i915_private *dev_priv = dev->dev_private;
2666 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2667
2668 ring->name = "video enhancement ring";
2669 ring->id = VECS;
2670
2671 ring->mmio_base = VEBOX_RING_BASE;
2672 ring->write_tail = ring_write_tail;
2673 ring->flush = gen6_ring_flush;
2674 ring->add_request = gen6_add_request;
2675 ring->get_seqno = gen6_ring_get_seqno;
2676 ring->set_seqno = ring_set_seqno;
2677
2678 if (INTEL_INFO(dev)->gen >= 8) {
2679 ring->irq_enable_mask =
2680 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2681 ring->irq_get = gen8_ring_get_irq;
2682 ring->irq_put = gen8_ring_put_irq;
2683 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2684 if (i915_semaphore_is_enabled(dev)) {
2685 ring->semaphore.sync_to = gen8_ring_sync;
2686 ring->semaphore.signal = gen8_xcs_signal;
2687 GEN8_RING_SEMAPHORE_INIT;
2688 }
2689 } else {
2690 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2691 ring->irq_get = hsw_vebox_get_irq;
2692 ring->irq_put = hsw_vebox_put_irq;
2693 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2694 if (i915_semaphore_is_enabled(dev)) {
2695 ring->semaphore.sync_to = gen6_ring_sync;
2696 ring->semaphore.signal = gen6_signal;
2697 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2698 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2699 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2700 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2701 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2702 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2703 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2704 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2705 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2706 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2707 }
2708 }
2709 ring->init = init_ring_common;
2710
2711 return intel_init_ring_buffer(dev, ring);
2712 }
2713
2714 int
2715 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2716 {
2717 int ret;
2718
2719 if (!ring->gpu_caches_dirty)
2720 return 0;
2721
2722 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2723 if (ret)
2724 return ret;
2725
2726 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2727
2728 ring->gpu_caches_dirty = false;
2729 return 0;
2730 }
2731
2732 int
2733 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2734 {
2735 uint32_t flush_domains;
2736 int ret;
2737
2738 flush_domains = 0;
2739 if (ring->gpu_caches_dirty)
2740 flush_domains = I915_GEM_GPU_DOMAINS;
2741
2742 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2743 if (ret)
2744 return ret;
2745
2746 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2747
2748 ring->gpu_caches_dirty = false;
2749 return 0;
2750 }
2751
2752 void
2753 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2754 {
2755 int ret;
2756
2757 if (!intel_ring_initialized(ring))
2758 return;
2759
2760 ret = intel_ring_idle(ring);
2761 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2762 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2763 ring->name, ret);
2764
2765 stop_ring(ring);
2766 }
This page took 0.087231 seconds and 6 git commands to generate.