Merge branch 'for-4.7-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 int __intel_ring_space(int head, int tail, int size)
38 {
39 int space = head - tail;
40 if (space <= 0)
41 space += size;
42 return space - I915_RING_FREE_SPACE;
43 }
44
45 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
46 {
47 if (ringbuf->last_retired_head != -1) {
48 ringbuf->head = ringbuf->last_retired_head;
49 ringbuf->last_retired_head = -1;
50 }
51
52 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
53 ringbuf->tail, ringbuf->size);
54 }
55
56 bool intel_engine_stopped(struct intel_engine_cs *engine)
57 {
58 struct drm_i915_private *dev_priv = engine->dev->dev_private;
59 return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
60 }
61
62 static void __intel_ring_advance(struct intel_engine_cs *engine)
63 {
64 struct intel_ringbuffer *ringbuf = engine->buffer;
65 ringbuf->tail &= ringbuf->size - 1;
66 if (intel_engine_stopped(engine))
67 return;
68 engine->write_tail(engine, ringbuf->tail);
69 }
70
71 static int
72 gen2_render_ring_flush(struct drm_i915_gem_request *req,
73 u32 invalidate_domains,
74 u32 flush_domains)
75 {
76 struct intel_engine_cs *engine = req->engine;
77 u32 cmd;
78 int ret;
79
80 cmd = MI_FLUSH;
81 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
82 cmd |= MI_NO_WRITE_FLUSH;
83
84 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
85 cmd |= MI_READ_FLUSH;
86
87 ret = intel_ring_begin(req, 2);
88 if (ret)
89 return ret;
90
91 intel_ring_emit(engine, cmd);
92 intel_ring_emit(engine, MI_NOOP);
93 intel_ring_advance(engine);
94
95 return 0;
96 }
97
98 static int
99 gen4_render_ring_flush(struct drm_i915_gem_request *req,
100 u32 invalidate_domains,
101 u32 flush_domains)
102 {
103 struct intel_engine_cs *engine = req->engine;
104 struct drm_device *dev = engine->dev;
105 u32 cmd;
106 int ret;
107
108 /*
109 * read/write caches:
110 *
111 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
112 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
113 * also flushed at 2d versus 3d pipeline switches.
114 *
115 * read-only caches:
116 *
117 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
118 * MI_READ_FLUSH is set, and is always flushed on 965.
119 *
120 * I915_GEM_DOMAIN_COMMAND may not exist?
121 *
122 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
123 * invalidated when MI_EXE_FLUSH is set.
124 *
125 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
126 * invalidated with every MI_FLUSH.
127 *
128 * TLBs:
129 *
130 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
131 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
132 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
133 * are flushed at any MI_FLUSH.
134 */
135
136 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
137 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
138 cmd &= ~MI_NO_WRITE_FLUSH;
139 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
140 cmd |= MI_EXE_FLUSH;
141
142 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
143 (IS_G4X(dev) || IS_GEN5(dev)))
144 cmd |= MI_INVALIDATE_ISP;
145
146 ret = intel_ring_begin(req, 2);
147 if (ret)
148 return ret;
149
150 intel_ring_emit(engine, cmd);
151 intel_ring_emit(engine, MI_NOOP);
152 intel_ring_advance(engine);
153
154 return 0;
155 }
156
157 /**
158 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
159 * implementing two workarounds on gen6. From section 1.4.7.1
160 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
161 *
162 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
163 * produced by non-pipelined state commands), software needs to first
164 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
165 * 0.
166 *
167 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
168 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
169 *
170 * And the workaround for these two requires this workaround first:
171 *
172 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
173 * BEFORE the pipe-control with a post-sync op and no write-cache
174 * flushes.
175 *
176 * And this last workaround is tricky because of the requirements on
177 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
178 * volume 2 part 1:
179 *
180 * "1 of the following must also be set:
181 * - Render Target Cache Flush Enable ([12] of DW1)
182 * - Depth Cache Flush Enable ([0] of DW1)
183 * - Stall at Pixel Scoreboard ([1] of DW1)
184 * - Depth Stall ([13] of DW1)
185 * - Post-Sync Operation ([13] of DW1)
186 * - Notify Enable ([8] of DW1)"
187 *
188 * The cache flushes require the workaround flush that triggered this
189 * one, so we can't use it. Depth stall would trigger the same.
190 * Post-sync nonzero is what triggered this second workaround, so we
191 * can't use that one either. Notify enable is IRQs, which aren't
192 * really our business. That leaves only stall at scoreboard.
193 */
194 static int
195 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
196 {
197 struct intel_engine_cs *engine = req->engine;
198 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
199 int ret;
200
201 ret = intel_ring_begin(req, 6);
202 if (ret)
203 return ret;
204
205 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
206 intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
207 PIPE_CONTROL_STALL_AT_SCOREBOARD);
208 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
209 intel_ring_emit(engine, 0); /* low dword */
210 intel_ring_emit(engine, 0); /* high dword */
211 intel_ring_emit(engine, MI_NOOP);
212 intel_ring_advance(engine);
213
214 ret = intel_ring_begin(req, 6);
215 if (ret)
216 return ret;
217
218 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
219 intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
220 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
221 intel_ring_emit(engine, 0);
222 intel_ring_emit(engine, 0);
223 intel_ring_emit(engine, MI_NOOP);
224 intel_ring_advance(engine);
225
226 return 0;
227 }
228
229 static int
230 gen6_render_ring_flush(struct drm_i915_gem_request *req,
231 u32 invalidate_domains, u32 flush_domains)
232 {
233 struct intel_engine_cs *engine = req->engine;
234 u32 flags = 0;
235 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
236 int ret;
237
238 /* Force SNB workarounds for PIPE_CONTROL flushes */
239 ret = intel_emit_post_sync_nonzero_flush(req);
240 if (ret)
241 return ret;
242
243 /* Just flush everything. Experiments have shown that reducing the
244 * number of bits based on the write domains has little performance
245 * impact.
246 */
247 if (flush_domains) {
248 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
249 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
250 /*
251 * Ensure that any following seqno writes only happen
252 * when the render cache is indeed flushed.
253 */
254 flags |= PIPE_CONTROL_CS_STALL;
255 }
256 if (invalidate_domains) {
257 flags |= PIPE_CONTROL_TLB_INVALIDATE;
258 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
259 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
260 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
261 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
262 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
263 /*
264 * TLB invalidate requires a post-sync write.
265 */
266 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
267 }
268
269 ret = intel_ring_begin(req, 4);
270 if (ret)
271 return ret;
272
273 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
274 intel_ring_emit(engine, flags);
275 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
276 intel_ring_emit(engine, 0);
277 intel_ring_advance(engine);
278
279 return 0;
280 }
281
282 static int
283 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
284 {
285 struct intel_engine_cs *engine = req->engine;
286 int ret;
287
288 ret = intel_ring_begin(req, 4);
289 if (ret)
290 return ret;
291
292 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
293 intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
294 PIPE_CONTROL_STALL_AT_SCOREBOARD);
295 intel_ring_emit(engine, 0);
296 intel_ring_emit(engine, 0);
297 intel_ring_advance(engine);
298
299 return 0;
300 }
301
302 static int
303 gen7_render_ring_flush(struct drm_i915_gem_request *req,
304 u32 invalidate_domains, u32 flush_domains)
305 {
306 struct intel_engine_cs *engine = req->engine;
307 u32 flags = 0;
308 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
309 int ret;
310
311 /*
312 * Ensure that any following seqno writes only happen when the render
313 * cache is indeed flushed.
314 *
315 * Workaround: 4th PIPE_CONTROL command (except the ones with only
316 * read-cache invalidate bits set) must have the CS_STALL bit set. We
317 * don't try to be clever and just set it unconditionally.
318 */
319 flags |= PIPE_CONTROL_CS_STALL;
320
321 /* Just flush everything. Experiments have shown that reducing the
322 * number of bits based on the write domains has little performance
323 * impact.
324 */
325 if (flush_domains) {
326 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
327 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
328 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
329 flags |= PIPE_CONTROL_FLUSH_ENABLE;
330 }
331 if (invalidate_domains) {
332 flags |= PIPE_CONTROL_TLB_INVALIDATE;
333 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
334 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
335 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
336 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
337 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
338 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
339 /*
340 * TLB invalidate requires a post-sync write.
341 */
342 flags |= PIPE_CONTROL_QW_WRITE;
343 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
344
345 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
346
347 /* Workaround: we must issue a pipe_control with CS-stall bit
348 * set before a pipe_control command that has the state cache
349 * invalidate bit set. */
350 gen7_render_ring_cs_stall_wa(req);
351 }
352
353 ret = intel_ring_begin(req, 4);
354 if (ret)
355 return ret;
356
357 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
358 intel_ring_emit(engine, flags);
359 intel_ring_emit(engine, scratch_addr);
360 intel_ring_emit(engine, 0);
361 intel_ring_advance(engine);
362
363 return 0;
364 }
365
366 static int
367 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
368 u32 flags, u32 scratch_addr)
369 {
370 struct intel_engine_cs *engine = req->engine;
371 int ret;
372
373 ret = intel_ring_begin(req, 6);
374 if (ret)
375 return ret;
376
377 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
378 intel_ring_emit(engine, flags);
379 intel_ring_emit(engine, scratch_addr);
380 intel_ring_emit(engine, 0);
381 intel_ring_emit(engine, 0);
382 intel_ring_emit(engine, 0);
383 intel_ring_advance(engine);
384
385 return 0;
386 }
387
388 static int
389 gen8_render_ring_flush(struct drm_i915_gem_request *req,
390 u32 invalidate_domains, u32 flush_domains)
391 {
392 u32 flags = 0;
393 u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
394 int ret;
395
396 flags |= PIPE_CONTROL_CS_STALL;
397
398 if (flush_domains) {
399 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
400 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
401 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
402 flags |= PIPE_CONTROL_FLUSH_ENABLE;
403 }
404 if (invalidate_domains) {
405 flags |= PIPE_CONTROL_TLB_INVALIDATE;
406 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
407 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
408 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
409 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
410 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
411 flags |= PIPE_CONTROL_QW_WRITE;
412 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
413
414 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
415 ret = gen8_emit_pipe_control(req,
416 PIPE_CONTROL_CS_STALL |
417 PIPE_CONTROL_STALL_AT_SCOREBOARD,
418 0);
419 if (ret)
420 return ret;
421 }
422
423 return gen8_emit_pipe_control(req, flags, scratch_addr);
424 }
425
426 static void ring_write_tail(struct intel_engine_cs *engine,
427 u32 value)
428 {
429 struct drm_i915_private *dev_priv = engine->dev->dev_private;
430 I915_WRITE_TAIL(engine, value);
431 }
432
433 u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
434 {
435 struct drm_i915_private *dev_priv = engine->dev->dev_private;
436 u64 acthd;
437
438 if (INTEL_INFO(engine->dev)->gen >= 8)
439 acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
440 RING_ACTHD_UDW(engine->mmio_base));
441 else if (INTEL_INFO(engine->dev)->gen >= 4)
442 acthd = I915_READ(RING_ACTHD(engine->mmio_base));
443 else
444 acthd = I915_READ(ACTHD);
445
446 return acthd;
447 }
448
449 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
450 {
451 struct drm_i915_private *dev_priv = engine->dev->dev_private;
452 u32 addr;
453
454 addr = dev_priv->status_page_dmah->busaddr;
455 if (INTEL_INFO(engine->dev)->gen >= 4)
456 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
457 I915_WRITE(HWS_PGA, addr);
458 }
459
460 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
461 {
462 struct drm_device *dev = engine->dev;
463 struct drm_i915_private *dev_priv = engine->dev->dev_private;
464 i915_reg_t mmio;
465
466 /* The ring status page addresses are no longer next to the rest of
467 * the ring registers as of gen7.
468 */
469 if (IS_GEN7(dev)) {
470 switch (engine->id) {
471 case RCS:
472 mmio = RENDER_HWS_PGA_GEN7;
473 break;
474 case BCS:
475 mmio = BLT_HWS_PGA_GEN7;
476 break;
477 /*
478 * VCS2 actually doesn't exist on Gen7. Only shut up
479 * gcc switch check warning
480 */
481 case VCS2:
482 case VCS:
483 mmio = BSD_HWS_PGA_GEN7;
484 break;
485 case VECS:
486 mmio = VEBOX_HWS_PGA_GEN7;
487 break;
488 }
489 } else if (IS_GEN6(engine->dev)) {
490 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
491 } else {
492 /* XXX: gen8 returns to sanity */
493 mmio = RING_HWS_PGA(engine->mmio_base);
494 }
495
496 I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
497 POSTING_READ(mmio);
498
499 /*
500 * Flush the TLB for this page
501 *
502 * FIXME: These two bits have disappeared on gen8, so a question
503 * arises: do we still need this and if so how should we go about
504 * invalidating the TLB?
505 */
506 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
507 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
508
509 /* ring should be idle before issuing a sync flush*/
510 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
511
512 I915_WRITE(reg,
513 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
514 INSTPM_SYNC_FLUSH));
515 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
516 1000))
517 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
518 engine->name);
519 }
520 }
521
522 static bool stop_ring(struct intel_engine_cs *engine)
523 {
524 struct drm_i915_private *dev_priv = to_i915(engine->dev);
525
526 if (!IS_GEN2(engine->dev)) {
527 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
528 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
529 DRM_ERROR("%s : timed out trying to stop ring\n",
530 engine->name);
531 /* Sometimes we observe that the idle flag is not
532 * set even though the ring is empty. So double
533 * check before giving up.
534 */
535 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
536 return false;
537 }
538 }
539
540 I915_WRITE_CTL(engine, 0);
541 I915_WRITE_HEAD(engine, 0);
542 engine->write_tail(engine, 0);
543
544 if (!IS_GEN2(engine->dev)) {
545 (void)I915_READ_CTL(engine);
546 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
547 }
548
549 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
550 }
551
552 void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
553 {
554 memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
555 }
556
557 static int init_ring_common(struct intel_engine_cs *engine)
558 {
559 struct drm_device *dev = engine->dev;
560 struct drm_i915_private *dev_priv = dev->dev_private;
561 struct intel_ringbuffer *ringbuf = engine->buffer;
562 struct drm_i915_gem_object *obj = ringbuf->obj;
563 int ret = 0;
564
565 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
566
567 if (!stop_ring(engine)) {
568 /* G45 ring initialization often fails to reset head to zero */
569 DRM_DEBUG_KMS("%s head not reset to zero "
570 "ctl %08x head %08x tail %08x start %08x\n",
571 engine->name,
572 I915_READ_CTL(engine),
573 I915_READ_HEAD(engine),
574 I915_READ_TAIL(engine),
575 I915_READ_START(engine));
576
577 if (!stop_ring(engine)) {
578 DRM_ERROR("failed to set %s head to zero "
579 "ctl %08x head %08x tail %08x start %08x\n",
580 engine->name,
581 I915_READ_CTL(engine),
582 I915_READ_HEAD(engine),
583 I915_READ_TAIL(engine),
584 I915_READ_START(engine));
585 ret = -EIO;
586 goto out;
587 }
588 }
589
590 if (I915_NEED_GFX_HWS(dev))
591 intel_ring_setup_status_page(engine);
592 else
593 ring_setup_phys_status_page(engine);
594
595 /* Enforce ordering by reading HEAD register back */
596 I915_READ_HEAD(engine);
597
598 /* Initialize the ring. This must happen _after_ we've cleared the ring
599 * registers with the above sequence (the readback of the HEAD registers
600 * also enforces ordering), otherwise the hw might lose the new ring
601 * register values. */
602 I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
603
604 /* WaClearRingBufHeadRegAtInit:ctg,elk */
605 if (I915_READ_HEAD(engine))
606 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
607 engine->name, I915_READ_HEAD(engine));
608 I915_WRITE_HEAD(engine, 0);
609 (void)I915_READ_HEAD(engine);
610
611 I915_WRITE_CTL(engine,
612 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
613 | RING_VALID);
614
615 /* If the head is still not zero, the ring is dead */
616 if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
617 I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
618 (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
619 DRM_ERROR("%s initialization failed "
620 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
621 engine->name,
622 I915_READ_CTL(engine),
623 I915_READ_CTL(engine) & RING_VALID,
624 I915_READ_HEAD(engine), I915_READ_TAIL(engine),
625 I915_READ_START(engine),
626 (unsigned long)i915_gem_obj_ggtt_offset(obj));
627 ret = -EIO;
628 goto out;
629 }
630
631 ringbuf->last_retired_head = -1;
632 ringbuf->head = I915_READ_HEAD(engine);
633 ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
634 intel_ring_update_space(ringbuf);
635
636 intel_engine_init_hangcheck(engine);
637
638 out:
639 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
640
641 return ret;
642 }
643
644 void
645 intel_fini_pipe_control(struct intel_engine_cs *engine)
646 {
647 struct drm_device *dev = engine->dev;
648
649 if (engine->scratch.obj == NULL)
650 return;
651
652 if (INTEL_INFO(dev)->gen >= 5) {
653 kunmap(sg_page(engine->scratch.obj->pages->sgl));
654 i915_gem_object_ggtt_unpin(engine->scratch.obj);
655 }
656
657 drm_gem_object_unreference(&engine->scratch.obj->base);
658 engine->scratch.obj = NULL;
659 }
660
661 int
662 intel_init_pipe_control(struct intel_engine_cs *engine)
663 {
664 int ret;
665
666 WARN_ON(engine->scratch.obj);
667
668 engine->scratch.obj = i915_gem_alloc_object(engine->dev, 4096);
669 if (engine->scratch.obj == NULL) {
670 DRM_ERROR("Failed to allocate seqno page\n");
671 ret = -ENOMEM;
672 goto err;
673 }
674
675 ret = i915_gem_object_set_cache_level(engine->scratch.obj,
676 I915_CACHE_LLC);
677 if (ret)
678 goto err_unref;
679
680 ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
681 if (ret)
682 goto err_unref;
683
684 engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
685 engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
686 if (engine->scratch.cpu_page == NULL) {
687 ret = -ENOMEM;
688 goto err_unpin;
689 }
690
691 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
692 engine->name, engine->scratch.gtt_offset);
693 return 0;
694
695 err_unpin:
696 i915_gem_object_ggtt_unpin(engine->scratch.obj);
697 err_unref:
698 drm_gem_object_unreference(&engine->scratch.obj->base);
699 err:
700 return ret;
701 }
702
703 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
704 {
705 int ret, i;
706 struct intel_engine_cs *engine = req->engine;
707 struct drm_device *dev = engine->dev;
708 struct drm_i915_private *dev_priv = dev->dev_private;
709 struct i915_workarounds *w = &dev_priv->workarounds;
710
711 if (w->count == 0)
712 return 0;
713
714 engine->gpu_caches_dirty = true;
715 ret = intel_ring_flush_all_caches(req);
716 if (ret)
717 return ret;
718
719 ret = intel_ring_begin(req, (w->count * 2 + 2));
720 if (ret)
721 return ret;
722
723 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
724 for (i = 0; i < w->count; i++) {
725 intel_ring_emit_reg(engine, w->reg[i].addr);
726 intel_ring_emit(engine, w->reg[i].value);
727 }
728 intel_ring_emit(engine, MI_NOOP);
729
730 intel_ring_advance(engine);
731
732 engine->gpu_caches_dirty = true;
733 ret = intel_ring_flush_all_caches(req);
734 if (ret)
735 return ret;
736
737 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
738
739 return 0;
740 }
741
742 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
743 {
744 int ret;
745
746 ret = intel_ring_workarounds_emit(req);
747 if (ret != 0)
748 return ret;
749
750 ret = i915_gem_render_state_init(req);
751 if (ret)
752 return ret;
753
754 return 0;
755 }
756
757 static int wa_add(struct drm_i915_private *dev_priv,
758 i915_reg_t addr,
759 const u32 mask, const u32 val)
760 {
761 const u32 idx = dev_priv->workarounds.count;
762
763 if (WARN_ON(idx >= I915_MAX_WA_REGS))
764 return -ENOSPC;
765
766 dev_priv->workarounds.reg[idx].addr = addr;
767 dev_priv->workarounds.reg[idx].value = val;
768 dev_priv->workarounds.reg[idx].mask = mask;
769
770 dev_priv->workarounds.count++;
771
772 return 0;
773 }
774
775 #define WA_REG(addr, mask, val) do { \
776 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
777 if (r) \
778 return r; \
779 } while (0)
780
781 #define WA_SET_BIT_MASKED(addr, mask) \
782 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
783
784 #define WA_CLR_BIT_MASKED(addr, mask) \
785 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
786
787 #define WA_SET_FIELD_MASKED(addr, mask, value) \
788 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
789
790 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
791 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
792
793 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
794
795 static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
796 i915_reg_t reg)
797 {
798 struct drm_i915_private *dev_priv = engine->dev->dev_private;
799 struct i915_workarounds *wa = &dev_priv->workarounds;
800 const uint32_t index = wa->hw_whitelist_count[engine->id];
801
802 if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
803 return -EINVAL;
804
805 WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
806 i915_mmio_reg_offset(reg));
807 wa->hw_whitelist_count[engine->id]++;
808
809 return 0;
810 }
811
812 static int gen8_init_workarounds(struct intel_engine_cs *engine)
813 {
814 struct drm_device *dev = engine->dev;
815 struct drm_i915_private *dev_priv = dev->dev_private;
816
817 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
818
819 /* WaDisableAsyncFlipPerfMode:bdw,chv */
820 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
821
822 /* WaDisablePartialInstShootdown:bdw,chv */
823 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
824 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
825
826 /* Use Force Non-Coherent whenever executing a 3D context. This is a
827 * workaround for for a possible hang in the unlikely event a TLB
828 * invalidation occurs during a PSD flush.
829 */
830 /* WaForceEnableNonCoherent:bdw,chv */
831 /* WaHdcDisableFetchWhenMasked:bdw,chv */
832 WA_SET_BIT_MASKED(HDC_CHICKEN0,
833 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
834 HDC_FORCE_NON_COHERENT);
835
836 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
837 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
838 * polygons in the same 8x4 pixel/sample area to be processed without
839 * stalling waiting for the earlier ones to write to Hierarchical Z
840 * buffer."
841 *
842 * This optimization is off by default for BDW and CHV; turn it on.
843 */
844 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
845
846 /* Wa4x4STCOptimizationDisable:bdw,chv */
847 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
848
849 /*
850 * BSpec recommends 8x4 when MSAA is used,
851 * however in practice 16x4 seems fastest.
852 *
853 * Note that PS/WM thread counts depend on the WIZ hashing
854 * disable bit, which we don't touch here, but it's good
855 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
856 */
857 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
858 GEN6_WIZ_HASHING_MASK,
859 GEN6_WIZ_HASHING_16x4);
860
861 return 0;
862 }
863
864 static int bdw_init_workarounds(struct intel_engine_cs *engine)
865 {
866 int ret;
867 struct drm_device *dev = engine->dev;
868 struct drm_i915_private *dev_priv = dev->dev_private;
869
870 ret = gen8_init_workarounds(engine);
871 if (ret)
872 return ret;
873
874 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
875 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
876
877 /* WaDisableDopClockGating:bdw */
878 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
879 DOP_CLOCK_GATING_DISABLE);
880
881 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
882 GEN8_SAMPLER_POWER_BYPASS_DIS);
883
884 WA_SET_BIT_MASKED(HDC_CHICKEN0,
885 /* WaForceContextSaveRestoreNonCoherent:bdw */
886 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
887 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
888 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
889
890 return 0;
891 }
892
893 static int chv_init_workarounds(struct intel_engine_cs *engine)
894 {
895 int ret;
896 struct drm_device *dev = engine->dev;
897 struct drm_i915_private *dev_priv = dev->dev_private;
898
899 ret = gen8_init_workarounds(engine);
900 if (ret)
901 return ret;
902
903 /* WaDisableThreadStallDopClockGating:chv */
904 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
905
906 /* Improve HiZ throughput on CHV. */
907 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
908
909 return 0;
910 }
911
912 static int gen9_init_workarounds(struct intel_engine_cs *engine)
913 {
914 struct drm_device *dev = engine->dev;
915 struct drm_i915_private *dev_priv = dev->dev_private;
916 uint32_t tmp;
917 int ret;
918
919 /* WaEnableLbsSlaRetryTimerDecrement:skl */
920 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
921 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
922
923 /* WaDisableKillLogic:bxt,skl */
924 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
925 ECOCHK_DIS_TLB);
926
927 /* WaClearFlowControlGpgpuContextSave:skl,bxt */
928 /* WaDisablePartialInstShootdown:skl,bxt */
929 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
930 FLOW_CONTROL_ENABLE |
931 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
932
933 /* Syncing dependencies between camera and graphics:skl,bxt */
934 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
935 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
936
937 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
938 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
939 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
940 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
941 GEN9_DG_MIRROR_FIX_ENABLE);
942
943 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
944 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
945 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
946 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
947 GEN9_RHWO_OPTIMIZATION_DISABLE);
948 /*
949 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
950 * but we do that in per ctx batchbuffer as there is an issue
951 * with this register not getting restored on ctx restore
952 */
953 }
954
955 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
956 /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt */
957 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
958 GEN9_ENABLE_YV12_BUGFIX |
959 GEN9_ENABLE_GPGPU_PREEMPTION);
960
961 /* Wa4x4STCOptimizationDisable:skl,bxt */
962 /* WaDisablePartialResolveInVc:skl,bxt */
963 WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
964 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
965
966 /* WaCcsTlbPrefetchDisable:skl,bxt */
967 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
968 GEN9_CCS_TLB_PREFETCH_ENABLE);
969
970 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
971 if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
972 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
973 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
974 PIXEL_MASK_CAMMING_DISABLE);
975
976 /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
977 tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
978 if (IS_SKL_REVID(dev, SKL_REVID_F0, REVID_FOREVER) ||
979 IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
980 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
981 WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
982
983 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
984 if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
985 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
986 GEN8_SAMPLER_POWER_BYPASS_DIS);
987
988 /* WaDisableSTUnitPowerOptimization:skl,bxt */
989 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
990
991 /* WaOCLCoherentLineFlush:skl,bxt */
992 I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
993 GEN8_LQSC_FLUSH_COHERENT_LINES));
994
995 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt */
996 ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
997 if (ret)
998 return ret;
999
1000 /* WaAllowUMDToModifyHDCChicken1:skl,bxt */
1001 ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
1002 if (ret)
1003 return ret;
1004
1005 return 0;
1006 }
1007
1008 static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
1009 {
1010 struct drm_device *dev = engine->dev;
1011 struct drm_i915_private *dev_priv = dev->dev_private;
1012 u8 vals[3] = { 0, 0, 0 };
1013 unsigned int i;
1014
1015 for (i = 0; i < 3; i++) {
1016 u8 ss;
1017
1018 /*
1019 * Only consider slices where one, and only one, subslice has 7
1020 * EUs
1021 */
1022 if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1023 continue;
1024
1025 /*
1026 * subslice_7eu[i] != 0 (because of the check above) and
1027 * ss_max == 4 (maximum number of subslices possible per slice)
1028 *
1029 * -> 0 <= ss <= 3;
1030 */
1031 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1032 vals[i] = 3 - ss;
1033 }
1034
1035 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1036 return 0;
1037
1038 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1039 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1040 GEN9_IZ_HASHING_MASK(2) |
1041 GEN9_IZ_HASHING_MASK(1) |
1042 GEN9_IZ_HASHING_MASK(0),
1043 GEN9_IZ_HASHING(2, vals[2]) |
1044 GEN9_IZ_HASHING(1, vals[1]) |
1045 GEN9_IZ_HASHING(0, vals[0]));
1046
1047 return 0;
1048 }
1049
1050 static int skl_init_workarounds(struct intel_engine_cs *engine)
1051 {
1052 int ret;
1053 struct drm_device *dev = engine->dev;
1054 struct drm_i915_private *dev_priv = dev->dev_private;
1055
1056 ret = gen9_init_workarounds(engine);
1057 if (ret)
1058 return ret;
1059
1060 /*
1061 * Actual WA is to disable percontext preemption granularity control
1062 * until D0 which is the default case so this is equivalent to
1063 * !WaDisablePerCtxtPreemptionGranularityControl:skl
1064 */
1065 if (IS_SKL_REVID(dev, SKL_REVID_E0, REVID_FOREVER)) {
1066 I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1067 _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1068 }
1069
1070 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
1071 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1072 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1073 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1074 }
1075
1076 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1077 * involving this register should also be added to WA batch as required.
1078 */
1079 if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
1080 /* WaDisableLSQCROPERFforOCL:skl */
1081 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1082 GEN8_LQSC_RO_PERF_DIS);
1083
1084 /* WaEnableGapsTsvCreditFix:skl */
1085 if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
1086 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1087 GEN9_GAPS_TSV_CREDIT_DISABLE));
1088 }
1089
1090 /* WaDisablePowerCompilerClockGating:skl */
1091 if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
1092 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1093 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1094
1095 /* This is tied to WaForceContextSaveRestoreNonCoherent */
1096 if (IS_SKL_REVID(dev, 0, REVID_FOREVER)) {
1097 /*
1098 *Use Force Non-Coherent whenever executing a 3D context. This
1099 * is a workaround for a possible hang in the unlikely event
1100 * a TLB invalidation occurs during a PSD flush.
1101 */
1102 /* WaForceEnableNonCoherent:skl */
1103 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1104 HDC_FORCE_NON_COHERENT);
1105
1106 /* WaDisableHDCInvalidation:skl */
1107 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1108 BDW_DISABLE_HDC_INVALIDATION);
1109 }
1110
1111 /* WaBarrierPerformanceFixDisable:skl */
1112 if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
1113 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1114 HDC_FENCE_DEST_SLM_DISABLE |
1115 HDC_BARRIER_PERFORMANCE_DISABLE);
1116
1117 /* WaDisableSbeCacheDispatchPortSharing:skl */
1118 if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
1119 WA_SET_BIT_MASKED(
1120 GEN7_HALF_SLICE_CHICKEN1,
1121 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1122
1123 /* WaDisableLSQCROPERFforOCL:skl */
1124 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1125 if (ret)
1126 return ret;
1127
1128 return skl_tune_iz_hashing(engine);
1129 }
1130
1131 static int bxt_init_workarounds(struct intel_engine_cs *engine)
1132 {
1133 int ret;
1134 struct drm_device *dev = engine->dev;
1135 struct drm_i915_private *dev_priv = dev->dev_private;
1136
1137 ret = gen9_init_workarounds(engine);
1138 if (ret)
1139 return ret;
1140
1141 /* WaStoreMultiplePTEenable:bxt */
1142 /* This is a requirement according to Hardware specification */
1143 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1144 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1145
1146 /* WaSetClckGatingDisableMedia:bxt */
1147 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1148 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1149 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1150 }
1151
1152 /* WaDisableThreadStallDopClockGating:bxt */
1153 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1154 STALL_DOP_GATING_DISABLE);
1155
1156 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1157 if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1158 WA_SET_BIT_MASKED(
1159 GEN7_HALF_SLICE_CHICKEN1,
1160 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1161 }
1162
1163 /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1164 /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1165 /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1166 /* WaDisableLSQCROPERFforOCL:bxt */
1167 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1168 ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1169 if (ret)
1170 return ret;
1171
1172 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1173 if (ret)
1174 return ret;
1175 }
1176
1177 return 0;
1178 }
1179
1180 int init_workarounds_ring(struct intel_engine_cs *engine)
1181 {
1182 struct drm_device *dev = engine->dev;
1183 struct drm_i915_private *dev_priv = dev->dev_private;
1184
1185 WARN_ON(engine->id != RCS);
1186
1187 dev_priv->workarounds.count = 0;
1188 dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1189
1190 if (IS_BROADWELL(dev))
1191 return bdw_init_workarounds(engine);
1192
1193 if (IS_CHERRYVIEW(dev))
1194 return chv_init_workarounds(engine);
1195
1196 if (IS_SKYLAKE(dev))
1197 return skl_init_workarounds(engine);
1198
1199 if (IS_BROXTON(dev))
1200 return bxt_init_workarounds(engine);
1201
1202 return 0;
1203 }
1204
1205 static int init_render_ring(struct intel_engine_cs *engine)
1206 {
1207 struct drm_device *dev = engine->dev;
1208 struct drm_i915_private *dev_priv = dev->dev_private;
1209 int ret = init_ring_common(engine);
1210 if (ret)
1211 return ret;
1212
1213 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1214 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1215 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1216
1217 /* We need to disable the AsyncFlip performance optimisations in order
1218 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1219 * programmed to '1' on all products.
1220 *
1221 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1222 */
1223 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1224 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1225
1226 /* Required for the hardware to program scanline values for waiting */
1227 /* WaEnableFlushTlbInvalidationMode:snb */
1228 if (INTEL_INFO(dev)->gen == 6)
1229 I915_WRITE(GFX_MODE,
1230 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1231
1232 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1233 if (IS_GEN7(dev))
1234 I915_WRITE(GFX_MODE_GEN7,
1235 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1236 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1237
1238 if (IS_GEN6(dev)) {
1239 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1240 * "If this bit is set, STCunit will have LRA as replacement
1241 * policy. [...] This bit must be reset. LRA replacement
1242 * policy is not supported."
1243 */
1244 I915_WRITE(CACHE_MODE_0,
1245 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1246 }
1247
1248 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1249 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1250
1251 if (HAS_L3_DPF(dev))
1252 I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
1253
1254 return init_workarounds_ring(engine);
1255 }
1256
1257 static void render_ring_cleanup(struct intel_engine_cs *engine)
1258 {
1259 struct drm_device *dev = engine->dev;
1260 struct drm_i915_private *dev_priv = dev->dev_private;
1261
1262 if (dev_priv->semaphore_obj) {
1263 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1264 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1265 dev_priv->semaphore_obj = NULL;
1266 }
1267
1268 intel_fini_pipe_control(engine);
1269 }
1270
1271 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1272 unsigned int num_dwords)
1273 {
1274 #define MBOX_UPDATE_DWORDS 8
1275 struct intel_engine_cs *signaller = signaller_req->engine;
1276 struct drm_device *dev = signaller->dev;
1277 struct drm_i915_private *dev_priv = dev->dev_private;
1278 struct intel_engine_cs *waiter;
1279 enum intel_engine_id id;
1280 int ret, num_rings;
1281
1282 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1283 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1284 #undef MBOX_UPDATE_DWORDS
1285
1286 ret = intel_ring_begin(signaller_req, num_dwords);
1287 if (ret)
1288 return ret;
1289
1290 for_each_engine_id(waiter, dev_priv, id) {
1291 u32 seqno;
1292 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1293 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1294 continue;
1295
1296 seqno = i915_gem_request_get_seqno(signaller_req);
1297 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1298 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1299 PIPE_CONTROL_QW_WRITE |
1300 PIPE_CONTROL_FLUSH_ENABLE);
1301 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1302 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1303 intel_ring_emit(signaller, seqno);
1304 intel_ring_emit(signaller, 0);
1305 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1306 MI_SEMAPHORE_TARGET(waiter->hw_id));
1307 intel_ring_emit(signaller, 0);
1308 }
1309
1310 return 0;
1311 }
1312
1313 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1314 unsigned int num_dwords)
1315 {
1316 #define MBOX_UPDATE_DWORDS 6
1317 struct intel_engine_cs *signaller = signaller_req->engine;
1318 struct drm_device *dev = signaller->dev;
1319 struct drm_i915_private *dev_priv = dev->dev_private;
1320 struct intel_engine_cs *waiter;
1321 enum intel_engine_id id;
1322 int ret, num_rings;
1323
1324 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1325 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1326 #undef MBOX_UPDATE_DWORDS
1327
1328 ret = intel_ring_begin(signaller_req, num_dwords);
1329 if (ret)
1330 return ret;
1331
1332 for_each_engine_id(waiter, dev_priv, id) {
1333 u32 seqno;
1334 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1335 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1336 continue;
1337
1338 seqno = i915_gem_request_get_seqno(signaller_req);
1339 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1340 MI_FLUSH_DW_OP_STOREDW);
1341 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1342 MI_FLUSH_DW_USE_GTT);
1343 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1344 intel_ring_emit(signaller, seqno);
1345 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1346 MI_SEMAPHORE_TARGET(waiter->hw_id));
1347 intel_ring_emit(signaller, 0);
1348 }
1349
1350 return 0;
1351 }
1352
1353 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1354 unsigned int num_dwords)
1355 {
1356 struct intel_engine_cs *signaller = signaller_req->engine;
1357 struct drm_device *dev = signaller->dev;
1358 struct drm_i915_private *dev_priv = dev->dev_private;
1359 struct intel_engine_cs *useless;
1360 enum intel_engine_id id;
1361 int ret, num_rings;
1362
1363 #define MBOX_UPDATE_DWORDS 3
1364 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1365 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1366 #undef MBOX_UPDATE_DWORDS
1367
1368 ret = intel_ring_begin(signaller_req, num_dwords);
1369 if (ret)
1370 return ret;
1371
1372 for_each_engine_id(useless, dev_priv, id) {
1373 i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
1374
1375 if (i915_mmio_reg_valid(mbox_reg)) {
1376 u32 seqno = i915_gem_request_get_seqno(signaller_req);
1377
1378 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1379 intel_ring_emit_reg(signaller, mbox_reg);
1380 intel_ring_emit(signaller, seqno);
1381 }
1382 }
1383
1384 /* If num_dwords was rounded, make sure the tail pointer is correct */
1385 if (num_rings % 2 == 0)
1386 intel_ring_emit(signaller, MI_NOOP);
1387
1388 return 0;
1389 }
1390
1391 /**
1392 * gen6_add_request - Update the semaphore mailbox registers
1393 *
1394 * @request - request to write to the ring
1395 *
1396 * Update the mailbox registers in the *other* rings with the current seqno.
1397 * This acts like a signal in the canonical semaphore.
1398 */
1399 static int
1400 gen6_add_request(struct drm_i915_gem_request *req)
1401 {
1402 struct intel_engine_cs *engine = req->engine;
1403 int ret;
1404
1405 if (engine->semaphore.signal)
1406 ret = engine->semaphore.signal(req, 4);
1407 else
1408 ret = intel_ring_begin(req, 4);
1409
1410 if (ret)
1411 return ret;
1412
1413 intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1414 intel_ring_emit(engine,
1415 I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1416 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1417 intel_ring_emit(engine, MI_USER_INTERRUPT);
1418 __intel_ring_advance(engine);
1419
1420 return 0;
1421 }
1422
1423 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1424 u32 seqno)
1425 {
1426 struct drm_i915_private *dev_priv = dev->dev_private;
1427 return dev_priv->last_seqno < seqno;
1428 }
1429
1430 /**
1431 * intel_ring_sync - sync the waiter to the signaller on seqno
1432 *
1433 * @waiter - ring that is waiting
1434 * @signaller - ring which has, or will signal
1435 * @seqno - seqno which the waiter will block on
1436 */
1437
1438 static int
1439 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1440 struct intel_engine_cs *signaller,
1441 u32 seqno)
1442 {
1443 struct intel_engine_cs *waiter = waiter_req->engine;
1444 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1445 int ret;
1446
1447 ret = intel_ring_begin(waiter_req, 4);
1448 if (ret)
1449 return ret;
1450
1451 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1452 MI_SEMAPHORE_GLOBAL_GTT |
1453 MI_SEMAPHORE_POLL |
1454 MI_SEMAPHORE_SAD_GTE_SDD);
1455 intel_ring_emit(waiter, seqno);
1456 intel_ring_emit(waiter,
1457 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1458 intel_ring_emit(waiter,
1459 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1460 intel_ring_advance(waiter);
1461 return 0;
1462 }
1463
1464 static int
1465 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1466 struct intel_engine_cs *signaller,
1467 u32 seqno)
1468 {
1469 struct intel_engine_cs *waiter = waiter_req->engine;
1470 u32 dw1 = MI_SEMAPHORE_MBOX |
1471 MI_SEMAPHORE_COMPARE |
1472 MI_SEMAPHORE_REGISTER;
1473 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1474 int ret;
1475
1476 /* Throughout all of the GEM code, seqno passed implies our current
1477 * seqno is >= the last seqno executed. However for hardware the
1478 * comparison is strictly greater than.
1479 */
1480 seqno -= 1;
1481
1482 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1483
1484 ret = intel_ring_begin(waiter_req, 4);
1485 if (ret)
1486 return ret;
1487
1488 /* If seqno wrap happened, omit the wait with no-ops */
1489 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1490 intel_ring_emit(waiter, dw1 | wait_mbox);
1491 intel_ring_emit(waiter, seqno);
1492 intel_ring_emit(waiter, 0);
1493 intel_ring_emit(waiter, MI_NOOP);
1494 } else {
1495 intel_ring_emit(waiter, MI_NOOP);
1496 intel_ring_emit(waiter, MI_NOOP);
1497 intel_ring_emit(waiter, MI_NOOP);
1498 intel_ring_emit(waiter, MI_NOOP);
1499 }
1500 intel_ring_advance(waiter);
1501
1502 return 0;
1503 }
1504
1505 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1506 do { \
1507 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1508 PIPE_CONTROL_DEPTH_STALL); \
1509 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1510 intel_ring_emit(ring__, 0); \
1511 intel_ring_emit(ring__, 0); \
1512 } while (0)
1513
1514 static int
1515 pc_render_add_request(struct drm_i915_gem_request *req)
1516 {
1517 struct intel_engine_cs *engine = req->engine;
1518 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1519 int ret;
1520
1521 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1522 * incoherent with writes to memory, i.e. completely fubar,
1523 * so we need to use PIPE_NOTIFY instead.
1524 *
1525 * However, we also need to workaround the qword write
1526 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1527 * memory before requesting an interrupt.
1528 */
1529 ret = intel_ring_begin(req, 32);
1530 if (ret)
1531 return ret;
1532
1533 intel_ring_emit(engine,
1534 GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1535 PIPE_CONTROL_WRITE_FLUSH |
1536 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1537 intel_ring_emit(engine,
1538 engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1539 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1540 intel_ring_emit(engine, 0);
1541 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1542 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1543 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1544 scratch_addr += 2 * CACHELINE_BYTES;
1545 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1546 scratch_addr += 2 * CACHELINE_BYTES;
1547 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1548 scratch_addr += 2 * CACHELINE_BYTES;
1549 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1550 scratch_addr += 2 * CACHELINE_BYTES;
1551 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1552
1553 intel_ring_emit(engine,
1554 GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1555 PIPE_CONTROL_WRITE_FLUSH |
1556 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1557 PIPE_CONTROL_NOTIFY);
1558 intel_ring_emit(engine,
1559 engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1560 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1561 intel_ring_emit(engine, 0);
1562 __intel_ring_advance(engine);
1563
1564 return 0;
1565 }
1566
1567 static void
1568 gen6_seqno_barrier(struct intel_engine_cs *engine)
1569 {
1570 struct drm_i915_private *dev_priv = engine->dev->dev_private;
1571
1572 /* Workaround to force correct ordering between irq and seqno writes on
1573 * ivb (and maybe also on snb) by reading from a CS register (like
1574 * ACTHD) before reading the status page.
1575 *
1576 * Note that this effectively stalls the read by the time it takes to
1577 * do a memory transaction, which more or less ensures that the write
1578 * from the GPU has sufficient time to invalidate the CPU cacheline.
1579 * Alternatively we could delay the interrupt from the CS ring to give
1580 * the write time to land, but that would incur a delay after every
1581 * batch i.e. much more frequent than a delay when waiting for the
1582 * interrupt (with the same net latency).
1583 *
1584 * Also note that to prevent whole machine hangs on gen7, we have to
1585 * take the spinlock to guard against concurrent cacheline access.
1586 */
1587 spin_lock_irq(&dev_priv->uncore.lock);
1588 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1589 spin_unlock_irq(&dev_priv->uncore.lock);
1590 }
1591
1592 static u32
1593 ring_get_seqno(struct intel_engine_cs *engine)
1594 {
1595 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1596 }
1597
1598 static void
1599 ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1600 {
1601 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1602 }
1603
1604 static u32
1605 pc_render_get_seqno(struct intel_engine_cs *engine)
1606 {
1607 return engine->scratch.cpu_page[0];
1608 }
1609
1610 static void
1611 pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1612 {
1613 engine->scratch.cpu_page[0] = seqno;
1614 }
1615
1616 static bool
1617 gen5_ring_get_irq(struct intel_engine_cs *engine)
1618 {
1619 struct drm_device *dev = engine->dev;
1620 struct drm_i915_private *dev_priv = dev->dev_private;
1621 unsigned long flags;
1622
1623 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1624 return false;
1625
1626 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1627 if (engine->irq_refcount++ == 0)
1628 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1629 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1630
1631 return true;
1632 }
1633
1634 static void
1635 gen5_ring_put_irq(struct intel_engine_cs *engine)
1636 {
1637 struct drm_device *dev = engine->dev;
1638 struct drm_i915_private *dev_priv = dev->dev_private;
1639 unsigned long flags;
1640
1641 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1642 if (--engine->irq_refcount == 0)
1643 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1644 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1645 }
1646
1647 static bool
1648 i9xx_ring_get_irq(struct intel_engine_cs *engine)
1649 {
1650 struct drm_device *dev = engine->dev;
1651 struct drm_i915_private *dev_priv = dev->dev_private;
1652 unsigned long flags;
1653
1654 if (!intel_irqs_enabled(dev_priv))
1655 return false;
1656
1657 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1658 if (engine->irq_refcount++ == 0) {
1659 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1660 I915_WRITE(IMR, dev_priv->irq_mask);
1661 POSTING_READ(IMR);
1662 }
1663 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1664
1665 return true;
1666 }
1667
1668 static void
1669 i9xx_ring_put_irq(struct intel_engine_cs *engine)
1670 {
1671 struct drm_device *dev = engine->dev;
1672 struct drm_i915_private *dev_priv = dev->dev_private;
1673 unsigned long flags;
1674
1675 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1676 if (--engine->irq_refcount == 0) {
1677 dev_priv->irq_mask |= engine->irq_enable_mask;
1678 I915_WRITE(IMR, dev_priv->irq_mask);
1679 POSTING_READ(IMR);
1680 }
1681 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1682 }
1683
1684 static bool
1685 i8xx_ring_get_irq(struct intel_engine_cs *engine)
1686 {
1687 struct drm_device *dev = engine->dev;
1688 struct drm_i915_private *dev_priv = dev->dev_private;
1689 unsigned long flags;
1690
1691 if (!intel_irqs_enabled(dev_priv))
1692 return false;
1693
1694 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1695 if (engine->irq_refcount++ == 0) {
1696 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1697 I915_WRITE16(IMR, dev_priv->irq_mask);
1698 POSTING_READ16(IMR);
1699 }
1700 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1701
1702 return true;
1703 }
1704
1705 static void
1706 i8xx_ring_put_irq(struct intel_engine_cs *engine)
1707 {
1708 struct drm_device *dev = engine->dev;
1709 struct drm_i915_private *dev_priv = dev->dev_private;
1710 unsigned long flags;
1711
1712 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1713 if (--engine->irq_refcount == 0) {
1714 dev_priv->irq_mask |= engine->irq_enable_mask;
1715 I915_WRITE16(IMR, dev_priv->irq_mask);
1716 POSTING_READ16(IMR);
1717 }
1718 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1719 }
1720
1721 static int
1722 bsd_ring_flush(struct drm_i915_gem_request *req,
1723 u32 invalidate_domains,
1724 u32 flush_domains)
1725 {
1726 struct intel_engine_cs *engine = req->engine;
1727 int ret;
1728
1729 ret = intel_ring_begin(req, 2);
1730 if (ret)
1731 return ret;
1732
1733 intel_ring_emit(engine, MI_FLUSH);
1734 intel_ring_emit(engine, MI_NOOP);
1735 intel_ring_advance(engine);
1736 return 0;
1737 }
1738
1739 static int
1740 i9xx_add_request(struct drm_i915_gem_request *req)
1741 {
1742 struct intel_engine_cs *engine = req->engine;
1743 int ret;
1744
1745 ret = intel_ring_begin(req, 4);
1746 if (ret)
1747 return ret;
1748
1749 intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1750 intel_ring_emit(engine,
1751 I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1752 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1753 intel_ring_emit(engine, MI_USER_INTERRUPT);
1754 __intel_ring_advance(engine);
1755
1756 return 0;
1757 }
1758
1759 static bool
1760 gen6_ring_get_irq(struct intel_engine_cs *engine)
1761 {
1762 struct drm_device *dev = engine->dev;
1763 struct drm_i915_private *dev_priv = dev->dev_private;
1764 unsigned long flags;
1765
1766 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1767 return false;
1768
1769 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1770 if (engine->irq_refcount++ == 0) {
1771 if (HAS_L3_DPF(dev) && engine->id == RCS)
1772 I915_WRITE_IMR(engine,
1773 ~(engine->irq_enable_mask |
1774 GT_PARITY_ERROR(dev)));
1775 else
1776 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1777 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1778 }
1779 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1780
1781 return true;
1782 }
1783
1784 static void
1785 gen6_ring_put_irq(struct intel_engine_cs *engine)
1786 {
1787 struct drm_device *dev = engine->dev;
1788 struct drm_i915_private *dev_priv = dev->dev_private;
1789 unsigned long flags;
1790
1791 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1792 if (--engine->irq_refcount == 0) {
1793 if (HAS_L3_DPF(dev) && engine->id == RCS)
1794 I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
1795 else
1796 I915_WRITE_IMR(engine, ~0);
1797 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1798 }
1799 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1800 }
1801
1802 static bool
1803 hsw_vebox_get_irq(struct intel_engine_cs *engine)
1804 {
1805 struct drm_device *dev = engine->dev;
1806 struct drm_i915_private *dev_priv = dev->dev_private;
1807 unsigned long flags;
1808
1809 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1810 return false;
1811
1812 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1813 if (engine->irq_refcount++ == 0) {
1814 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1815 gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
1816 }
1817 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1818
1819 return true;
1820 }
1821
1822 static void
1823 hsw_vebox_put_irq(struct intel_engine_cs *engine)
1824 {
1825 struct drm_device *dev = engine->dev;
1826 struct drm_i915_private *dev_priv = dev->dev_private;
1827 unsigned long flags;
1828
1829 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1830 if (--engine->irq_refcount == 0) {
1831 I915_WRITE_IMR(engine, ~0);
1832 gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
1833 }
1834 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1835 }
1836
1837 static bool
1838 gen8_ring_get_irq(struct intel_engine_cs *engine)
1839 {
1840 struct drm_device *dev = engine->dev;
1841 struct drm_i915_private *dev_priv = dev->dev_private;
1842 unsigned long flags;
1843
1844 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1845 return false;
1846
1847 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1848 if (engine->irq_refcount++ == 0) {
1849 if (HAS_L3_DPF(dev) && engine->id == RCS) {
1850 I915_WRITE_IMR(engine,
1851 ~(engine->irq_enable_mask |
1852 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1853 } else {
1854 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1855 }
1856 POSTING_READ(RING_IMR(engine->mmio_base));
1857 }
1858 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1859
1860 return true;
1861 }
1862
1863 static void
1864 gen8_ring_put_irq(struct intel_engine_cs *engine)
1865 {
1866 struct drm_device *dev = engine->dev;
1867 struct drm_i915_private *dev_priv = dev->dev_private;
1868 unsigned long flags;
1869
1870 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1871 if (--engine->irq_refcount == 0) {
1872 if (HAS_L3_DPF(dev) && engine->id == RCS) {
1873 I915_WRITE_IMR(engine,
1874 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1875 } else {
1876 I915_WRITE_IMR(engine, ~0);
1877 }
1878 POSTING_READ(RING_IMR(engine->mmio_base));
1879 }
1880 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1881 }
1882
1883 static int
1884 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1885 u64 offset, u32 length,
1886 unsigned dispatch_flags)
1887 {
1888 struct intel_engine_cs *engine = req->engine;
1889 int ret;
1890
1891 ret = intel_ring_begin(req, 2);
1892 if (ret)
1893 return ret;
1894
1895 intel_ring_emit(engine,
1896 MI_BATCH_BUFFER_START |
1897 MI_BATCH_GTT |
1898 (dispatch_flags & I915_DISPATCH_SECURE ?
1899 0 : MI_BATCH_NON_SECURE_I965));
1900 intel_ring_emit(engine, offset);
1901 intel_ring_advance(engine);
1902
1903 return 0;
1904 }
1905
1906 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1907 #define I830_BATCH_LIMIT (256*1024)
1908 #define I830_TLB_ENTRIES (2)
1909 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1910 static int
1911 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1912 u64 offset, u32 len,
1913 unsigned dispatch_flags)
1914 {
1915 struct intel_engine_cs *engine = req->engine;
1916 u32 cs_offset = engine->scratch.gtt_offset;
1917 int ret;
1918
1919 ret = intel_ring_begin(req, 6);
1920 if (ret)
1921 return ret;
1922
1923 /* Evict the invalid PTE TLBs */
1924 intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1925 intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1926 intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1927 intel_ring_emit(engine, cs_offset);
1928 intel_ring_emit(engine, 0xdeadbeef);
1929 intel_ring_emit(engine, MI_NOOP);
1930 intel_ring_advance(engine);
1931
1932 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1933 if (len > I830_BATCH_LIMIT)
1934 return -ENOSPC;
1935
1936 ret = intel_ring_begin(req, 6 + 2);
1937 if (ret)
1938 return ret;
1939
1940 /* Blit the batch (which has now all relocs applied) to the
1941 * stable batch scratch bo area (so that the CS never
1942 * stumbles over its tlb invalidation bug) ...
1943 */
1944 intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1945 intel_ring_emit(engine,
1946 BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1947 intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1948 intel_ring_emit(engine, cs_offset);
1949 intel_ring_emit(engine, 4096);
1950 intel_ring_emit(engine, offset);
1951
1952 intel_ring_emit(engine, MI_FLUSH);
1953 intel_ring_emit(engine, MI_NOOP);
1954 intel_ring_advance(engine);
1955
1956 /* ... and execute it. */
1957 offset = cs_offset;
1958 }
1959
1960 ret = intel_ring_begin(req, 2);
1961 if (ret)
1962 return ret;
1963
1964 intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1965 intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1966 0 : MI_BATCH_NON_SECURE));
1967 intel_ring_advance(engine);
1968
1969 return 0;
1970 }
1971
1972 static int
1973 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1974 u64 offset, u32 len,
1975 unsigned dispatch_flags)
1976 {
1977 struct intel_engine_cs *engine = req->engine;
1978 int ret;
1979
1980 ret = intel_ring_begin(req, 2);
1981 if (ret)
1982 return ret;
1983
1984 intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1985 intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1986 0 : MI_BATCH_NON_SECURE));
1987 intel_ring_advance(engine);
1988
1989 return 0;
1990 }
1991
1992 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1993 {
1994 struct drm_i915_private *dev_priv = to_i915(engine->dev);
1995
1996 if (!dev_priv->status_page_dmah)
1997 return;
1998
1999 drm_pci_free(engine->dev, dev_priv->status_page_dmah);
2000 engine->status_page.page_addr = NULL;
2001 }
2002
2003 static void cleanup_status_page(struct intel_engine_cs *engine)
2004 {
2005 struct drm_i915_gem_object *obj;
2006
2007 obj = engine->status_page.obj;
2008 if (obj == NULL)
2009 return;
2010
2011 kunmap(sg_page(obj->pages->sgl));
2012 i915_gem_object_ggtt_unpin(obj);
2013 drm_gem_object_unreference(&obj->base);
2014 engine->status_page.obj = NULL;
2015 }
2016
2017 static int init_status_page(struct intel_engine_cs *engine)
2018 {
2019 struct drm_i915_gem_object *obj = engine->status_page.obj;
2020
2021 if (obj == NULL) {
2022 unsigned flags;
2023 int ret;
2024
2025 obj = i915_gem_alloc_object(engine->dev, 4096);
2026 if (obj == NULL) {
2027 DRM_ERROR("Failed to allocate status page\n");
2028 return -ENOMEM;
2029 }
2030
2031 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2032 if (ret)
2033 goto err_unref;
2034
2035 flags = 0;
2036 if (!HAS_LLC(engine->dev))
2037 /* On g33, we cannot place HWS above 256MiB, so
2038 * restrict its pinning to the low mappable arena.
2039 * Though this restriction is not documented for
2040 * gen4, gen5, or byt, they also behave similarly
2041 * and hang if the HWS is placed at the top of the
2042 * GTT. To generalise, it appears that all !llc
2043 * platforms have issues with us placing the HWS
2044 * above the mappable region (even though we never
2045 * actualy map it).
2046 */
2047 flags |= PIN_MAPPABLE;
2048 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
2049 if (ret) {
2050 err_unref:
2051 drm_gem_object_unreference(&obj->base);
2052 return ret;
2053 }
2054
2055 engine->status_page.obj = obj;
2056 }
2057
2058 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
2059 engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
2060 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2061
2062 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2063 engine->name, engine->status_page.gfx_addr);
2064
2065 return 0;
2066 }
2067
2068 static int init_phys_status_page(struct intel_engine_cs *engine)
2069 {
2070 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2071
2072 if (!dev_priv->status_page_dmah) {
2073 dev_priv->status_page_dmah =
2074 drm_pci_alloc(engine->dev, PAGE_SIZE, PAGE_SIZE);
2075 if (!dev_priv->status_page_dmah)
2076 return -ENOMEM;
2077 }
2078
2079 engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2080 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2081
2082 return 0;
2083 }
2084
2085 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2086 {
2087 if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2088 i915_gem_object_unpin_map(ringbuf->obj);
2089 else
2090 iounmap(ringbuf->virtual_start);
2091 ringbuf->virtual_start = NULL;
2092 ringbuf->vma = NULL;
2093 i915_gem_object_ggtt_unpin(ringbuf->obj);
2094 }
2095
2096 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
2097 struct intel_ringbuffer *ringbuf)
2098 {
2099 struct drm_i915_private *dev_priv = to_i915(dev);
2100 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2101 struct drm_i915_gem_object *obj = ringbuf->obj;
2102 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2103 unsigned flags = PIN_OFFSET_BIAS | 4096;
2104 void *addr;
2105 int ret;
2106
2107 if (HAS_LLC(dev_priv) && !obj->stolen) {
2108 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
2109 if (ret)
2110 return ret;
2111
2112 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2113 if (ret)
2114 goto err_unpin;
2115
2116 addr = i915_gem_object_pin_map(obj);
2117 if (IS_ERR(addr)) {
2118 ret = PTR_ERR(addr);
2119 goto err_unpin;
2120 }
2121 } else {
2122 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
2123 flags | PIN_MAPPABLE);
2124 if (ret)
2125 return ret;
2126
2127 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2128 if (ret)
2129 goto err_unpin;
2130
2131 /* Access through the GTT requires the device to be awake. */
2132 assert_rpm_wakelock_held(dev_priv);
2133
2134 addr = ioremap_wc(ggtt->mappable_base +
2135 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2136 if (addr == NULL) {
2137 ret = -ENOMEM;
2138 goto err_unpin;
2139 }
2140 }
2141
2142 ringbuf->virtual_start = addr;
2143 ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2144 return 0;
2145
2146 err_unpin:
2147 i915_gem_object_ggtt_unpin(obj);
2148 return ret;
2149 }
2150
2151 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2152 {
2153 drm_gem_object_unreference(&ringbuf->obj->base);
2154 ringbuf->obj = NULL;
2155 }
2156
2157 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2158 struct intel_ringbuffer *ringbuf)
2159 {
2160 struct drm_i915_gem_object *obj;
2161
2162 obj = NULL;
2163 if (!HAS_LLC(dev))
2164 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2165 if (obj == NULL)
2166 obj = i915_gem_alloc_object(dev, ringbuf->size);
2167 if (obj == NULL)
2168 return -ENOMEM;
2169
2170 /* mark ring buffers as read-only from GPU side by default */
2171 obj->gt_ro = 1;
2172
2173 ringbuf->obj = obj;
2174
2175 return 0;
2176 }
2177
2178 struct intel_ringbuffer *
2179 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2180 {
2181 struct intel_ringbuffer *ring;
2182 int ret;
2183
2184 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2185 if (ring == NULL) {
2186 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2187 engine->name);
2188 return ERR_PTR(-ENOMEM);
2189 }
2190
2191 ring->engine = engine;
2192 list_add(&ring->link, &engine->buffers);
2193
2194 ring->size = size;
2195 /* Workaround an erratum on the i830 which causes a hang if
2196 * the TAIL pointer points to within the last 2 cachelines
2197 * of the buffer.
2198 */
2199 ring->effective_size = size;
2200 if (IS_I830(engine->dev) || IS_845G(engine->dev))
2201 ring->effective_size -= 2 * CACHELINE_BYTES;
2202
2203 ring->last_retired_head = -1;
2204 intel_ring_update_space(ring);
2205
2206 ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2207 if (ret) {
2208 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2209 engine->name, ret);
2210 list_del(&ring->link);
2211 kfree(ring);
2212 return ERR_PTR(ret);
2213 }
2214
2215 return ring;
2216 }
2217
2218 void
2219 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2220 {
2221 intel_destroy_ringbuffer_obj(ring);
2222 list_del(&ring->link);
2223 kfree(ring);
2224 }
2225
2226 static int intel_init_ring_buffer(struct drm_device *dev,
2227 struct intel_engine_cs *engine)
2228 {
2229 struct intel_ringbuffer *ringbuf;
2230 int ret;
2231
2232 WARN_ON(engine->buffer);
2233
2234 engine->dev = dev;
2235 INIT_LIST_HEAD(&engine->active_list);
2236 INIT_LIST_HEAD(&engine->request_list);
2237 INIT_LIST_HEAD(&engine->execlist_queue);
2238 INIT_LIST_HEAD(&engine->buffers);
2239 i915_gem_batch_pool_init(dev, &engine->batch_pool);
2240 memset(engine->semaphore.sync_seqno, 0,
2241 sizeof(engine->semaphore.sync_seqno));
2242
2243 init_waitqueue_head(&engine->irq_queue);
2244
2245 ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
2246 if (IS_ERR(ringbuf)) {
2247 ret = PTR_ERR(ringbuf);
2248 goto error;
2249 }
2250 engine->buffer = ringbuf;
2251
2252 if (I915_NEED_GFX_HWS(dev)) {
2253 ret = init_status_page(engine);
2254 if (ret)
2255 goto error;
2256 } else {
2257 WARN_ON(engine->id != RCS);
2258 ret = init_phys_status_page(engine);
2259 if (ret)
2260 goto error;
2261 }
2262
2263 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2264 if (ret) {
2265 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2266 engine->name, ret);
2267 intel_destroy_ringbuffer_obj(ringbuf);
2268 goto error;
2269 }
2270
2271 ret = i915_cmd_parser_init_ring(engine);
2272 if (ret)
2273 goto error;
2274
2275 return 0;
2276
2277 error:
2278 intel_cleanup_engine(engine);
2279 return ret;
2280 }
2281
2282 void intel_cleanup_engine(struct intel_engine_cs *engine)
2283 {
2284 struct drm_i915_private *dev_priv;
2285
2286 if (!intel_engine_initialized(engine))
2287 return;
2288
2289 dev_priv = to_i915(engine->dev);
2290
2291 if (engine->buffer) {
2292 intel_stop_engine(engine);
2293 WARN_ON(!IS_GEN2(engine->dev) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2294
2295 intel_unpin_ringbuffer_obj(engine->buffer);
2296 intel_ringbuffer_free(engine->buffer);
2297 engine->buffer = NULL;
2298 }
2299
2300 if (engine->cleanup)
2301 engine->cleanup(engine);
2302
2303 if (I915_NEED_GFX_HWS(engine->dev)) {
2304 cleanup_status_page(engine);
2305 } else {
2306 WARN_ON(engine->id != RCS);
2307 cleanup_phys_status_page(engine);
2308 }
2309
2310 i915_cmd_parser_fini_ring(engine);
2311 i915_gem_batch_pool_fini(&engine->batch_pool);
2312 engine->dev = NULL;
2313 }
2314
2315 int intel_engine_idle(struct intel_engine_cs *engine)
2316 {
2317 struct drm_i915_gem_request *req;
2318
2319 /* Wait upon the last request to be completed */
2320 if (list_empty(&engine->request_list))
2321 return 0;
2322
2323 req = list_entry(engine->request_list.prev,
2324 struct drm_i915_gem_request,
2325 list);
2326
2327 /* Make sure we do not trigger any retires */
2328 return __i915_wait_request(req,
2329 req->i915->mm.interruptible,
2330 NULL, NULL);
2331 }
2332
2333 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2334 {
2335 request->ringbuf = request->engine->buffer;
2336 return 0;
2337 }
2338
2339 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2340 {
2341 /*
2342 * The first call merely notes the reserve request and is common for
2343 * all back ends. The subsequent localised _begin() call actually
2344 * ensures that the reservation is available. Without the begin, if
2345 * the request creator immediately submitted the request without
2346 * adding any commands to it then there might not actually be
2347 * sufficient room for the submission commands.
2348 */
2349 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2350
2351 return intel_ring_begin(request, 0);
2352 }
2353
2354 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2355 {
2356 GEM_BUG_ON(ringbuf->reserved_size);
2357 ringbuf->reserved_size = size;
2358 }
2359
2360 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2361 {
2362 GEM_BUG_ON(!ringbuf->reserved_size);
2363 ringbuf->reserved_size = 0;
2364 }
2365
2366 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2367 {
2368 GEM_BUG_ON(!ringbuf->reserved_size);
2369 ringbuf->reserved_size = 0;
2370 }
2371
2372 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2373 {
2374 GEM_BUG_ON(ringbuf->reserved_size);
2375 }
2376
2377 static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
2378 {
2379 struct intel_ringbuffer *ringbuf = req->ringbuf;
2380 struct intel_engine_cs *engine = req->engine;
2381 struct drm_i915_gem_request *target;
2382
2383 intel_ring_update_space(ringbuf);
2384 if (ringbuf->space >= bytes)
2385 return 0;
2386
2387 /*
2388 * Space is reserved in the ringbuffer for finalising the request,
2389 * as that cannot be allowed to fail. During request finalisation,
2390 * reserved_space is set to 0 to stop the overallocation and the
2391 * assumption is that then we never need to wait (which has the
2392 * risk of failing with EINTR).
2393 *
2394 * See also i915_gem_request_alloc() and i915_add_request().
2395 */
2396 GEM_BUG_ON(!ringbuf->reserved_size);
2397
2398 list_for_each_entry(target, &engine->request_list, list) {
2399 unsigned space;
2400
2401 /*
2402 * The request queue is per-engine, so can contain requests
2403 * from multiple ringbuffers. Here, we must ignore any that
2404 * aren't from the ringbuffer we're considering.
2405 */
2406 if (target->ringbuf != ringbuf)
2407 continue;
2408
2409 /* Would completion of this request free enough space? */
2410 space = __intel_ring_space(target->postfix, ringbuf->tail,
2411 ringbuf->size);
2412 if (space >= bytes)
2413 break;
2414 }
2415
2416 if (WARN_ON(&target->list == &engine->request_list))
2417 return -ENOSPC;
2418
2419 return i915_wait_request(target);
2420 }
2421
2422 int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
2423 {
2424 struct intel_ringbuffer *ringbuf = req->ringbuf;
2425 int remain_actual = ringbuf->size - ringbuf->tail;
2426 int remain_usable = ringbuf->effective_size - ringbuf->tail;
2427 int bytes = num_dwords * sizeof(u32);
2428 int total_bytes, wait_bytes;
2429 bool need_wrap = false;
2430
2431 total_bytes = bytes + ringbuf->reserved_size;
2432
2433 if (unlikely(bytes > remain_usable)) {
2434 /*
2435 * Not enough space for the basic request. So need to flush
2436 * out the remainder and then wait for base + reserved.
2437 */
2438 wait_bytes = remain_actual + total_bytes;
2439 need_wrap = true;
2440 } else if (unlikely(total_bytes > remain_usable)) {
2441 /*
2442 * The base request will fit but the reserved space
2443 * falls off the end. So we don't need an immediate wrap
2444 * and only need to effectively wait for the reserved
2445 * size space from the start of ringbuffer.
2446 */
2447 wait_bytes = remain_actual + ringbuf->reserved_size;
2448 } else {
2449 /* No wrapping required, just waiting. */
2450 wait_bytes = total_bytes;
2451 }
2452
2453 if (wait_bytes > ringbuf->space) {
2454 int ret = wait_for_space(req, wait_bytes);
2455 if (unlikely(ret))
2456 return ret;
2457
2458 intel_ring_update_space(ringbuf);
2459 if (unlikely(ringbuf->space < wait_bytes))
2460 return -EAGAIN;
2461 }
2462
2463 if (unlikely(need_wrap)) {
2464 GEM_BUG_ON(remain_actual > ringbuf->space);
2465 GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
2466
2467 /* Fill the tail with MI_NOOP */
2468 memset(ringbuf->virtual_start + ringbuf->tail,
2469 0, remain_actual);
2470 ringbuf->tail = 0;
2471 ringbuf->space -= remain_actual;
2472 }
2473
2474 ringbuf->space -= bytes;
2475 GEM_BUG_ON(ringbuf->space < 0);
2476 return 0;
2477 }
2478
2479 /* Align the ring tail to a cacheline boundary */
2480 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2481 {
2482 struct intel_engine_cs *engine = req->engine;
2483 int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2484 int ret;
2485
2486 if (num_dwords == 0)
2487 return 0;
2488
2489 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2490 ret = intel_ring_begin(req, num_dwords);
2491 if (ret)
2492 return ret;
2493
2494 while (num_dwords--)
2495 intel_ring_emit(engine, MI_NOOP);
2496
2497 intel_ring_advance(engine);
2498
2499 return 0;
2500 }
2501
2502 void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2503 {
2504 struct drm_i915_private *dev_priv = to_i915(engine->dev);
2505
2506 /* Our semaphore implementation is strictly monotonic (i.e. we proceed
2507 * so long as the semaphore value in the register/page is greater
2508 * than the sync value), so whenever we reset the seqno,
2509 * so long as we reset the tracking semaphore value to 0, it will
2510 * always be before the next request's seqno. If we don't reset
2511 * the semaphore value, then when the seqno moves backwards all
2512 * future waits will complete instantly (causing rendering corruption).
2513 */
2514 if (INTEL_INFO(dev_priv)->gen == 6 || INTEL_INFO(dev_priv)->gen == 7) {
2515 I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
2516 I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2517 if (HAS_VEBOX(dev_priv))
2518 I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2519 }
2520 if (dev_priv->semaphore_obj) {
2521 struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
2522 struct page *page = i915_gem_object_get_dirty_page(obj, 0);
2523 void *semaphores = kmap(page);
2524 memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
2525 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
2526 kunmap(page);
2527 }
2528 memset(engine->semaphore.sync_seqno, 0,
2529 sizeof(engine->semaphore.sync_seqno));
2530
2531 engine->set_seqno(engine, seqno);
2532 engine->last_submitted_seqno = seqno;
2533
2534 engine->hangcheck.seqno = seqno;
2535 }
2536
2537 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
2538 u32 value)
2539 {
2540 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2541
2542 /* Every tail move must follow the sequence below */
2543
2544 /* Disable notification that the ring is IDLE. The GT
2545 * will then assume that it is busy and bring it out of rc6.
2546 */
2547 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2548 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2549
2550 /* Clear the context id. Here be magic! */
2551 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2552
2553 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2554 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2555 GEN6_BSD_SLEEP_INDICATOR) == 0,
2556 50))
2557 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2558
2559 /* Now that the ring is fully powered up, update the tail */
2560 I915_WRITE_TAIL(engine, value);
2561 POSTING_READ(RING_TAIL(engine->mmio_base));
2562
2563 /* Let the ring send IDLE messages to the GT again,
2564 * and so let it sleep to conserve power when idle.
2565 */
2566 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2567 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2568 }
2569
2570 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2571 u32 invalidate, u32 flush)
2572 {
2573 struct intel_engine_cs *engine = req->engine;
2574 uint32_t cmd;
2575 int ret;
2576
2577 ret = intel_ring_begin(req, 4);
2578 if (ret)
2579 return ret;
2580
2581 cmd = MI_FLUSH_DW;
2582 if (INTEL_INFO(engine->dev)->gen >= 8)
2583 cmd += 1;
2584
2585 /* We always require a command barrier so that subsequent
2586 * commands, such as breadcrumb interrupts, are strictly ordered
2587 * wrt the contents of the write cache being flushed to memory
2588 * (and thus being coherent from the CPU).
2589 */
2590 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2591
2592 /*
2593 * Bspec vol 1c.5 - video engine command streamer:
2594 * "If ENABLED, all TLBs will be invalidated once the flush
2595 * operation is complete. This bit is only valid when the
2596 * Post-Sync Operation field is a value of 1h or 3h."
2597 */
2598 if (invalidate & I915_GEM_GPU_DOMAINS)
2599 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2600
2601 intel_ring_emit(engine, cmd);
2602 intel_ring_emit(engine,
2603 I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2604 if (INTEL_INFO(engine->dev)->gen >= 8) {
2605 intel_ring_emit(engine, 0); /* upper addr */
2606 intel_ring_emit(engine, 0); /* value */
2607 } else {
2608 intel_ring_emit(engine, 0);
2609 intel_ring_emit(engine, MI_NOOP);
2610 }
2611 intel_ring_advance(engine);
2612 return 0;
2613 }
2614
2615 static int
2616 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2617 u64 offset, u32 len,
2618 unsigned dispatch_flags)
2619 {
2620 struct intel_engine_cs *engine = req->engine;
2621 bool ppgtt = USES_PPGTT(engine->dev) &&
2622 !(dispatch_flags & I915_DISPATCH_SECURE);
2623 int ret;
2624
2625 ret = intel_ring_begin(req, 4);
2626 if (ret)
2627 return ret;
2628
2629 /* FIXME(BDW): Address space and security selectors. */
2630 intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2631 (dispatch_flags & I915_DISPATCH_RS ?
2632 MI_BATCH_RESOURCE_STREAMER : 0));
2633 intel_ring_emit(engine, lower_32_bits(offset));
2634 intel_ring_emit(engine, upper_32_bits(offset));
2635 intel_ring_emit(engine, MI_NOOP);
2636 intel_ring_advance(engine);
2637
2638 return 0;
2639 }
2640
2641 static int
2642 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2643 u64 offset, u32 len,
2644 unsigned dispatch_flags)
2645 {
2646 struct intel_engine_cs *engine = req->engine;
2647 int ret;
2648
2649 ret = intel_ring_begin(req, 2);
2650 if (ret)
2651 return ret;
2652
2653 intel_ring_emit(engine,
2654 MI_BATCH_BUFFER_START |
2655 (dispatch_flags & I915_DISPATCH_SECURE ?
2656 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2657 (dispatch_flags & I915_DISPATCH_RS ?
2658 MI_BATCH_RESOURCE_STREAMER : 0));
2659 /* bit0-7 is the length on GEN6+ */
2660 intel_ring_emit(engine, offset);
2661 intel_ring_advance(engine);
2662
2663 return 0;
2664 }
2665
2666 static int
2667 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2668 u64 offset, u32 len,
2669 unsigned dispatch_flags)
2670 {
2671 struct intel_engine_cs *engine = req->engine;
2672 int ret;
2673
2674 ret = intel_ring_begin(req, 2);
2675 if (ret)
2676 return ret;
2677
2678 intel_ring_emit(engine,
2679 MI_BATCH_BUFFER_START |
2680 (dispatch_flags & I915_DISPATCH_SECURE ?
2681 0 : MI_BATCH_NON_SECURE_I965));
2682 /* bit0-7 is the length on GEN6+ */
2683 intel_ring_emit(engine, offset);
2684 intel_ring_advance(engine);
2685
2686 return 0;
2687 }
2688
2689 /* Blitter support (SandyBridge+) */
2690
2691 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2692 u32 invalidate, u32 flush)
2693 {
2694 struct intel_engine_cs *engine = req->engine;
2695 struct drm_device *dev = engine->dev;
2696 uint32_t cmd;
2697 int ret;
2698
2699 ret = intel_ring_begin(req, 4);
2700 if (ret)
2701 return ret;
2702
2703 cmd = MI_FLUSH_DW;
2704 if (INTEL_INFO(dev)->gen >= 8)
2705 cmd += 1;
2706
2707 /* We always require a command barrier so that subsequent
2708 * commands, such as breadcrumb interrupts, are strictly ordered
2709 * wrt the contents of the write cache being flushed to memory
2710 * (and thus being coherent from the CPU).
2711 */
2712 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2713
2714 /*
2715 * Bspec vol 1c.3 - blitter engine command streamer:
2716 * "If ENABLED, all TLBs will be invalidated once the flush
2717 * operation is complete. This bit is only valid when the
2718 * Post-Sync Operation field is a value of 1h or 3h."
2719 */
2720 if (invalidate & I915_GEM_DOMAIN_RENDER)
2721 cmd |= MI_INVALIDATE_TLB;
2722 intel_ring_emit(engine, cmd);
2723 intel_ring_emit(engine,
2724 I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2725 if (INTEL_INFO(dev)->gen >= 8) {
2726 intel_ring_emit(engine, 0); /* upper addr */
2727 intel_ring_emit(engine, 0); /* value */
2728 } else {
2729 intel_ring_emit(engine, 0);
2730 intel_ring_emit(engine, MI_NOOP);
2731 }
2732 intel_ring_advance(engine);
2733
2734 return 0;
2735 }
2736
2737 int intel_init_render_ring_buffer(struct drm_device *dev)
2738 {
2739 struct drm_i915_private *dev_priv = dev->dev_private;
2740 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2741 struct drm_i915_gem_object *obj;
2742 int ret;
2743
2744 engine->name = "render ring";
2745 engine->id = RCS;
2746 engine->exec_id = I915_EXEC_RENDER;
2747 engine->hw_id = 0;
2748 engine->mmio_base = RENDER_RING_BASE;
2749
2750 if (INTEL_INFO(dev)->gen >= 8) {
2751 if (i915_semaphore_is_enabled(dev)) {
2752 obj = i915_gem_alloc_object(dev, 4096);
2753 if (obj == NULL) {
2754 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2755 i915.semaphores = 0;
2756 } else {
2757 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2758 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2759 if (ret != 0) {
2760 drm_gem_object_unreference(&obj->base);
2761 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2762 i915.semaphores = 0;
2763 } else
2764 dev_priv->semaphore_obj = obj;
2765 }
2766 }
2767
2768 engine->init_context = intel_rcs_ctx_init;
2769 engine->add_request = gen6_add_request;
2770 engine->flush = gen8_render_ring_flush;
2771 engine->irq_get = gen8_ring_get_irq;
2772 engine->irq_put = gen8_ring_put_irq;
2773 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2774 engine->irq_seqno_barrier = gen6_seqno_barrier;
2775 engine->get_seqno = ring_get_seqno;
2776 engine->set_seqno = ring_set_seqno;
2777 if (i915_semaphore_is_enabled(dev)) {
2778 WARN_ON(!dev_priv->semaphore_obj);
2779 engine->semaphore.sync_to = gen8_ring_sync;
2780 engine->semaphore.signal = gen8_rcs_signal;
2781 GEN8_RING_SEMAPHORE_INIT(engine);
2782 }
2783 } else if (INTEL_INFO(dev)->gen >= 6) {
2784 engine->init_context = intel_rcs_ctx_init;
2785 engine->add_request = gen6_add_request;
2786 engine->flush = gen7_render_ring_flush;
2787 if (INTEL_INFO(dev)->gen == 6)
2788 engine->flush = gen6_render_ring_flush;
2789 engine->irq_get = gen6_ring_get_irq;
2790 engine->irq_put = gen6_ring_put_irq;
2791 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2792 engine->irq_seqno_barrier = gen6_seqno_barrier;
2793 engine->get_seqno = ring_get_seqno;
2794 engine->set_seqno = ring_set_seqno;
2795 if (i915_semaphore_is_enabled(dev)) {
2796 engine->semaphore.sync_to = gen6_ring_sync;
2797 engine->semaphore.signal = gen6_signal;
2798 /*
2799 * The current semaphore is only applied on pre-gen8
2800 * platform. And there is no VCS2 ring on the pre-gen8
2801 * platform. So the semaphore between RCS and VCS2 is
2802 * initialized as INVALID. Gen8 will initialize the
2803 * sema between VCS2 and RCS later.
2804 */
2805 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2806 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2807 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2808 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2809 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2810 engine->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2811 engine->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2812 engine->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2813 engine->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2814 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2815 }
2816 } else if (IS_GEN5(dev)) {
2817 engine->add_request = pc_render_add_request;
2818 engine->flush = gen4_render_ring_flush;
2819 engine->get_seqno = pc_render_get_seqno;
2820 engine->set_seqno = pc_render_set_seqno;
2821 engine->irq_get = gen5_ring_get_irq;
2822 engine->irq_put = gen5_ring_put_irq;
2823 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2824 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2825 } else {
2826 engine->add_request = i9xx_add_request;
2827 if (INTEL_INFO(dev)->gen < 4)
2828 engine->flush = gen2_render_ring_flush;
2829 else
2830 engine->flush = gen4_render_ring_flush;
2831 engine->get_seqno = ring_get_seqno;
2832 engine->set_seqno = ring_set_seqno;
2833 if (IS_GEN2(dev)) {
2834 engine->irq_get = i8xx_ring_get_irq;
2835 engine->irq_put = i8xx_ring_put_irq;
2836 } else {
2837 engine->irq_get = i9xx_ring_get_irq;
2838 engine->irq_put = i9xx_ring_put_irq;
2839 }
2840 engine->irq_enable_mask = I915_USER_INTERRUPT;
2841 }
2842 engine->write_tail = ring_write_tail;
2843
2844 if (IS_HASWELL(dev))
2845 engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2846 else if (IS_GEN8(dev))
2847 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2848 else if (INTEL_INFO(dev)->gen >= 6)
2849 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2850 else if (INTEL_INFO(dev)->gen >= 4)
2851 engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2852 else if (IS_I830(dev) || IS_845G(dev))
2853 engine->dispatch_execbuffer = i830_dispatch_execbuffer;
2854 else
2855 engine->dispatch_execbuffer = i915_dispatch_execbuffer;
2856 engine->init_hw = init_render_ring;
2857 engine->cleanup = render_ring_cleanup;
2858
2859 /* Workaround batchbuffer to combat CS tlb bug. */
2860 if (HAS_BROKEN_CS_TLB(dev)) {
2861 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2862 if (obj == NULL) {
2863 DRM_ERROR("Failed to allocate batch bo\n");
2864 return -ENOMEM;
2865 }
2866
2867 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2868 if (ret != 0) {
2869 drm_gem_object_unreference(&obj->base);
2870 DRM_ERROR("Failed to ping batch bo\n");
2871 return ret;
2872 }
2873
2874 engine->scratch.obj = obj;
2875 engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2876 }
2877
2878 ret = intel_init_ring_buffer(dev, engine);
2879 if (ret)
2880 return ret;
2881
2882 if (INTEL_INFO(dev)->gen >= 5) {
2883 ret = intel_init_pipe_control(engine);
2884 if (ret)
2885 return ret;
2886 }
2887
2888 return 0;
2889 }
2890
2891 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2892 {
2893 struct drm_i915_private *dev_priv = dev->dev_private;
2894 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2895
2896 engine->name = "bsd ring";
2897 engine->id = VCS;
2898 engine->exec_id = I915_EXEC_BSD;
2899 engine->hw_id = 1;
2900
2901 engine->write_tail = ring_write_tail;
2902 if (INTEL_INFO(dev)->gen >= 6) {
2903 engine->mmio_base = GEN6_BSD_RING_BASE;
2904 /* gen6 bsd needs a special wa for tail updates */
2905 if (IS_GEN6(dev))
2906 engine->write_tail = gen6_bsd_ring_write_tail;
2907 engine->flush = gen6_bsd_ring_flush;
2908 engine->add_request = gen6_add_request;
2909 engine->irq_seqno_barrier = gen6_seqno_barrier;
2910 engine->get_seqno = ring_get_seqno;
2911 engine->set_seqno = ring_set_seqno;
2912 if (INTEL_INFO(dev)->gen >= 8) {
2913 engine->irq_enable_mask =
2914 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2915 engine->irq_get = gen8_ring_get_irq;
2916 engine->irq_put = gen8_ring_put_irq;
2917 engine->dispatch_execbuffer =
2918 gen8_ring_dispatch_execbuffer;
2919 if (i915_semaphore_is_enabled(dev)) {
2920 engine->semaphore.sync_to = gen8_ring_sync;
2921 engine->semaphore.signal = gen8_xcs_signal;
2922 GEN8_RING_SEMAPHORE_INIT(engine);
2923 }
2924 } else {
2925 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2926 engine->irq_get = gen6_ring_get_irq;
2927 engine->irq_put = gen6_ring_put_irq;
2928 engine->dispatch_execbuffer =
2929 gen6_ring_dispatch_execbuffer;
2930 if (i915_semaphore_is_enabled(dev)) {
2931 engine->semaphore.sync_to = gen6_ring_sync;
2932 engine->semaphore.signal = gen6_signal;
2933 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2934 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2935 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2936 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2937 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2938 engine->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2939 engine->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2940 engine->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2941 engine->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2942 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2943 }
2944 }
2945 } else {
2946 engine->mmio_base = BSD_RING_BASE;
2947 engine->flush = bsd_ring_flush;
2948 engine->add_request = i9xx_add_request;
2949 engine->get_seqno = ring_get_seqno;
2950 engine->set_seqno = ring_set_seqno;
2951 if (IS_GEN5(dev)) {
2952 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2953 engine->irq_get = gen5_ring_get_irq;
2954 engine->irq_put = gen5_ring_put_irq;
2955 } else {
2956 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2957 engine->irq_get = i9xx_ring_get_irq;
2958 engine->irq_put = i9xx_ring_put_irq;
2959 }
2960 engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2961 }
2962 engine->init_hw = init_ring_common;
2963
2964 return intel_init_ring_buffer(dev, engine);
2965 }
2966
2967 /**
2968 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2969 */
2970 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2971 {
2972 struct drm_i915_private *dev_priv = dev->dev_private;
2973 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2974
2975 engine->name = "bsd2 ring";
2976 engine->id = VCS2;
2977 engine->exec_id = I915_EXEC_BSD;
2978 engine->hw_id = 4;
2979
2980 engine->write_tail = ring_write_tail;
2981 engine->mmio_base = GEN8_BSD2_RING_BASE;
2982 engine->flush = gen6_bsd_ring_flush;
2983 engine->add_request = gen6_add_request;
2984 engine->irq_seqno_barrier = gen6_seqno_barrier;
2985 engine->get_seqno = ring_get_seqno;
2986 engine->set_seqno = ring_set_seqno;
2987 engine->irq_enable_mask =
2988 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2989 engine->irq_get = gen8_ring_get_irq;
2990 engine->irq_put = gen8_ring_put_irq;
2991 engine->dispatch_execbuffer =
2992 gen8_ring_dispatch_execbuffer;
2993 if (i915_semaphore_is_enabled(dev)) {
2994 engine->semaphore.sync_to = gen8_ring_sync;
2995 engine->semaphore.signal = gen8_xcs_signal;
2996 GEN8_RING_SEMAPHORE_INIT(engine);
2997 }
2998 engine->init_hw = init_ring_common;
2999
3000 return intel_init_ring_buffer(dev, engine);
3001 }
3002
3003 int intel_init_blt_ring_buffer(struct drm_device *dev)
3004 {
3005 struct drm_i915_private *dev_priv = dev->dev_private;
3006 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
3007
3008 engine->name = "blitter ring";
3009 engine->id = BCS;
3010 engine->exec_id = I915_EXEC_BLT;
3011 engine->hw_id = 2;
3012
3013 engine->mmio_base = BLT_RING_BASE;
3014 engine->write_tail = ring_write_tail;
3015 engine->flush = gen6_ring_flush;
3016 engine->add_request = gen6_add_request;
3017 engine->irq_seqno_barrier = gen6_seqno_barrier;
3018 engine->get_seqno = ring_get_seqno;
3019 engine->set_seqno = ring_set_seqno;
3020 if (INTEL_INFO(dev)->gen >= 8) {
3021 engine->irq_enable_mask =
3022 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
3023 engine->irq_get = gen8_ring_get_irq;
3024 engine->irq_put = gen8_ring_put_irq;
3025 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3026 if (i915_semaphore_is_enabled(dev)) {
3027 engine->semaphore.sync_to = gen8_ring_sync;
3028 engine->semaphore.signal = gen8_xcs_signal;
3029 GEN8_RING_SEMAPHORE_INIT(engine);
3030 }
3031 } else {
3032 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
3033 engine->irq_get = gen6_ring_get_irq;
3034 engine->irq_put = gen6_ring_put_irq;
3035 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3036 if (i915_semaphore_is_enabled(dev)) {
3037 engine->semaphore.signal = gen6_signal;
3038 engine->semaphore.sync_to = gen6_ring_sync;
3039 /*
3040 * The current semaphore is only applied on pre-gen8
3041 * platform. And there is no VCS2 ring on the pre-gen8
3042 * platform. So the semaphore between BCS and VCS2 is
3043 * initialized as INVALID. Gen8 will initialize the
3044 * sema between BCS and VCS2 later.
3045 */
3046 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
3047 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
3048 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
3049 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
3050 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3051 engine->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
3052 engine->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
3053 engine->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
3054 engine->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
3055 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3056 }
3057 }
3058 engine->init_hw = init_ring_common;
3059
3060 return intel_init_ring_buffer(dev, engine);
3061 }
3062
3063 int intel_init_vebox_ring_buffer(struct drm_device *dev)
3064 {
3065 struct drm_i915_private *dev_priv = dev->dev_private;
3066 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
3067
3068 engine->name = "video enhancement ring";
3069 engine->id = VECS;
3070 engine->exec_id = I915_EXEC_VEBOX;
3071 engine->hw_id = 3;
3072
3073 engine->mmio_base = VEBOX_RING_BASE;
3074 engine->write_tail = ring_write_tail;
3075 engine->flush = gen6_ring_flush;
3076 engine->add_request = gen6_add_request;
3077 engine->irq_seqno_barrier = gen6_seqno_barrier;
3078 engine->get_seqno = ring_get_seqno;
3079 engine->set_seqno = ring_set_seqno;
3080
3081 if (INTEL_INFO(dev)->gen >= 8) {
3082 engine->irq_enable_mask =
3083 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3084 engine->irq_get = gen8_ring_get_irq;
3085 engine->irq_put = gen8_ring_put_irq;
3086 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3087 if (i915_semaphore_is_enabled(dev)) {
3088 engine->semaphore.sync_to = gen8_ring_sync;
3089 engine->semaphore.signal = gen8_xcs_signal;
3090 GEN8_RING_SEMAPHORE_INIT(engine);
3091 }
3092 } else {
3093 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3094 engine->irq_get = hsw_vebox_get_irq;
3095 engine->irq_put = hsw_vebox_put_irq;
3096 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3097 if (i915_semaphore_is_enabled(dev)) {
3098 engine->semaphore.sync_to = gen6_ring_sync;
3099 engine->semaphore.signal = gen6_signal;
3100 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
3101 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
3102 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3103 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3104 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3105 engine->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3106 engine->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3107 engine->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3108 engine->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3109 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3110 }
3111 }
3112 engine->init_hw = init_ring_common;
3113
3114 return intel_init_ring_buffer(dev, engine);
3115 }
3116
3117 int
3118 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3119 {
3120 struct intel_engine_cs *engine = req->engine;
3121 int ret;
3122
3123 if (!engine->gpu_caches_dirty)
3124 return 0;
3125
3126 ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
3127 if (ret)
3128 return ret;
3129
3130 trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3131
3132 engine->gpu_caches_dirty = false;
3133 return 0;
3134 }
3135
3136 int
3137 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3138 {
3139 struct intel_engine_cs *engine = req->engine;
3140 uint32_t flush_domains;
3141 int ret;
3142
3143 flush_domains = 0;
3144 if (engine->gpu_caches_dirty)
3145 flush_domains = I915_GEM_GPU_DOMAINS;
3146
3147 ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3148 if (ret)
3149 return ret;
3150
3151 trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3152
3153 engine->gpu_caches_dirty = false;
3154 return 0;
3155 }
3156
3157 void
3158 intel_stop_engine(struct intel_engine_cs *engine)
3159 {
3160 int ret;
3161
3162 if (!intel_engine_initialized(engine))
3163 return;
3164
3165 ret = intel_engine_idle(engine);
3166 if (ret)
3167 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3168 engine->name, ret);
3169
3170 stop_ring(engine);
3171 }
This page took 0.126129 seconds and 6 git commands to generate.