Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 int __intel_ring_space(int head, int tail, int size)
38 {
39 int space = head - tail;
40 if (space <= 0)
41 space += size;
42 return space - I915_RING_FREE_SPACE;
43 }
44
45 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
46 {
47 if (ringbuf->last_retired_head != -1) {
48 ringbuf->head = ringbuf->last_retired_head;
49 ringbuf->last_retired_head = -1;
50 }
51
52 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
53 ringbuf->tail, ringbuf->size);
54 }
55
56 bool intel_engine_stopped(struct intel_engine_cs *engine)
57 {
58 struct drm_i915_private *dev_priv = engine->dev->dev_private;
59 return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
60 }
61
62 static void __intel_ring_advance(struct intel_engine_cs *engine)
63 {
64 struct intel_ringbuffer *ringbuf = engine->buffer;
65 ringbuf->tail &= ringbuf->size - 1;
66 if (intel_engine_stopped(engine))
67 return;
68 engine->write_tail(engine, ringbuf->tail);
69 }
70
71 static int
72 gen2_render_ring_flush(struct drm_i915_gem_request *req,
73 u32 invalidate_domains,
74 u32 flush_domains)
75 {
76 struct intel_engine_cs *engine = req->engine;
77 u32 cmd;
78 int ret;
79
80 cmd = MI_FLUSH;
81 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
82 cmd |= MI_NO_WRITE_FLUSH;
83
84 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
85 cmd |= MI_READ_FLUSH;
86
87 ret = intel_ring_begin(req, 2);
88 if (ret)
89 return ret;
90
91 intel_ring_emit(engine, cmd);
92 intel_ring_emit(engine, MI_NOOP);
93 intel_ring_advance(engine);
94
95 return 0;
96 }
97
98 static int
99 gen4_render_ring_flush(struct drm_i915_gem_request *req,
100 u32 invalidate_domains,
101 u32 flush_domains)
102 {
103 struct intel_engine_cs *engine = req->engine;
104 struct drm_device *dev = engine->dev;
105 u32 cmd;
106 int ret;
107
108 /*
109 * read/write caches:
110 *
111 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
112 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
113 * also flushed at 2d versus 3d pipeline switches.
114 *
115 * read-only caches:
116 *
117 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
118 * MI_READ_FLUSH is set, and is always flushed on 965.
119 *
120 * I915_GEM_DOMAIN_COMMAND may not exist?
121 *
122 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
123 * invalidated when MI_EXE_FLUSH is set.
124 *
125 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
126 * invalidated with every MI_FLUSH.
127 *
128 * TLBs:
129 *
130 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
131 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
132 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
133 * are flushed at any MI_FLUSH.
134 */
135
136 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
137 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
138 cmd &= ~MI_NO_WRITE_FLUSH;
139 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
140 cmd |= MI_EXE_FLUSH;
141
142 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
143 (IS_G4X(dev) || IS_GEN5(dev)))
144 cmd |= MI_INVALIDATE_ISP;
145
146 ret = intel_ring_begin(req, 2);
147 if (ret)
148 return ret;
149
150 intel_ring_emit(engine, cmd);
151 intel_ring_emit(engine, MI_NOOP);
152 intel_ring_advance(engine);
153
154 return 0;
155 }
156
157 /**
158 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
159 * implementing two workarounds on gen6. From section 1.4.7.1
160 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
161 *
162 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
163 * produced by non-pipelined state commands), software needs to first
164 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
165 * 0.
166 *
167 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
168 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
169 *
170 * And the workaround for these two requires this workaround first:
171 *
172 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
173 * BEFORE the pipe-control with a post-sync op and no write-cache
174 * flushes.
175 *
176 * And this last workaround is tricky because of the requirements on
177 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
178 * volume 2 part 1:
179 *
180 * "1 of the following must also be set:
181 * - Render Target Cache Flush Enable ([12] of DW1)
182 * - Depth Cache Flush Enable ([0] of DW1)
183 * - Stall at Pixel Scoreboard ([1] of DW1)
184 * - Depth Stall ([13] of DW1)
185 * - Post-Sync Operation ([13] of DW1)
186 * - Notify Enable ([8] of DW1)"
187 *
188 * The cache flushes require the workaround flush that triggered this
189 * one, so we can't use it. Depth stall would trigger the same.
190 * Post-sync nonzero is what triggered this second workaround, so we
191 * can't use that one either. Notify enable is IRQs, which aren't
192 * really our business. That leaves only stall at scoreboard.
193 */
194 static int
195 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
196 {
197 struct intel_engine_cs *engine = req->engine;
198 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
199 int ret;
200
201 ret = intel_ring_begin(req, 6);
202 if (ret)
203 return ret;
204
205 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
206 intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
207 PIPE_CONTROL_STALL_AT_SCOREBOARD);
208 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
209 intel_ring_emit(engine, 0); /* low dword */
210 intel_ring_emit(engine, 0); /* high dword */
211 intel_ring_emit(engine, MI_NOOP);
212 intel_ring_advance(engine);
213
214 ret = intel_ring_begin(req, 6);
215 if (ret)
216 return ret;
217
218 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
219 intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
220 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
221 intel_ring_emit(engine, 0);
222 intel_ring_emit(engine, 0);
223 intel_ring_emit(engine, MI_NOOP);
224 intel_ring_advance(engine);
225
226 return 0;
227 }
228
229 static int
230 gen6_render_ring_flush(struct drm_i915_gem_request *req,
231 u32 invalidate_domains, u32 flush_domains)
232 {
233 struct intel_engine_cs *engine = req->engine;
234 u32 flags = 0;
235 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
236 int ret;
237
238 /* Force SNB workarounds for PIPE_CONTROL flushes */
239 ret = intel_emit_post_sync_nonzero_flush(req);
240 if (ret)
241 return ret;
242
243 /* Just flush everything. Experiments have shown that reducing the
244 * number of bits based on the write domains has little performance
245 * impact.
246 */
247 if (flush_domains) {
248 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
249 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
250 /*
251 * Ensure that any following seqno writes only happen
252 * when the render cache is indeed flushed.
253 */
254 flags |= PIPE_CONTROL_CS_STALL;
255 }
256 if (invalidate_domains) {
257 flags |= PIPE_CONTROL_TLB_INVALIDATE;
258 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
259 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
260 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
261 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
262 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
263 /*
264 * TLB invalidate requires a post-sync write.
265 */
266 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
267 }
268
269 ret = intel_ring_begin(req, 4);
270 if (ret)
271 return ret;
272
273 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
274 intel_ring_emit(engine, flags);
275 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
276 intel_ring_emit(engine, 0);
277 intel_ring_advance(engine);
278
279 return 0;
280 }
281
282 static int
283 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
284 {
285 struct intel_engine_cs *engine = req->engine;
286 int ret;
287
288 ret = intel_ring_begin(req, 4);
289 if (ret)
290 return ret;
291
292 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
293 intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
294 PIPE_CONTROL_STALL_AT_SCOREBOARD);
295 intel_ring_emit(engine, 0);
296 intel_ring_emit(engine, 0);
297 intel_ring_advance(engine);
298
299 return 0;
300 }
301
302 static int
303 gen7_render_ring_flush(struct drm_i915_gem_request *req,
304 u32 invalidate_domains, u32 flush_domains)
305 {
306 struct intel_engine_cs *engine = req->engine;
307 u32 flags = 0;
308 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
309 int ret;
310
311 /*
312 * Ensure that any following seqno writes only happen when the render
313 * cache is indeed flushed.
314 *
315 * Workaround: 4th PIPE_CONTROL command (except the ones with only
316 * read-cache invalidate bits set) must have the CS_STALL bit set. We
317 * don't try to be clever and just set it unconditionally.
318 */
319 flags |= PIPE_CONTROL_CS_STALL;
320
321 /* Just flush everything. Experiments have shown that reducing the
322 * number of bits based on the write domains has little performance
323 * impact.
324 */
325 if (flush_domains) {
326 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
327 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
328 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
329 flags |= PIPE_CONTROL_FLUSH_ENABLE;
330 }
331 if (invalidate_domains) {
332 flags |= PIPE_CONTROL_TLB_INVALIDATE;
333 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
334 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
335 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
336 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
337 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
338 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
339 /*
340 * TLB invalidate requires a post-sync write.
341 */
342 flags |= PIPE_CONTROL_QW_WRITE;
343 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
344
345 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
346
347 /* Workaround: we must issue a pipe_control with CS-stall bit
348 * set before a pipe_control command that has the state cache
349 * invalidate bit set. */
350 gen7_render_ring_cs_stall_wa(req);
351 }
352
353 ret = intel_ring_begin(req, 4);
354 if (ret)
355 return ret;
356
357 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
358 intel_ring_emit(engine, flags);
359 intel_ring_emit(engine, scratch_addr);
360 intel_ring_emit(engine, 0);
361 intel_ring_advance(engine);
362
363 return 0;
364 }
365
366 static int
367 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
368 u32 flags, u32 scratch_addr)
369 {
370 struct intel_engine_cs *engine = req->engine;
371 int ret;
372
373 ret = intel_ring_begin(req, 6);
374 if (ret)
375 return ret;
376
377 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
378 intel_ring_emit(engine, flags);
379 intel_ring_emit(engine, scratch_addr);
380 intel_ring_emit(engine, 0);
381 intel_ring_emit(engine, 0);
382 intel_ring_emit(engine, 0);
383 intel_ring_advance(engine);
384
385 return 0;
386 }
387
388 static int
389 gen8_render_ring_flush(struct drm_i915_gem_request *req,
390 u32 invalidate_domains, u32 flush_domains)
391 {
392 u32 flags = 0;
393 u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
394 int ret;
395
396 flags |= PIPE_CONTROL_CS_STALL;
397
398 if (flush_domains) {
399 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
400 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
401 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
402 flags |= PIPE_CONTROL_FLUSH_ENABLE;
403 }
404 if (invalidate_domains) {
405 flags |= PIPE_CONTROL_TLB_INVALIDATE;
406 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
407 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
408 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
409 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
410 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
411 flags |= PIPE_CONTROL_QW_WRITE;
412 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
413
414 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
415 ret = gen8_emit_pipe_control(req,
416 PIPE_CONTROL_CS_STALL |
417 PIPE_CONTROL_STALL_AT_SCOREBOARD,
418 0);
419 if (ret)
420 return ret;
421 }
422
423 return gen8_emit_pipe_control(req, flags, scratch_addr);
424 }
425
426 static void ring_write_tail(struct intel_engine_cs *engine,
427 u32 value)
428 {
429 struct drm_i915_private *dev_priv = engine->dev->dev_private;
430 I915_WRITE_TAIL(engine, value);
431 }
432
433 u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
434 {
435 struct drm_i915_private *dev_priv = engine->dev->dev_private;
436 u64 acthd;
437
438 if (INTEL_INFO(engine->dev)->gen >= 8)
439 acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
440 RING_ACTHD_UDW(engine->mmio_base));
441 else if (INTEL_INFO(engine->dev)->gen >= 4)
442 acthd = I915_READ(RING_ACTHD(engine->mmio_base));
443 else
444 acthd = I915_READ(ACTHD);
445
446 return acthd;
447 }
448
449 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
450 {
451 struct drm_i915_private *dev_priv = engine->dev->dev_private;
452 u32 addr;
453
454 addr = dev_priv->status_page_dmah->busaddr;
455 if (INTEL_INFO(engine->dev)->gen >= 4)
456 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
457 I915_WRITE(HWS_PGA, addr);
458 }
459
460 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
461 {
462 struct drm_device *dev = engine->dev;
463 struct drm_i915_private *dev_priv = engine->dev->dev_private;
464 i915_reg_t mmio;
465
466 /* The ring status page addresses are no longer next to the rest of
467 * the ring registers as of gen7.
468 */
469 if (IS_GEN7(dev)) {
470 switch (engine->id) {
471 case RCS:
472 mmio = RENDER_HWS_PGA_GEN7;
473 break;
474 case BCS:
475 mmio = BLT_HWS_PGA_GEN7;
476 break;
477 /*
478 * VCS2 actually doesn't exist on Gen7. Only shut up
479 * gcc switch check warning
480 */
481 case VCS2:
482 case VCS:
483 mmio = BSD_HWS_PGA_GEN7;
484 break;
485 case VECS:
486 mmio = VEBOX_HWS_PGA_GEN7;
487 break;
488 }
489 } else if (IS_GEN6(engine->dev)) {
490 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
491 } else {
492 /* XXX: gen8 returns to sanity */
493 mmio = RING_HWS_PGA(engine->mmio_base);
494 }
495
496 I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
497 POSTING_READ(mmio);
498
499 /*
500 * Flush the TLB for this page
501 *
502 * FIXME: These two bits have disappeared on gen8, so a question
503 * arises: do we still need this and if so how should we go about
504 * invalidating the TLB?
505 */
506 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
507 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
508
509 /* ring should be idle before issuing a sync flush*/
510 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
511
512 I915_WRITE(reg,
513 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
514 INSTPM_SYNC_FLUSH));
515 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
516 1000))
517 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
518 engine->name);
519 }
520 }
521
522 static bool stop_ring(struct intel_engine_cs *engine)
523 {
524 struct drm_i915_private *dev_priv = to_i915(engine->dev);
525
526 if (!IS_GEN2(engine->dev)) {
527 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
528 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
529 DRM_ERROR("%s : timed out trying to stop ring\n",
530 engine->name);
531 /* Sometimes we observe that the idle flag is not
532 * set even though the ring is empty. So double
533 * check before giving up.
534 */
535 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
536 return false;
537 }
538 }
539
540 I915_WRITE_CTL(engine, 0);
541 I915_WRITE_HEAD(engine, 0);
542 engine->write_tail(engine, 0);
543
544 if (!IS_GEN2(engine->dev)) {
545 (void)I915_READ_CTL(engine);
546 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
547 }
548
549 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
550 }
551
552 void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
553 {
554 memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
555 }
556
557 static int init_ring_common(struct intel_engine_cs *engine)
558 {
559 struct drm_device *dev = engine->dev;
560 struct drm_i915_private *dev_priv = dev->dev_private;
561 struct intel_ringbuffer *ringbuf = engine->buffer;
562 struct drm_i915_gem_object *obj = ringbuf->obj;
563 int ret = 0;
564
565 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
566
567 if (!stop_ring(engine)) {
568 /* G45 ring initialization often fails to reset head to zero */
569 DRM_DEBUG_KMS("%s head not reset to zero "
570 "ctl %08x head %08x tail %08x start %08x\n",
571 engine->name,
572 I915_READ_CTL(engine),
573 I915_READ_HEAD(engine),
574 I915_READ_TAIL(engine),
575 I915_READ_START(engine));
576
577 if (!stop_ring(engine)) {
578 DRM_ERROR("failed to set %s head to zero "
579 "ctl %08x head %08x tail %08x start %08x\n",
580 engine->name,
581 I915_READ_CTL(engine),
582 I915_READ_HEAD(engine),
583 I915_READ_TAIL(engine),
584 I915_READ_START(engine));
585 ret = -EIO;
586 goto out;
587 }
588 }
589
590 if (I915_NEED_GFX_HWS(dev))
591 intel_ring_setup_status_page(engine);
592 else
593 ring_setup_phys_status_page(engine);
594
595 /* Enforce ordering by reading HEAD register back */
596 I915_READ_HEAD(engine);
597
598 /* Initialize the ring. This must happen _after_ we've cleared the ring
599 * registers with the above sequence (the readback of the HEAD registers
600 * also enforces ordering), otherwise the hw might lose the new ring
601 * register values. */
602 I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
603
604 /* WaClearRingBufHeadRegAtInit:ctg,elk */
605 if (I915_READ_HEAD(engine))
606 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
607 engine->name, I915_READ_HEAD(engine));
608 I915_WRITE_HEAD(engine, 0);
609 (void)I915_READ_HEAD(engine);
610
611 I915_WRITE_CTL(engine,
612 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
613 | RING_VALID);
614
615 /* If the head is still not zero, the ring is dead */
616 if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
617 I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
618 (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
619 DRM_ERROR("%s initialization failed "
620 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
621 engine->name,
622 I915_READ_CTL(engine),
623 I915_READ_CTL(engine) & RING_VALID,
624 I915_READ_HEAD(engine), I915_READ_TAIL(engine),
625 I915_READ_START(engine),
626 (unsigned long)i915_gem_obj_ggtt_offset(obj));
627 ret = -EIO;
628 goto out;
629 }
630
631 ringbuf->last_retired_head = -1;
632 ringbuf->head = I915_READ_HEAD(engine);
633 ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
634 intel_ring_update_space(ringbuf);
635
636 intel_engine_init_hangcheck(engine);
637
638 out:
639 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
640
641 return ret;
642 }
643
644 void
645 intel_fini_pipe_control(struct intel_engine_cs *engine)
646 {
647 struct drm_device *dev = engine->dev;
648
649 if (engine->scratch.obj == NULL)
650 return;
651
652 if (INTEL_INFO(dev)->gen >= 5) {
653 kunmap(sg_page(engine->scratch.obj->pages->sgl));
654 i915_gem_object_ggtt_unpin(engine->scratch.obj);
655 }
656
657 drm_gem_object_unreference(&engine->scratch.obj->base);
658 engine->scratch.obj = NULL;
659 }
660
661 int
662 intel_init_pipe_control(struct intel_engine_cs *engine)
663 {
664 int ret;
665
666 WARN_ON(engine->scratch.obj);
667
668 engine->scratch.obj = i915_gem_alloc_object(engine->dev, 4096);
669 if (engine->scratch.obj == NULL) {
670 DRM_ERROR("Failed to allocate seqno page\n");
671 ret = -ENOMEM;
672 goto err;
673 }
674
675 ret = i915_gem_object_set_cache_level(engine->scratch.obj,
676 I915_CACHE_LLC);
677 if (ret)
678 goto err_unref;
679
680 ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
681 if (ret)
682 goto err_unref;
683
684 engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
685 engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
686 if (engine->scratch.cpu_page == NULL) {
687 ret = -ENOMEM;
688 goto err_unpin;
689 }
690
691 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
692 engine->name, engine->scratch.gtt_offset);
693 return 0;
694
695 err_unpin:
696 i915_gem_object_ggtt_unpin(engine->scratch.obj);
697 err_unref:
698 drm_gem_object_unreference(&engine->scratch.obj->base);
699 err:
700 return ret;
701 }
702
703 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
704 {
705 int ret, i;
706 struct intel_engine_cs *engine = req->engine;
707 struct drm_device *dev = engine->dev;
708 struct drm_i915_private *dev_priv = dev->dev_private;
709 struct i915_workarounds *w = &dev_priv->workarounds;
710
711 if (w->count == 0)
712 return 0;
713
714 engine->gpu_caches_dirty = true;
715 ret = intel_ring_flush_all_caches(req);
716 if (ret)
717 return ret;
718
719 ret = intel_ring_begin(req, (w->count * 2 + 2));
720 if (ret)
721 return ret;
722
723 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
724 for (i = 0; i < w->count; i++) {
725 intel_ring_emit_reg(engine, w->reg[i].addr);
726 intel_ring_emit(engine, w->reg[i].value);
727 }
728 intel_ring_emit(engine, MI_NOOP);
729
730 intel_ring_advance(engine);
731
732 engine->gpu_caches_dirty = true;
733 ret = intel_ring_flush_all_caches(req);
734 if (ret)
735 return ret;
736
737 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
738
739 return 0;
740 }
741
742 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
743 {
744 int ret;
745
746 ret = intel_ring_workarounds_emit(req);
747 if (ret != 0)
748 return ret;
749
750 ret = i915_gem_render_state_init(req);
751 if (ret)
752 return ret;
753
754 return 0;
755 }
756
757 static int wa_add(struct drm_i915_private *dev_priv,
758 i915_reg_t addr,
759 const u32 mask, const u32 val)
760 {
761 const u32 idx = dev_priv->workarounds.count;
762
763 if (WARN_ON(idx >= I915_MAX_WA_REGS))
764 return -ENOSPC;
765
766 dev_priv->workarounds.reg[idx].addr = addr;
767 dev_priv->workarounds.reg[idx].value = val;
768 dev_priv->workarounds.reg[idx].mask = mask;
769
770 dev_priv->workarounds.count++;
771
772 return 0;
773 }
774
775 #define WA_REG(addr, mask, val) do { \
776 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
777 if (r) \
778 return r; \
779 } while (0)
780
781 #define WA_SET_BIT_MASKED(addr, mask) \
782 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
783
784 #define WA_CLR_BIT_MASKED(addr, mask) \
785 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
786
787 #define WA_SET_FIELD_MASKED(addr, mask, value) \
788 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
789
790 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
791 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
792
793 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
794
795 static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
796 i915_reg_t reg)
797 {
798 struct drm_i915_private *dev_priv = engine->dev->dev_private;
799 struct i915_workarounds *wa = &dev_priv->workarounds;
800 const uint32_t index = wa->hw_whitelist_count[engine->id];
801
802 if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
803 return -EINVAL;
804
805 WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
806 i915_mmio_reg_offset(reg));
807 wa->hw_whitelist_count[engine->id]++;
808
809 return 0;
810 }
811
812 static int gen8_init_workarounds(struct intel_engine_cs *engine)
813 {
814 struct drm_device *dev = engine->dev;
815 struct drm_i915_private *dev_priv = dev->dev_private;
816
817 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
818
819 /* WaDisableAsyncFlipPerfMode:bdw,chv */
820 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
821
822 /* WaDisablePartialInstShootdown:bdw,chv */
823 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
824 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
825
826 /* Use Force Non-Coherent whenever executing a 3D context. This is a
827 * workaround for for a possible hang in the unlikely event a TLB
828 * invalidation occurs during a PSD flush.
829 */
830 /* WaForceEnableNonCoherent:bdw,chv */
831 /* WaHdcDisableFetchWhenMasked:bdw,chv */
832 WA_SET_BIT_MASKED(HDC_CHICKEN0,
833 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
834 HDC_FORCE_NON_COHERENT);
835
836 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
837 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
838 * polygons in the same 8x4 pixel/sample area to be processed without
839 * stalling waiting for the earlier ones to write to Hierarchical Z
840 * buffer."
841 *
842 * This optimization is off by default for BDW and CHV; turn it on.
843 */
844 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
845
846 /* Wa4x4STCOptimizationDisable:bdw,chv */
847 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
848
849 /*
850 * BSpec recommends 8x4 when MSAA is used,
851 * however in practice 16x4 seems fastest.
852 *
853 * Note that PS/WM thread counts depend on the WIZ hashing
854 * disable bit, which we don't touch here, but it's good
855 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
856 */
857 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
858 GEN6_WIZ_HASHING_MASK,
859 GEN6_WIZ_HASHING_16x4);
860
861 return 0;
862 }
863
864 static int bdw_init_workarounds(struct intel_engine_cs *engine)
865 {
866 int ret;
867 struct drm_device *dev = engine->dev;
868 struct drm_i915_private *dev_priv = dev->dev_private;
869
870 ret = gen8_init_workarounds(engine);
871 if (ret)
872 return ret;
873
874 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
875 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
876
877 /* WaDisableDopClockGating:bdw */
878 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
879 DOP_CLOCK_GATING_DISABLE);
880
881 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
882 GEN8_SAMPLER_POWER_BYPASS_DIS);
883
884 WA_SET_BIT_MASKED(HDC_CHICKEN0,
885 /* WaForceContextSaveRestoreNonCoherent:bdw */
886 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
887 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
888 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
889
890 return 0;
891 }
892
893 static int chv_init_workarounds(struct intel_engine_cs *engine)
894 {
895 int ret;
896 struct drm_device *dev = engine->dev;
897 struct drm_i915_private *dev_priv = dev->dev_private;
898
899 ret = gen8_init_workarounds(engine);
900 if (ret)
901 return ret;
902
903 /* WaDisableThreadStallDopClockGating:chv */
904 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
905
906 /* Improve HiZ throughput on CHV. */
907 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
908
909 return 0;
910 }
911
912 static int gen9_init_workarounds(struct intel_engine_cs *engine)
913 {
914 struct drm_device *dev = engine->dev;
915 struct drm_i915_private *dev_priv = dev->dev_private;
916 int ret;
917
918 /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
919 I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
920
921 /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
922 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
923 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
924
925 /* WaDisableKillLogic:bxt,skl,kbl */
926 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
927 ECOCHK_DIS_TLB);
928
929 /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
930 /* WaDisablePartialInstShootdown:skl,bxt,kbl */
931 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
932 FLOW_CONTROL_ENABLE |
933 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
934
935 /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
936 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
937 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
938
939 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
940 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
941 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
942 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
943 GEN9_DG_MIRROR_FIX_ENABLE);
944
945 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
946 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
947 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
948 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
949 GEN9_RHWO_OPTIMIZATION_DISABLE);
950 /*
951 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
952 * but we do that in per ctx batchbuffer as there is an issue
953 * with this register not getting restored on ctx restore
954 */
955 }
956
957 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
958 /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
959 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
960 GEN9_ENABLE_YV12_BUGFIX |
961 GEN9_ENABLE_GPGPU_PREEMPTION);
962
963 /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
964 /* WaDisablePartialResolveInVc:skl,bxt,kbl */
965 WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
966 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
967
968 /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
969 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
970 GEN9_CCS_TLB_PREFETCH_ENABLE);
971
972 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
973 if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
974 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
975 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
976 PIXEL_MASK_CAMMING_DISABLE);
977
978 /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
979 WA_SET_BIT_MASKED(HDC_CHICKEN0,
980 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
981 HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
982
983 /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
984 * both tied to WaForceContextSaveRestoreNonCoherent
985 * in some hsds for skl. We keep the tie for all gen9. The
986 * documentation is a bit hazy and so we want to get common behaviour,
987 * even though there is no clear evidence we would need both on kbl/bxt.
988 * This area has been source of system hangs so we play it safe
989 * and mimic the skl regardless of what bspec says.
990 *
991 * Use Force Non-Coherent whenever executing a 3D context. This
992 * is a workaround for a possible hang in the unlikely event
993 * a TLB invalidation occurs during a PSD flush.
994 */
995
996 /* WaForceEnableNonCoherent:skl,bxt,kbl */
997 WA_SET_BIT_MASKED(HDC_CHICKEN0,
998 HDC_FORCE_NON_COHERENT);
999
1000 /* WaDisableHDCInvalidation:skl,bxt,kbl */
1001 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1002 BDW_DISABLE_HDC_INVALIDATION);
1003
1004 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
1005 if (IS_SKYLAKE(dev_priv) ||
1006 IS_KABYLAKE(dev_priv) ||
1007 IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
1008 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
1009 GEN8_SAMPLER_POWER_BYPASS_DIS);
1010
1011 /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
1012 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
1013
1014 /* WaOCLCoherentLineFlush:skl,bxt,kbl */
1015 I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
1016 GEN8_LQSC_FLUSH_COHERENT_LINES));
1017
1018 /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
1019 ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
1020 if (ret)
1021 return ret;
1022
1023 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
1024 ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
1025 if (ret)
1026 return ret;
1027
1028 /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
1029 ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
1030 if (ret)
1031 return ret;
1032
1033 return 0;
1034 }
1035
1036 static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
1037 {
1038 struct drm_device *dev = engine->dev;
1039 struct drm_i915_private *dev_priv = dev->dev_private;
1040 u8 vals[3] = { 0, 0, 0 };
1041 unsigned int i;
1042
1043 for (i = 0; i < 3; i++) {
1044 u8 ss;
1045
1046 /*
1047 * Only consider slices where one, and only one, subslice has 7
1048 * EUs
1049 */
1050 if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1051 continue;
1052
1053 /*
1054 * subslice_7eu[i] != 0 (because of the check above) and
1055 * ss_max == 4 (maximum number of subslices possible per slice)
1056 *
1057 * -> 0 <= ss <= 3;
1058 */
1059 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1060 vals[i] = 3 - ss;
1061 }
1062
1063 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1064 return 0;
1065
1066 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1067 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1068 GEN9_IZ_HASHING_MASK(2) |
1069 GEN9_IZ_HASHING_MASK(1) |
1070 GEN9_IZ_HASHING_MASK(0),
1071 GEN9_IZ_HASHING(2, vals[2]) |
1072 GEN9_IZ_HASHING(1, vals[1]) |
1073 GEN9_IZ_HASHING(0, vals[0]));
1074
1075 return 0;
1076 }
1077
1078 static int skl_init_workarounds(struct intel_engine_cs *engine)
1079 {
1080 int ret;
1081 struct drm_device *dev = engine->dev;
1082 struct drm_i915_private *dev_priv = dev->dev_private;
1083
1084 ret = gen9_init_workarounds(engine);
1085 if (ret)
1086 return ret;
1087
1088 /*
1089 * Actual WA is to disable percontext preemption granularity control
1090 * until D0 which is the default case so this is equivalent to
1091 * !WaDisablePerCtxtPreemptionGranularityControl:skl
1092 */
1093 if (IS_SKL_REVID(dev, SKL_REVID_E0, REVID_FOREVER)) {
1094 I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1095 _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1096 }
1097
1098 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
1099 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1100 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1101 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1102 }
1103
1104 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1105 * involving this register should also be added to WA batch as required.
1106 */
1107 if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
1108 /* WaDisableLSQCROPERFforOCL:skl */
1109 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1110 GEN8_LQSC_RO_PERF_DIS);
1111
1112 /* WaEnableGapsTsvCreditFix:skl */
1113 if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
1114 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1115 GEN9_GAPS_TSV_CREDIT_DISABLE));
1116 }
1117
1118 /* WaDisablePowerCompilerClockGating:skl */
1119 if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
1120 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1121 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1122
1123 /* WaBarrierPerformanceFixDisable:skl */
1124 if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
1125 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1126 HDC_FENCE_DEST_SLM_DISABLE |
1127 HDC_BARRIER_PERFORMANCE_DISABLE);
1128
1129 /* WaDisableSbeCacheDispatchPortSharing:skl */
1130 if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
1131 WA_SET_BIT_MASKED(
1132 GEN7_HALF_SLICE_CHICKEN1,
1133 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1134
1135 /* WaDisableGafsUnitClkGating:skl */
1136 WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1137
1138 /* WaDisableLSQCROPERFforOCL:skl */
1139 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1140 if (ret)
1141 return ret;
1142
1143 return skl_tune_iz_hashing(engine);
1144 }
1145
1146 static int bxt_init_workarounds(struct intel_engine_cs *engine)
1147 {
1148 int ret;
1149 struct drm_device *dev = engine->dev;
1150 struct drm_i915_private *dev_priv = dev->dev_private;
1151
1152 ret = gen9_init_workarounds(engine);
1153 if (ret)
1154 return ret;
1155
1156 /* WaStoreMultiplePTEenable:bxt */
1157 /* This is a requirement according to Hardware specification */
1158 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1159 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1160
1161 /* WaSetClckGatingDisableMedia:bxt */
1162 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1163 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1164 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1165 }
1166
1167 /* WaDisableThreadStallDopClockGating:bxt */
1168 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1169 STALL_DOP_GATING_DISABLE);
1170
1171 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1172 if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1173 WA_SET_BIT_MASKED(
1174 GEN7_HALF_SLICE_CHICKEN1,
1175 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1176 }
1177
1178 /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1179 /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1180 /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1181 /* WaDisableLSQCROPERFforOCL:bxt */
1182 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1183 ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1184 if (ret)
1185 return ret;
1186
1187 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1188 if (ret)
1189 return ret;
1190 }
1191
1192 /* WaInsertDummyPushConstPs:bxt */
1193 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
1194 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1195 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1196
1197 return 0;
1198 }
1199
1200 static int kbl_init_workarounds(struct intel_engine_cs *engine)
1201 {
1202 struct drm_i915_private *dev_priv = engine->dev->dev_private;
1203 int ret;
1204
1205 ret = gen9_init_workarounds(engine);
1206 if (ret)
1207 return ret;
1208
1209 /* WaEnableGapsTsvCreditFix:kbl */
1210 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1211 GEN9_GAPS_TSV_CREDIT_DISABLE));
1212
1213 /* WaDisableDynamicCreditSharing:kbl */
1214 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1215 WA_SET_BIT(GAMT_CHKN_BIT_REG,
1216 GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1217
1218 /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
1219 if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
1220 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1221 HDC_FENCE_DEST_SLM_DISABLE);
1222
1223 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1224 * involving this register should also be added to WA batch as required.
1225 */
1226 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
1227 /* WaDisableLSQCROPERFforOCL:kbl */
1228 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1229 GEN8_LQSC_RO_PERF_DIS);
1230
1231 /* WaInsertDummyPushConstPs:kbl */
1232 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1233 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1234 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1235
1236 /* WaDisableGafsUnitClkGating:kbl */
1237 WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1238
1239 /* WaDisableSbeCacheDispatchPortSharing:kbl */
1240 WA_SET_BIT_MASKED(
1241 GEN7_HALF_SLICE_CHICKEN1,
1242 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1243
1244 /* WaDisableLSQCROPERFforOCL:kbl */
1245 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1246 if (ret)
1247 return ret;
1248
1249 return 0;
1250 }
1251
1252 int init_workarounds_ring(struct intel_engine_cs *engine)
1253 {
1254 struct drm_device *dev = engine->dev;
1255 struct drm_i915_private *dev_priv = dev->dev_private;
1256
1257 WARN_ON(engine->id != RCS);
1258
1259 dev_priv->workarounds.count = 0;
1260 dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1261
1262 if (IS_BROADWELL(dev))
1263 return bdw_init_workarounds(engine);
1264
1265 if (IS_CHERRYVIEW(dev))
1266 return chv_init_workarounds(engine);
1267
1268 if (IS_SKYLAKE(dev))
1269 return skl_init_workarounds(engine);
1270
1271 if (IS_BROXTON(dev))
1272 return bxt_init_workarounds(engine);
1273
1274 if (IS_KABYLAKE(dev_priv))
1275 return kbl_init_workarounds(engine);
1276
1277 return 0;
1278 }
1279
1280 static int init_render_ring(struct intel_engine_cs *engine)
1281 {
1282 struct drm_device *dev = engine->dev;
1283 struct drm_i915_private *dev_priv = dev->dev_private;
1284 int ret = init_ring_common(engine);
1285 if (ret)
1286 return ret;
1287
1288 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1289 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1290 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1291
1292 /* We need to disable the AsyncFlip performance optimisations in order
1293 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1294 * programmed to '1' on all products.
1295 *
1296 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1297 */
1298 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1299 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1300
1301 /* Required for the hardware to program scanline values for waiting */
1302 /* WaEnableFlushTlbInvalidationMode:snb */
1303 if (INTEL_INFO(dev)->gen == 6)
1304 I915_WRITE(GFX_MODE,
1305 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1306
1307 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1308 if (IS_GEN7(dev))
1309 I915_WRITE(GFX_MODE_GEN7,
1310 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1311 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1312
1313 if (IS_GEN6(dev)) {
1314 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1315 * "If this bit is set, STCunit will have LRA as replacement
1316 * policy. [...] This bit must be reset. LRA replacement
1317 * policy is not supported."
1318 */
1319 I915_WRITE(CACHE_MODE_0,
1320 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1321 }
1322
1323 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1324 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1325
1326 if (HAS_L3_DPF(dev))
1327 I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
1328
1329 return init_workarounds_ring(engine);
1330 }
1331
1332 static void render_ring_cleanup(struct intel_engine_cs *engine)
1333 {
1334 struct drm_device *dev = engine->dev;
1335 struct drm_i915_private *dev_priv = dev->dev_private;
1336
1337 if (dev_priv->semaphore_obj) {
1338 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1339 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1340 dev_priv->semaphore_obj = NULL;
1341 }
1342
1343 intel_fini_pipe_control(engine);
1344 }
1345
1346 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1347 unsigned int num_dwords)
1348 {
1349 #define MBOX_UPDATE_DWORDS 8
1350 struct intel_engine_cs *signaller = signaller_req->engine;
1351 struct drm_device *dev = signaller->dev;
1352 struct drm_i915_private *dev_priv = dev->dev_private;
1353 struct intel_engine_cs *waiter;
1354 enum intel_engine_id id;
1355 int ret, num_rings;
1356
1357 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1358 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1359 #undef MBOX_UPDATE_DWORDS
1360
1361 ret = intel_ring_begin(signaller_req, num_dwords);
1362 if (ret)
1363 return ret;
1364
1365 for_each_engine_id(waiter, dev_priv, id) {
1366 u32 seqno;
1367 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1368 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1369 continue;
1370
1371 seqno = i915_gem_request_get_seqno(signaller_req);
1372 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1373 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1374 PIPE_CONTROL_QW_WRITE |
1375 PIPE_CONTROL_FLUSH_ENABLE);
1376 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1377 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1378 intel_ring_emit(signaller, seqno);
1379 intel_ring_emit(signaller, 0);
1380 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1381 MI_SEMAPHORE_TARGET(waiter->hw_id));
1382 intel_ring_emit(signaller, 0);
1383 }
1384
1385 return 0;
1386 }
1387
1388 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1389 unsigned int num_dwords)
1390 {
1391 #define MBOX_UPDATE_DWORDS 6
1392 struct intel_engine_cs *signaller = signaller_req->engine;
1393 struct drm_device *dev = signaller->dev;
1394 struct drm_i915_private *dev_priv = dev->dev_private;
1395 struct intel_engine_cs *waiter;
1396 enum intel_engine_id id;
1397 int ret, num_rings;
1398
1399 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1400 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1401 #undef MBOX_UPDATE_DWORDS
1402
1403 ret = intel_ring_begin(signaller_req, num_dwords);
1404 if (ret)
1405 return ret;
1406
1407 for_each_engine_id(waiter, dev_priv, id) {
1408 u32 seqno;
1409 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1410 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1411 continue;
1412
1413 seqno = i915_gem_request_get_seqno(signaller_req);
1414 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1415 MI_FLUSH_DW_OP_STOREDW);
1416 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1417 MI_FLUSH_DW_USE_GTT);
1418 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1419 intel_ring_emit(signaller, seqno);
1420 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1421 MI_SEMAPHORE_TARGET(waiter->hw_id));
1422 intel_ring_emit(signaller, 0);
1423 }
1424
1425 return 0;
1426 }
1427
1428 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1429 unsigned int num_dwords)
1430 {
1431 struct intel_engine_cs *signaller = signaller_req->engine;
1432 struct drm_device *dev = signaller->dev;
1433 struct drm_i915_private *dev_priv = dev->dev_private;
1434 struct intel_engine_cs *useless;
1435 enum intel_engine_id id;
1436 int ret, num_rings;
1437
1438 #define MBOX_UPDATE_DWORDS 3
1439 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1440 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1441 #undef MBOX_UPDATE_DWORDS
1442
1443 ret = intel_ring_begin(signaller_req, num_dwords);
1444 if (ret)
1445 return ret;
1446
1447 for_each_engine_id(useless, dev_priv, id) {
1448 i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
1449
1450 if (i915_mmio_reg_valid(mbox_reg)) {
1451 u32 seqno = i915_gem_request_get_seqno(signaller_req);
1452
1453 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1454 intel_ring_emit_reg(signaller, mbox_reg);
1455 intel_ring_emit(signaller, seqno);
1456 }
1457 }
1458
1459 /* If num_dwords was rounded, make sure the tail pointer is correct */
1460 if (num_rings % 2 == 0)
1461 intel_ring_emit(signaller, MI_NOOP);
1462
1463 return 0;
1464 }
1465
1466 /**
1467 * gen6_add_request - Update the semaphore mailbox registers
1468 *
1469 * @request - request to write to the ring
1470 *
1471 * Update the mailbox registers in the *other* rings with the current seqno.
1472 * This acts like a signal in the canonical semaphore.
1473 */
1474 static int
1475 gen6_add_request(struct drm_i915_gem_request *req)
1476 {
1477 struct intel_engine_cs *engine = req->engine;
1478 int ret;
1479
1480 if (engine->semaphore.signal)
1481 ret = engine->semaphore.signal(req, 4);
1482 else
1483 ret = intel_ring_begin(req, 4);
1484
1485 if (ret)
1486 return ret;
1487
1488 intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1489 intel_ring_emit(engine,
1490 I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1491 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1492 intel_ring_emit(engine, MI_USER_INTERRUPT);
1493 __intel_ring_advance(engine);
1494
1495 return 0;
1496 }
1497
1498 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1499 u32 seqno)
1500 {
1501 struct drm_i915_private *dev_priv = dev->dev_private;
1502 return dev_priv->last_seqno < seqno;
1503 }
1504
1505 /**
1506 * intel_ring_sync - sync the waiter to the signaller on seqno
1507 *
1508 * @waiter - ring that is waiting
1509 * @signaller - ring which has, or will signal
1510 * @seqno - seqno which the waiter will block on
1511 */
1512
1513 static int
1514 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1515 struct intel_engine_cs *signaller,
1516 u32 seqno)
1517 {
1518 struct intel_engine_cs *waiter = waiter_req->engine;
1519 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1520 int ret;
1521
1522 ret = intel_ring_begin(waiter_req, 4);
1523 if (ret)
1524 return ret;
1525
1526 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1527 MI_SEMAPHORE_GLOBAL_GTT |
1528 MI_SEMAPHORE_POLL |
1529 MI_SEMAPHORE_SAD_GTE_SDD);
1530 intel_ring_emit(waiter, seqno);
1531 intel_ring_emit(waiter,
1532 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1533 intel_ring_emit(waiter,
1534 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1535 intel_ring_advance(waiter);
1536 return 0;
1537 }
1538
1539 static int
1540 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1541 struct intel_engine_cs *signaller,
1542 u32 seqno)
1543 {
1544 struct intel_engine_cs *waiter = waiter_req->engine;
1545 u32 dw1 = MI_SEMAPHORE_MBOX |
1546 MI_SEMAPHORE_COMPARE |
1547 MI_SEMAPHORE_REGISTER;
1548 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1549 int ret;
1550
1551 /* Throughout all of the GEM code, seqno passed implies our current
1552 * seqno is >= the last seqno executed. However for hardware the
1553 * comparison is strictly greater than.
1554 */
1555 seqno -= 1;
1556
1557 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1558
1559 ret = intel_ring_begin(waiter_req, 4);
1560 if (ret)
1561 return ret;
1562
1563 /* If seqno wrap happened, omit the wait with no-ops */
1564 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1565 intel_ring_emit(waiter, dw1 | wait_mbox);
1566 intel_ring_emit(waiter, seqno);
1567 intel_ring_emit(waiter, 0);
1568 intel_ring_emit(waiter, MI_NOOP);
1569 } else {
1570 intel_ring_emit(waiter, MI_NOOP);
1571 intel_ring_emit(waiter, MI_NOOP);
1572 intel_ring_emit(waiter, MI_NOOP);
1573 intel_ring_emit(waiter, MI_NOOP);
1574 }
1575 intel_ring_advance(waiter);
1576
1577 return 0;
1578 }
1579
1580 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1581 do { \
1582 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1583 PIPE_CONTROL_DEPTH_STALL); \
1584 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1585 intel_ring_emit(ring__, 0); \
1586 intel_ring_emit(ring__, 0); \
1587 } while (0)
1588
1589 static int
1590 pc_render_add_request(struct drm_i915_gem_request *req)
1591 {
1592 struct intel_engine_cs *engine = req->engine;
1593 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1594 int ret;
1595
1596 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1597 * incoherent with writes to memory, i.e. completely fubar,
1598 * so we need to use PIPE_NOTIFY instead.
1599 *
1600 * However, we also need to workaround the qword write
1601 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1602 * memory before requesting an interrupt.
1603 */
1604 ret = intel_ring_begin(req, 32);
1605 if (ret)
1606 return ret;
1607
1608 intel_ring_emit(engine,
1609 GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1610 PIPE_CONTROL_WRITE_FLUSH |
1611 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1612 intel_ring_emit(engine,
1613 engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1614 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1615 intel_ring_emit(engine, 0);
1616 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1617 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1618 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1619 scratch_addr += 2 * CACHELINE_BYTES;
1620 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1621 scratch_addr += 2 * CACHELINE_BYTES;
1622 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1623 scratch_addr += 2 * CACHELINE_BYTES;
1624 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1625 scratch_addr += 2 * CACHELINE_BYTES;
1626 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1627
1628 intel_ring_emit(engine,
1629 GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1630 PIPE_CONTROL_WRITE_FLUSH |
1631 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1632 PIPE_CONTROL_NOTIFY);
1633 intel_ring_emit(engine,
1634 engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1635 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1636 intel_ring_emit(engine, 0);
1637 __intel_ring_advance(engine);
1638
1639 return 0;
1640 }
1641
1642 static void
1643 gen6_seqno_barrier(struct intel_engine_cs *engine)
1644 {
1645 struct drm_i915_private *dev_priv = engine->dev->dev_private;
1646
1647 /* Workaround to force correct ordering between irq and seqno writes on
1648 * ivb (and maybe also on snb) by reading from a CS register (like
1649 * ACTHD) before reading the status page.
1650 *
1651 * Note that this effectively stalls the read by the time it takes to
1652 * do a memory transaction, which more or less ensures that the write
1653 * from the GPU has sufficient time to invalidate the CPU cacheline.
1654 * Alternatively we could delay the interrupt from the CS ring to give
1655 * the write time to land, but that would incur a delay after every
1656 * batch i.e. much more frequent than a delay when waiting for the
1657 * interrupt (with the same net latency).
1658 *
1659 * Also note that to prevent whole machine hangs on gen7, we have to
1660 * take the spinlock to guard against concurrent cacheline access.
1661 */
1662 spin_lock_irq(&dev_priv->uncore.lock);
1663 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1664 spin_unlock_irq(&dev_priv->uncore.lock);
1665 }
1666
1667 static u32
1668 ring_get_seqno(struct intel_engine_cs *engine)
1669 {
1670 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1671 }
1672
1673 static void
1674 ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1675 {
1676 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1677 }
1678
1679 static u32
1680 pc_render_get_seqno(struct intel_engine_cs *engine)
1681 {
1682 return engine->scratch.cpu_page[0];
1683 }
1684
1685 static void
1686 pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1687 {
1688 engine->scratch.cpu_page[0] = seqno;
1689 }
1690
1691 static bool
1692 gen5_ring_get_irq(struct intel_engine_cs *engine)
1693 {
1694 struct drm_device *dev = engine->dev;
1695 struct drm_i915_private *dev_priv = dev->dev_private;
1696 unsigned long flags;
1697
1698 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1699 return false;
1700
1701 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1702 if (engine->irq_refcount++ == 0)
1703 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1704 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1705
1706 return true;
1707 }
1708
1709 static void
1710 gen5_ring_put_irq(struct intel_engine_cs *engine)
1711 {
1712 struct drm_device *dev = engine->dev;
1713 struct drm_i915_private *dev_priv = dev->dev_private;
1714 unsigned long flags;
1715
1716 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1717 if (--engine->irq_refcount == 0)
1718 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1719 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1720 }
1721
1722 static bool
1723 i9xx_ring_get_irq(struct intel_engine_cs *engine)
1724 {
1725 struct drm_device *dev = engine->dev;
1726 struct drm_i915_private *dev_priv = dev->dev_private;
1727 unsigned long flags;
1728
1729 if (!intel_irqs_enabled(dev_priv))
1730 return false;
1731
1732 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1733 if (engine->irq_refcount++ == 0) {
1734 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1735 I915_WRITE(IMR, dev_priv->irq_mask);
1736 POSTING_READ(IMR);
1737 }
1738 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1739
1740 return true;
1741 }
1742
1743 static void
1744 i9xx_ring_put_irq(struct intel_engine_cs *engine)
1745 {
1746 struct drm_device *dev = engine->dev;
1747 struct drm_i915_private *dev_priv = dev->dev_private;
1748 unsigned long flags;
1749
1750 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1751 if (--engine->irq_refcount == 0) {
1752 dev_priv->irq_mask |= engine->irq_enable_mask;
1753 I915_WRITE(IMR, dev_priv->irq_mask);
1754 POSTING_READ(IMR);
1755 }
1756 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1757 }
1758
1759 static bool
1760 i8xx_ring_get_irq(struct intel_engine_cs *engine)
1761 {
1762 struct drm_device *dev = engine->dev;
1763 struct drm_i915_private *dev_priv = dev->dev_private;
1764 unsigned long flags;
1765
1766 if (!intel_irqs_enabled(dev_priv))
1767 return false;
1768
1769 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1770 if (engine->irq_refcount++ == 0) {
1771 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1772 I915_WRITE16(IMR, dev_priv->irq_mask);
1773 POSTING_READ16(IMR);
1774 }
1775 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1776
1777 return true;
1778 }
1779
1780 static void
1781 i8xx_ring_put_irq(struct intel_engine_cs *engine)
1782 {
1783 struct drm_device *dev = engine->dev;
1784 struct drm_i915_private *dev_priv = dev->dev_private;
1785 unsigned long flags;
1786
1787 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1788 if (--engine->irq_refcount == 0) {
1789 dev_priv->irq_mask |= engine->irq_enable_mask;
1790 I915_WRITE16(IMR, dev_priv->irq_mask);
1791 POSTING_READ16(IMR);
1792 }
1793 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1794 }
1795
1796 static int
1797 bsd_ring_flush(struct drm_i915_gem_request *req,
1798 u32 invalidate_domains,
1799 u32 flush_domains)
1800 {
1801 struct intel_engine_cs *engine = req->engine;
1802 int ret;
1803
1804 ret = intel_ring_begin(req, 2);
1805 if (ret)
1806 return ret;
1807
1808 intel_ring_emit(engine, MI_FLUSH);
1809 intel_ring_emit(engine, MI_NOOP);
1810 intel_ring_advance(engine);
1811 return 0;
1812 }
1813
1814 static int
1815 i9xx_add_request(struct drm_i915_gem_request *req)
1816 {
1817 struct intel_engine_cs *engine = req->engine;
1818 int ret;
1819
1820 ret = intel_ring_begin(req, 4);
1821 if (ret)
1822 return ret;
1823
1824 intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1825 intel_ring_emit(engine,
1826 I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1827 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1828 intel_ring_emit(engine, MI_USER_INTERRUPT);
1829 __intel_ring_advance(engine);
1830
1831 return 0;
1832 }
1833
1834 static bool
1835 gen6_ring_get_irq(struct intel_engine_cs *engine)
1836 {
1837 struct drm_device *dev = engine->dev;
1838 struct drm_i915_private *dev_priv = dev->dev_private;
1839 unsigned long flags;
1840
1841 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1842 return false;
1843
1844 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1845 if (engine->irq_refcount++ == 0) {
1846 if (HAS_L3_DPF(dev) && engine->id == RCS)
1847 I915_WRITE_IMR(engine,
1848 ~(engine->irq_enable_mask |
1849 GT_PARITY_ERROR(dev)));
1850 else
1851 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1852 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1853 }
1854 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1855
1856 return true;
1857 }
1858
1859 static void
1860 gen6_ring_put_irq(struct intel_engine_cs *engine)
1861 {
1862 struct drm_device *dev = engine->dev;
1863 struct drm_i915_private *dev_priv = dev->dev_private;
1864 unsigned long flags;
1865
1866 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1867 if (--engine->irq_refcount == 0) {
1868 if (HAS_L3_DPF(dev) && engine->id == RCS)
1869 I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
1870 else
1871 I915_WRITE_IMR(engine, ~0);
1872 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1873 }
1874 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1875 }
1876
1877 static bool
1878 hsw_vebox_get_irq(struct intel_engine_cs *engine)
1879 {
1880 struct drm_device *dev = engine->dev;
1881 struct drm_i915_private *dev_priv = dev->dev_private;
1882 unsigned long flags;
1883
1884 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1885 return false;
1886
1887 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1888 if (engine->irq_refcount++ == 0) {
1889 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1890 gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
1891 }
1892 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1893
1894 return true;
1895 }
1896
1897 static void
1898 hsw_vebox_put_irq(struct intel_engine_cs *engine)
1899 {
1900 struct drm_device *dev = engine->dev;
1901 struct drm_i915_private *dev_priv = dev->dev_private;
1902 unsigned long flags;
1903
1904 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1905 if (--engine->irq_refcount == 0) {
1906 I915_WRITE_IMR(engine, ~0);
1907 gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
1908 }
1909 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1910 }
1911
1912 static bool
1913 gen8_ring_get_irq(struct intel_engine_cs *engine)
1914 {
1915 struct drm_device *dev = engine->dev;
1916 struct drm_i915_private *dev_priv = dev->dev_private;
1917 unsigned long flags;
1918
1919 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1920 return false;
1921
1922 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1923 if (engine->irq_refcount++ == 0) {
1924 if (HAS_L3_DPF(dev) && engine->id == RCS) {
1925 I915_WRITE_IMR(engine,
1926 ~(engine->irq_enable_mask |
1927 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1928 } else {
1929 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1930 }
1931 POSTING_READ(RING_IMR(engine->mmio_base));
1932 }
1933 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1934
1935 return true;
1936 }
1937
1938 static void
1939 gen8_ring_put_irq(struct intel_engine_cs *engine)
1940 {
1941 struct drm_device *dev = engine->dev;
1942 struct drm_i915_private *dev_priv = dev->dev_private;
1943 unsigned long flags;
1944
1945 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1946 if (--engine->irq_refcount == 0) {
1947 if (HAS_L3_DPF(dev) && engine->id == RCS) {
1948 I915_WRITE_IMR(engine,
1949 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1950 } else {
1951 I915_WRITE_IMR(engine, ~0);
1952 }
1953 POSTING_READ(RING_IMR(engine->mmio_base));
1954 }
1955 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1956 }
1957
1958 static int
1959 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1960 u64 offset, u32 length,
1961 unsigned dispatch_flags)
1962 {
1963 struct intel_engine_cs *engine = req->engine;
1964 int ret;
1965
1966 ret = intel_ring_begin(req, 2);
1967 if (ret)
1968 return ret;
1969
1970 intel_ring_emit(engine,
1971 MI_BATCH_BUFFER_START |
1972 MI_BATCH_GTT |
1973 (dispatch_flags & I915_DISPATCH_SECURE ?
1974 0 : MI_BATCH_NON_SECURE_I965));
1975 intel_ring_emit(engine, offset);
1976 intel_ring_advance(engine);
1977
1978 return 0;
1979 }
1980
1981 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1982 #define I830_BATCH_LIMIT (256*1024)
1983 #define I830_TLB_ENTRIES (2)
1984 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1985 static int
1986 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1987 u64 offset, u32 len,
1988 unsigned dispatch_flags)
1989 {
1990 struct intel_engine_cs *engine = req->engine;
1991 u32 cs_offset = engine->scratch.gtt_offset;
1992 int ret;
1993
1994 ret = intel_ring_begin(req, 6);
1995 if (ret)
1996 return ret;
1997
1998 /* Evict the invalid PTE TLBs */
1999 intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
2000 intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
2001 intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
2002 intel_ring_emit(engine, cs_offset);
2003 intel_ring_emit(engine, 0xdeadbeef);
2004 intel_ring_emit(engine, MI_NOOP);
2005 intel_ring_advance(engine);
2006
2007 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
2008 if (len > I830_BATCH_LIMIT)
2009 return -ENOSPC;
2010
2011 ret = intel_ring_begin(req, 6 + 2);
2012 if (ret)
2013 return ret;
2014
2015 /* Blit the batch (which has now all relocs applied) to the
2016 * stable batch scratch bo area (so that the CS never
2017 * stumbles over its tlb invalidation bug) ...
2018 */
2019 intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
2020 intel_ring_emit(engine,
2021 BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
2022 intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
2023 intel_ring_emit(engine, cs_offset);
2024 intel_ring_emit(engine, 4096);
2025 intel_ring_emit(engine, offset);
2026
2027 intel_ring_emit(engine, MI_FLUSH);
2028 intel_ring_emit(engine, MI_NOOP);
2029 intel_ring_advance(engine);
2030
2031 /* ... and execute it. */
2032 offset = cs_offset;
2033 }
2034
2035 ret = intel_ring_begin(req, 2);
2036 if (ret)
2037 return ret;
2038
2039 intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
2040 intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
2041 0 : MI_BATCH_NON_SECURE));
2042 intel_ring_advance(engine);
2043
2044 return 0;
2045 }
2046
2047 static int
2048 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
2049 u64 offset, u32 len,
2050 unsigned dispatch_flags)
2051 {
2052 struct intel_engine_cs *engine = req->engine;
2053 int ret;
2054
2055 ret = intel_ring_begin(req, 2);
2056 if (ret)
2057 return ret;
2058
2059 intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
2060 intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
2061 0 : MI_BATCH_NON_SECURE));
2062 intel_ring_advance(engine);
2063
2064 return 0;
2065 }
2066
2067 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
2068 {
2069 struct drm_i915_private *dev_priv = to_i915(engine->dev);
2070
2071 if (!dev_priv->status_page_dmah)
2072 return;
2073
2074 drm_pci_free(engine->dev, dev_priv->status_page_dmah);
2075 engine->status_page.page_addr = NULL;
2076 }
2077
2078 static void cleanup_status_page(struct intel_engine_cs *engine)
2079 {
2080 struct drm_i915_gem_object *obj;
2081
2082 obj = engine->status_page.obj;
2083 if (obj == NULL)
2084 return;
2085
2086 kunmap(sg_page(obj->pages->sgl));
2087 i915_gem_object_ggtt_unpin(obj);
2088 drm_gem_object_unreference(&obj->base);
2089 engine->status_page.obj = NULL;
2090 }
2091
2092 static int init_status_page(struct intel_engine_cs *engine)
2093 {
2094 struct drm_i915_gem_object *obj = engine->status_page.obj;
2095
2096 if (obj == NULL) {
2097 unsigned flags;
2098 int ret;
2099
2100 obj = i915_gem_alloc_object(engine->dev, 4096);
2101 if (obj == NULL) {
2102 DRM_ERROR("Failed to allocate status page\n");
2103 return -ENOMEM;
2104 }
2105
2106 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2107 if (ret)
2108 goto err_unref;
2109
2110 flags = 0;
2111 if (!HAS_LLC(engine->dev))
2112 /* On g33, we cannot place HWS above 256MiB, so
2113 * restrict its pinning to the low mappable arena.
2114 * Though this restriction is not documented for
2115 * gen4, gen5, or byt, they also behave similarly
2116 * and hang if the HWS is placed at the top of the
2117 * GTT. To generalise, it appears that all !llc
2118 * platforms have issues with us placing the HWS
2119 * above the mappable region (even though we never
2120 * actualy map it).
2121 */
2122 flags |= PIN_MAPPABLE;
2123 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
2124 if (ret) {
2125 err_unref:
2126 drm_gem_object_unreference(&obj->base);
2127 return ret;
2128 }
2129
2130 engine->status_page.obj = obj;
2131 }
2132
2133 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
2134 engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
2135 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2136
2137 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2138 engine->name, engine->status_page.gfx_addr);
2139
2140 return 0;
2141 }
2142
2143 static int init_phys_status_page(struct intel_engine_cs *engine)
2144 {
2145 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2146
2147 if (!dev_priv->status_page_dmah) {
2148 dev_priv->status_page_dmah =
2149 drm_pci_alloc(engine->dev, PAGE_SIZE, PAGE_SIZE);
2150 if (!dev_priv->status_page_dmah)
2151 return -ENOMEM;
2152 }
2153
2154 engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2155 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2156
2157 return 0;
2158 }
2159
2160 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2161 {
2162 if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2163 i915_gem_object_unpin_map(ringbuf->obj);
2164 else
2165 iounmap(ringbuf->virtual_start);
2166 ringbuf->virtual_start = NULL;
2167 ringbuf->vma = NULL;
2168 i915_gem_object_ggtt_unpin(ringbuf->obj);
2169 }
2170
2171 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
2172 struct intel_ringbuffer *ringbuf)
2173 {
2174 struct drm_i915_private *dev_priv = to_i915(dev);
2175 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2176 struct drm_i915_gem_object *obj = ringbuf->obj;
2177 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2178 unsigned flags = PIN_OFFSET_BIAS | 4096;
2179 void *addr;
2180 int ret;
2181
2182 if (HAS_LLC(dev_priv) && !obj->stolen) {
2183 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
2184 if (ret)
2185 return ret;
2186
2187 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2188 if (ret)
2189 goto err_unpin;
2190
2191 addr = i915_gem_object_pin_map(obj);
2192 if (IS_ERR(addr)) {
2193 ret = PTR_ERR(addr);
2194 goto err_unpin;
2195 }
2196 } else {
2197 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
2198 flags | PIN_MAPPABLE);
2199 if (ret)
2200 return ret;
2201
2202 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2203 if (ret)
2204 goto err_unpin;
2205
2206 /* Access through the GTT requires the device to be awake. */
2207 assert_rpm_wakelock_held(dev_priv);
2208
2209 addr = ioremap_wc(ggtt->mappable_base +
2210 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2211 if (addr == NULL) {
2212 ret = -ENOMEM;
2213 goto err_unpin;
2214 }
2215 }
2216
2217 ringbuf->virtual_start = addr;
2218 ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2219 return 0;
2220
2221 err_unpin:
2222 i915_gem_object_ggtt_unpin(obj);
2223 return ret;
2224 }
2225
2226 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2227 {
2228 drm_gem_object_unreference(&ringbuf->obj->base);
2229 ringbuf->obj = NULL;
2230 }
2231
2232 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2233 struct intel_ringbuffer *ringbuf)
2234 {
2235 struct drm_i915_gem_object *obj;
2236
2237 obj = NULL;
2238 if (!HAS_LLC(dev))
2239 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2240 if (obj == NULL)
2241 obj = i915_gem_alloc_object(dev, ringbuf->size);
2242 if (obj == NULL)
2243 return -ENOMEM;
2244
2245 /* mark ring buffers as read-only from GPU side by default */
2246 obj->gt_ro = 1;
2247
2248 ringbuf->obj = obj;
2249
2250 return 0;
2251 }
2252
2253 struct intel_ringbuffer *
2254 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2255 {
2256 struct intel_ringbuffer *ring;
2257 int ret;
2258
2259 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2260 if (ring == NULL) {
2261 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2262 engine->name);
2263 return ERR_PTR(-ENOMEM);
2264 }
2265
2266 ring->engine = engine;
2267 list_add(&ring->link, &engine->buffers);
2268
2269 ring->size = size;
2270 /* Workaround an erratum on the i830 which causes a hang if
2271 * the TAIL pointer points to within the last 2 cachelines
2272 * of the buffer.
2273 */
2274 ring->effective_size = size;
2275 if (IS_I830(engine->dev) || IS_845G(engine->dev))
2276 ring->effective_size -= 2 * CACHELINE_BYTES;
2277
2278 ring->last_retired_head = -1;
2279 intel_ring_update_space(ring);
2280
2281 ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2282 if (ret) {
2283 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2284 engine->name, ret);
2285 list_del(&ring->link);
2286 kfree(ring);
2287 return ERR_PTR(ret);
2288 }
2289
2290 return ring;
2291 }
2292
2293 void
2294 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2295 {
2296 intel_destroy_ringbuffer_obj(ring);
2297 list_del(&ring->link);
2298 kfree(ring);
2299 }
2300
2301 static int intel_init_ring_buffer(struct drm_device *dev,
2302 struct intel_engine_cs *engine)
2303 {
2304 struct intel_ringbuffer *ringbuf;
2305 int ret;
2306
2307 WARN_ON(engine->buffer);
2308
2309 engine->dev = dev;
2310 INIT_LIST_HEAD(&engine->active_list);
2311 INIT_LIST_HEAD(&engine->request_list);
2312 INIT_LIST_HEAD(&engine->execlist_queue);
2313 INIT_LIST_HEAD(&engine->buffers);
2314 i915_gem_batch_pool_init(dev, &engine->batch_pool);
2315 memset(engine->semaphore.sync_seqno, 0,
2316 sizeof(engine->semaphore.sync_seqno));
2317
2318 init_waitqueue_head(&engine->irq_queue);
2319
2320 ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
2321 if (IS_ERR(ringbuf)) {
2322 ret = PTR_ERR(ringbuf);
2323 goto error;
2324 }
2325 engine->buffer = ringbuf;
2326
2327 if (I915_NEED_GFX_HWS(dev)) {
2328 ret = init_status_page(engine);
2329 if (ret)
2330 goto error;
2331 } else {
2332 WARN_ON(engine->id != RCS);
2333 ret = init_phys_status_page(engine);
2334 if (ret)
2335 goto error;
2336 }
2337
2338 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2339 if (ret) {
2340 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2341 engine->name, ret);
2342 intel_destroy_ringbuffer_obj(ringbuf);
2343 goto error;
2344 }
2345
2346 ret = i915_cmd_parser_init_ring(engine);
2347 if (ret)
2348 goto error;
2349
2350 return 0;
2351
2352 error:
2353 intel_cleanup_engine(engine);
2354 return ret;
2355 }
2356
2357 void intel_cleanup_engine(struct intel_engine_cs *engine)
2358 {
2359 struct drm_i915_private *dev_priv;
2360
2361 if (!intel_engine_initialized(engine))
2362 return;
2363
2364 dev_priv = to_i915(engine->dev);
2365
2366 if (engine->buffer) {
2367 intel_stop_engine(engine);
2368 WARN_ON(!IS_GEN2(engine->dev) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2369
2370 intel_unpin_ringbuffer_obj(engine->buffer);
2371 intel_ringbuffer_free(engine->buffer);
2372 engine->buffer = NULL;
2373 }
2374
2375 if (engine->cleanup)
2376 engine->cleanup(engine);
2377
2378 if (I915_NEED_GFX_HWS(engine->dev)) {
2379 cleanup_status_page(engine);
2380 } else {
2381 WARN_ON(engine->id != RCS);
2382 cleanup_phys_status_page(engine);
2383 }
2384
2385 i915_cmd_parser_fini_ring(engine);
2386 i915_gem_batch_pool_fini(&engine->batch_pool);
2387 engine->dev = NULL;
2388 }
2389
2390 int intel_engine_idle(struct intel_engine_cs *engine)
2391 {
2392 struct drm_i915_gem_request *req;
2393
2394 /* Wait upon the last request to be completed */
2395 if (list_empty(&engine->request_list))
2396 return 0;
2397
2398 req = list_entry(engine->request_list.prev,
2399 struct drm_i915_gem_request,
2400 list);
2401
2402 /* Make sure we do not trigger any retires */
2403 return __i915_wait_request(req,
2404 req->i915->mm.interruptible,
2405 NULL, NULL);
2406 }
2407
2408 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2409 {
2410 request->ringbuf = request->engine->buffer;
2411 return 0;
2412 }
2413
2414 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2415 {
2416 /*
2417 * The first call merely notes the reserve request and is common for
2418 * all back ends. The subsequent localised _begin() call actually
2419 * ensures that the reservation is available. Without the begin, if
2420 * the request creator immediately submitted the request without
2421 * adding any commands to it then there might not actually be
2422 * sufficient room for the submission commands.
2423 */
2424 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2425
2426 return intel_ring_begin(request, 0);
2427 }
2428
2429 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2430 {
2431 GEM_BUG_ON(ringbuf->reserved_size);
2432 ringbuf->reserved_size = size;
2433 }
2434
2435 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2436 {
2437 GEM_BUG_ON(!ringbuf->reserved_size);
2438 ringbuf->reserved_size = 0;
2439 }
2440
2441 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2442 {
2443 GEM_BUG_ON(!ringbuf->reserved_size);
2444 ringbuf->reserved_size = 0;
2445 }
2446
2447 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2448 {
2449 GEM_BUG_ON(ringbuf->reserved_size);
2450 }
2451
2452 static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
2453 {
2454 struct intel_ringbuffer *ringbuf = req->ringbuf;
2455 struct intel_engine_cs *engine = req->engine;
2456 struct drm_i915_gem_request *target;
2457
2458 intel_ring_update_space(ringbuf);
2459 if (ringbuf->space >= bytes)
2460 return 0;
2461
2462 /*
2463 * Space is reserved in the ringbuffer for finalising the request,
2464 * as that cannot be allowed to fail. During request finalisation,
2465 * reserved_space is set to 0 to stop the overallocation and the
2466 * assumption is that then we never need to wait (which has the
2467 * risk of failing with EINTR).
2468 *
2469 * See also i915_gem_request_alloc() and i915_add_request().
2470 */
2471 GEM_BUG_ON(!ringbuf->reserved_size);
2472
2473 list_for_each_entry(target, &engine->request_list, list) {
2474 unsigned space;
2475
2476 /*
2477 * The request queue is per-engine, so can contain requests
2478 * from multiple ringbuffers. Here, we must ignore any that
2479 * aren't from the ringbuffer we're considering.
2480 */
2481 if (target->ringbuf != ringbuf)
2482 continue;
2483
2484 /* Would completion of this request free enough space? */
2485 space = __intel_ring_space(target->postfix, ringbuf->tail,
2486 ringbuf->size);
2487 if (space >= bytes)
2488 break;
2489 }
2490
2491 if (WARN_ON(&target->list == &engine->request_list))
2492 return -ENOSPC;
2493
2494 return i915_wait_request(target);
2495 }
2496
2497 int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
2498 {
2499 struct intel_ringbuffer *ringbuf = req->ringbuf;
2500 int remain_actual = ringbuf->size - ringbuf->tail;
2501 int remain_usable = ringbuf->effective_size - ringbuf->tail;
2502 int bytes = num_dwords * sizeof(u32);
2503 int total_bytes, wait_bytes;
2504 bool need_wrap = false;
2505
2506 total_bytes = bytes + ringbuf->reserved_size;
2507
2508 if (unlikely(bytes > remain_usable)) {
2509 /*
2510 * Not enough space for the basic request. So need to flush
2511 * out the remainder and then wait for base + reserved.
2512 */
2513 wait_bytes = remain_actual + total_bytes;
2514 need_wrap = true;
2515 } else if (unlikely(total_bytes > remain_usable)) {
2516 /*
2517 * The base request will fit but the reserved space
2518 * falls off the end. So we don't need an immediate wrap
2519 * and only need to effectively wait for the reserved
2520 * size space from the start of ringbuffer.
2521 */
2522 wait_bytes = remain_actual + ringbuf->reserved_size;
2523 } else {
2524 /* No wrapping required, just waiting. */
2525 wait_bytes = total_bytes;
2526 }
2527
2528 if (wait_bytes > ringbuf->space) {
2529 int ret = wait_for_space(req, wait_bytes);
2530 if (unlikely(ret))
2531 return ret;
2532
2533 intel_ring_update_space(ringbuf);
2534 if (unlikely(ringbuf->space < wait_bytes))
2535 return -EAGAIN;
2536 }
2537
2538 if (unlikely(need_wrap)) {
2539 GEM_BUG_ON(remain_actual > ringbuf->space);
2540 GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
2541
2542 /* Fill the tail with MI_NOOP */
2543 memset(ringbuf->virtual_start + ringbuf->tail,
2544 0, remain_actual);
2545 ringbuf->tail = 0;
2546 ringbuf->space -= remain_actual;
2547 }
2548
2549 ringbuf->space -= bytes;
2550 GEM_BUG_ON(ringbuf->space < 0);
2551 return 0;
2552 }
2553
2554 /* Align the ring tail to a cacheline boundary */
2555 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2556 {
2557 struct intel_engine_cs *engine = req->engine;
2558 int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2559 int ret;
2560
2561 if (num_dwords == 0)
2562 return 0;
2563
2564 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2565 ret = intel_ring_begin(req, num_dwords);
2566 if (ret)
2567 return ret;
2568
2569 while (num_dwords--)
2570 intel_ring_emit(engine, MI_NOOP);
2571
2572 intel_ring_advance(engine);
2573
2574 return 0;
2575 }
2576
2577 void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2578 {
2579 struct drm_i915_private *dev_priv = to_i915(engine->dev);
2580
2581 /* Our semaphore implementation is strictly monotonic (i.e. we proceed
2582 * so long as the semaphore value in the register/page is greater
2583 * than the sync value), so whenever we reset the seqno,
2584 * so long as we reset the tracking semaphore value to 0, it will
2585 * always be before the next request's seqno. If we don't reset
2586 * the semaphore value, then when the seqno moves backwards all
2587 * future waits will complete instantly (causing rendering corruption).
2588 */
2589 if (INTEL_INFO(dev_priv)->gen == 6 || INTEL_INFO(dev_priv)->gen == 7) {
2590 I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
2591 I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2592 if (HAS_VEBOX(dev_priv))
2593 I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2594 }
2595 if (dev_priv->semaphore_obj) {
2596 struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
2597 struct page *page = i915_gem_object_get_dirty_page(obj, 0);
2598 void *semaphores = kmap(page);
2599 memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
2600 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
2601 kunmap(page);
2602 }
2603 memset(engine->semaphore.sync_seqno, 0,
2604 sizeof(engine->semaphore.sync_seqno));
2605
2606 engine->set_seqno(engine, seqno);
2607 engine->last_submitted_seqno = seqno;
2608
2609 engine->hangcheck.seqno = seqno;
2610 }
2611
2612 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
2613 u32 value)
2614 {
2615 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2616
2617 /* Every tail move must follow the sequence below */
2618
2619 /* Disable notification that the ring is IDLE. The GT
2620 * will then assume that it is busy and bring it out of rc6.
2621 */
2622 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2623 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2624
2625 /* Clear the context id. Here be magic! */
2626 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2627
2628 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2629 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2630 GEN6_BSD_SLEEP_INDICATOR) == 0,
2631 50))
2632 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2633
2634 /* Now that the ring is fully powered up, update the tail */
2635 I915_WRITE_TAIL(engine, value);
2636 POSTING_READ(RING_TAIL(engine->mmio_base));
2637
2638 /* Let the ring send IDLE messages to the GT again,
2639 * and so let it sleep to conserve power when idle.
2640 */
2641 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2642 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2643 }
2644
2645 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2646 u32 invalidate, u32 flush)
2647 {
2648 struct intel_engine_cs *engine = req->engine;
2649 uint32_t cmd;
2650 int ret;
2651
2652 ret = intel_ring_begin(req, 4);
2653 if (ret)
2654 return ret;
2655
2656 cmd = MI_FLUSH_DW;
2657 if (INTEL_INFO(engine->dev)->gen >= 8)
2658 cmd += 1;
2659
2660 /* We always require a command barrier so that subsequent
2661 * commands, such as breadcrumb interrupts, are strictly ordered
2662 * wrt the contents of the write cache being flushed to memory
2663 * (and thus being coherent from the CPU).
2664 */
2665 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2666
2667 /*
2668 * Bspec vol 1c.5 - video engine command streamer:
2669 * "If ENABLED, all TLBs will be invalidated once the flush
2670 * operation is complete. This bit is only valid when the
2671 * Post-Sync Operation field is a value of 1h or 3h."
2672 */
2673 if (invalidate & I915_GEM_GPU_DOMAINS)
2674 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2675
2676 intel_ring_emit(engine, cmd);
2677 intel_ring_emit(engine,
2678 I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2679 if (INTEL_INFO(engine->dev)->gen >= 8) {
2680 intel_ring_emit(engine, 0); /* upper addr */
2681 intel_ring_emit(engine, 0); /* value */
2682 } else {
2683 intel_ring_emit(engine, 0);
2684 intel_ring_emit(engine, MI_NOOP);
2685 }
2686 intel_ring_advance(engine);
2687 return 0;
2688 }
2689
2690 static int
2691 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2692 u64 offset, u32 len,
2693 unsigned dispatch_flags)
2694 {
2695 struct intel_engine_cs *engine = req->engine;
2696 bool ppgtt = USES_PPGTT(engine->dev) &&
2697 !(dispatch_flags & I915_DISPATCH_SECURE);
2698 int ret;
2699
2700 ret = intel_ring_begin(req, 4);
2701 if (ret)
2702 return ret;
2703
2704 /* FIXME(BDW): Address space and security selectors. */
2705 intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2706 (dispatch_flags & I915_DISPATCH_RS ?
2707 MI_BATCH_RESOURCE_STREAMER : 0));
2708 intel_ring_emit(engine, lower_32_bits(offset));
2709 intel_ring_emit(engine, upper_32_bits(offset));
2710 intel_ring_emit(engine, MI_NOOP);
2711 intel_ring_advance(engine);
2712
2713 return 0;
2714 }
2715
2716 static int
2717 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2718 u64 offset, u32 len,
2719 unsigned dispatch_flags)
2720 {
2721 struct intel_engine_cs *engine = req->engine;
2722 int ret;
2723
2724 ret = intel_ring_begin(req, 2);
2725 if (ret)
2726 return ret;
2727
2728 intel_ring_emit(engine,
2729 MI_BATCH_BUFFER_START |
2730 (dispatch_flags & I915_DISPATCH_SECURE ?
2731 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2732 (dispatch_flags & I915_DISPATCH_RS ?
2733 MI_BATCH_RESOURCE_STREAMER : 0));
2734 /* bit0-7 is the length on GEN6+ */
2735 intel_ring_emit(engine, offset);
2736 intel_ring_advance(engine);
2737
2738 return 0;
2739 }
2740
2741 static int
2742 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2743 u64 offset, u32 len,
2744 unsigned dispatch_flags)
2745 {
2746 struct intel_engine_cs *engine = req->engine;
2747 int ret;
2748
2749 ret = intel_ring_begin(req, 2);
2750 if (ret)
2751 return ret;
2752
2753 intel_ring_emit(engine,
2754 MI_BATCH_BUFFER_START |
2755 (dispatch_flags & I915_DISPATCH_SECURE ?
2756 0 : MI_BATCH_NON_SECURE_I965));
2757 /* bit0-7 is the length on GEN6+ */
2758 intel_ring_emit(engine, offset);
2759 intel_ring_advance(engine);
2760
2761 return 0;
2762 }
2763
2764 /* Blitter support (SandyBridge+) */
2765
2766 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2767 u32 invalidate, u32 flush)
2768 {
2769 struct intel_engine_cs *engine = req->engine;
2770 struct drm_device *dev = engine->dev;
2771 uint32_t cmd;
2772 int ret;
2773
2774 ret = intel_ring_begin(req, 4);
2775 if (ret)
2776 return ret;
2777
2778 cmd = MI_FLUSH_DW;
2779 if (INTEL_INFO(dev)->gen >= 8)
2780 cmd += 1;
2781
2782 /* We always require a command barrier so that subsequent
2783 * commands, such as breadcrumb interrupts, are strictly ordered
2784 * wrt the contents of the write cache being flushed to memory
2785 * (and thus being coherent from the CPU).
2786 */
2787 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2788
2789 /*
2790 * Bspec vol 1c.3 - blitter engine command streamer:
2791 * "If ENABLED, all TLBs will be invalidated once the flush
2792 * operation is complete. This bit is only valid when the
2793 * Post-Sync Operation field is a value of 1h or 3h."
2794 */
2795 if (invalidate & I915_GEM_DOMAIN_RENDER)
2796 cmd |= MI_INVALIDATE_TLB;
2797 intel_ring_emit(engine, cmd);
2798 intel_ring_emit(engine,
2799 I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2800 if (INTEL_INFO(dev)->gen >= 8) {
2801 intel_ring_emit(engine, 0); /* upper addr */
2802 intel_ring_emit(engine, 0); /* value */
2803 } else {
2804 intel_ring_emit(engine, 0);
2805 intel_ring_emit(engine, MI_NOOP);
2806 }
2807 intel_ring_advance(engine);
2808
2809 return 0;
2810 }
2811
2812 int intel_init_render_ring_buffer(struct drm_device *dev)
2813 {
2814 struct drm_i915_private *dev_priv = dev->dev_private;
2815 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2816 struct drm_i915_gem_object *obj;
2817 int ret;
2818
2819 engine->name = "render ring";
2820 engine->id = RCS;
2821 engine->exec_id = I915_EXEC_RENDER;
2822 engine->hw_id = 0;
2823 engine->mmio_base = RENDER_RING_BASE;
2824
2825 if (INTEL_INFO(dev)->gen >= 8) {
2826 if (i915_semaphore_is_enabled(dev)) {
2827 obj = i915_gem_alloc_object(dev, 4096);
2828 if (obj == NULL) {
2829 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2830 i915.semaphores = 0;
2831 } else {
2832 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2833 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2834 if (ret != 0) {
2835 drm_gem_object_unreference(&obj->base);
2836 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2837 i915.semaphores = 0;
2838 } else
2839 dev_priv->semaphore_obj = obj;
2840 }
2841 }
2842
2843 engine->init_context = intel_rcs_ctx_init;
2844 engine->add_request = gen6_add_request;
2845 engine->flush = gen8_render_ring_flush;
2846 engine->irq_get = gen8_ring_get_irq;
2847 engine->irq_put = gen8_ring_put_irq;
2848 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2849 engine->irq_seqno_barrier = gen6_seqno_barrier;
2850 engine->get_seqno = ring_get_seqno;
2851 engine->set_seqno = ring_set_seqno;
2852 if (i915_semaphore_is_enabled(dev)) {
2853 WARN_ON(!dev_priv->semaphore_obj);
2854 engine->semaphore.sync_to = gen8_ring_sync;
2855 engine->semaphore.signal = gen8_rcs_signal;
2856 GEN8_RING_SEMAPHORE_INIT(engine);
2857 }
2858 } else if (INTEL_INFO(dev)->gen >= 6) {
2859 engine->init_context = intel_rcs_ctx_init;
2860 engine->add_request = gen6_add_request;
2861 engine->flush = gen7_render_ring_flush;
2862 if (INTEL_INFO(dev)->gen == 6)
2863 engine->flush = gen6_render_ring_flush;
2864 engine->irq_get = gen6_ring_get_irq;
2865 engine->irq_put = gen6_ring_put_irq;
2866 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2867 engine->irq_seqno_barrier = gen6_seqno_barrier;
2868 engine->get_seqno = ring_get_seqno;
2869 engine->set_seqno = ring_set_seqno;
2870 if (i915_semaphore_is_enabled(dev)) {
2871 engine->semaphore.sync_to = gen6_ring_sync;
2872 engine->semaphore.signal = gen6_signal;
2873 /*
2874 * The current semaphore is only applied on pre-gen8
2875 * platform. And there is no VCS2 ring on the pre-gen8
2876 * platform. So the semaphore between RCS and VCS2 is
2877 * initialized as INVALID. Gen8 will initialize the
2878 * sema between VCS2 and RCS later.
2879 */
2880 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2881 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2882 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2883 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2884 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2885 engine->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2886 engine->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2887 engine->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2888 engine->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2889 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2890 }
2891 } else if (IS_GEN5(dev)) {
2892 engine->add_request = pc_render_add_request;
2893 engine->flush = gen4_render_ring_flush;
2894 engine->get_seqno = pc_render_get_seqno;
2895 engine->set_seqno = pc_render_set_seqno;
2896 engine->irq_get = gen5_ring_get_irq;
2897 engine->irq_put = gen5_ring_put_irq;
2898 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2899 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2900 } else {
2901 engine->add_request = i9xx_add_request;
2902 if (INTEL_INFO(dev)->gen < 4)
2903 engine->flush = gen2_render_ring_flush;
2904 else
2905 engine->flush = gen4_render_ring_flush;
2906 engine->get_seqno = ring_get_seqno;
2907 engine->set_seqno = ring_set_seqno;
2908 if (IS_GEN2(dev)) {
2909 engine->irq_get = i8xx_ring_get_irq;
2910 engine->irq_put = i8xx_ring_put_irq;
2911 } else {
2912 engine->irq_get = i9xx_ring_get_irq;
2913 engine->irq_put = i9xx_ring_put_irq;
2914 }
2915 engine->irq_enable_mask = I915_USER_INTERRUPT;
2916 }
2917 engine->write_tail = ring_write_tail;
2918
2919 if (IS_HASWELL(dev))
2920 engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2921 else if (IS_GEN8(dev))
2922 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2923 else if (INTEL_INFO(dev)->gen >= 6)
2924 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2925 else if (INTEL_INFO(dev)->gen >= 4)
2926 engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2927 else if (IS_I830(dev) || IS_845G(dev))
2928 engine->dispatch_execbuffer = i830_dispatch_execbuffer;
2929 else
2930 engine->dispatch_execbuffer = i915_dispatch_execbuffer;
2931 engine->init_hw = init_render_ring;
2932 engine->cleanup = render_ring_cleanup;
2933
2934 /* Workaround batchbuffer to combat CS tlb bug. */
2935 if (HAS_BROKEN_CS_TLB(dev)) {
2936 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2937 if (obj == NULL) {
2938 DRM_ERROR("Failed to allocate batch bo\n");
2939 return -ENOMEM;
2940 }
2941
2942 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2943 if (ret != 0) {
2944 drm_gem_object_unreference(&obj->base);
2945 DRM_ERROR("Failed to ping batch bo\n");
2946 return ret;
2947 }
2948
2949 engine->scratch.obj = obj;
2950 engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2951 }
2952
2953 ret = intel_init_ring_buffer(dev, engine);
2954 if (ret)
2955 return ret;
2956
2957 if (INTEL_INFO(dev)->gen >= 5) {
2958 ret = intel_init_pipe_control(engine);
2959 if (ret)
2960 return ret;
2961 }
2962
2963 return 0;
2964 }
2965
2966 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2967 {
2968 struct drm_i915_private *dev_priv = dev->dev_private;
2969 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2970
2971 engine->name = "bsd ring";
2972 engine->id = VCS;
2973 engine->exec_id = I915_EXEC_BSD;
2974 engine->hw_id = 1;
2975
2976 engine->write_tail = ring_write_tail;
2977 if (INTEL_INFO(dev)->gen >= 6) {
2978 engine->mmio_base = GEN6_BSD_RING_BASE;
2979 /* gen6 bsd needs a special wa for tail updates */
2980 if (IS_GEN6(dev))
2981 engine->write_tail = gen6_bsd_ring_write_tail;
2982 engine->flush = gen6_bsd_ring_flush;
2983 engine->add_request = gen6_add_request;
2984 engine->irq_seqno_barrier = gen6_seqno_barrier;
2985 engine->get_seqno = ring_get_seqno;
2986 engine->set_seqno = ring_set_seqno;
2987 if (INTEL_INFO(dev)->gen >= 8) {
2988 engine->irq_enable_mask =
2989 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2990 engine->irq_get = gen8_ring_get_irq;
2991 engine->irq_put = gen8_ring_put_irq;
2992 engine->dispatch_execbuffer =
2993 gen8_ring_dispatch_execbuffer;
2994 if (i915_semaphore_is_enabled(dev)) {
2995 engine->semaphore.sync_to = gen8_ring_sync;
2996 engine->semaphore.signal = gen8_xcs_signal;
2997 GEN8_RING_SEMAPHORE_INIT(engine);
2998 }
2999 } else {
3000 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
3001 engine->irq_get = gen6_ring_get_irq;
3002 engine->irq_put = gen6_ring_put_irq;
3003 engine->dispatch_execbuffer =
3004 gen6_ring_dispatch_execbuffer;
3005 if (i915_semaphore_is_enabled(dev)) {
3006 engine->semaphore.sync_to = gen6_ring_sync;
3007 engine->semaphore.signal = gen6_signal;
3008 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
3009 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
3010 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
3011 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
3012 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3013 engine->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
3014 engine->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
3015 engine->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
3016 engine->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
3017 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3018 }
3019 }
3020 } else {
3021 engine->mmio_base = BSD_RING_BASE;
3022 engine->flush = bsd_ring_flush;
3023 engine->add_request = i9xx_add_request;
3024 engine->get_seqno = ring_get_seqno;
3025 engine->set_seqno = ring_set_seqno;
3026 if (IS_GEN5(dev)) {
3027 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
3028 engine->irq_get = gen5_ring_get_irq;
3029 engine->irq_put = gen5_ring_put_irq;
3030 } else {
3031 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
3032 engine->irq_get = i9xx_ring_get_irq;
3033 engine->irq_put = i9xx_ring_put_irq;
3034 }
3035 engine->dispatch_execbuffer = i965_dispatch_execbuffer;
3036 }
3037 engine->init_hw = init_ring_common;
3038
3039 return intel_init_ring_buffer(dev, engine);
3040 }
3041
3042 /**
3043 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
3044 */
3045 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
3046 {
3047 struct drm_i915_private *dev_priv = dev->dev_private;
3048 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
3049
3050 engine->name = "bsd2 ring";
3051 engine->id = VCS2;
3052 engine->exec_id = I915_EXEC_BSD;
3053 engine->hw_id = 4;
3054
3055 engine->write_tail = ring_write_tail;
3056 engine->mmio_base = GEN8_BSD2_RING_BASE;
3057 engine->flush = gen6_bsd_ring_flush;
3058 engine->add_request = gen6_add_request;
3059 engine->irq_seqno_barrier = gen6_seqno_barrier;
3060 engine->get_seqno = ring_get_seqno;
3061 engine->set_seqno = ring_set_seqno;
3062 engine->irq_enable_mask =
3063 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
3064 engine->irq_get = gen8_ring_get_irq;
3065 engine->irq_put = gen8_ring_put_irq;
3066 engine->dispatch_execbuffer =
3067 gen8_ring_dispatch_execbuffer;
3068 if (i915_semaphore_is_enabled(dev)) {
3069 engine->semaphore.sync_to = gen8_ring_sync;
3070 engine->semaphore.signal = gen8_xcs_signal;
3071 GEN8_RING_SEMAPHORE_INIT(engine);
3072 }
3073 engine->init_hw = init_ring_common;
3074
3075 return intel_init_ring_buffer(dev, engine);
3076 }
3077
3078 int intel_init_blt_ring_buffer(struct drm_device *dev)
3079 {
3080 struct drm_i915_private *dev_priv = dev->dev_private;
3081 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
3082
3083 engine->name = "blitter ring";
3084 engine->id = BCS;
3085 engine->exec_id = I915_EXEC_BLT;
3086 engine->hw_id = 2;
3087
3088 engine->mmio_base = BLT_RING_BASE;
3089 engine->write_tail = ring_write_tail;
3090 engine->flush = gen6_ring_flush;
3091 engine->add_request = gen6_add_request;
3092 engine->irq_seqno_barrier = gen6_seqno_barrier;
3093 engine->get_seqno = ring_get_seqno;
3094 engine->set_seqno = ring_set_seqno;
3095 if (INTEL_INFO(dev)->gen >= 8) {
3096 engine->irq_enable_mask =
3097 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
3098 engine->irq_get = gen8_ring_get_irq;
3099 engine->irq_put = gen8_ring_put_irq;
3100 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3101 if (i915_semaphore_is_enabled(dev)) {
3102 engine->semaphore.sync_to = gen8_ring_sync;
3103 engine->semaphore.signal = gen8_xcs_signal;
3104 GEN8_RING_SEMAPHORE_INIT(engine);
3105 }
3106 } else {
3107 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
3108 engine->irq_get = gen6_ring_get_irq;
3109 engine->irq_put = gen6_ring_put_irq;
3110 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3111 if (i915_semaphore_is_enabled(dev)) {
3112 engine->semaphore.signal = gen6_signal;
3113 engine->semaphore.sync_to = gen6_ring_sync;
3114 /*
3115 * The current semaphore is only applied on pre-gen8
3116 * platform. And there is no VCS2 ring on the pre-gen8
3117 * platform. So the semaphore between BCS and VCS2 is
3118 * initialized as INVALID. Gen8 will initialize the
3119 * sema between BCS and VCS2 later.
3120 */
3121 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
3122 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
3123 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
3124 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
3125 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3126 engine->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
3127 engine->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
3128 engine->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
3129 engine->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
3130 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3131 }
3132 }
3133 engine->init_hw = init_ring_common;
3134
3135 return intel_init_ring_buffer(dev, engine);
3136 }
3137
3138 int intel_init_vebox_ring_buffer(struct drm_device *dev)
3139 {
3140 struct drm_i915_private *dev_priv = dev->dev_private;
3141 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
3142
3143 engine->name = "video enhancement ring";
3144 engine->id = VECS;
3145 engine->exec_id = I915_EXEC_VEBOX;
3146 engine->hw_id = 3;
3147
3148 engine->mmio_base = VEBOX_RING_BASE;
3149 engine->write_tail = ring_write_tail;
3150 engine->flush = gen6_ring_flush;
3151 engine->add_request = gen6_add_request;
3152 engine->irq_seqno_barrier = gen6_seqno_barrier;
3153 engine->get_seqno = ring_get_seqno;
3154 engine->set_seqno = ring_set_seqno;
3155
3156 if (INTEL_INFO(dev)->gen >= 8) {
3157 engine->irq_enable_mask =
3158 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3159 engine->irq_get = gen8_ring_get_irq;
3160 engine->irq_put = gen8_ring_put_irq;
3161 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3162 if (i915_semaphore_is_enabled(dev)) {
3163 engine->semaphore.sync_to = gen8_ring_sync;
3164 engine->semaphore.signal = gen8_xcs_signal;
3165 GEN8_RING_SEMAPHORE_INIT(engine);
3166 }
3167 } else {
3168 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3169 engine->irq_get = hsw_vebox_get_irq;
3170 engine->irq_put = hsw_vebox_put_irq;
3171 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3172 if (i915_semaphore_is_enabled(dev)) {
3173 engine->semaphore.sync_to = gen6_ring_sync;
3174 engine->semaphore.signal = gen6_signal;
3175 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
3176 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
3177 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3178 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3179 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3180 engine->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3181 engine->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3182 engine->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3183 engine->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3184 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3185 }
3186 }
3187 engine->init_hw = init_ring_common;
3188
3189 return intel_init_ring_buffer(dev, engine);
3190 }
3191
3192 int
3193 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3194 {
3195 struct intel_engine_cs *engine = req->engine;
3196 int ret;
3197
3198 if (!engine->gpu_caches_dirty)
3199 return 0;
3200
3201 ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
3202 if (ret)
3203 return ret;
3204
3205 trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3206
3207 engine->gpu_caches_dirty = false;
3208 return 0;
3209 }
3210
3211 int
3212 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3213 {
3214 struct intel_engine_cs *engine = req->engine;
3215 uint32_t flush_domains;
3216 int ret;
3217
3218 flush_domains = 0;
3219 if (engine->gpu_caches_dirty)
3220 flush_domains = I915_GEM_GPU_DOMAINS;
3221
3222 ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3223 if (ret)
3224 return ret;
3225
3226 trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3227
3228 engine->gpu_caches_dirty = false;
3229 return 0;
3230 }
3231
3232 void
3233 intel_stop_engine(struct intel_engine_cs *engine)
3234 {
3235 int ret;
3236
3237 if (!intel_engine_initialized(engine))
3238 return;
3239
3240 ret = intel_engine_idle(engine);
3241 if (ret)
3242 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3243 engine->name, ret);
3244
3245 stop_ring(engine);
3246 }
This page took 0.13845 seconds and 6 git commands to generate.