GFS2: Check for glock already held in gfs2_getxattr
[deliverable/linux.git] / drivers / gpu / drm / nouveau / nv50_display.c
1 /*
2 * Copyright 2011 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24
25 #include <linux/dma-mapping.h>
26
27 #include <drm/drmP.h>
28 #include <drm/drm_crtc_helper.h>
29
30 #include "nouveau_drm.h"
31 #include "nouveau_dma.h"
32 #include "nouveau_gem.h"
33 #include "nouveau_connector.h"
34 #include "nouveau_encoder.h"
35 #include "nouveau_crtc.h"
36 #include "nouveau_fence.h"
37 #include "nv50_display.h"
38
39 #include <core/client.h>
40 #include <core/gpuobj.h>
41 #include <core/class.h>
42
43 #include <subdev/timer.h>
44 #include <subdev/bar.h>
45 #include <subdev/fb.h>
46 #include <subdev/i2c.h>
47
48 #define EVO_DMA_NR 9
49
50 #define EVO_MASTER (0x00)
51 #define EVO_FLIP(c) (0x01 + (c))
52 #define EVO_OVLY(c) (0x05 + (c))
53 #define EVO_OIMM(c) (0x09 + (c))
54 #define EVO_CURS(c) (0x0d + (c))
55
56 /* offsets in shared sync bo of various structures */
57 #define EVO_SYNC(c, o) ((c) * 0x0100 + (o))
58 #define EVO_MAST_NTFY EVO_SYNC( 0, 0x00)
59 #define EVO_FLIP_SEM0(c) EVO_SYNC((c) + 1, 0x00)
60 #define EVO_FLIP_SEM1(c) EVO_SYNC((c) + 1, 0x10)
61
62 #define EVO_CORE_HANDLE (0xd1500000)
63 #define EVO_CHAN_HANDLE(t,i) (0xd15c0000 | (((t) & 0x00ff) << 8) | (i))
64 #define EVO_CHAN_OCLASS(t,c) ((nv_hclass(c) & 0xff00) | ((t) & 0x00ff))
65 #define EVO_PUSH_HANDLE(t,i) (0xd15b0000 | (i) | \
66 (((NV50_DISP_##t##_CLASS) & 0x00ff) << 8))
67
68 /******************************************************************************
69 * EVO channel
70 *****************************************************************************/
71
72 struct nv50_chan {
73 struct nouveau_object *user;
74 u32 handle;
75 };
76
77 static int
78 nv50_chan_create(struct nouveau_object *core, u32 bclass, u8 head,
79 void *data, u32 size, struct nv50_chan *chan)
80 {
81 struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
82 const u32 oclass = EVO_CHAN_OCLASS(bclass, core);
83 const u32 handle = EVO_CHAN_HANDLE(bclass, head);
84 int ret;
85
86 ret = nouveau_object_new(client, EVO_CORE_HANDLE, handle,
87 oclass, data, size, &chan->user);
88 if (ret)
89 return ret;
90
91 chan->handle = handle;
92 return 0;
93 }
94
95 static void
96 nv50_chan_destroy(struct nouveau_object *core, struct nv50_chan *chan)
97 {
98 struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
99 if (chan->handle)
100 nouveau_object_del(client, EVO_CORE_HANDLE, chan->handle);
101 }
102
103 /******************************************************************************
104 * PIO EVO channel
105 *****************************************************************************/
106
107 struct nv50_pioc {
108 struct nv50_chan base;
109 };
110
111 static void
112 nv50_pioc_destroy(struct nouveau_object *core, struct nv50_pioc *pioc)
113 {
114 nv50_chan_destroy(core, &pioc->base);
115 }
116
117 static int
118 nv50_pioc_create(struct nouveau_object *core, u32 bclass, u8 head,
119 void *data, u32 size, struct nv50_pioc *pioc)
120 {
121 return nv50_chan_create(core, bclass, head, data, size, &pioc->base);
122 }
123
124 /******************************************************************************
125 * DMA EVO channel
126 *****************************************************************************/
127
128 struct nv50_dmac {
129 struct nv50_chan base;
130 dma_addr_t handle;
131 u32 *ptr;
132
133 /* Protects against concurrent pushbuf access to this channel, lock is
134 * grabbed by evo_wait (if the pushbuf reservation is successful) and
135 * dropped again by evo_kick. */
136 struct mutex lock;
137 };
138
139 static void
140 nv50_dmac_destroy(struct nouveau_object *core, struct nv50_dmac *dmac)
141 {
142 if (dmac->ptr) {
143 struct pci_dev *pdev = nv_device(core)->pdev;
144 pci_free_consistent(pdev, PAGE_SIZE, dmac->ptr, dmac->handle);
145 }
146
147 nv50_chan_destroy(core, &dmac->base);
148 }
149
150 static int
151 nv50_dmac_create_fbdma(struct nouveau_object *core, u32 parent)
152 {
153 struct nouveau_fb *pfb = nouveau_fb(core);
154 struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
155 struct nouveau_object *object;
156 int ret = nouveau_object_new(client, parent, NvEvoVRAM_LP,
157 NV_DMA_IN_MEMORY_CLASS,
158 &(struct nv_dma_class) {
159 .flags = NV_DMA_TARGET_VRAM |
160 NV_DMA_ACCESS_RDWR,
161 .start = 0,
162 .limit = pfb->ram->size - 1,
163 .conf0 = NV50_DMA_CONF0_ENABLE |
164 NV50_DMA_CONF0_PART_256,
165 }, sizeof(struct nv_dma_class), &object);
166 if (ret)
167 return ret;
168
169 ret = nouveau_object_new(client, parent, NvEvoFB16,
170 NV_DMA_IN_MEMORY_CLASS,
171 &(struct nv_dma_class) {
172 .flags = NV_DMA_TARGET_VRAM |
173 NV_DMA_ACCESS_RDWR,
174 .start = 0,
175 .limit = pfb->ram->size - 1,
176 .conf0 = NV50_DMA_CONF0_ENABLE | 0x70 |
177 NV50_DMA_CONF0_PART_256,
178 }, sizeof(struct nv_dma_class), &object);
179 if (ret)
180 return ret;
181
182 ret = nouveau_object_new(client, parent, NvEvoFB32,
183 NV_DMA_IN_MEMORY_CLASS,
184 &(struct nv_dma_class) {
185 .flags = NV_DMA_TARGET_VRAM |
186 NV_DMA_ACCESS_RDWR,
187 .start = 0,
188 .limit = pfb->ram->size - 1,
189 .conf0 = NV50_DMA_CONF0_ENABLE | 0x7a |
190 NV50_DMA_CONF0_PART_256,
191 }, sizeof(struct nv_dma_class), &object);
192 return ret;
193 }
194
195 static int
196 nvc0_dmac_create_fbdma(struct nouveau_object *core, u32 parent)
197 {
198 struct nouveau_fb *pfb = nouveau_fb(core);
199 struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
200 struct nouveau_object *object;
201 int ret = nouveau_object_new(client, parent, NvEvoVRAM_LP,
202 NV_DMA_IN_MEMORY_CLASS,
203 &(struct nv_dma_class) {
204 .flags = NV_DMA_TARGET_VRAM |
205 NV_DMA_ACCESS_RDWR,
206 .start = 0,
207 .limit = pfb->ram->size - 1,
208 .conf0 = NVC0_DMA_CONF0_ENABLE,
209 }, sizeof(struct nv_dma_class), &object);
210 if (ret)
211 return ret;
212
213 ret = nouveau_object_new(client, parent, NvEvoFB16,
214 NV_DMA_IN_MEMORY_CLASS,
215 &(struct nv_dma_class) {
216 .flags = NV_DMA_TARGET_VRAM |
217 NV_DMA_ACCESS_RDWR,
218 .start = 0,
219 .limit = pfb->ram->size - 1,
220 .conf0 = NVC0_DMA_CONF0_ENABLE | 0xfe,
221 }, sizeof(struct nv_dma_class), &object);
222 if (ret)
223 return ret;
224
225 ret = nouveau_object_new(client, parent, NvEvoFB32,
226 NV_DMA_IN_MEMORY_CLASS,
227 &(struct nv_dma_class) {
228 .flags = NV_DMA_TARGET_VRAM |
229 NV_DMA_ACCESS_RDWR,
230 .start = 0,
231 .limit = pfb->ram->size - 1,
232 .conf0 = NVC0_DMA_CONF0_ENABLE | 0xfe,
233 }, sizeof(struct nv_dma_class), &object);
234 return ret;
235 }
236
237 static int
238 nvd0_dmac_create_fbdma(struct nouveau_object *core, u32 parent)
239 {
240 struct nouveau_fb *pfb = nouveau_fb(core);
241 struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
242 struct nouveau_object *object;
243 int ret = nouveau_object_new(client, parent, NvEvoVRAM_LP,
244 NV_DMA_IN_MEMORY_CLASS,
245 &(struct nv_dma_class) {
246 .flags = NV_DMA_TARGET_VRAM |
247 NV_DMA_ACCESS_RDWR,
248 .start = 0,
249 .limit = pfb->ram->size - 1,
250 .conf0 = NVD0_DMA_CONF0_ENABLE |
251 NVD0_DMA_CONF0_PAGE_LP,
252 }, sizeof(struct nv_dma_class), &object);
253 if (ret)
254 return ret;
255
256 ret = nouveau_object_new(client, parent, NvEvoFB32,
257 NV_DMA_IN_MEMORY_CLASS,
258 &(struct nv_dma_class) {
259 .flags = NV_DMA_TARGET_VRAM |
260 NV_DMA_ACCESS_RDWR,
261 .start = 0,
262 .limit = pfb->ram->size - 1,
263 .conf0 = NVD0_DMA_CONF0_ENABLE | 0xfe |
264 NVD0_DMA_CONF0_PAGE_LP,
265 }, sizeof(struct nv_dma_class), &object);
266 return ret;
267 }
268
269 static int
270 nv50_dmac_create(struct nouveau_object *core, u32 bclass, u8 head,
271 void *data, u32 size, u64 syncbuf,
272 struct nv50_dmac *dmac)
273 {
274 struct nouveau_fb *pfb = nouveau_fb(core);
275 struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
276 struct nouveau_object *object;
277 u32 pushbuf = *(u32 *)data;
278 int ret;
279
280 mutex_init(&dmac->lock);
281
282 dmac->ptr = pci_alloc_consistent(nv_device(core)->pdev, PAGE_SIZE,
283 &dmac->handle);
284 if (!dmac->ptr)
285 return -ENOMEM;
286
287 ret = nouveau_object_new(client, NVDRM_DEVICE, pushbuf,
288 NV_DMA_FROM_MEMORY_CLASS,
289 &(struct nv_dma_class) {
290 .flags = NV_DMA_TARGET_PCI_US |
291 NV_DMA_ACCESS_RD,
292 .start = dmac->handle + 0x0000,
293 .limit = dmac->handle + 0x0fff,
294 }, sizeof(struct nv_dma_class), &object);
295 if (ret)
296 return ret;
297
298 ret = nv50_chan_create(core, bclass, head, data, size, &dmac->base);
299 if (ret)
300 return ret;
301
302 ret = nouveau_object_new(client, dmac->base.handle, NvEvoSync,
303 NV_DMA_IN_MEMORY_CLASS,
304 &(struct nv_dma_class) {
305 .flags = NV_DMA_TARGET_VRAM |
306 NV_DMA_ACCESS_RDWR,
307 .start = syncbuf + 0x0000,
308 .limit = syncbuf + 0x0fff,
309 }, sizeof(struct nv_dma_class), &object);
310 if (ret)
311 return ret;
312
313 ret = nouveau_object_new(client, dmac->base.handle, NvEvoVRAM,
314 NV_DMA_IN_MEMORY_CLASS,
315 &(struct nv_dma_class) {
316 .flags = NV_DMA_TARGET_VRAM |
317 NV_DMA_ACCESS_RDWR,
318 .start = 0,
319 .limit = pfb->ram->size - 1,
320 }, sizeof(struct nv_dma_class), &object);
321 if (ret)
322 return ret;
323
324 if (nv_device(core)->card_type < NV_C0)
325 ret = nv50_dmac_create_fbdma(core, dmac->base.handle);
326 else
327 if (nv_device(core)->card_type < NV_D0)
328 ret = nvc0_dmac_create_fbdma(core, dmac->base.handle);
329 else
330 ret = nvd0_dmac_create_fbdma(core, dmac->base.handle);
331 return ret;
332 }
333
334 struct nv50_mast {
335 struct nv50_dmac base;
336 };
337
338 struct nv50_curs {
339 struct nv50_pioc base;
340 };
341
342 struct nv50_sync {
343 struct nv50_dmac base;
344 u32 addr;
345 u32 data;
346 };
347
348 struct nv50_ovly {
349 struct nv50_dmac base;
350 };
351
352 struct nv50_oimm {
353 struct nv50_pioc base;
354 };
355
356 struct nv50_head {
357 struct nouveau_crtc base;
358 struct nv50_curs curs;
359 struct nv50_sync sync;
360 struct nv50_ovly ovly;
361 struct nv50_oimm oimm;
362 };
363
364 #define nv50_head(c) ((struct nv50_head *)nouveau_crtc(c))
365 #define nv50_curs(c) (&nv50_head(c)->curs)
366 #define nv50_sync(c) (&nv50_head(c)->sync)
367 #define nv50_ovly(c) (&nv50_head(c)->ovly)
368 #define nv50_oimm(c) (&nv50_head(c)->oimm)
369 #define nv50_chan(c) (&(c)->base.base)
370 #define nv50_vers(c) nv_mclass(nv50_chan(c)->user)
371
372 struct nv50_disp {
373 struct nouveau_object *core;
374 struct nv50_mast mast;
375
376 u32 modeset;
377
378 struct nouveau_bo *sync;
379 };
380
381 static struct nv50_disp *
382 nv50_disp(struct drm_device *dev)
383 {
384 return nouveau_display(dev)->priv;
385 }
386
387 #define nv50_mast(d) (&nv50_disp(d)->mast)
388
389 static struct drm_crtc *
390 nv50_display_crtc_get(struct drm_encoder *encoder)
391 {
392 return nouveau_encoder(encoder)->crtc;
393 }
394
395 /******************************************************************************
396 * EVO channel helpers
397 *****************************************************************************/
398 static u32 *
399 evo_wait(void *evoc, int nr)
400 {
401 struct nv50_dmac *dmac = evoc;
402 u32 put = nv_ro32(dmac->base.user, 0x0000) / 4;
403
404 mutex_lock(&dmac->lock);
405 if (put + nr >= (PAGE_SIZE / 4) - 8) {
406 dmac->ptr[put] = 0x20000000;
407
408 nv_wo32(dmac->base.user, 0x0000, 0x00000000);
409 if (!nv_wait(dmac->base.user, 0x0004, ~0, 0x00000000)) {
410 mutex_unlock(&dmac->lock);
411 NV_ERROR(dmac->base.user, "channel stalled\n");
412 return NULL;
413 }
414
415 put = 0;
416 }
417
418 return dmac->ptr + put;
419 }
420
421 static void
422 evo_kick(u32 *push, void *evoc)
423 {
424 struct nv50_dmac *dmac = evoc;
425 nv_wo32(dmac->base.user, 0x0000, (push - dmac->ptr) << 2);
426 mutex_unlock(&dmac->lock);
427 }
428
429 #define evo_mthd(p,m,s) *((p)++) = (((s) << 18) | (m))
430 #define evo_data(p,d) *((p)++) = (d)
431
432 static bool
433 evo_sync_wait(void *data)
434 {
435 if (nouveau_bo_rd32(data, EVO_MAST_NTFY) != 0x00000000)
436 return true;
437 usleep_range(1, 2);
438 return false;
439 }
440
441 static int
442 evo_sync(struct drm_device *dev)
443 {
444 struct nouveau_device *device = nouveau_dev(dev);
445 struct nv50_disp *disp = nv50_disp(dev);
446 struct nv50_mast *mast = nv50_mast(dev);
447 u32 *push = evo_wait(mast, 8);
448 if (push) {
449 nouveau_bo_wr32(disp->sync, EVO_MAST_NTFY, 0x00000000);
450 evo_mthd(push, 0x0084, 1);
451 evo_data(push, 0x80000000 | EVO_MAST_NTFY);
452 evo_mthd(push, 0x0080, 2);
453 evo_data(push, 0x00000000);
454 evo_data(push, 0x00000000);
455 evo_kick(push, mast);
456 if (nv_wait_cb(device, evo_sync_wait, disp->sync))
457 return 0;
458 }
459
460 return -EBUSY;
461 }
462
463 /******************************************************************************
464 * Page flipping channel
465 *****************************************************************************/
466 struct nouveau_bo *
467 nv50_display_crtc_sema(struct drm_device *dev, int crtc)
468 {
469 return nv50_disp(dev)->sync;
470 }
471
472 struct nv50_display_flip {
473 struct nv50_disp *disp;
474 struct nv50_sync *chan;
475 };
476
477 static bool
478 nv50_display_flip_wait(void *data)
479 {
480 struct nv50_display_flip *flip = data;
481 if (nouveau_bo_rd32(flip->disp->sync, flip->chan->addr / 4) ==
482 flip->chan->data)
483 return true;
484 usleep_range(1, 2);
485 return false;
486 }
487
488 void
489 nv50_display_flip_stop(struct drm_crtc *crtc)
490 {
491 struct nouveau_device *device = nouveau_dev(crtc->dev);
492 struct nv50_display_flip flip = {
493 .disp = nv50_disp(crtc->dev),
494 .chan = nv50_sync(crtc),
495 };
496 u32 *push;
497
498 push = evo_wait(flip.chan, 8);
499 if (push) {
500 evo_mthd(push, 0x0084, 1);
501 evo_data(push, 0x00000000);
502 evo_mthd(push, 0x0094, 1);
503 evo_data(push, 0x00000000);
504 evo_mthd(push, 0x00c0, 1);
505 evo_data(push, 0x00000000);
506 evo_mthd(push, 0x0080, 1);
507 evo_data(push, 0x00000000);
508 evo_kick(push, flip.chan);
509 }
510
511 nv_wait_cb(device, nv50_display_flip_wait, &flip);
512 }
513
514 int
515 nv50_display_flip_next(struct drm_crtc *crtc, struct drm_framebuffer *fb,
516 struct nouveau_channel *chan, u32 swap_interval)
517 {
518 struct nouveau_framebuffer *nv_fb = nouveau_framebuffer(fb);
519 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
520 struct nv50_sync *sync = nv50_sync(crtc);
521 int head = nv_crtc->index, ret;
522 u32 *push;
523
524 swap_interval <<= 4;
525 if (swap_interval == 0)
526 swap_interval |= 0x100;
527 if (chan == NULL)
528 evo_sync(crtc->dev);
529
530 push = evo_wait(sync, 128);
531 if (unlikely(push == NULL))
532 return -EBUSY;
533
534 if (chan && nv_mclass(chan->object) < NV84_CHANNEL_IND_CLASS) {
535 ret = RING_SPACE(chan, 8);
536 if (ret)
537 return ret;
538
539 BEGIN_NV04(chan, 0, NV11_SUBCHAN_DMA_SEMAPHORE, 2);
540 OUT_RING (chan, NvEvoSema0 + head);
541 OUT_RING (chan, sync->addr ^ 0x10);
542 BEGIN_NV04(chan, 0, NV11_SUBCHAN_SEMAPHORE_RELEASE, 1);
543 OUT_RING (chan, sync->data + 1);
544 BEGIN_NV04(chan, 0, NV11_SUBCHAN_SEMAPHORE_OFFSET, 2);
545 OUT_RING (chan, sync->addr);
546 OUT_RING (chan, sync->data);
547 } else
548 if (chan && nv_mclass(chan->object) < NVC0_CHANNEL_IND_CLASS) {
549 u64 addr = nv84_fence_crtc(chan, head) + sync->addr;
550 ret = RING_SPACE(chan, 12);
551 if (ret)
552 return ret;
553
554 BEGIN_NV04(chan, 0, NV11_SUBCHAN_DMA_SEMAPHORE, 1);
555 OUT_RING (chan, chan->vram);
556 BEGIN_NV04(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
557 OUT_RING (chan, upper_32_bits(addr ^ 0x10));
558 OUT_RING (chan, lower_32_bits(addr ^ 0x10));
559 OUT_RING (chan, sync->data + 1);
560 OUT_RING (chan, NV84_SUBCHAN_SEMAPHORE_TRIGGER_WRITE_LONG);
561 BEGIN_NV04(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
562 OUT_RING (chan, upper_32_bits(addr));
563 OUT_RING (chan, lower_32_bits(addr));
564 OUT_RING (chan, sync->data);
565 OUT_RING (chan, NV84_SUBCHAN_SEMAPHORE_TRIGGER_ACQUIRE_EQUAL);
566 } else
567 if (chan) {
568 u64 addr = nv84_fence_crtc(chan, head) + sync->addr;
569 ret = RING_SPACE(chan, 10);
570 if (ret)
571 return ret;
572
573 BEGIN_NVC0(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
574 OUT_RING (chan, upper_32_bits(addr ^ 0x10));
575 OUT_RING (chan, lower_32_bits(addr ^ 0x10));
576 OUT_RING (chan, sync->data + 1);
577 OUT_RING (chan, NV84_SUBCHAN_SEMAPHORE_TRIGGER_WRITE_LONG |
578 NVC0_SUBCHAN_SEMAPHORE_TRIGGER_YIELD);
579 BEGIN_NVC0(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
580 OUT_RING (chan, upper_32_bits(addr));
581 OUT_RING (chan, lower_32_bits(addr));
582 OUT_RING (chan, sync->data);
583 OUT_RING (chan, NV84_SUBCHAN_SEMAPHORE_TRIGGER_ACQUIRE_EQUAL |
584 NVC0_SUBCHAN_SEMAPHORE_TRIGGER_YIELD);
585 }
586
587 if (chan) {
588 sync->addr ^= 0x10;
589 sync->data++;
590 FIRE_RING (chan);
591 }
592
593 /* queue the flip */
594 evo_mthd(push, 0x0100, 1);
595 evo_data(push, 0xfffe0000);
596 evo_mthd(push, 0x0084, 1);
597 evo_data(push, swap_interval);
598 if (!(swap_interval & 0x00000100)) {
599 evo_mthd(push, 0x00e0, 1);
600 evo_data(push, 0x40000000);
601 }
602 evo_mthd(push, 0x0088, 4);
603 evo_data(push, sync->addr);
604 evo_data(push, sync->data++);
605 evo_data(push, sync->data);
606 evo_data(push, NvEvoSync);
607 evo_mthd(push, 0x00a0, 2);
608 evo_data(push, 0x00000000);
609 evo_data(push, 0x00000000);
610 evo_mthd(push, 0x00c0, 1);
611 evo_data(push, nv_fb->r_dma);
612 evo_mthd(push, 0x0110, 2);
613 evo_data(push, 0x00000000);
614 evo_data(push, 0x00000000);
615 if (nv50_vers(sync) < NVD0_DISP_SYNC_CLASS) {
616 evo_mthd(push, 0x0800, 5);
617 evo_data(push, nv_fb->nvbo->bo.offset >> 8);
618 evo_data(push, 0);
619 evo_data(push, (fb->height << 16) | fb->width);
620 evo_data(push, nv_fb->r_pitch);
621 evo_data(push, nv_fb->r_format);
622 } else {
623 evo_mthd(push, 0x0400, 5);
624 evo_data(push, nv_fb->nvbo->bo.offset >> 8);
625 evo_data(push, 0);
626 evo_data(push, (fb->height << 16) | fb->width);
627 evo_data(push, nv_fb->r_pitch);
628 evo_data(push, nv_fb->r_format);
629 }
630 evo_mthd(push, 0x0080, 1);
631 evo_data(push, 0x00000000);
632 evo_kick(push, sync);
633 return 0;
634 }
635
636 /******************************************************************************
637 * CRTC
638 *****************************************************************************/
639 static int
640 nv50_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool update)
641 {
642 struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
643 struct nouveau_connector *nv_connector;
644 struct drm_connector *connector;
645 u32 *push, mode = 0x00;
646
647 nv_connector = nouveau_crtc_connector_get(nv_crtc);
648 connector = &nv_connector->base;
649 if (nv_connector->dithering_mode == DITHERING_MODE_AUTO) {
650 if (nv_crtc->base.fb->depth > connector->display_info.bpc * 3)
651 mode = DITHERING_MODE_DYNAMIC2X2;
652 } else {
653 mode = nv_connector->dithering_mode;
654 }
655
656 if (nv_connector->dithering_depth == DITHERING_DEPTH_AUTO) {
657 if (connector->display_info.bpc >= 8)
658 mode |= DITHERING_DEPTH_8BPC;
659 } else {
660 mode |= nv_connector->dithering_depth;
661 }
662
663 push = evo_wait(mast, 4);
664 if (push) {
665 if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
666 evo_mthd(push, 0x08a0 + (nv_crtc->index * 0x0400), 1);
667 evo_data(push, mode);
668 } else
669 if (nv50_vers(mast) < NVE0_DISP_MAST_CLASS) {
670 evo_mthd(push, 0x0490 + (nv_crtc->index * 0x0300), 1);
671 evo_data(push, mode);
672 } else {
673 evo_mthd(push, 0x04a0 + (nv_crtc->index * 0x0300), 1);
674 evo_data(push, mode);
675 }
676
677 if (update) {
678 evo_mthd(push, 0x0080, 1);
679 evo_data(push, 0x00000000);
680 }
681 evo_kick(push, mast);
682 }
683
684 return 0;
685 }
686
687 static int
688 nv50_crtc_set_scale(struct nouveau_crtc *nv_crtc, bool update)
689 {
690 struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
691 struct drm_display_mode *omode, *umode = &nv_crtc->base.mode;
692 struct drm_crtc *crtc = &nv_crtc->base;
693 struct nouveau_connector *nv_connector;
694 int mode = DRM_MODE_SCALE_NONE;
695 u32 oX, oY, *push;
696
697 /* start off at the resolution we programmed the crtc for, this
698 * effectively handles NONE/FULL scaling
699 */
700 nv_connector = nouveau_crtc_connector_get(nv_crtc);
701 if (nv_connector && nv_connector->native_mode)
702 mode = nv_connector->scaling_mode;
703
704 if (mode != DRM_MODE_SCALE_NONE)
705 omode = nv_connector->native_mode;
706 else
707 omode = umode;
708
709 oX = omode->hdisplay;
710 oY = omode->vdisplay;
711 if (omode->flags & DRM_MODE_FLAG_DBLSCAN)
712 oY *= 2;
713
714 /* add overscan compensation if necessary, will keep the aspect
715 * ratio the same as the backend mode unless overridden by the
716 * user setting both hborder and vborder properties.
717 */
718 if (nv_connector && ( nv_connector->underscan == UNDERSCAN_ON ||
719 (nv_connector->underscan == UNDERSCAN_AUTO &&
720 nv_connector->edid &&
721 drm_detect_hdmi_monitor(nv_connector->edid)))) {
722 u32 bX = nv_connector->underscan_hborder;
723 u32 bY = nv_connector->underscan_vborder;
724 u32 aspect = (oY << 19) / oX;
725
726 if (bX) {
727 oX -= (bX * 2);
728 if (bY) oY -= (bY * 2);
729 else oY = ((oX * aspect) + (aspect / 2)) >> 19;
730 } else {
731 oX -= (oX >> 4) + 32;
732 if (bY) oY -= (bY * 2);
733 else oY = ((oX * aspect) + (aspect / 2)) >> 19;
734 }
735 }
736
737 /* handle CENTER/ASPECT scaling, taking into account the areas
738 * removed already for overscan compensation
739 */
740 switch (mode) {
741 case DRM_MODE_SCALE_CENTER:
742 oX = min((u32)umode->hdisplay, oX);
743 oY = min((u32)umode->vdisplay, oY);
744 /* fall-through */
745 case DRM_MODE_SCALE_ASPECT:
746 if (oY < oX) {
747 u32 aspect = (umode->hdisplay << 19) / umode->vdisplay;
748 oX = ((oY * aspect) + (aspect / 2)) >> 19;
749 } else {
750 u32 aspect = (umode->vdisplay << 19) / umode->hdisplay;
751 oY = ((oX * aspect) + (aspect / 2)) >> 19;
752 }
753 break;
754 default:
755 break;
756 }
757
758 push = evo_wait(mast, 8);
759 if (push) {
760 if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
761 /*XXX: SCALE_CTRL_ACTIVE??? */
762 evo_mthd(push, 0x08d8 + (nv_crtc->index * 0x400), 2);
763 evo_data(push, (oY << 16) | oX);
764 evo_data(push, (oY << 16) | oX);
765 evo_mthd(push, 0x08a4 + (nv_crtc->index * 0x400), 1);
766 evo_data(push, 0x00000000);
767 evo_mthd(push, 0x08c8 + (nv_crtc->index * 0x400), 1);
768 evo_data(push, umode->vdisplay << 16 | umode->hdisplay);
769 } else {
770 evo_mthd(push, 0x04c0 + (nv_crtc->index * 0x300), 3);
771 evo_data(push, (oY << 16) | oX);
772 evo_data(push, (oY << 16) | oX);
773 evo_data(push, (oY << 16) | oX);
774 evo_mthd(push, 0x0494 + (nv_crtc->index * 0x300), 1);
775 evo_data(push, 0x00000000);
776 evo_mthd(push, 0x04b8 + (nv_crtc->index * 0x300), 1);
777 evo_data(push, umode->vdisplay << 16 | umode->hdisplay);
778 }
779
780 evo_kick(push, mast);
781
782 if (update) {
783 nv50_display_flip_stop(crtc);
784 nv50_display_flip_next(crtc, crtc->fb, NULL, 1);
785 }
786 }
787
788 return 0;
789 }
790
791 static int
792 nv50_crtc_set_color_vibrance(struct nouveau_crtc *nv_crtc, bool update)
793 {
794 struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
795 u32 *push, hue, vib;
796 int adj;
797
798 adj = (nv_crtc->color_vibrance > 0) ? 50 : 0;
799 vib = ((nv_crtc->color_vibrance * 2047 + adj) / 100) & 0xfff;
800 hue = ((nv_crtc->vibrant_hue * 2047) / 100) & 0xfff;
801
802 push = evo_wait(mast, 16);
803 if (push) {
804 if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
805 evo_mthd(push, 0x08a8 + (nv_crtc->index * 0x400), 1);
806 evo_data(push, (hue << 20) | (vib << 8));
807 } else {
808 evo_mthd(push, 0x0498 + (nv_crtc->index * 0x300), 1);
809 evo_data(push, (hue << 20) | (vib << 8));
810 }
811
812 if (update) {
813 evo_mthd(push, 0x0080, 1);
814 evo_data(push, 0x00000000);
815 }
816 evo_kick(push, mast);
817 }
818
819 return 0;
820 }
821
822 static int
823 nv50_crtc_set_image(struct nouveau_crtc *nv_crtc, struct drm_framebuffer *fb,
824 int x, int y, bool update)
825 {
826 struct nouveau_framebuffer *nvfb = nouveau_framebuffer(fb);
827 struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
828 u32 *push;
829
830 push = evo_wait(mast, 16);
831 if (push) {
832 if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
833 evo_mthd(push, 0x0860 + (nv_crtc->index * 0x400), 1);
834 evo_data(push, nvfb->nvbo->bo.offset >> 8);
835 evo_mthd(push, 0x0868 + (nv_crtc->index * 0x400), 3);
836 evo_data(push, (fb->height << 16) | fb->width);
837 evo_data(push, nvfb->r_pitch);
838 evo_data(push, nvfb->r_format);
839 evo_mthd(push, 0x08c0 + (nv_crtc->index * 0x400), 1);
840 evo_data(push, (y << 16) | x);
841 if (nv50_vers(mast) > NV50_DISP_MAST_CLASS) {
842 evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
843 evo_data(push, nvfb->r_dma);
844 }
845 } else {
846 evo_mthd(push, 0x0460 + (nv_crtc->index * 0x300), 1);
847 evo_data(push, nvfb->nvbo->bo.offset >> 8);
848 evo_mthd(push, 0x0468 + (nv_crtc->index * 0x300), 4);
849 evo_data(push, (fb->height << 16) | fb->width);
850 evo_data(push, nvfb->r_pitch);
851 evo_data(push, nvfb->r_format);
852 evo_data(push, nvfb->r_dma);
853 evo_mthd(push, 0x04b0 + (nv_crtc->index * 0x300), 1);
854 evo_data(push, (y << 16) | x);
855 }
856
857 if (update) {
858 evo_mthd(push, 0x0080, 1);
859 evo_data(push, 0x00000000);
860 }
861 evo_kick(push, mast);
862 }
863
864 nv_crtc->fb.tile_flags = nvfb->r_dma;
865 return 0;
866 }
867
868 static void
869 nv50_crtc_cursor_show(struct nouveau_crtc *nv_crtc)
870 {
871 struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
872 u32 *push = evo_wait(mast, 16);
873 if (push) {
874 if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) {
875 evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 2);
876 evo_data(push, 0x85000000);
877 evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
878 } else
879 if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
880 evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 2);
881 evo_data(push, 0x85000000);
882 evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
883 evo_mthd(push, 0x089c + (nv_crtc->index * 0x400), 1);
884 evo_data(push, NvEvoVRAM);
885 } else {
886 evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 2);
887 evo_data(push, 0x85000000);
888 evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
889 evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
890 evo_data(push, NvEvoVRAM);
891 }
892 evo_kick(push, mast);
893 }
894 }
895
896 static void
897 nv50_crtc_cursor_hide(struct nouveau_crtc *nv_crtc)
898 {
899 struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
900 u32 *push = evo_wait(mast, 16);
901 if (push) {
902 if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) {
903 evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 1);
904 evo_data(push, 0x05000000);
905 } else
906 if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
907 evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 1);
908 evo_data(push, 0x05000000);
909 evo_mthd(push, 0x089c + (nv_crtc->index * 0x400), 1);
910 evo_data(push, 0x00000000);
911 } else {
912 evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 1);
913 evo_data(push, 0x05000000);
914 evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
915 evo_data(push, 0x00000000);
916 }
917 evo_kick(push, mast);
918 }
919 }
920
921 static void
922 nv50_crtc_cursor_show_hide(struct nouveau_crtc *nv_crtc, bool show, bool update)
923 {
924 struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
925
926 if (show)
927 nv50_crtc_cursor_show(nv_crtc);
928 else
929 nv50_crtc_cursor_hide(nv_crtc);
930
931 if (update) {
932 u32 *push = evo_wait(mast, 2);
933 if (push) {
934 evo_mthd(push, 0x0080, 1);
935 evo_data(push, 0x00000000);
936 evo_kick(push, mast);
937 }
938 }
939 }
940
941 static void
942 nv50_crtc_dpms(struct drm_crtc *crtc, int mode)
943 {
944 }
945
946 static void
947 nv50_crtc_prepare(struct drm_crtc *crtc)
948 {
949 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
950 struct nv50_mast *mast = nv50_mast(crtc->dev);
951 u32 *push;
952
953 nv50_display_flip_stop(crtc);
954
955 push = evo_wait(mast, 2);
956 if (push) {
957 if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) {
958 evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
959 evo_data(push, 0x00000000);
960 evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 1);
961 evo_data(push, 0x40000000);
962 } else
963 if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
964 evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
965 evo_data(push, 0x00000000);
966 evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 1);
967 evo_data(push, 0x40000000);
968 evo_mthd(push, 0x085c + (nv_crtc->index * 0x400), 1);
969 evo_data(push, 0x00000000);
970 } else {
971 evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
972 evo_data(push, 0x00000000);
973 evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 1);
974 evo_data(push, 0x03000000);
975 evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
976 evo_data(push, 0x00000000);
977 }
978
979 evo_kick(push, mast);
980 }
981
982 nv50_crtc_cursor_show_hide(nv_crtc, false, false);
983 }
984
985 static void
986 nv50_crtc_commit(struct drm_crtc *crtc)
987 {
988 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
989 struct nv50_mast *mast = nv50_mast(crtc->dev);
990 u32 *push;
991
992 push = evo_wait(mast, 32);
993 if (push) {
994 if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) {
995 evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
996 evo_data(push, NvEvoVRAM_LP);
997 evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 2);
998 evo_data(push, 0xc0000000);
999 evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
1000 } else
1001 if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
1002 evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
1003 evo_data(push, nv_crtc->fb.tile_flags);
1004 evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 2);
1005 evo_data(push, 0xc0000000);
1006 evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
1007 evo_mthd(push, 0x085c + (nv_crtc->index * 0x400), 1);
1008 evo_data(push, NvEvoVRAM);
1009 } else {
1010 evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
1011 evo_data(push, nv_crtc->fb.tile_flags);
1012 evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 4);
1013 evo_data(push, 0x83000000);
1014 evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
1015 evo_data(push, 0x00000000);
1016 evo_data(push, 0x00000000);
1017 evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
1018 evo_data(push, NvEvoVRAM);
1019 evo_mthd(push, 0x0430 + (nv_crtc->index * 0x300), 1);
1020 evo_data(push, 0xffffff00);
1021 }
1022
1023 evo_kick(push, mast);
1024 }
1025
1026 nv50_crtc_cursor_show_hide(nv_crtc, nv_crtc->cursor.visible, true);
1027 nv50_display_flip_next(crtc, crtc->fb, NULL, 1);
1028 }
1029
1030 static bool
1031 nv50_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode,
1032 struct drm_display_mode *adjusted_mode)
1033 {
1034 return true;
1035 }
1036
1037 static int
1038 nv50_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb)
1039 {
1040 struct nouveau_framebuffer *nvfb = nouveau_framebuffer(crtc->fb);
1041 int ret;
1042
1043 ret = nouveau_bo_pin(nvfb->nvbo, TTM_PL_FLAG_VRAM);
1044 if (ret)
1045 return ret;
1046
1047 if (old_fb) {
1048 nvfb = nouveau_framebuffer(old_fb);
1049 nouveau_bo_unpin(nvfb->nvbo);
1050 }
1051
1052 return 0;
1053 }
1054
1055 static int
1056 nv50_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode,
1057 struct drm_display_mode *mode, int x, int y,
1058 struct drm_framebuffer *old_fb)
1059 {
1060 struct nv50_mast *mast = nv50_mast(crtc->dev);
1061 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1062 struct nouveau_connector *nv_connector;
1063 u32 ilace = (mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 1;
1064 u32 vscan = (mode->flags & DRM_MODE_FLAG_DBLSCAN) ? 2 : 1;
1065 u32 hactive, hsynce, hbackp, hfrontp, hblanke, hblanks;
1066 u32 vactive, vsynce, vbackp, vfrontp, vblanke, vblanks;
1067 u32 vblan2e = 0, vblan2s = 1;
1068 u32 *push;
1069 int ret;
1070
1071 hactive = mode->htotal;
1072 hsynce = mode->hsync_end - mode->hsync_start - 1;
1073 hbackp = mode->htotal - mode->hsync_end;
1074 hblanke = hsynce + hbackp;
1075 hfrontp = mode->hsync_start - mode->hdisplay;
1076 hblanks = mode->htotal - hfrontp - 1;
1077
1078 vactive = mode->vtotal * vscan / ilace;
1079 vsynce = ((mode->vsync_end - mode->vsync_start) * vscan / ilace) - 1;
1080 vbackp = (mode->vtotal - mode->vsync_end) * vscan / ilace;
1081 vblanke = vsynce + vbackp;
1082 vfrontp = (mode->vsync_start - mode->vdisplay) * vscan / ilace;
1083 vblanks = vactive - vfrontp - 1;
1084 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
1085 vblan2e = vactive + vsynce + vbackp;
1086 vblan2s = vblan2e + (mode->vdisplay * vscan / ilace);
1087 vactive = (vactive * 2) + 1;
1088 }
1089
1090 ret = nv50_crtc_swap_fbs(crtc, old_fb);
1091 if (ret)
1092 return ret;
1093
1094 push = evo_wait(mast, 64);
1095 if (push) {
1096 if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
1097 evo_mthd(push, 0x0804 + (nv_crtc->index * 0x400), 2);
1098 evo_data(push, 0x00800000 | mode->clock);
1099 evo_data(push, (ilace == 2) ? 2 : 0);
1100 evo_mthd(push, 0x0810 + (nv_crtc->index * 0x400), 6);
1101 evo_data(push, 0x00000000);
1102 evo_data(push, (vactive << 16) | hactive);
1103 evo_data(push, ( vsynce << 16) | hsynce);
1104 evo_data(push, (vblanke << 16) | hblanke);
1105 evo_data(push, (vblanks << 16) | hblanks);
1106 evo_data(push, (vblan2e << 16) | vblan2s);
1107 evo_mthd(push, 0x082c + (nv_crtc->index * 0x400), 1);
1108 evo_data(push, 0x00000000);
1109 evo_mthd(push, 0x0900 + (nv_crtc->index * 0x400), 2);
1110 evo_data(push, 0x00000311);
1111 evo_data(push, 0x00000100);
1112 } else {
1113 evo_mthd(push, 0x0410 + (nv_crtc->index * 0x300), 6);
1114 evo_data(push, 0x00000000);
1115 evo_data(push, (vactive << 16) | hactive);
1116 evo_data(push, ( vsynce << 16) | hsynce);
1117 evo_data(push, (vblanke << 16) | hblanke);
1118 evo_data(push, (vblanks << 16) | hblanks);
1119 evo_data(push, (vblan2e << 16) | vblan2s);
1120 evo_mthd(push, 0x042c + (nv_crtc->index * 0x300), 1);
1121 evo_data(push, 0x00000000); /* ??? */
1122 evo_mthd(push, 0x0450 + (nv_crtc->index * 0x300), 3);
1123 evo_data(push, mode->clock * 1000);
1124 evo_data(push, 0x00200000); /* ??? */
1125 evo_data(push, mode->clock * 1000);
1126 evo_mthd(push, 0x04d0 + (nv_crtc->index * 0x300), 2);
1127 evo_data(push, 0x00000311);
1128 evo_data(push, 0x00000100);
1129 }
1130
1131 evo_kick(push, mast);
1132 }
1133
1134 nv_connector = nouveau_crtc_connector_get(nv_crtc);
1135 nv50_crtc_set_dither(nv_crtc, false);
1136 nv50_crtc_set_scale(nv_crtc, false);
1137 nv50_crtc_set_color_vibrance(nv_crtc, false);
1138 nv50_crtc_set_image(nv_crtc, crtc->fb, x, y, false);
1139 return 0;
1140 }
1141
1142 static int
1143 nv50_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
1144 struct drm_framebuffer *old_fb)
1145 {
1146 struct nouveau_drm *drm = nouveau_drm(crtc->dev);
1147 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1148 int ret;
1149
1150 if (!crtc->fb) {
1151 NV_DEBUG(drm, "No FB bound\n");
1152 return 0;
1153 }
1154
1155 ret = nv50_crtc_swap_fbs(crtc, old_fb);
1156 if (ret)
1157 return ret;
1158
1159 nv50_display_flip_stop(crtc);
1160 nv50_crtc_set_image(nv_crtc, crtc->fb, x, y, true);
1161 nv50_display_flip_next(crtc, crtc->fb, NULL, 1);
1162 return 0;
1163 }
1164
1165 static int
1166 nv50_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
1167 struct drm_framebuffer *fb, int x, int y,
1168 enum mode_set_atomic state)
1169 {
1170 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1171 nv50_display_flip_stop(crtc);
1172 nv50_crtc_set_image(nv_crtc, fb, x, y, true);
1173 return 0;
1174 }
1175
1176 static void
1177 nv50_crtc_lut_load(struct drm_crtc *crtc)
1178 {
1179 struct nv50_disp *disp = nv50_disp(crtc->dev);
1180 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1181 void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo);
1182 int i;
1183
1184 for (i = 0; i < 256; i++) {
1185 u16 r = nv_crtc->lut.r[i] >> 2;
1186 u16 g = nv_crtc->lut.g[i] >> 2;
1187 u16 b = nv_crtc->lut.b[i] >> 2;
1188
1189 if (nv_mclass(disp->core) < NVD0_DISP_CLASS) {
1190 writew(r + 0x0000, lut + (i * 0x08) + 0);
1191 writew(g + 0x0000, lut + (i * 0x08) + 2);
1192 writew(b + 0x0000, lut + (i * 0x08) + 4);
1193 } else {
1194 writew(r + 0x6000, lut + (i * 0x20) + 0);
1195 writew(g + 0x6000, lut + (i * 0x20) + 2);
1196 writew(b + 0x6000, lut + (i * 0x20) + 4);
1197 }
1198 }
1199 }
1200
1201 static int
1202 nv50_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
1203 uint32_t handle, uint32_t width, uint32_t height)
1204 {
1205 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1206 struct drm_device *dev = crtc->dev;
1207 struct drm_gem_object *gem;
1208 struct nouveau_bo *nvbo;
1209 bool visible = (handle != 0);
1210 int i, ret = 0;
1211
1212 if (visible) {
1213 if (width != 64 || height != 64)
1214 return -EINVAL;
1215
1216 gem = drm_gem_object_lookup(dev, file_priv, handle);
1217 if (unlikely(!gem))
1218 return -ENOENT;
1219 nvbo = nouveau_gem_object(gem);
1220
1221 ret = nouveau_bo_map(nvbo);
1222 if (ret == 0) {
1223 for (i = 0; i < 64 * 64; i++) {
1224 u32 v = nouveau_bo_rd32(nvbo, i);
1225 nouveau_bo_wr32(nv_crtc->cursor.nvbo, i, v);
1226 }
1227 nouveau_bo_unmap(nvbo);
1228 }
1229
1230 drm_gem_object_unreference_unlocked(gem);
1231 }
1232
1233 if (visible != nv_crtc->cursor.visible) {
1234 nv50_crtc_cursor_show_hide(nv_crtc, visible, true);
1235 nv_crtc->cursor.visible = visible;
1236 }
1237
1238 return ret;
1239 }
1240
1241 static int
1242 nv50_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1243 {
1244 struct nv50_curs *curs = nv50_curs(crtc);
1245 struct nv50_chan *chan = nv50_chan(curs);
1246 nv_wo32(chan->user, 0x0084, (y << 16) | (x & 0xffff));
1247 nv_wo32(chan->user, 0x0080, 0x00000000);
1248 return 0;
1249 }
1250
1251 static void
1252 nv50_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
1253 uint32_t start, uint32_t size)
1254 {
1255 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1256 u32 end = max(start + size, (u32)256);
1257 u32 i;
1258
1259 for (i = start; i < end; i++) {
1260 nv_crtc->lut.r[i] = r[i];
1261 nv_crtc->lut.g[i] = g[i];
1262 nv_crtc->lut.b[i] = b[i];
1263 }
1264
1265 nv50_crtc_lut_load(crtc);
1266 }
1267
1268 static void
1269 nv50_crtc_destroy(struct drm_crtc *crtc)
1270 {
1271 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1272 struct nv50_disp *disp = nv50_disp(crtc->dev);
1273 struct nv50_head *head = nv50_head(crtc);
1274 nv50_dmac_destroy(disp->core, &head->ovly.base);
1275 nv50_pioc_destroy(disp->core, &head->oimm.base);
1276 nv50_dmac_destroy(disp->core, &head->sync.base);
1277 nv50_pioc_destroy(disp->core, &head->curs.base);
1278 nouveau_bo_unmap(nv_crtc->cursor.nvbo);
1279 if (nv_crtc->cursor.nvbo)
1280 nouveau_bo_unpin(nv_crtc->cursor.nvbo);
1281 nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
1282 nouveau_bo_unmap(nv_crtc->lut.nvbo);
1283 if (nv_crtc->lut.nvbo)
1284 nouveau_bo_unpin(nv_crtc->lut.nvbo);
1285 nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
1286 drm_crtc_cleanup(crtc);
1287 kfree(crtc);
1288 }
1289
1290 static const struct drm_crtc_helper_funcs nv50_crtc_hfunc = {
1291 .dpms = nv50_crtc_dpms,
1292 .prepare = nv50_crtc_prepare,
1293 .commit = nv50_crtc_commit,
1294 .mode_fixup = nv50_crtc_mode_fixup,
1295 .mode_set = nv50_crtc_mode_set,
1296 .mode_set_base = nv50_crtc_mode_set_base,
1297 .mode_set_base_atomic = nv50_crtc_mode_set_base_atomic,
1298 .load_lut = nv50_crtc_lut_load,
1299 };
1300
1301 static const struct drm_crtc_funcs nv50_crtc_func = {
1302 .cursor_set = nv50_crtc_cursor_set,
1303 .cursor_move = nv50_crtc_cursor_move,
1304 .gamma_set = nv50_crtc_gamma_set,
1305 .set_config = drm_crtc_helper_set_config,
1306 .destroy = nv50_crtc_destroy,
1307 .page_flip = nouveau_crtc_page_flip,
1308 };
1309
1310 static void
1311 nv50_cursor_set_pos(struct nouveau_crtc *nv_crtc, int x, int y)
1312 {
1313 }
1314
1315 static void
1316 nv50_cursor_set_offset(struct nouveau_crtc *nv_crtc, uint32_t offset)
1317 {
1318 }
1319
1320 static int
1321 nv50_crtc_create(struct drm_device *dev, struct nouveau_object *core, int index)
1322 {
1323 struct nv50_disp *disp = nv50_disp(dev);
1324 struct nv50_head *head;
1325 struct drm_crtc *crtc;
1326 int ret, i;
1327
1328 head = kzalloc(sizeof(*head), GFP_KERNEL);
1329 if (!head)
1330 return -ENOMEM;
1331
1332 head->base.index = index;
1333 head->base.set_dither = nv50_crtc_set_dither;
1334 head->base.set_scale = nv50_crtc_set_scale;
1335 head->base.set_color_vibrance = nv50_crtc_set_color_vibrance;
1336 head->base.color_vibrance = 50;
1337 head->base.vibrant_hue = 0;
1338 head->base.cursor.set_offset = nv50_cursor_set_offset;
1339 head->base.cursor.set_pos = nv50_cursor_set_pos;
1340 for (i = 0; i < 256; i++) {
1341 head->base.lut.r[i] = i << 8;
1342 head->base.lut.g[i] = i << 8;
1343 head->base.lut.b[i] = i << 8;
1344 }
1345
1346 crtc = &head->base.base;
1347 drm_crtc_init(dev, crtc, &nv50_crtc_func);
1348 drm_crtc_helper_add(crtc, &nv50_crtc_hfunc);
1349 drm_mode_crtc_set_gamma_size(crtc, 256);
1350
1351 ret = nouveau_bo_new(dev, 8192, 0x100, TTM_PL_FLAG_VRAM,
1352 0, 0x0000, NULL, &head->base.lut.nvbo);
1353 if (!ret) {
1354 ret = nouveau_bo_pin(head->base.lut.nvbo, TTM_PL_FLAG_VRAM);
1355 if (!ret) {
1356 ret = nouveau_bo_map(head->base.lut.nvbo);
1357 if (ret)
1358 nouveau_bo_unpin(head->base.lut.nvbo);
1359 }
1360 if (ret)
1361 nouveau_bo_ref(NULL, &head->base.lut.nvbo);
1362 }
1363
1364 if (ret)
1365 goto out;
1366
1367 nv50_crtc_lut_load(crtc);
1368
1369 /* allocate cursor resources */
1370 ret = nv50_pioc_create(disp->core, NV50_DISP_CURS_CLASS, index,
1371 &(struct nv50_display_curs_class) {
1372 .head = index,
1373 }, sizeof(struct nv50_display_curs_class),
1374 &head->curs.base);
1375 if (ret)
1376 goto out;
1377
1378 ret = nouveau_bo_new(dev, 64 * 64 * 4, 0x100, TTM_PL_FLAG_VRAM,
1379 0, 0x0000, NULL, &head->base.cursor.nvbo);
1380 if (!ret) {
1381 ret = nouveau_bo_pin(head->base.cursor.nvbo, TTM_PL_FLAG_VRAM);
1382 if (!ret) {
1383 ret = nouveau_bo_map(head->base.cursor.nvbo);
1384 if (ret)
1385 nouveau_bo_unpin(head->base.lut.nvbo);
1386 }
1387 if (ret)
1388 nouveau_bo_ref(NULL, &head->base.cursor.nvbo);
1389 }
1390
1391 if (ret)
1392 goto out;
1393
1394 /* allocate page flip / sync resources */
1395 ret = nv50_dmac_create(disp->core, NV50_DISP_SYNC_CLASS, index,
1396 &(struct nv50_display_sync_class) {
1397 .pushbuf = EVO_PUSH_HANDLE(SYNC, index),
1398 .head = index,
1399 }, sizeof(struct nv50_display_sync_class),
1400 disp->sync->bo.offset, &head->sync.base);
1401 if (ret)
1402 goto out;
1403
1404 head->sync.addr = EVO_FLIP_SEM0(index);
1405 head->sync.data = 0x00000000;
1406
1407 /* allocate overlay resources */
1408 ret = nv50_pioc_create(disp->core, NV50_DISP_OIMM_CLASS, index,
1409 &(struct nv50_display_oimm_class) {
1410 .head = index,
1411 }, sizeof(struct nv50_display_oimm_class),
1412 &head->oimm.base);
1413 if (ret)
1414 goto out;
1415
1416 ret = nv50_dmac_create(disp->core, NV50_DISP_OVLY_CLASS, index,
1417 &(struct nv50_display_ovly_class) {
1418 .pushbuf = EVO_PUSH_HANDLE(OVLY, index),
1419 .head = index,
1420 }, sizeof(struct nv50_display_ovly_class),
1421 disp->sync->bo.offset, &head->ovly.base);
1422 if (ret)
1423 goto out;
1424
1425 out:
1426 if (ret)
1427 nv50_crtc_destroy(crtc);
1428 return ret;
1429 }
1430
1431 /******************************************************************************
1432 * DAC
1433 *****************************************************************************/
1434 static void
1435 nv50_dac_dpms(struct drm_encoder *encoder, int mode)
1436 {
1437 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1438 struct nv50_disp *disp = nv50_disp(encoder->dev);
1439 int or = nv_encoder->or;
1440 u32 dpms_ctrl;
1441
1442 dpms_ctrl = 0x00000000;
1443 if (mode == DRM_MODE_DPMS_STANDBY || mode == DRM_MODE_DPMS_OFF)
1444 dpms_ctrl |= 0x00000001;
1445 if (mode == DRM_MODE_DPMS_SUSPEND || mode == DRM_MODE_DPMS_OFF)
1446 dpms_ctrl |= 0x00000004;
1447
1448 nv_call(disp->core, NV50_DISP_DAC_PWR + or, dpms_ctrl);
1449 }
1450
1451 static bool
1452 nv50_dac_mode_fixup(struct drm_encoder *encoder,
1453 const struct drm_display_mode *mode,
1454 struct drm_display_mode *adjusted_mode)
1455 {
1456 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1457 struct nouveau_connector *nv_connector;
1458
1459 nv_connector = nouveau_encoder_connector_get(nv_encoder);
1460 if (nv_connector && nv_connector->native_mode) {
1461 if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
1462 int id = adjusted_mode->base.id;
1463 *adjusted_mode = *nv_connector->native_mode;
1464 adjusted_mode->base.id = id;
1465 }
1466 }
1467
1468 return true;
1469 }
1470
1471 static void
1472 nv50_dac_commit(struct drm_encoder *encoder)
1473 {
1474 }
1475
1476 static void
1477 nv50_dac_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
1478 struct drm_display_mode *adjusted_mode)
1479 {
1480 struct nv50_mast *mast = nv50_mast(encoder->dev);
1481 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1482 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1483 u32 *push;
1484
1485 nv50_dac_dpms(encoder, DRM_MODE_DPMS_ON);
1486
1487 push = evo_wait(mast, 8);
1488 if (push) {
1489 if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
1490 u32 syncs = 0x00000000;
1491
1492 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1493 syncs |= 0x00000001;
1494 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1495 syncs |= 0x00000002;
1496
1497 evo_mthd(push, 0x0400 + (nv_encoder->or * 0x080), 2);
1498 evo_data(push, 1 << nv_crtc->index);
1499 evo_data(push, syncs);
1500 } else {
1501 u32 magic = 0x31ec6000 | (nv_crtc->index << 25);
1502 u32 syncs = 0x00000001;
1503
1504 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1505 syncs |= 0x00000008;
1506 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1507 syncs |= 0x00000010;
1508
1509 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
1510 magic |= 0x00000001;
1511
1512 evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
1513 evo_data(push, syncs);
1514 evo_data(push, magic);
1515 evo_mthd(push, 0x0180 + (nv_encoder->or * 0x020), 1);
1516 evo_data(push, 1 << nv_crtc->index);
1517 }
1518
1519 evo_kick(push, mast);
1520 }
1521
1522 nv_encoder->crtc = encoder->crtc;
1523 }
1524
1525 static void
1526 nv50_dac_disconnect(struct drm_encoder *encoder)
1527 {
1528 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1529 struct nv50_mast *mast = nv50_mast(encoder->dev);
1530 const int or = nv_encoder->or;
1531 u32 *push;
1532
1533 if (nv_encoder->crtc) {
1534 nv50_crtc_prepare(nv_encoder->crtc);
1535
1536 push = evo_wait(mast, 4);
1537 if (push) {
1538 if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
1539 evo_mthd(push, 0x0400 + (or * 0x080), 1);
1540 evo_data(push, 0x00000000);
1541 } else {
1542 evo_mthd(push, 0x0180 + (or * 0x020), 1);
1543 evo_data(push, 0x00000000);
1544 }
1545 evo_kick(push, mast);
1546 }
1547 }
1548
1549 nv_encoder->crtc = NULL;
1550 }
1551
1552 static enum drm_connector_status
1553 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
1554 {
1555 struct nv50_disp *disp = nv50_disp(encoder->dev);
1556 int ret, or = nouveau_encoder(encoder)->or;
1557 u32 load = nouveau_drm(encoder->dev)->vbios.dactestval;
1558 if (load == 0)
1559 load = 340;
1560
1561 ret = nv_exec(disp->core, NV50_DISP_DAC_LOAD + or, &load, sizeof(load));
1562 if (ret || load != 7)
1563 return connector_status_disconnected;
1564
1565 return connector_status_connected;
1566 }
1567
1568 static void
1569 nv50_dac_destroy(struct drm_encoder *encoder)
1570 {
1571 drm_encoder_cleanup(encoder);
1572 kfree(encoder);
1573 }
1574
1575 static const struct drm_encoder_helper_funcs nv50_dac_hfunc = {
1576 .dpms = nv50_dac_dpms,
1577 .mode_fixup = nv50_dac_mode_fixup,
1578 .prepare = nv50_dac_disconnect,
1579 .commit = nv50_dac_commit,
1580 .mode_set = nv50_dac_mode_set,
1581 .disable = nv50_dac_disconnect,
1582 .get_crtc = nv50_display_crtc_get,
1583 .detect = nv50_dac_detect
1584 };
1585
1586 static const struct drm_encoder_funcs nv50_dac_func = {
1587 .destroy = nv50_dac_destroy,
1588 };
1589
1590 static int
1591 nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
1592 {
1593 struct nouveau_drm *drm = nouveau_drm(connector->dev);
1594 struct nouveau_i2c *i2c = nouveau_i2c(drm->device);
1595 struct nouveau_encoder *nv_encoder;
1596 struct drm_encoder *encoder;
1597 int type = DRM_MODE_ENCODER_DAC;
1598
1599 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1600 if (!nv_encoder)
1601 return -ENOMEM;
1602 nv_encoder->dcb = dcbe;
1603 nv_encoder->or = ffs(dcbe->or) - 1;
1604 nv_encoder->i2c = i2c->find(i2c, dcbe->i2c_index);
1605
1606 encoder = to_drm_encoder(nv_encoder);
1607 encoder->possible_crtcs = dcbe->heads;
1608 encoder->possible_clones = 0;
1609 drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type);
1610 drm_encoder_helper_add(encoder, &nv50_dac_hfunc);
1611
1612 drm_mode_connector_attach_encoder(connector, encoder);
1613 return 0;
1614 }
1615
1616 /******************************************************************************
1617 * Audio
1618 *****************************************************************************/
1619 static void
1620 nv50_audio_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
1621 {
1622 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1623 struct nouveau_connector *nv_connector;
1624 struct nv50_disp *disp = nv50_disp(encoder->dev);
1625
1626 nv_connector = nouveau_encoder_connector_get(nv_encoder);
1627 if (!drm_detect_monitor_audio(nv_connector->edid))
1628 return;
1629
1630 drm_edid_to_eld(&nv_connector->base, nv_connector->edid);
1631
1632 nv_exec(disp->core, NVA3_DISP_SOR_HDA_ELD + nv_encoder->or,
1633 nv_connector->base.eld,
1634 nv_connector->base.eld[2] * 4);
1635 }
1636
1637 static void
1638 nv50_audio_disconnect(struct drm_encoder *encoder)
1639 {
1640 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1641 struct nv50_disp *disp = nv50_disp(encoder->dev);
1642
1643 nv_exec(disp->core, NVA3_DISP_SOR_HDA_ELD + nv_encoder->or, NULL, 0);
1644 }
1645
1646 /******************************************************************************
1647 * HDMI
1648 *****************************************************************************/
1649 static void
1650 nv50_hdmi_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
1651 {
1652 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1653 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1654 struct nouveau_connector *nv_connector;
1655 struct nv50_disp *disp = nv50_disp(encoder->dev);
1656 const u32 moff = (nv_crtc->index << 3) | nv_encoder->or;
1657 u32 rekey = 56; /* binary driver, and tegra constant */
1658 u32 max_ac_packet;
1659
1660 nv_connector = nouveau_encoder_connector_get(nv_encoder);
1661 if (!drm_detect_hdmi_monitor(nv_connector->edid))
1662 return;
1663
1664 max_ac_packet = mode->htotal - mode->hdisplay;
1665 max_ac_packet -= rekey;
1666 max_ac_packet -= 18; /* constant from tegra */
1667 max_ac_packet /= 32;
1668
1669 nv_call(disp->core, NV84_DISP_SOR_HDMI_PWR + moff,
1670 NV84_DISP_SOR_HDMI_PWR_STATE_ON |
1671 (max_ac_packet << 16) | rekey);
1672
1673 nv50_audio_mode_set(encoder, mode);
1674 }
1675
1676 static void
1677 nv50_hdmi_disconnect(struct drm_encoder *encoder)
1678 {
1679 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1680 struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1681 struct nv50_disp *disp = nv50_disp(encoder->dev);
1682 const u32 moff = (nv_crtc->index << 3) | nv_encoder->or;
1683
1684 nv50_audio_disconnect(encoder);
1685
1686 nv_call(disp->core, NV84_DISP_SOR_HDMI_PWR + moff, 0x00000000);
1687 }
1688
1689 /******************************************************************************
1690 * SOR
1691 *****************************************************************************/
1692 static void
1693 nv50_sor_dpms(struct drm_encoder *encoder, int mode)
1694 {
1695 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1696 struct drm_device *dev = encoder->dev;
1697 struct nv50_disp *disp = nv50_disp(dev);
1698 struct drm_encoder *partner;
1699 int or = nv_encoder->or;
1700
1701 nv_encoder->last_dpms = mode;
1702
1703 list_for_each_entry(partner, &dev->mode_config.encoder_list, head) {
1704 struct nouveau_encoder *nv_partner = nouveau_encoder(partner);
1705
1706 if (partner->encoder_type != DRM_MODE_ENCODER_TMDS)
1707 continue;
1708
1709 if (nv_partner != nv_encoder &&
1710 nv_partner->dcb->or == nv_encoder->dcb->or) {
1711 if (nv_partner->last_dpms == DRM_MODE_DPMS_ON)
1712 return;
1713 break;
1714 }
1715 }
1716
1717 nv_call(disp->core, NV50_DISP_SOR_PWR + or, (mode == DRM_MODE_DPMS_ON));
1718 }
1719
1720 static bool
1721 nv50_sor_mode_fixup(struct drm_encoder *encoder,
1722 const struct drm_display_mode *mode,
1723 struct drm_display_mode *adjusted_mode)
1724 {
1725 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1726 struct nouveau_connector *nv_connector;
1727
1728 nv_connector = nouveau_encoder_connector_get(nv_encoder);
1729 if (nv_connector && nv_connector->native_mode) {
1730 if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
1731 int id = adjusted_mode->base.id;
1732 *adjusted_mode = *nv_connector->native_mode;
1733 adjusted_mode->base.id = id;
1734 }
1735 }
1736
1737 return true;
1738 }
1739
1740 static void
1741 nv50_sor_disconnect(struct drm_encoder *encoder)
1742 {
1743 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1744 struct nv50_mast *mast = nv50_mast(encoder->dev);
1745 const int or = nv_encoder->or;
1746 u32 *push;
1747
1748 if (nv_encoder->crtc) {
1749 nv50_crtc_prepare(nv_encoder->crtc);
1750
1751 push = evo_wait(mast, 4);
1752 if (push) {
1753 if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
1754 evo_mthd(push, 0x0600 + (or * 0x40), 1);
1755 evo_data(push, 0x00000000);
1756 } else {
1757 evo_mthd(push, 0x0200 + (or * 0x20), 1);
1758 evo_data(push, 0x00000000);
1759 }
1760 evo_kick(push, mast);
1761 }
1762
1763 nv50_hdmi_disconnect(encoder);
1764 }
1765
1766 nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
1767 nv_encoder->crtc = NULL;
1768 }
1769
1770 static void
1771 nv50_sor_commit(struct drm_encoder *encoder)
1772 {
1773 }
1774
1775 static void
1776 nv50_sor_mode_set(struct drm_encoder *encoder, struct drm_display_mode *umode,
1777 struct drm_display_mode *mode)
1778 {
1779 struct nv50_disp *disp = nv50_disp(encoder->dev);
1780 struct nv50_mast *mast = nv50_mast(encoder->dev);
1781 struct drm_device *dev = encoder->dev;
1782 struct nouveau_drm *drm = nouveau_drm(dev);
1783 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1784 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1785 struct nouveau_connector *nv_connector;
1786 struct nvbios *bios = &drm->vbios;
1787 u32 *push, lvds = 0;
1788 u8 owner = 1 << nv_crtc->index;
1789 u8 proto = 0xf;
1790 u8 depth = 0x0;
1791
1792 nv_connector = nouveau_encoder_connector_get(nv_encoder);
1793 switch (nv_encoder->dcb->type) {
1794 case DCB_OUTPUT_TMDS:
1795 if (nv_encoder->dcb->sorconf.link & 1) {
1796 if (mode->clock < 165000)
1797 proto = 0x1;
1798 else
1799 proto = 0x5;
1800 } else {
1801 proto = 0x2;
1802 }
1803
1804 nv50_hdmi_mode_set(encoder, mode);
1805 break;
1806 case DCB_OUTPUT_LVDS:
1807 proto = 0x0;
1808
1809 if (bios->fp_no_ddc) {
1810 if (bios->fp.dual_link)
1811 lvds |= 0x0100;
1812 if (bios->fp.if_is_24bit)
1813 lvds |= 0x0200;
1814 } else {
1815 if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1816 if (((u8 *)nv_connector->edid)[121] == 2)
1817 lvds |= 0x0100;
1818 } else
1819 if (mode->clock >= bios->fp.duallink_transition_clk) {
1820 lvds |= 0x0100;
1821 }
1822
1823 if (lvds & 0x0100) {
1824 if (bios->fp.strapless_is_24bit & 2)
1825 lvds |= 0x0200;
1826 } else {
1827 if (bios->fp.strapless_is_24bit & 1)
1828 lvds |= 0x0200;
1829 }
1830
1831 if (nv_connector->base.display_info.bpc == 8)
1832 lvds |= 0x0200;
1833 }
1834
1835 nv_call(disp->core, NV50_DISP_SOR_LVDS_SCRIPT + nv_encoder->or, lvds);
1836 break;
1837 case DCB_OUTPUT_DP:
1838 if (nv_connector->base.display_info.bpc == 6) {
1839 nv_encoder->dp.datarate = mode->clock * 18 / 8;
1840 depth = 0x2;
1841 } else
1842 if (nv_connector->base.display_info.bpc == 8) {
1843 nv_encoder->dp.datarate = mode->clock * 24 / 8;
1844 depth = 0x5;
1845 } else {
1846 nv_encoder->dp.datarate = mode->clock * 30 / 8;
1847 depth = 0x6;
1848 }
1849
1850 if (nv_encoder->dcb->sorconf.link & 1)
1851 proto = 0x8;
1852 else
1853 proto = 0x9;
1854 break;
1855 default:
1856 BUG_ON(1);
1857 break;
1858 }
1859
1860 nv50_sor_dpms(encoder, DRM_MODE_DPMS_ON);
1861
1862 push = evo_wait(nv50_mast(dev), 8);
1863 if (push) {
1864 if (nv50_vers(mast) < NVD0_DISP_CLASS) {
1865 u32 ctrl = (depth << 16) | (proto << 8) | owner;
1866 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1867 ctrl |= 0x00001000;
1868 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1869 ctrl |= 0x00002000;
1870 evo_mthd(push, 0x0600 + (nv_encoder->or * 0x040), 1);
1871 evo_data(push, ctrl);
1872 } else {
1873 u32 magic = 0x31ec6000 | (nv_crtc->index << 25);
1874 u32 syncs = 0x00000001;
1875
1876 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1877 syncs |= 0x00000008;
1878 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1879 syncs |= 0x00000010;
1880
1881 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
1882 magic |= 0x00000001;
1883
1884 evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
1885 evo_data(push, syncs | (depth << 6));
1886 evo_data(push, magic);
1887 evo_mthd(push, 0x0200 + (nv_encoder->or * 0x020), 1);
1888 evo_data(push, owner | (proto << 8));
1889 }
1890
1891 evo_kick(push, mast);
1892 }
1893
1894 nv_encoder->crtc = encoder->crtc;
1895 }
1896
1897 static void
1898 nv50_sor_destroy(struct drm_encoder *encoder)
1899 {
1900 drm_encoder_cleanup(encoder);
1901 kfree(encoder);
1902 }
1903
1904 static const struct drm_encoder_helper_funcs nv50_sor_hfunc = {
1905 .dpms = nv50_sor_dpms,
1906 .mode_fixup = nv50_sor_mode_fixup,
1907 .prepare = nv50_sor_disconnect,
1908 .commit = nv50_sor_commit,
1909 .mode_set = nv50_sor_mode_set,
1910 .disable = nv50_sor_disconnect,
1911 .get_crtc = nv50_display_crtc_get,
1912 };
1913
1914 static const struct drm_encoder_funcs nv50_sor_func = {
1915 .destroy = nv50_sor_destroy,
1916 };
1917
1918 static int
1919 nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
1920 {
1921 struct nouveau_drm *drm = nouveau_drm(connector->dev);
1922 struct nouveau_i2c *i2c = nouveau_i2c(drm->device);
1923 struct nouveau_encoder *nv_encoder;
1924 struct drm_encoder *encoder;
1925 int type;
1926
1927 switch (dcbe->type) {
1928 case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
1929 case DCB_OUTPUT_TMDS:
1930 case DCB_OUTPUT_DP:
1931 default:
1932 type = DRM_MODE_ENCODER_TMDS;
1933 break;
1934 }
1935
1936 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1937 if (!nv_encoder)
1938 return -ENOMEM;
1939 nv_encoder->dcb = dcbe;
1940 nv_encoder->or = ffs(dcbe->or) - 1;
1941 nv_encoder->i2c = i2c->find(i2c, dcbe->i2c_index);
1942 nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
1943
1944 encoder = to_drm_encoder(nv_encoder);
1945 encoder->possible_crtcs = dcbe->heads;
1946 encoder->possible_clones = 0;
1947 drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type);
1948 drm_encoder_helper_add(encoder, &nv50_sor_hfunc);
1949
1950 drm_mode_connector_attach_encoder(connector, encoder);
1951 return 0;
1952 }
1953
1954 /******************************************************************************
1955 * PIOR
1956 *****************************************************************************/
1957
1958 static void
1959 nv50_pior_dpms(struct drm_encoder *encoder, int mode)
1960 {
1961 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1962 struct nv50_disp *disp = nv50_disp(encoder->dev);
1963 u32 mthd = (nv_encoder->dcb->type << 12) | nv_encoder->or;
1964 u32 ctrl = (mode == DRM_MODE_DPMS_ON);
1965 nv_call(disp->core, NV50_DISP_PIOR_PWR + mthd, ctrl);
1966 }
1967
1968 static bool
1969 nv50_pior_mode_fixup(struct drm_encoder *encoder,
1970 const struct drm_display_mode *mode,
1971 struct drm_display_mode *adjusted_mode)
1972 {
1973 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1974 struct nouveau_connector *nv_connector;
1975
1976 nv_connector = nouveau_encoder_connector_get(nv_encoder);
1977 if (nv_connector && nv_connector->native_mode) {
1978 if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
1979 int id = adjusted_mode->base.id;
1980 *adjusted_mode = *nv_connector->native_mode;
1981 adjusted_mode->base.id = id;
1982 }
1983 }
1984
1985 adjusted_mode->clock *= 2;
1986 return true;
1987 }
1988
1989 static void
1990 nv50_pior_commit(struct drm_encoder *encoder)
1991 {
1992 }
1993
1994 static void
1995 nv50_pior_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
1996 struct drm_display_mode *adjusted_mode)
1997 {
1998 struct nv50_mast *mast = nv50_mast(encoder->dev);
1999 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
2000 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
2001 struct nouveau_connector *nv_connector;
2002 u8 owner = 1 << nv_crtc->index;
2003 u8 proto, depth;
2004 u32 *push;
2005
2006 nv_connector = nouveau_encoder_connector_get(nv_encoder);
2007 switch (nv_connector->base.display_info.bpc) {
2008 case 10: depth = 0x6; break;
2009 case 8: depth = 0x5; break;
2010 case 6: depth = 0x2; break;
2011 default: depth = 0x0; break;
2012 }
2013
2014 switch (nv_encoder->dcb->type) {
2015 case DCB_OUTPUT_TMDS:
2016 case DCB_OUTPUT_DP:
2017 proto = 0x0;
2018 break;
2019 default:
2020 BUG_ON(1);
2021 break;
2022 }
2023
2024 nv50_pior_dpms(encoder, DRM_MODE_DPMS_ON);
2025
2026 push = evo_wait(mast, 8);
2027 if (push) {
2028 if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
2029 u32 ctrl = (depth << 16) | (proto << 8) | owner;
2030 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
2031 ctrl |= 0x00001000;
2032 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
2033 ctrl |= 0x00002000;
2034 evo_mthd(push, 0x0700 + (nv_encoder->or * 0x040), 1);
2035 evo_data(push, ctrl);
2036 }
2037
2038 evo_kick(push, mast);
2039 }
2040
2041 nv_encoder->crtc = encoder->crtc;
2042 }
2043
2044 static void
2045 nv50_pior_disconnect(struct drm_encoder *encoder)
2046 {
2047 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
2048 struct nv50_mast *mast = nv50_mast(encoder->dev);
2049 const int or = nv_encoder->or;
2050 u32 *push;
2051
2052 if (nv_encoder->crtc) {
2053 nv50_crtc_prepare(nv_encoder->crtc);
2054
2055 push = evo_wait(mast, 4);
2056 if (push) {
2057 if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
2058 evo_mthd(push, 0x0700 + (or * 0x040), 1);
2059 evo_data(push, 0x00000000);
2060 }
2061 evo_kick(push, mast);
2062 }
2063 }
2064
2065 nv_encoder->crtc = NULL;
2066 }
2067
2068 static void
2069 nv50_pior_destroy(struct drm_encoder *encoder)
2070 {
2071 drm_encoder_cleanup(encoder);
2072 kfree(encoder);
2073 }
2074
2075 static const struct drm_encoder_helper_funcs nv50_pior_hfunc = {
2076 .dpms = nv50_pior_dpms,
2077 .mode_fixup = nv50_pior_mode_fixup,
2078 .prepare = nv50_pior_disconnect,
2079 .commit = nv50_pior_commit,
2080 .mode_set = nv50_pior_mode_set,
2081 .disable = nv50_pior_disconnect,
2082 .get_crtc = nv50_display_crtc_get,
2083 };
2084
2085 static const struct drm_encoder_funcs nv50_pior_func = {
2086 .destroy = nv50_pior_destroy,
2087 };
2088
2089 static int
2090 nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe)
2091 {
2092 struct nouveau_drm *drm = nouveau_drm(connector->dev);
2093 struct nouveau_i2c *i2c = nouveau_i2c(drm->device);
2094 struct nouveau_i2c_port *ddc = NULL;
2095 struct nouveau_encoder *nv_encoder;
2096 struct drm_encoder *encoder;
2097 int type;
2098
2099 switch (dcbe->type) {
2100 case DCB_OUTPUT_TMDS:
2101 ddc = i2c->find_type(i2c, NV_I2C_TYPE_EXTDDC(dcbe->extdev));
2102 type = DRM_MODE_ENCODER_TMDS;
2103 break;
2104 case DCB_OUTPUT_DP:
2105 ddc = i2c->find_type(i2c, NV_I2C_TYPE_EXTAUX(dcbe->extdev));
2106 type = DRM_MODE_ENCODER_TMDS;
2107 break;
2108 default:
2109 return -ENODEV;
2110 }
2111
2112 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
2113 if (!nv_encoder)
2114 return -ENOMEM;
2115 nv_encoder->dcb = dcbe;
2116 nv_encoder->or = ffs(dcbe->or) - 1;
2117 nv_encoder->i2c = ddc;
2118
2119 encoder = to_drm_encoder(nv_encoder);
2120 encoder->possible_crtcs = dcbe->heads;
2121 encoder->possible_clones = 0;
2122 drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type);
2123 drm_encoder_helper_add(encoder, &nv50_pior_hfunc);
2124
2125 drm_mode_connector_attach_encoder(connector, encoder);
2126 return 0;
2127 }
2128
2129 /******************************************************************************
2130 * Init
2131 *****************************************************************************/
2132 void
2133 nv50_display_fini(struct drm_device *dev)
2134 {
2135 }
2136
2137 int
2138 nv50_display_init(struct drm_device *dev)
2139 {
2140 struct nv50_disp *disp = nv50_disp(dev);
2141 struct drm_crtc *crtc;
2142 u32 *push;
2143
2144 push = evo_wait(nv50_mast(dev), 32);
2145 if (!push)
2146 return -EBUSY;
2147
2148 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2149 struct nv50_sync *sync = nv50_sync(crtc);
2150 nouveau_bo_wr32(disp->sync, sync->addr / 4, sync->data);
2151 }
2152
2153 evo_mthd(push, 0x0088, 1);
2154 evo_data(push, NvEvoSync);
2155 evo_kick(push, nv50_mast(dev));
2156 return 0;
2157 }
2158
2159 void
2160 nv50_display_destroy(struct drm_device *dev)
2161 {
2162 struct nv50_disp *disp = nv50_disp(dev);
2163
2164 nv50_dmac_destroy(disp->core, &disp->mast.base);
2165
2166 nouveau_bo_unmap(disp->sync);
2167 if (disp->sync)
2168 nouveau_bo_unpin(disp->sync);
2169 nouveau_bo_ref(NULL, &disp->sync);
2170
2171 nouveau_display(dev)->priv = NULL;
2172 kfree(disp);
2173 }
2174
2175 int
2176 nv50_display_create(struct drm_device *dev)
2177 {
2178 static const u16 oclass[] = {
2179 NVF0_DISP_CLASS,
2180 NVE0_DISP_CLASS,
2181 NVD0_DISP_CLASS,
2182 NVA3_DISP_CLASS,
2183 NV94_DISP_CLASS,
2184 NVA0_DISP_CLASS,
2185 NV84_DISP_CLASS,
2186 NV50_DISP_CLASS,
2187 };
2188 struct nouveau_device *device = nouveau_dev(dev);
2189 struct nouveau_drm *drm = nouveau_drm(dev);
2190 struct dcb_table *dcb = &drm->vbios.dcb;
2191 struct drm_connector *connector, *tmp;
2192 struct nv50_disp *disp;
2193 struct dcb_output *dcbe;
2194 int crtcs, ret, i;
2195
2196 disp = kzalloc(sizeof(*disp), GFP_KERNEL);
2197 if (!disp)
2198 return -ENOMEM;
2199
2200 nouveau_display(dev)->priv = disp;
2201 nouveau_display(dev)->dtor = nv50_display_destroy;
2202 nouveau_display(dev)->init = nv50_display_init;
2203 nouveau_display(dev)->fini = nv50_display_fini;
2204
2205 /* small shared memory area we use for notifiers and semaphores */
2206 ret = nouveau_bo_new(dev, 4096, 0x1000, TTM_PL_FLAG_VRAM,
2207 0, 0x0000, NULL, &disp->sync);
2208 if (!ret) {
2209 ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM);
2210 if (!ret) {
2211 ret = nouveau_bo_map(disp->sync);
2212 if (ret)
2213 nouveau_bo_unpin(disp->sync);
2214 }
2215 if (ret)
2216 nouveau_bo_ref(NULL, &disp->sync);
2217 }
2218
2219 if (ret)
2220 goto out;
2221
2222 /* attempt to allocate a supported evo display class */
2223 ret = -ENODEV;
2224 for (i = 0; ret && i < ARRAY_SIZE(oclass); i++) {
2225 ret = nouveau_object_new(nv_object(drm), NVDRM_DEVICE,
2226 0xd1500000, oclass[i], NULL, 0,
2227 &disp->core);
2228 }
2229
2230 if (ret)
2231 goto out;
2232
2233 /* allocate master evo channel */
2234 ret = nv50_dmac_create(disp->core, NV50_DISP_MAST_CLASS, 0,
2235 &(struct nv50_display_mast_class) {
2236 .pushbuf = EVO_PUSH_HANDLE(MAST, 0),
2237 }, sizeof(struct nv50_display_mast_class),
2238 disp->sync->bo.offset, &disp->mast.base);
2239 if (ret)
2240 goto out;
2241
2242 /* create crtc objects to represent the hw heads */
2243 if (nv_mclass(disp->core) >= NVD0_DISP_CLASS)
2244 crtcs = nv_rd32(device, 0x022448);
2245 else
2246 crtcs = 2;
2247
2248 for (i = 0; i < crtcs; i++) {
2249 ret = nv50_crtc_create(dev, disp->core, i);
2250 if (ret)
2251 goto out;
2252 }
2253
2254 /* create encoder/connector objects based on VBIOS DCB table */
2255 for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
2256 connector = nouveau_connector_create(dev, dcbe->connector);
2257 if (IS_ERR(connector))
2258 continue;
2259
2260 if (dcbe->location == DCB_LOC_ON_CHIP) {
2261 switch (dcbe->type) {
2262 case DCB_OUTPUT_TMDS:
2263 case DCB_OUTPUT_LVDS:
2264 case DCB_OUTPUT_DP:
2265 ret = nv50_sor_create(connector, dcbe);
2266 break;
2267 case DCB_OUTPUT_ANALOG:
2268 ret = nv50_dac_create(connector, dcbe);
2269 break;
2270 default:
2271 ret = -ENODEV;
2272 break;
2273 }
2274 } else {
2275 ret = nv50_pior_create(connector, dcbe);
2276 }
2277
2278 if (ret) {
2279 NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
2280 dcbe->location, dcbe->type,
2281 ffs(dcbe->or) - 1, ret);
2282 ret = 0;
2283 }
2284 }
2285
2286 /* cull any connectors we created that don't have an encoder */
2287 list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
2288 if (connector->encoder_ids[0])
2289 continue;
2290
2291 NV_WARN(drm, "%s has no encoders, removing\n",
2292 drm_get_connector_name(connector));
2293 connector->funcs->destroy(connector);
2294 }
2295
2296 out:
2297 if (ret)
2298 nv50_display_destroy(dev);
2299 return ret;
2300 }
This page took 0.082413 seconds and 5 git commands to generate.