drm/nouveau/gr: convert to new-style nvkm_engine
[deliverable/linux.git] / drivers / gpu / drm / nouveau / nv50_display.c
1 /*
2 * Copyright 2011 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24
25 #include <linux/dma-mapping.h>
26
27 #include <drm/drmP.h>
28 #include <drm/drm_crtc_helper.h>
29 #include <drm/drm_plane_helper.h>
30 #include <drm/drm_dp_helper.h>
31
32 #include <nvif/class.h>
33
34 #include "nouveau_drm.h"
35 #include "nouveau_dma.h"
36 #include "nouveau_gem.h"
37 #include "nouveau_connector.h"
38 #include "nouveau_encoder.h"
39 #include "nouveau_crtc.h"
40 #include "nouveau_fence.h"
41 #include "nv50_display.h"
42
43 #define EVO_DMA_NR 9
44
45 #define EVO_MASTER (0x00)
46 #define EVO_FLIP(c) (0x01 + (c))
47 #define EVO_OVLY(c) (0x05 + (c))
48 #define EVO_OIMM(c) (0x09 + (c))
49 #define EVO_CURS(c) (0x0d + (c))
50
51 /* offsets in shared sync bo of various structures */
52 #define EVO_SYNC(c, o) ((c) * 0x0100 + (o))
53 #define EVO_MAST_NTFY EVO_SYNC( 0, 0x00)
54 #define EVO_FLIP_SEM0(c) EVO_SYNC((c) + 1, 0x00)
55 #define EVO_FLIP_SEM1(c) EVO_SYNC((c) + 1, 0x10)
56
57 /******************************************************************************
58 * EVO channel
59 *****************************************************************************/
60
61 struct nv50_chan {
62 struct nvif_object user;
63 struct nvif_device *device;
64 };
65
66 static int
67 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp,
68 const s32 *oclass, u8 head, void *data, u32 size,
69 struct nv50_chan *chan)
70 {
71 const u32 handle = (oclass[0] << 16) | head;
72 struct nvif_sclass *sclass;
73 int ret, i, n;
74
75 chan->device = device;
76
77 ret = n = nvif_object_sclass_get(disp, &sclass);
78 if (ret < 0)
79 return ret;
80
81 while (oclass[0]) {
82 for (i = 0; i < n; i++) {
83 if (sclass[i].oclass == oclass[0]) {
84 ret = nvif_object_init(disp, handle, oclass[0],
85 data, size, &chan->user);
86 if (ret == 0)
87 nvif_object_map(&chan->user);
88 nvif_object_sclass_put(&sclass);
89 return ret;
90 }
91 }
92 oclass++;
93 }
94
95 nvif_object_sclass_put(&sclass);
96 return -ENOSYS;
97 }
98
99 static void
100 nv50_chan_destroy(struct nv50_chan *chan)
101 {
102 nvif_object_fini(&chan->user);
103 }
104
105 /******************************************************************************
106 * PIO EVO channel
107 *****************************************************************************/
108
109 struct nv50_pioc {
110 struct nv50_chan base;
111 };
112
113 static void
114 nv50_pioc_destroy(struct nv50_pioc *pioc)
115 {
116 nv50_chan_destroy(&pioc->base);
117 }
118
119 static int
120 nv50_pioc_create(struct nvif_device *device, struct nvif_object *disp,
121 const s32 *oclass, u8 head, void *data, u32 size,
122 struct nv50_pioc *pioc)
123 {
124 return nv50_chan_create(device, disp, oclass, head, data, size,
125 &pioc->base);
126 }
127
128 /******************************************************************************
129 * Cursor Immediate
130 *****************************************************************************/
131
132 struct nv50_curs {
133 struct nv50_pioc base;
134 };
135
136 static int
137 nv50_curs_create(struct nvif_device *device, struct nvif_object *disp,
138 int head, struct nv50_curs *curs)
139 {
140 struct nv50_disp_cursor_v0 args = {
141 .head = head,
142 };
143 static const s32 oclass[] = {
144 GK104_DISP_CURSOR,
145 GF110_DISP_CURSOR,
146 GT214_DISP_CURSOR,
147 G82_DISP_CURSOR,
148 NV50_DISP_CURSOR,
149 0
150 };
151
152 return nv50_pioc_create(device, disp, oclass, head, &args, sizeof(args),
153 &curs->base);
154 }
155
156 /******************************************************************************
157 * Overlay Immediate
158 *****************************************************************************/
159
160 struct nv50_oimm {
161 struct nv50_pioc base;
162 };
163
164 static int
165 nv50_oimm_create(struct nvif_device *device, struct nvif_object *disp,
166 int head, struct nv50_oimm *oimm)
167 {
168 struct nv50_disp_cursor_v0 args = {
169 .head = head,
170 };
171 static const s32 oclass[] = {
172 GK104_DISP_OVERLAY,
173 GF110_DISP_OVERLAY,
174 GT214_DISP_OVERLAY,
175 G82_DISP_OVERLAY,
176 NV50_DISP_OVERLAY,
177 0
178 };
179
180 return nv50_pioc_create(device, disp, oclass, head, &args, sizeof(args),
181 &oimm->base);
182 }
183
184 /******************************************************************************
185 * DMA EVO channel
186 *****************************************************************************/
187
188 struct nv50_dmac {
189 struct nv50_chan base;
190 dma_addr_t handle;
191 u32 *ptr;
192
193 struct nvif_object sync;
194 struct nvif_object vram;
195
196 /* Protects against concurrent pushbuf access to this channel, lock is
197 * grabbed by evo_wait (if the pushbuf reservation is successful) and
198 * dropped again by evo_kick. */
199 struct mutex lock;
200 };
201
202 static void
203 nv50_dmac_destroy(struct nv50_dmac *dmac, struct nvif_object *disp)
204 {
205 struct nvif_device *device = dmac->base.device;
206
207 nvif_object_fini(&dmac->vram);
208 nvif_object_fini(&dmac->sync);
209
210 nv50_chan_destroy(&dmac->base);
211
212 if (dmac->ptr) {
213 struct pci_dev *pdev = nvxx_device(device)->pdev;
214 pci_free_consistent(pdev, PAGE_SIZE, dmac->ptr, dmac->handle);
215 }
216 }
217
218 static int
219 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp,
220 const s32 *oclass, u8 head, void *data, u32 size, u64 syncbuf,
221 struct nv50_dmac *dmac)
222 {
223 struct nv50_disp_core_channel_dma_v0 *args = data;
224 struct nvif_object pushbuf;
225 int ret;
226
227 mutex_init(&dmac->lock);
228
229 dmac->ptr = pci_alloc_consistent(nvxx_device(device)->pdev,
230 PAGE_SIZE, &dmac->handle);
231 if (!dmac->ptr)
232 return -ENOMEM;
233
234 ret = nvif_object_init(&device->object, 0xd0000000,
235 NV_DMA_FROM_MEMORY, &(struct nv_dma_v0) {
236 .target = NV_DMA_V0_TARGET_PCI_US,
237 .access = NV_DMA_V0_ACCESS_RD,
238 .start = dmac->handle + 0x0000,
239 .limit = dmac->handle + 0x0fff,
240 }, sizeof(struct nv_dma_v0), &pushbuf);
241 if (ret)
242 return ret;
243
244 args->pushbuf = nvif_handle(&pushbuf);
245
246 ret = nv50_chan_create(device, disp, oclass, head, data, size,
247 &dmac->base);
248 nvif_object_fini(&pushbuf);
249 if (ret)
250 return ret;
251
252 ret = nvif_object_init(&dmac->base.user, 0xf0000000, NV_DMA_IN_MEMORY,
253 &(struct nv_dma_v0) {
254 .target = NV_DMA_V0_TARGET_VRAM,
255 .access = NV_DMA_V0_ACCESS_RDWR,
256 .start = syncbuf + 0x0000,
257 .limit = syncbuf + 0x0fff,
258 }, sizeof(struct nv_dma_v0),
259 &dmac->sync);
260 if (ret)
261 return ret;
262
263 ret = nvif_object_init(&dmac->base.user, 0xf0000001, NV_DMA_IN_MEMORY,
264 &(struct nv_dma_v0) {
265 .target = NV_DMA_V0_TARGET_VRAM,
266 .access = NV_DMA_V0_ACCESS_RDWR,
267 .start = 0,
268 .limit = device->info.ram_user - 1,
269 }, sizeof(struct nv_dma_v0),
270 &dmac->vram);
271 if (ret)
272 return ret;
273
274 return ret;
275 }
276
277 /******************************************************************************
278 * Core
279 *****************************************************************************/
280
281 struct nv50_mast {
282 struct nv50_dmac base;
283 };
284
285 static int
286 nv50_core_create(struct nvif_device *device, struct nvif_object *disp,
287 u64 syncbuf, struct nv50_mast *core)
288 {
289 struct nv50_disp_core_channel_dma_v0 args = {
290 .pushbuf = 0xb0007d00,
291 };
292 static const s32 oclass[] = {
293 GM204_DISP_CORE_CHANNEL_DMA,
294 GM107_DISP_CORE_CHANNEL_DMA,
295 GK110_DISP_CORE_CHANNEL_DMA,
296 GK104_DISP_CORE_CHANNEL_DMA,
297 GF110_DISP_CORE_CHANNEL_DMA,
298 GT214_DISP_CORE_CHANNEL_DMA,
299 GT206_DISP_CORE_CHANNEL_DMA,
300 GT200_DISP_CORE_CHANNEL_DMA,
301 G82_DISP_CORE_CHANNEL_DMA,
302 NV50_DISP_CORE_CHANNEL_DMA,
303 0
304 };
305
306 return nv50_dmac_create(device, disp, oclass, 0, &args, sizeof(args),
307 syncbuf, &core->base);
308 }
309
310 /******************************************************************************
311 * Base
312 *****************************************************************************/
313
314 struct nv50_sync {
315 struct nv50_dmac base;
316 u32 addr;
317 u32 data;
318 };
319
320 static int
321 nv50_base_create(struct nvif_device *device, struct nvif_object *disp,
322 int head, u64 syncbuf, struct nv50_sync *base)
323 {
324 struct nv50_disp_base_channel_dma_v0 args = {
325 .pushbuf = 0xb0007c00 | head,
326 .head = head,
327 };
328 static const s32 oclass[] = {
329 GK110_DISP_BASE_CHANNEL_DMA,
330 GK104_DISP_BASE_CHANNEL_DMA,
331 GF110_DISP_BASE_CHANNEL_DMA,
332 GT214_DISP_BASE_CHANNEL_DMA,
333 GT200_DISP_BASE_CHANNEL_DMA,
334 G82_DISP_BASE_CHANNEL_DMA,
335 NV50_DISP_BASE_CHANNEL_DMA,
336 0
337 };
338
339 return nv50_dmac_create(device, disp, oclass, head, &args, sizeof(args),
340 syncbuf, &base->base);
341 }
342
343 /******************************************************************************
344 * Overlay
345 *****************************************************************************/
346
347 struct nv50_ovly {
348 struct nv50_dmac base;
349 };
350
351 static int
352 nv50_ovly_create(struct nvif_device *device, struct nvif_object *disp,
353 int head, u64 syncbuf, struct nv50_ovly *ovly)
354 {
355 struct nv50_disp_overlay_channel_dma_v0 args = {
356 .pushbuf = 0xb0007e00 | head,
357 .head = head,
358 };
359 static const s32 oclass[] = {
360 GK104_DISP_OVERLAY_CONTROL_DMA,
361 GF110_DISP_OVERLAY_CONTROL_DMA,
362 GT214_DISP_OVERLAY_CHANNEL_DMA,
363 GT200_DISP_OVERLAY_CHANNEL_DMA,
364 G82_DISP_OVERLAY_CHANNEL_DMA,
365 NV50_DISP_OVERLAY_CHANNEL_DMA,
366 0
367 };
368
369 return nv50_dmac_create(device, disp, oclass, head, &args, sizeof(args),
370 syncbuf, &ovly->base);
371 }
372
373 struct nv50_head {
374 struct nouveau_crtc base;
375 struct nouveau_bo *image;
376 struct nv50_curs curs;
377 struct nv50_sync sync;
378 struct nv50_ovly ovly;
379 struct nv50_oimm oimm;
380 };
381
382 #define nv50_head(c) ((struct nv50_head *)nouveau_crtc(c))
383 #define nv50_curs(c) (&nv50_head(c)->curs)
384 #define nv50_sync(c) (&nv50_head(c)->sync)
385 #define nv50_ovly(c) (&nv50_head(c)->ovly)
386 #define nv50_oimm(c) (&nv50_head(c)->oimm)
387 #define nv50_chan(c) (&(c)->base.base)
388 #define nv50_vers(c) nv50_chan(c)->user.oclass
389
390 struct nv50_fbdma {
391 struct list_head head;
392 struct nvif_object core;
393 struct nvif_object base[4];
394 };
395
396 struct nv50_disp {
397 struct nvif_object *disp;
398 struct nv50_mast mast;
399
400 struct list_head fbdma;
401
402 struct nouveau_bo *sync;
403 };
404
405 static struct nv50_disp *
406 nv50_disp(struct drm_device *dev)
407 {
408 return nouveau_display(dev)->priv;
409 }
410
411 #define nv50_mast(d) (&nv50_disp(d)->mast)
412
413 static struct drm_crtc *
414 nv50_display_crtc_get(struct drm_encoder *encoder)
415 {
416 return nouveau_encoder(encoder)->crtc;
417 }
418
419 /******************************************************************************
420 * EVO channel helpers
421 *****************************************************************************/
422 static u32 *
423 evo_wait(void *evoc, int nr)
424 {
425 struct nv50_dmac *dmac = evoc;
426 struct nvif_device *device = dmac->base.device;
427 u32 put = nvif_rd32(&dmac->base.user, 0x0000) / 4;
428
429 mutex_lock(&dmac->lock);
430 if (put + nr >= (PAGE_SIZE / 4) - 8) {
431 dmac->ptr[put] = 0x20000000;
432
433 nvif_wr32(&dmac->base.user, 0x0000, 0x00000000);
434 if (nvif_msec(device, 2000,
435 if (!nvif_rd32(&dmac->base.user, 0x0004))
436 break;
437 ) < 0) {
438 mutex_unlock(&dmac->lock);
439 printk(KERN_ERR "nouveau: evo channel stalled\n");
440 return NULL;
441 }
442
443 put = 0;
444 }
445
446 return dmac->ptr + put;
447 }
448
449 static void
450 evo_kick(u32 *push, void *evoc)
451 {
452 struct nv50_dmac *dmac = evoc;
453 nvif_wr32(&dmac->base.user, 0x0000, (push - dmac->ptr) << 2);
454 mutex_unlock(&dmac->lock);
455 }
456
457 #if 1
458 #define evo_mthd(p,m,s) *((p)++) = (((s) << 18) | (m))
459 #define evo_data(p,d) *((p)++) = (d)
460 #else
461 #define evo_mthd(p,m,s) do { \
462 const u32 _m = (m), _s = (s); \
463 printk(KERN_ERR "%04x %d %s\n", _m, _s, __func__); \
464 *((p)++) = ((_s << 18) | _m); \
465 } while(0)
466 #define evo_data(p,d) do { \
467 const u32 _d = (d); \
468 printk(KERN_ERR "\t%08x\n", _d); \
469 *((p)++) = _d; \
470 } while(0)
471 #endif
472
473 static bool
474 evo_sync_wait(void *data)
475 {
476 if (nouveau_bo_rd32(data, EVO_MAST_NTFY) != 0x00000000)
477 return true;
478 usleep_range(1, 2);
479 return false;
480 }
481
482 static int
483 evo_sync(struct drm_device *dev)
484 {
485 struct nvif_device *device = &nouveau_drm(dev)->device;
486 struct nv50_disp *disp = nv50_disp(dev);
487 struct nv50_mast *mast = nv50_mast(dev);
488 u32 *push = evo_wait(mast, 8);
489 if (push) {
490 nouveau_bo_wr32(disp->sync, EVO_MAST_NTFY, 0x00000000);
491 evo_mthd(push, 0x0084, 1);
492 evo_data(push, 0x80000000 | EVO_MAST_NTFY);
493 evo_mthd(push, 0x0080, 2);
494 evo_data(push, 0x00000000);
495 evo_data(push, 0x00000000);
496 evo_kick(push, mast);
497 if (nvif_msec(device, 2000,
498 if (evo_sync_wait(disp->sync))
499 break;
500 ) >= 0)
501 return 0;
502 }
503
504 return -EBUSY;
505 }
506
507 /******************************************************************************
508 * Page flipping channel
509 *****************************************************************************/
510 struct nouveau_bo *
511 nv50_display_crtc_sema(struct drm_device *dev, int crtc)
512 {
513 return nv50_disp(dev)->sync;
514 }
515
516 struct nv50_display_flip {
517 struct nv50_disp *disp;
518 struct nv50_sync *chan;
519 };
520
521 static bool
522 nv50_display_flip_wait(void *data)
523 {
524 struct nv50_display_flip *flip = data;
525 if (nouveau_bo_rd32(flip->disp->sync, flip->chan->addr / 4) ==
526 flip->chan->data)
527 return true;
528 usleep_range(1, 2);
529 return false;
530 }
531
532 void
533 nv50_display_flip_stop(struct drm_crtc *crtc)
534 {
535 struct nvif_device *device = &nouveau_drm(crtc->dev)->device;
536 struct nv50_display_flip flip = {
537 .disp = nv50_disp(crtc->dev),
538 .chan = nv50_sync(crtc),
539 };
540 u32 *push;
541
542 push = evo_wait(flip.chan, 8);
543 if (push) {
544 evo_mthd(push, 0x0084, 1);
545 evo_data(push, 0x00000000);
546 evo_mthd(push, 0x0094, 1);
547 evo_data(push, 0x00000000);
548 evo_mthd(push, 0x00c0, 1);
549 evo_data(push, 0x00000000);
550 evo_mthd(push, 0x0080, 1);
551 evo_data(push, 0x00000000);
552 evo_kick(push, flip.chan);
553 }
554
555 nvif_msec(device, 2000,
556 if (nv50_display_flip_wait(&flip))
557 break;
558 );
559 }
560
561 int
562 nv50_display_flip_next(struct drm_crtc *crtc, struct drm_framebuffer *fb,
563 struct nouveau_channel *chan, u32 swap_interval)
564 {
565 struct nouveau_framebuffer *nv_fb = nouveau_framebuffer(fb);
566 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
567 struct nv50_head *head = nv50_head(crtc);
568 struct nv50_sync *sync = nv50_sync(crtc);
569 u32 *push;
570 int ret;
571
572 if (crtc->primary->fb->width != fb->width ||
573 crtc->primary->fb->height != fb->height)
574 return -EINVAL;
575
576 swap_interval <<= 4;
577 if (swap_interval == 0)
578 swap_interval |= 0x100;
579 if (chan == NULL)
580 evo_sync(crtc->dev);
581
582 push = evo_wait(sync, 128);
583 if (unlikely(push == NULL))
584 return -EBUSY;
585
586 if (chan && chan->user.oclass < G82_CHANNEL_GPFIFO) {
587 ret = RING_SPACE(chan, 8);
588 if (ret)
589 return ret;
590
591 BEGIN_NV04(chan, 0, NV11_SUBCHAN_DMA_SEMAPHORE, 2);
592 OUT_RING (chan, NvEvoSema0 + nv_crtc->index);
593 OUT_RING (chan, sync->addr ^ 0x10);
594 BEGIN_NV04(chan, 0, NV11_SUBCHAN_SEMAPHORE_RELEASE, 1);
595 OUT_RING (chan, sync->data + 1);
596 BEGIN_NV04(chan, 0, NV11_SUBCHAN_SEMAPHORE_OFFSET, 2);
597 OUT_RING (chan, sync->addr);
598 OUT_RING (chan, sync->data);
599 } else
600 if (chan && chan->user.oclass < FERMI_CHANNEL_GPFIFO) {
601 u64 addr = nv84_fence_crtc(chan, nv_crtc->index) + sync->addr;
602 ret = RING_SPACE(chan, 12);
603 if (ret)
604 return ret;
605
606 BEGIN_NV04(chan, 0, NV11_SUBCHAN_DMA_SEMAPHORE, 1);
607 OUT_RING (chan, chan->vram.handle);
608 BEGIN_NV04(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
609 OUT_RING (chan, upper_32_bits(addr ^ 0x10));
610 OUT_RING (chan, lower_32_bits(addr ^ 0x10));
611 OUT_RING (chan, sync->data + 1);
612 OUT_RING (chan, NV84_SUBCHAN_SEMAPHORE_TRIGGER_WRITE_LONG);
613 BEGIN_NV04(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
614 OUT_RING (chan, upper_32_bits(addr));
615 OUT_RING (chan, lower_32_bits(addr));
616 OUT_RING (chan, sync->data);
617 OUT_RING (chan, NV84_SUBCHAN_SEMAPHORE_TRIGGER_ACQUIRE_EQUAL);
618 } else
619 if (chan) {
620 u64 addr = nv84_fence_crtc(chan, nv_crtc->index) + sync->addr;
621 ret = RING_SPACE(chan, 10);
622 if (ret)
623 return ret;
624
625 BEGIN_NVC0(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
626 OUT_RING (chan, upper_32_bits(addr ^ 0x10));
627 OUT_RING (chan, lower_32_bits(addr ^ 0x10));
628 OUT_RING (chan, sync->data + 1);
629 OUT_RING (chan, NV84_SUBCHAN_SEMAPHORE_TRIGGER_WRITE_LONG |
630 NVC0_SUBCHAN_SEMAPHORE_TRIGGER_YIELD);
631 BEGIN_NVC0(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
632 OUT_RING (chan, upper_32_bits(addr));
633 OUT_RING (chan, lower_32_bits(addr));
634 OUT_RING (chan, sync->data);
635 OUT_RING (chan, NV84_SUBCHAN_SEMAPHORE_TRIGGER_ACQUIRE_EQUAL |
636 NVC0_SUBCHAN_SEMAPHORE_TRIGGER_YIELD);
637 }
638
639 if (chan) {
640 sync->addr ^= 0x10;
641 sync->data++;
642 FIRE_RING (chan);
643 }
644
645 /* queue the flip */
646 evo_mthd(push, 0x0100, 1);
647 evo_data(push, 0xfffe0000);
648 evo_mthd(push, 0x0084, 1);
649 evo_data(push, swap_interval);
650 if (!(swap_interval & 0x00000100)) {
651 evo_mthd(push, 0x00e0, 1);
652 evo_data(push, 0x40000000);
653 }
654 evo_mthd(push, 0x0088, 4);
655 evo_data(push, sync->addr);
656 evo_data(push, sync->data++);
657 evo_data(push, sync->data);
658 evo_data(push, sync->base.sync.handle);
659 evo_mthd(push, 0x00a0, 2);
660 evo_data(push, 0x00000000);
661 evo_data(push, 0x00000000);
662 evo_mthd(push, 0x00c0, 1);
663 evo_data(push, nv_fb->r_handle);
664 evo_mthd(push, 0x0110, 2);
665 evo_data(push, 0x00000000);
666 evo_data(push, 0x00000000);
667 if (nv50_vers(sync) < GF110_DISP_BASE_CHANNEL_DMA) {
668 evo_mthd(push, 0x0800, 5);
669 evo_data(push, nv_fb->nvbo->bo.offset >> 8);
670 evo_data(push, 0);
671 evo_data(push, (fb->height << 16) | fb->width);
672 evo_data(push, nv_fb->r_pitch);
673 evo_data(push, nv_fb->r_format);
674 } else {
675 evo_mthd(push, 0x0400, 5);
676 evo_data(push, nv_fb->nvbo->bo.offset >> 8);
677 evo_data(push, 0);
678 evo_data(push, (fb->height << 16) | fb->width);
679 evo_data(push, nv_fb->r_pitch);
680 evo_data(push, nv_fb->r_format);
681 }
682 evo_mthd(push, 0x0080, 1);
683 evo_data(push, 0x00000000);
684 evo_kick(push, sync);
685
686 nouveau_bo_ref(nv_fb->nvbo, &head->image);
687 return 0;
688 }
689
690 /******************************************************************************
691 * CRTC
692 *****************************************************************************/
693 static int
694 nv50_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool update)
695 {
696 struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
697 struct nouveau_connector *nv_connector;
698 struct drm_connector *connector;
699 u32 *push, mode = 0x00;
700
701 nv_connector = nouveau_crtc_connector_get(nv_crtc);
702 connector = &nv_connector->base;
703 if (nv_connector->dithering_mode == DITHERING_MODE_AUTO) {
704 if (nv_crtc->base.primary->fb->depth > connector->display_info.bpc * 3)
705 mode = DITHERING_MODE_DYNAMIC2X2;
706 } else {
707 mode = nv_connector->dithering_mode;
708 }
709
710 if (nv_connector->dithering_depth == DITHERING_DEPTH_AUTO) {
711 if (connector->display_info.bpc >= 8)
712 mode |= DITHERING_DEPTH_8BPC;
713 } else {
714 mode |= nv_connector->dithering_depth;
715 }
716
717 push = evo_wait(mast, 4);
718 if (push) {
719 if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
720 evo_mthd(push, 0x08a0 + (nv_crtc->index * 0x0400), 1);
721 evo_data(push, mode);
722 } else
723 if (nv50_vers(mast) < GK104_DISP_CORE_CHANNEL_DMA) {
724 evo_mthd(push, 0x0490 + (nv_crtc->index * 0x0300), 1);
725 evo_data(push, mode);
726 } else {
727 evo_mthd(push, 0x04a0 + (nv_crtc->index * 0x0300), 1);
728 evo_data(push, mode);
729 }
730
731 if (update) {
732 evo_mthd(push, 0x0080, 1);
733 evo_data(push, 0x00000000);
734 }
735 evo_kick(push, mast);
736 }
737
738 return 0;
739 }
740
741 static int
742 nv50_crtc_set_scale(struct nouveau_crtc *nv_crtc, bool update)
743 {
744 struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
745 struct drm_display_mode *omode, *umode = &nv_crtc->base.mode;
746 struct drm_crtc *crtc = &nv_crtc->base;
747 struct nouveau_connector *nv_connector;
748 int mode = DRM_MODE_SCALE_NONE;
749 u32 oX, oY, *push;
750
751 /* start off at the resolution we programmed the crtc for, this
752 * effectively handles NONE/FULL scaling
753 */
754 nv_connector = nouveau_crtc_connector_get(nv_crtc);
755 if (nv_connector && nv_connector->native_mode) {
756 mode = nv_connector->scaling_mode;
757 if (nv_connector->scaling_full) /* non-EDID LVDS/eDP mode */
758 mode = DRM_MODE_SCALE_FULLSCREEN;
759 }
760
761 if (mode != DRM_MODE_SCALE_NONE)
762 omode = nv_connector->native_mode;
763 else
764 omode = umode;
765
766 oX = omode->hdisplay;
767 oY = omode->vdisplay;
768 if (omode->flags & DRM_MODE_FLAG_DBLSCAN)
769 oY *= 2;
770
771 /* add overscan compensation if necessary, will keep the aspect
772 * ratio the same as the backend mode unless overridden by the
773 * user setting both hborder and vborder properties.
774 */
775 if (nv_connector && ( nv_connector->underscan == UNDERSCAN_ON ||
776 (nv_connector->underscan == UNDERSCAN_AUTO &&
777 nv_connector->edid &&
778 drm_detect_hdmi_monitor(nv_connector->edid)))) {
779 u32 bX = nv_connector->underscan_hborder;
780 u32 bY = nv_connector->underscan_vborder;
781 u32 aspect = (oY << 19) / oX;
782
783 if (bX) {
784 oX -= (bX * 2);
785 if (bY) oY -= (bY * 2);
786 else oY = ((oX * aspect) + (aspect / 2)) >> 19;
787 } else {
788 oX -= (oX >> 4) + 32;
789 if (bY) oY -= (bY * 2);
790 else oY = ((oX * aspect) + (aspect / 2)) >> 19;
791 }
792 }
793
794 /* handle CENTER/ASPECT scaling, taking into account the areas
795 * removed already for overscan compensation
796 */
797 switch (mode) {
798 case DRM_MODE_SCALE_CENTER:
799 oX = min((u32)umode->hdisplay, oX);
800 oY = min((u32)umode->vdisplay, oY);
801 /* fall-through */
802 case DRM_MODE_SCALE_ASPECT:
803 if (oY < oX) {
804 u32 aspect = (umode->hdisplay << 19) / umode->vdisplay;
805 oX = ((oY * aspect) + (aspect / 2)) >> 19;
806 } else {
807 u32 aspect = (umode->vdisplay << 19) / umode->hdisplay;
808 oY = ((oX * aspect) + (aspect / 2)) >> 19;
809 }
810 break;
811 default:
812 break;
813 }
814
815 push = evo_wait(mast, 8);
816 if (push) {
817 if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
818 /*XXX: SCALE_CTRL_ACTIVE??? */
819 evo_mthd(push, 0x08d8 + (nv_crtc->index * 0x400), 2);
820 evo_data(push, (oY << 16) | oX);
821 evo_data(push, (oY << 16) | oX);
822 evo_mthd(push, 0x08a4 + (nv_crtc->index * 0x400), 1);
823 evo_data(push, 0x00000000);
824 evo_mthd(push, 0x08c8 + (nv_crtc->index * 0x400), 1);
825 evo_data(push, umode->vdisplay << 16 | umode->hdisplay);
826 } else {
827 evo_mthd(push, 0x04c0 + (nv_crtc->index * 0x300), 3);
828 evo_data(push, (oY << 16) | oX);
829 evo_data(push, (oY << 16) | oX);
830 evo_data(push, (oY << 16) | oX);
831 evo_mthd(push, 0x0494 + (nv_crtc->index * 0x300), 1);
832 evo_data(push, 0x00000000);
833 evo_mthd(push, 0x04b8 + (nv_crtc->index * 0x300), 1);
834 evo_data(push, umode->vdisplay << 16 | umode->hdisplay);
835 }
836
837 evo_kick(push, mast);
838
839 if (update) {
840 nv50_display_flip_stop(crtc);
841 nv50_display_flip_next(crtc, crtc->primary->fb,
842 NULL, 1);
843 }
844 }
845
846 return 0;
847 }
848
849 static int
850 nv50_crtc_set_raster_vblank_dmi(struct nouveau_crtc *nv_crtc, u32 usec)
851 {
852 struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
853 u32 *push;
854
855 push = evo_wait(mast, 8);
856 if (!push)
857 return -ENOMEM;
858
859 evo_mthd(push, 0x0828 + (nv_crtc->index * 0x400), 1);
860 evo_data(push, usec);
861 evo_kick(push, mast);
862 return 0;
863 }
864
865 static int
866 nv50_crtc_set_color_vibrance(struct nouveau_crtc *nv_crtc, bool update)
867 {
868 struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
869 u32 *push, hue, vib;
870 int adj;
871
872 adj = (nv_crtc->color_vibrance > 0) ? 50 : 0;
873 vib = ((nv_crtc->color_vibrance * 2047 + adj) / 100) & 0xfff;
874 hue = ((nv_crtc->vibrant_hue * 2047) / 100) & 0xfff;
875
876 push = evo_wait(mast, 16);
877 if (push) {
878 if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
879 evo_mthd(push, 0x08a8 + (nv_crtc->index * 0x400), 1);
880 evo_data(push, (hue << 20) | (vib << 8));
881 } else {
882 evo_mthd(push, 0x0498 + (nv_crtc->index * 0x300), 1);
883 evo_data(push, (hue << 20) | (vib << 8));
884 }
885
886 if (update) {
887 evo_mthd(push, 0x0080, 1);
888 evo_data(push, 0x00000000);
889 }
890 evo_kick(push, mast);
891 }
892
893 return 0;
894 }
895
896 static int
897 nv50_crtc_set_image(struct nouveau_crtc *nv_crtc, struct drm_framebuffer *fb,
898 int x, int y, bool update)
899 {
900 struct nouveau_framebuffer *nvfb = nouveau_framebuffer(fb);
901 struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
902 u32 *push;
903
904 push = evo_wait(mast, 16);
905 if (push) {
906 if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
907 evo_mthd(push, 0x0860 + (nv_crtc->index * 0x400), 1);
908 evo_data(push, nvfb->nvbo->bo.offset >> 8);
909 evo_mthd(push, 0x0868 + (nv_crtc->index * 0x400), 3);
910 evo_data(push, (fb->height << 16) | fb->width);
911 evo_data(push, nvfb->r_pitch);
912 evo_data(push, nvfb->r_format);
913 evo_mthd(push, 0x08c0 + (nv_crtc->index * 0x400), 1);
914 evo_data(push, (y << 16) | x);
915 if (nv50_vers(mast) > NV50_DISP_CORE_CHANNEL_DMA) {
916 evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
917 evo_data(push, nvfb->r_handle);
918 }
919 } else {
920 evo_mthd(push, 0x0460 + (nv_crtc->index * 0x300), 1);
921 evo_data(push, nvfb->nvbo->bo.offset >> 8);
922 evo_mthd(push, 0x0468 + (nv_crtc->index * 0x300), 4);
923 evo_data(push, (fb->height << 16) | fb->width);
924 evo_data(push, nvfb->r_pitch);
925 evo_data(push, nvfb->r_format);
926 evo_data(push, nvfb->r_handle);
927 evo_mthd(push, 0x04b0 + (nv_crtc->index * 0x300), 1);
928 evo_data(push, (y << 16) | x);
929 }
930
931 if (update) {
932 evo_mthd(push, 0x0080, 1);
933 evo_data(push, 0x00000000);
934 }
935 evo_kick(push, mast);
936 }
937
938 nv_crtc->fb.handle = nvfb->r_handle;
939 return 0;
940 }
941
942 static void
943 nv50_crtc_cursor_show(struct nouveau_crtc *nv_crtc)
944 {
945 struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
946 u32 *push = evo_wait(mast, 16);
947 if (push) {
948 if (nv50_vers(mast) < G82_DISP_CORE_CHANNEL_DMA) {
949 evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 2);
950 evo_data(push, 0x85000000);
951 evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
952 } else
953 if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
954 evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 2);
955 evo_data(push, 0x85000000);
956 evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
957 evo_mthd(push, 0x089c + (nv_crtc->index * 0x400), 1);
958 evo_data(push, mast->base.vram.handle);
959 } else {
960 evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 2);
961 evo_data(push, 0x85000000);
962 evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
963 evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
964 evo_data(push, mast->base.vram.handle);
965 }
966 evo_kick(push, mast);
967 }
968 nv_crtc->cursor.visible = true;
969 }
970
971 static void
972 nv50_crtc_cursor_hide(struct nouveau_crtc *nv_crtc)
973 {
974 struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
975 u32 *push = evo_wait(mast, 16);
976 if (push) {
977 if (nv50_vers(mast) < G82_DISP_CORE_CHANNEL_DMA) {
978 evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 1);
979 evo_data(push, 0x05000000);
980 } else
981 if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
982 evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 1);
983 evo_data(push, 0x05000000);
984 evo_mthd(push, 0x089c + (nv_crtc->index * 0x400), 1);
985 evo_data(push, 0x00000000);
986 } else {
987 evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 1);
988 evo_data(push, 0x05000000);
989 evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
990 evo_data(push, 0x00000000);
991 }
992 evo_kick(push, mast);
993 }
994 nv_crtc->cursor.visible = false;
995 }
996
997 static void
998 nv50_crtc_cursor_show_hide(struct nouveau_crtc *nv_crtc, bool show, bool update)
999 {
1000 struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
1001
1002 if (show && nv_crtc->cursor.nvbo && nv_crtc->base.enabled)
1003 nv50_crtc_cursor_show(nv_crtc);
1004 else
1005 nv50_crtc_cursor_hide(nv_crtc);
1006
1007 if (update) {
1008 u32 *push = evo_wait(mast, 2);
1009 if (push) {
1010 evo_mthd(push, 0x0080, 1);
1011 evo_data(push, 0x00000000);
1012 evo_kick(push, mast);
1013 }
1014 }
1015 }
1016
1017 static void
1018 nv50_crtc_dpms(struct drm_crtc *crtc, int mode)
1019 {
1020 }
1021
1022 static void
1023 nv50_crtc_prepare(struct drm_crtc *crtc)
1024 {
1025 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1026 struct nv50_mast *mast = nv50_mast(crtc->dev);
1027 u32 *push;
1028
1029 nv50_display_flip_stop(crtc);
1030
1031 push = evo_wait(mast, 6);
1032 if (push) {
1033 if (nv50_vers(mast) < G82_DISP_CORE_CHANNEL_DMA) {
1034 evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
1035 evo_data(push, 0x00000000);
1036 evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 1);
1037 evo_data(push, 0x40000000);
1038 } else
1039 if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
1040 evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
1041 evo_data(push, 0x00000000);
1042 evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 1);
1043 evo_data(push, 0x40000000);
1044 evo_mthd(push, 0x085c + (nv_crtc->index * 0x400), 1);
1045 evo_data(push, 0x00000000);
1046 } else {
1047 evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
1048 evo_data(push, 0x00000000);
1049 evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 1);
1050 evo_data(push, 0x03000000);
1051 evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
1052 evo_data(push, 0x00000000);
1053 }
1054
1055 evo_kick(push, mast);
1056 }
1057
1058 nv50_crtc_cursor_show_hide(nv_crtc, false, false);
1059 }
1060
1061 static void
1062 nv50_crtc_commit(struct drm_crtc *crtc)
1063 {
1064 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1065 struct nv50_mast *mast = nv50_mast(crtc->dev);
1066 u32 *push;
1067
1068 push = evo_wait(mast, 32);
1069 if (push) {
1070 if (nv50_vers(mast) < G82_DISP_CORE_CHANNEL_DMA) {
1071 evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
1072 evo_data(push, nv_crtc->fb.handle);
1073 evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 2);
1074 evo_data(push, 0xc0000000);
1075 evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
1076 } else
1077 if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
1078 evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
1079 evo_data(push, nv_crtc->fb.handle);
1080 evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 2);
1081 evo_data(push, 0xc0000000);
1082 evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
1083 evo_mthd(push, 0x085c + (nv_crtc->index * 0x400), 1);
1084 evo_data(push, mast->base.vram.handle);
1085 } else {
1086 evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
1087 evo_data(push, nv_crtc->fb.handle);
1088 evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 4);
1089 evo_data(push, 0x83000000);
1090 evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
1091 evo_data(push, 0x00000000);
1092 evo_data(push, 0x00000000);
1093 evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
1094 evo_data(push, mast->base.vram.handle);
1095 evo_mthd(push, 0x0430 + (nv_crtc->index * 0x300), 1);
1096 evo_data(push, 0xffffff00);
1097 }
1098
1099 evo_kick(push, mast);
1100 }
1101
1102 nv50_crtc_cursor_show_hide(nv_crtc, true, true);
1103 nv50_display_flip_next(crtc, crtc->primary->fb, NULL, 1);
1104 }
1105
1106 static bool
1107 nv50_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode,
1108 struct drm_display_mode *adjusted_mode)
1109 {
1110 drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
1111 return true;
1112 }
1113
1114 static int
1115 nv50_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb)
1116 {
1117 struct nouveau_framebuffer *nvfb = nouveau_framebuffer(crtc->primary->fb);
1118 struct nv50_head *head = nv50_head(crtc);
1119 int ret;
1120
1121 ret = nouveau_bo_pin(nvfb->nvbo, TTM_PL_FLAG_VRAM, true);
1122 if (ret == 0) {
1123 if (head->image)
1124 nouveau_bo_unpin(head->image);
1125 nouveau_bo_ref(nvfb->nvbo, &head->image);
1126 }
1127
1128 return ret;
1129 }
1130
1131 static int
1132 nv50_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode,
1133 struct drm_display_mode *mode, int x, int y,
1134 struct drm_framebuffer *old_fb)
1135 {
1136 struct nv50_mast *mast = nv50_mast(crtc->dev);
1137 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1138 struct nouveau_connector *nv_connector;
1139 u32 ilace = (mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 1;
1140 u32 vscan = (mode->flags & DRM_MODE_FLAG_DBLSCAN) ? 2 : 1;
1141 u32 hactive, hsynce, hbackp, hfrontp, hblanke, hblanks;
1142 u32 vactive, vsynce, vbackp, vfrontp, vblanke, vblanks;
1143 u32 vblan2e = 0, vblan2s = 1, vblankus = 0;
1144 u32 *push;
1145 int ret;
1146
1147 hactive = mode->htotal;
1148 hsynce = mode->hsync_end - mode->hsync_start - 1;
1149 hbackp = mode->htotal - mode->hsync_end;
1150 hblanke = hsynce + hbackp;
1151 hfrontp = mode->hsync_start - mode->hdisplay;
1152 hblanks = mode->htotal - hfrontp - 1;
1153
1154 vactive = mode->vtotal * vscan / ilace;
1155 vsynce = ((mode->vsync_end - mode->vsync_start) * vscan / ilace) - 1;
1156 vbackp = (mode->vtotal - mode->vsync_end) * vscan / ilace;
1157 vblanke = vsynce + vbackp;
1158 vfrontp = (mode->vsync_start - mode->vdisplay) * vscan / ilace;
1159 vblanks = vactive - vfrontp - 1;
1160 /* XXX: Safe underestimate, even "0" works */
1161 vblankus = (vactive - mode->vdisplay - 2) * hactive;
1162 vblankus *= 1000;
1163 vblankus /= mode->clock;
1164
1165 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
1166 vblan2e = vactive + vsynce + vbackp;
1167 vblan2s = vblan2e + (mode->vdisplay * vscan / ilace);
1168 vactive = (vactive * 2) + 1;
1169 }
1170
1171 ret = nv50_crtc_swap_fbs(crtc, old_fb);
1172 if (ret)
1173 return ret;
1174
1175 push = evo_wait(mast, 64);
1176 if (push) {
1177 if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
1178 evo_mthd(push, 0x0804 + (nv_crtc->index * 0x400), 2);
1179 evo_data(push, 0x00800000 | mode->clock);
1180 evo_data(push, (ilace == 2) ? 2 : 0);
1181 evo_mthd(push, 0x0810 + (nv_crtc->index * 0x400), 6);
1182 evo_data(push, 0x00000000);
1183 evo_data(push, (vactive << 16) | hactive);
1184 evo_data(push, ( vsynce << 16) | hsynce);
1185 evo_data(push, (vblanke << 16) | hblanke);
1186 evo_data(push, (vblanks << 16) | hblanks);
1187 evo_data(push, (vblan2e << 16) | vblan2s);
1188 evo_mthd(push, 0x082c + (nv_crtc->index * 0x400), 1);
1189 evo_data(push, 0x00000000);
1190 evo_mthd(push, 0x0900 + (nv_crtc->index * 0x400), 2);
1191 evo_data(push, 0x00000311);
1192 evo_data(push, 0x00000100);
1193 } else {
1194 evo_mthd(push, 0x0410 + (nv_crtc->index * 0x300), 6);
1195 evo_data(push, 0x00000000);
1196 evo_data(push, (vactive << 16) | hactive);
1197 evo_data(push, ( vsynce << 16) | hsynce);
1198 evo_data(push, (vblanke << 16) | hblanke);
1199 evo_data(push, (vblanks << 16) | hblanks);
1200 evo_data(push, (vblan2e << 16) | vblan2s);
1201 evo_mthd(push, 0x042c + (nv_crtc->index * 0x300), 1);
1202 evo_data(push, 0x00000000); /* ??? */
1203 evo_mthd(push, 0x0450 + (nv_crtc->index * 0x300), 3);
1204 evo_data(push, mode->clock * 1000);
1205 evo_data(push, 0x00200000); /* ??? */
1206 evo_data(push, mode->clock * 1000);
1207 evo_mthd(push, 0x04d0 + (nv_crtc->index * 0x300), 2);
1208 evo_data(push, 0x00000311);
1209 evo_data(push, 0x00000100);
1210 }
1211
1212 evo_kick(push, mast);
1213 }
1214
1215 nv_connector = nouveau_crtc_connector_get(nv_crtc);
1216 nv50_crtc_set_dither(nv_crtc, false);
1217 nv50_crtc_set_scale(nv_crtc, false);
1218
1219 /* G94 only accepts this after setting scale */
1220 if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA)
1221 nv50_crtc_set_raster_vblank_dmi(nv_crtc, vblankus);
1222
1223 nv50_crtc_set_color_vibrance(nv_crtc, false);
1224 nv50_crtc_set_image(nv_crtc, crtc->primary->fb, x, y, false);
1225 return 0;
1226 }
1227
1228 static int
1229 nv50_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
1230 struct drm_framebuffer *old_fb)
1231 {
1232 struct nouveau_drm *drm = nouveau_drm(crtc->dev);
1233 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1234 int ret;
1235
1236 if (!crtc->primary->fb) {
1237 NV_DEBUG(drm, "No FB bound\n");
1238 return 0;
1239 }
1240
1241 ret = nv50_crtc_swap_fbs(crtc, old_fb);
1242 if (ret)
1243 return ret;
1244
1245 nv50_display_flip_stop(crtc);
1246 nv50_crtc_set_image(nv_crtc, crtc->primary->fb, x, y, true);
1247 nv50_display_flip_next(crtc, crtc->primary->fb, NULL, 1);
1248 return 0;
1249 }
1250
1251 static int
1252 nv50_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
1253 struct drm_framebuffer *fb, int x, int y,
1254 enum mode_set_atomic state)
1255 {
1256 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1257 nv50_display_flip_stop(crtc);
1258 nv50_crtc_set_image(nv_crtc, fb, x, y, true);
1259 return 0;
1260 }
1261
1262 static void
1263 nv50_crtc_lut_load(struct drm_crtc *crtc)
1264 {
1265 struct nv50_disp *disp = nv50_disp(crtc->dev);
1266 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1267 void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo);
1268 int i;
1269
1270 for (i = 0; i < 256; i++) {
1271 u16 r = nv_crtc->lut.r[i] >> 2;
1272 u16 g = nv_crtc->lut.g[i] >> 2;
1273 u16 b = nv_crtc->lut.b[i] >> 2;
1274
1275 if (disp->disp->oclass < GF110_DISP) {
1276 writew(r + 0x0000, lut + (i * 0x08) + 0);
1277 writew(g + 0x0000, lut + (i * 0x08) + 2);
1278 writew(b + 0x0000, lut + (i * 0x08) + 4);
1279 } else {
1280 writew(r + 0x6000, lut + (i * 0x20) + 0);
1281 writew(g + 0x6000, lut + (i * 0x20) + 2);
1282 writew(b + 0x6000, lut + (i * 0x20) + 4);
1283 }
1284 }
1285 }
1286
1287 static void
1288 nv50_crtc_disable(struct drm_crtc *crtc)
1289 {
1290 struct nv50_head *head = nv50_head(crtc);
1291 evo_sync(crtc->dev);
1292 if (head->image)
1293 nouveau_bo_unpin(head->image);
1294 nouveau_bo_ref(NULL, &head->image);
1295 }
1296
1297 static int
1298 nv50_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
1299 uint32_t handle, uint32_t width, uint32_t height)
1300 {
1301 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1302 struct drm_device *dev = crtc->dev;
1303 struct drm_gem_object *gem = NULL;
1304 struct nouveau_bo *nvbo = NULL;
1305 int ret = 0;
1306
1307 if (handle) {
1308 if (width != 64 || height != 64)
1309 return -EINVAL;
1310
1311 gem = drm_gem_object_lookup(dev, file_priv, handle);
1312 if (unlikely(!gem))
1313 return -ENOENT;
1314 nvbo = nouveau_gem_object(gem);
1315
1316 ret = nouveau_bo_pin(nvbo, TTM_PL_FLAG_VRAM, true);
1317 }
1318
1319 if (ret == 0) {
1320 if (nv_crtc->cursor.nvbo)
1321 nouveau_bo_unpin(nv_crtc->cursor.nvbo);
1322 nouveau_bo_ref(nvbo, &nv_crtc->cursor.nvbo);
1323 }
1324 drm_gem_object_unreference_unlocked(gem);
1325
1326 nv50_crtc_cursor_show_hide(nv_crtc, true, true);
1327 return ret;
1328 }
1329
1330 static int
1331 nv50_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1332 {
1333 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1334 struct nv50_curs *curs = nv50_curs(crtc);
1335 struct nv50_chan *chan = nv50_chan(curs);
1336 nvif_wr32(&chan->user, 0x0084, (y << 16) | (x & 0xffff));
1337 nvif_wr32(&chan->user, 0x0080, 0x00000000);
1338
1339 nv_crtc->cursor_saved_x = x;
1340 nv_crtc->cursor_saved_y = y;
1341 return 0;
1342 }
1343
1344 static void
1345 nv50_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
1346 uint32_t start, uint32_t size)
1347 {
1348 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1349 u32 end = min_t(u32, start + size, 256);
1350 u32 i;
1351
1352 for (i = start; i < end; i++) {
1353 nv_crtc->lut.r[i] = r[i];
1354 nv_crtc->lut.g[i] = g[i];
1355 nv_crtc->lut.b[i] = b[i];
1356 }
1357
1358 nv50_crtc_lut_load(crtc);
1359 }
1360
1361 static void
1362 nv50_crtc_cursor_restore(struct nouveau_crtc *nv_crtc, int x, int y)
1363 {
1364 nv50_crtc_cursor_move(&nv_crtc->base, x, y);
1365
1366 nv50_crtc_cursor_show_hide(nv_crtc, true, true);
1367 }
1368
1369 static void
1370 nv50_crtc_destroy(struct drm_crtc *crtc)
1371 {
1372 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1373 struct nv50_disp *disp = nv50_disp(crtc->dev);
1374 struct nv50_head *head = nv50_head(crtc);
1375 struct nv50_fbdma *fbdma;
1376
1377 list_for_each_entry(fbdma, &disp->fbdma, head) {
1378 nvif_object_fini(&fbdma->base[nv_crtc->index]);
1379 }
1380
1381 nv50_dmac_destroy(&head->ovly.base, disp->disp);
1382 nv50_pioc_destroy(&head->oimm.base);
1383 nv50_dmac_destroy(&head->sync.base, disp->disp);
1384 nv50_pioc_destroy(&head->curs.base);
1385
1386 /*XXX: this shouldn't be necessary, but the core doesn't call
1387 * disconnect() during the cleanup paths
1388 */
1389 if (head->image)
1390 nouveau_bo_unpin(head->image);
1391 nouveau_bo_ref(NULL, &head->image);
1392
1393 /*XXX: ditto */
1394 if (nv_crtc->cursor.nvbo)
1395 nouveau_bo_unpin(nv_crtc->cursor.nvbo);
1396 nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
1397
1398 nouveau_bo_unmap(nv_crtc->lut.nvbo);
1399 if (nv_crtc->lut.nvbo)
1400 nouveau_bo_unpin(nv_crtc->lut.nvbo);
1401 nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
1402
1403 drm_crtc_cleanup(crtc);
1404 kfree(crtc);
1405 }
1406
1407 static const struct drm_crtc_helper_funcs nv50_crtc_hfunc = {
1408 .dpms = nv50_crtc_dpms,
1409 .prepare = nv50_crtc_prepare,
1410 .commit = nv50_crtc_commit,
1411 .mode_fixup = nv50_crtc_mode_fixup,
1412 .mode_set = nv50_crtc_mode_set,
1413 .mode_set_base = nv50_crtc_mode_set_base,
1414 .mode_set_base_atomic = nv50_crtc_mode_set_base_atomic,
1415 .load_lut = nv50_crtc_lut_load,
1416 .disable = nv50_crtc_disable,
1417 };
1418
1419 static const struct drm_crtc_funcs nv50_crtc_func = {
1420 .cursor_set = nv50_crtc_cursor_set,
1421 .cursor_move = nv50_crtc_cursor_move,
1422 .gamma_set = nv50_crtc_gamma_set,
1423 .set_config = nouveau_crtc_set_config,
1424 .destroy = nv50_crtc_destroy,
1425 .page_flip = nouveau_crtc_page_flip,
1426 };
1427
1428 static int
1429 nv50_crtc_create(struct drm_device *dev, int index)
1430 {
1431 struct nouveau_drm *drm = nouveau_drm(dev);
1432 struct nvif_device *device = &drm->device;
1433 struct nv50_disp *disp = nv50_disp(dev);
1434 struct nv50_head *head;
1435 struct drm_crtc *crtc;
1436 int ret, i;
1437
1438 head = kzalloc(sizeof(*head), GFP_KERNEL);
1439 if (!head)
1440 return -ENOMEM;
1441
1442 head->base.index = index;
1443 head->base.set_dither = nv50_crtc_set_dither;
1444 head->base.set_scale = nv50_crtc_set_scale;
1445 head->base.set_color_vibrance = nv50_crtc_set_color_vibrance;
1446 head->base.color_vibrance = 50;
1447 head->base.vibrant_hue = 0;
1448 head->base.cursor.set_pos = nv50_crtc_cursor_restore;
1449 for (i = 0; i < 256; i++) {
1450 head->base.lut.r[i] = i << 8;
1451 head->base.lut.g[i] = i << 8;
1452 head->base.lut.b[i] = i << 8;
1453 }
1454
1455 crtc = &head->base.base;
1456 drm_crtc_init(dev, crtc, &nv50_crtc_func);
1457 drm_crtc_helper_add(crtc, &nv50_crtc_hfunc);
1458 drm_mode_crtc_set_gamma_size(crtc, 256);
1459
1460 ret = nouveau_bo_new(dev, 8192, 0x100, TTM_PL_FLAG_VRAM,
1461 0, 0x0000, NULL, NULL, &head->base.lut.nvbo);
1462 if (!ret) {
1463 ret = nouveau_bo_pin(head->base.lut.nvbo, TTM_PL_FLAG_VRAM, true);
1464 if (!ret) {
1465 ret = nouveau_bo_map(head->base.lut.nvbo);
1466 if (ret)
1467 nouveau_bo_unpin(head->base.lut.nvbo);
1468 }
1469 if (ret)
1470 nouveau_bo_ref(NULL, &head->base.lut.nvbo);
1471 }
1472
1473 if (ret)
1474 goto out;
1475
1476 /* allocate cursor resources */
1477 ret = nv50_curs_create(device, disp->disp, index, &head->curs);
1478 if (ret)
1479 goto out;
1480
1481 /* allocate page flip / sync resources */
1482 ret = nv50_base_create(device, disp->disp, index, disp->sync->bo.offset,
1483 &head->sync);
1484 if (ret)
1485 goto out;
1486
1487 head->sync.addr = EVO_FLIP_SEM0(index);
1488 head->sync.data = 0x00000000;
1489
1490 /* allocate overlay resources */
1491 ret = nv50_oimm_create(device, disp->disp, index, &head->oimm);
1492 if (ret)
1493 goto out;
1494
1495 ret = nv50_ovly_create(device, disp->disp, index, disp->sync->bo.offset,
1496 &head->ovly);
1497 if (ret)
1498 goto out;
1499
1500 out:
1501 if (ret)
1502 nv50_crtc_destroy(crtc);
1503 return ret;
1504 }
1505
1506 /******************************************************************************
1507 * Encoder helpers
1508 *****************************************************************************/
1509 static bool
1510 nv50_encoder_mode_fixup(struct drm_encoder *encoder,
1511 const struct drm_display_mode *mode,
1512 struct drm_display_mode *adjusted_mode)
1513 {
1514 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1515 struct nouveau_connector *nv_connector;
1516
1517 nv_connector = nouveau_encoder_connector_get(nv_encoder);
1518 if (nv_connector && nv_connector->native_mode) {
1519 nv_connector->scaling_full = false;
1520 if (nv_connector->scaling_mode == DRM_MODE_SCALE_NONE) {
1521 switch (nv_connector->type) {
1522 case DCB_CONNECTOR_LVDS:
1523 case DCB_CONNECTOR_LVDS_SPWG:
1524 case DCB_CONNECTOR_eDP:
1525 /* force use of scaler for non-edid modes */
1526 if (adjusted_mode->type & DRM_MODE_TYPE_DRIVER)
1527 return true;
1528 nv_connector->scaling_full = true;
1529 break;
1530 default:
1531 return true;
1532 }
1533 }
1534
1535 drm_mode_copy(adjusted_mode, nv_connector->native_mode);
1536 }
1537
1538 return true;
1539 }
1540
1541 /******************************************************************************
1542 * DAC
1543 *****************************************************************************/
1544 static void
1545 nv50_dac_dpms(struct drm_encoder *encoder, int mode)
1546 {
1547 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1548 struct nv50_disp *disp = nv50_disp(encoder->dev);
1549 struct {
1550 struct nv50_disp_mthd_v1 base;
1551 struct nv50_disp_dac_pwr_v0 pwr;
1552 } args = {
1553 .base.version = 1,
1554 .base.method = NV50_DISP_MTHD_V1_DAC_PWR,
1555 .base.hasht = nv_encoder->dcb->hasht,
1556 .base.hashm = nv_encoder->dcb->hashm,
1557 .pwr.state = 1,
1558 .pwr.data = 1,
1559 .pwr.vsync = (mode != DRM_MODE_DPMS_SUSPEND &&
1560 mode != DRM_MODE_DPMS_OFF),
1561 .pwr.hsync = (mode != DRM_MODE_DPMS_STANDBY &&
1562 mode != DRM_MODE_DPMS_OFF),
1563 };
1564
1565 nvif_mthd(disp->disp, 0, &args, sizeof(args));
1566 }
1567
1568 static void
1569 nv50_dac_commit(struct drm_encoder *encoder)
1570 {
1571 }
1572
1573 static void
1574 nv50_dac_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
1575 struct drm_display_mode *adjusted_mode)
1576 {
1577 struct nv50_mast *mast = nv50_mast(encoder->dev);
1578 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1579 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1580 u32 *push;
1581
1582 nv50_dac_dpms(encoder, DRM_MODE_DPMS_ON);
1583
1584 push = evo_wait(mast, 8);
1585 if (push) {
1586 if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
1587 u32 syncs = 0x00000000;
1588
1589 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1590 syncs |= 0x00000001;
1591 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1592 syncs |= 0x00000002;
1593
1594 evo_mthd(push, 0x0400 + (nv_encoder->or * 0x080), 2);
1595 evo_data(push, 1 << nv_crtc->index);
1596 evo_data(push, syncs);
1597 } else {
1598 u32 magic = 0x31ec6000 | (nv_crtc->index << 25);
1599 u32 syncs = 0x00000001;
1600
1601 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1602 syncs |= 0x00000008;
1603 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1604 syncs |= 0x00000010;
1605
1606 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
1607 magic |= 0x00000001;
1608
1609 evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
1610 evo_data(push, syncs);
1611 evo_data(push, magic);
1612 evo_mthd(push, 0x0180 + (nv_encoder->or * 0x020), 1);
1613 evo_data(push, 1 << nv_crtc->index);
1614 }
1615
1616 evo_kick(push, mast);
1617 }
1618
1619 nv_encoder->crtc = encoder->crtc;
1620 }
1621
1622 static void
1623 nv50_dac_disconnect(struct drm_encoder *encoder)
1624 {
1625 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1626 struct nv50_mast *mast = nv50_mast(encoder->dev);
1627 const int or = nv_encoder->or;
1628 u32 *push;
1629
1630 if (nv_encoder->crtc) {
1631 nv50_crtc_prepare(nv_encoder->crtc);
1632
1633 push = evo_wait(mast, 4);
1634 if (push) {
1635 if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
1636 evo_mthd(push, 0x0400 + (or * 0x080), 1);
1637 evo_data(push, 0x00000000);
1638 } else {
1639 evo_mthd(push, 0x0180 + (or * 0x020), 1);
1640 evo_data(push, 0x00000000);
1641 }
1642 evo_kick(push, mast);
1643 }
1644 }
1645
1646 nv_encoder->crtc = NULL;
1647 }
1648
1649 static enum drm_connector_status
1650 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
1651 {
1652 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1653 struct nv50_disp *disp = nv50_disp(encoder->dev);
1654 struct {
1655 struct nv50_disp_mthd_v1 base;
1656 struct nv50_disp_dac_load_v0 load;
1657 } args = {
1658 .base.version = 1,
1659 .base.method = NV50_DISP_MTHD_V1_DAC_LOAD,
1660 .base.hasht = nv_encoder->dcb->hasht,
1661 .base.hashm = nv_encoder->dcb->hashm,
1662 };
1663 int ret;
1664
1665 args.load.data = nouveau_drm(encoder->dev)->vbios.dactestval;
1666 if (args.load.data == 0)
1667 args.load.data = 340;
1668
1669 ret = nvif_mthd(disp->disp, 0, &args, sizeof(args));
1670 if (ret || !args.load.load)
1671 return connector_status_disconnected;
1672
1673 return connector_status_connected;
1674 }
1675
1676 static void
1677 nv50_dac_destroy(struct drm_encoder *encoder)
1678 {
1679 drm_encoder_cleanup(encoder);
1680 kfree(encoder);
1681 }
1682
1683 static const struct drm_encoder_helper_funcs nv50_dac_hfunc = {
1684 .dpms = nv50_dac_dpms,
1685 .mode_fixup = nv50_encoder_mode_fixup,
1686 .prepare = nv50_dac_disconnect,
1687 .commit = nv50_dac_commit,
1688 .mode_set = nv50_dac_mode_set,
1689 .disable = nv50_dac_disconnect,
1690 .get_crtc = nv50_display_crtc_get,
1691 .detect = nv50_dac_detect
1692 };
1693
1694 static const struct drm_encoder_funcs nv50_dac_func = {
1695 .destroy = nv50_dac_destroy,
1696 };
1697
1698 static int
1699 nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
1700 {
1701 struct nouveau_drm *drm = nouveau_drm(connector->dev);
1702 struct nvkm_i2c *i2c = nvxx_i2c(&drm->device);
1703 struct nvkm_i2c_bus *bus;
1704 struct nouveau_encoder *nv_encoder;
1705 struct drm_encoder *encoder;
1706 int type = DRM_MODE_ENCODER_DAC;
1707
1708 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1709 if (!nv_encoder)
1710 return -ENOMEM;
1711 nv_encoder->dcb = dcbe;
1712 nv_encoder->or = ffs(dcbe->or) - 1;
1713
1714 bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
1715 if (bus)
1716 nv_encoder->i2c = &bus->i2c;
1717
1718 encoder = to_drm_encoder(nv_encoder);
1719 encoder->possible_crtcs = dcbe->heads;
1720 encoder->possible_clones = 0;
1721 drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type);
1722 drm_encoder_helper_add(encoder, &nv50_dac_hfunc);
1723
1724 drm_mode_connector_attach_encoder(connector, encoder);
1725 return 0;
1726 }
1727
1728 /******************************************************************************
1729 * Audio
1730 *****************************************************************************/
1731 static void
1732 nv50_audio_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
1733 {
1734 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1735 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1736 struct nouveau_connector *nv_connector;
1737 struct nv50_disp *disp = nv50_disp(encoder->dev);
1738 struct __packed {
1739 struct {
1740 struct nv50_disp_mthd_v1 mthd;
1741 struct nv50_disp_sor_hda_eld_v0 eld;
1742 } base;
1743 u8 data[sizeof(nv_connector->base.eld)];
1744 } args = {
1745 .base.mthd.version = 1,
1746 .base.mthd.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
1747 .base.mthd.hasht = nv_encoder->dcb->hasht,
1748 .base.mthd.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
1749 (0x0100 << nv_crtc->index),
1750 };
1751
1752 nv_connector = nouveau_encoder_connector_get(nv_encoder);
1753 if (!drm_detect_monitor_audio(nv_connector->edid))
1754 return;
1755
1756 drm_edid_to_eld(&nv_connector->base, nv_connector->edid);
1757 memcpy(args.data, nv_connector->base.eld, sizeof(args.data));
1758
1759 nvif_mthd(disp->disp, 0, &args,
1760 sizeof(args.base) + drm_eld_size(args.data));
1761 }
1762
1763 static void
1764 nv50_audio_disconnect(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
1765 {
1766 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1767 struct nv50_disp *disp = nv50_disp(encoder->dev);
1768 struct {
1769 struct nv50_disp_mthd_v1 base;
1770 struct nv50_disp_sor_hda_eld_v0 eld;
1771 } args = {
1772 .base.version = 1,
1773 .base.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
1774 .base.hasht = nv_encoder->dcb->hasht,
1775 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
1776 (0x0100 << nv_crtc->index),
1777 };
1778
1779 nvif_mthd(disp->disp, 0, &args, sizeof(args));
1780 }
1781
1782 /******************************************************************************
1783 * HDMI
1784 *****************************************************************************/
1785 static void
1786 nv50_hdmi_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
1787 {
1788 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1789 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1790 struct nv50_disp *disp = nv50_disp(encoder->dev);
1791 struct {
1792 struct nv50_disp_mthd_v1 base;
1793 struct nv50_disp_sor_hdmi_pwr_v0 pwr;
1794 } args = {
1795 .base.version = 1,
1796 .base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
1797 .base.hasht = nv_encoder->dcb->hasht,
1798 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
1799 (0x0100 << nv_crtc->index),
1800 .pwr.state = 1,
1801 .pwr.rekey = 56, /* binary driver, and tegra, constant */
1802 };
1803 struct nouveau_connector *nv_connector;
1804 u32 max_ac_packet;
1805
1806 nv_connector = nouveau_encoder_connector_get(nv_encoder);
1807 if (!drm_detect_hdmi_monitor(nv_connector->edid))
1808 return;
1809
1810 max_ac_packet = mode->htotal - mode->hdisplay;
1811 max_ac_packet -= args.pwr.rekey;
1812 max_ac_packet -= 18; /* constant from tegra */
1813 args.pwr.max_ac_packet = max_ac_packet / 32;
1814
1815 nvif_mthd(disp->disp, 0, &args, sizeof(args));
1816 nv50_audio_mode_set(encoder, mode);
1817 }
1818
1819 static void
1820 nv50_hdmi_disconnect(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
1821 {
1822 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1823 struct nv50_disp *disp = nv50_disp(encoder->dev);
1824 struct {
1825 struct nv50_disp_mthd_v1 base;
1826 struct nv50_disp_sor_hdmi_pwr_v0 pwr;
1827 } args = {
1828 .base.version = 1,
1829 .base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
1830 .base.hasht = nv_encoder->dcb->hasht,
1831 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
1832 (0x0100 << nv_crtc->index),
1833 };
1834
1835 nvif_mthd(disp->disp, 0, &args, sizeof(args));
1836 }
1837
1838 /******************************************************************************
1839 * SOR
1840 *****************************************************************************/
1841 static void
1842 nv50_sor_dpms(struct drm_encoder *encoder, int mode)
1843 {
1844 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1845 struct nv50_disp *disp = nv50_disp(encoder->dev);
1846 struct {
1847 struct nv50_disp_mthd_v1 base;
1848 struct nv50_disp_sor_pwr_v0 pwr;
1849 } args = {
1850 .base.version = 1,
1851 .base.method = NV50_DISP_MTHD_V1_SOR_PWR,
1852 .base.hasht = nv_encoder->dcb->hasht,
1853 .base.hashm = nv_encoder->dcb->hashm,
1854 .pwr.state = mode == DRM_MODE_DPMS_ON,
1855 };
1856 struct {
1857 struct nv50_disp_mthd_v1 base;
1858 struct nv50_disp_sor_dp_pwr_v0 pwr;
1859 } link = {
1860 .base.version = 1,
1861 .base.method = NV50_DISP_MTHD_V1_SOR_DP_PWR,
1862 .base.hasht = nv_encoder->dcb->hasht,
1863 .base.hashm = nv_encoder->dcb->hashm,
1864 .pwr.state = mode == DRM_MODE_DPMS_ON,
1865 };
1866 struct drm_device *dev = encoder->dev;
1867 struct drm_encoder *partner;
1868
1869 nv_encoder->last_dpms = mode;
1870
1871 list_for_each_entry(partner, &dev->mode_config.encoder_list, head) {
1872 struct nouveau_encoder *nv_partner = nouveau_encoder(partner);
1873
1874 if (partner->encoder_type != DRM_MODE_ENCODER_TMDS)
1875 continue;
1876
1877 if (nv_partner != nv_encoder &&
1878 nv_partner->dcb->or == nv_encoder->dcb->or) {
1879 if (nv_partner->last_dpms == DRM_MODE_DPMS_ON)
1880 return;
1881 break;
1882 }
1883 }
1884
1885 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) {
1886 args.pwr.state = 1;
1887 nvif_mthd(disp->disp, 0, &args, sizeof(args));
1888 nvif_mthd(disp->disp, 0, &link, sizeof(link));
1889 } else {
1890 nvif_mthd(disp->disp, 0, &args, sizeof(args));
1891 }
1892 }
1893
1894 static void
1895 nv50_sor_ctrl(struct nouveau_encoder *nv_encoder, u32 mask, u32 data)
1896 {
1897 struct nv50_mast *mast = nv50_mast(nv_encoder->base.base.dev);
1898 u32 temp = (nv_encoder->ctrl & ~mask) | (data & mask), *push;
1899 if (temp != nv_encoder->ctrl && (push = evo_wait(mast, 2))) {
1900 if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
1901 evo_mthd(push, 0x0600 + (nv_encoder->or * 0x40), 1);
1902 evo_data(push, (nv_encoder->ctrl = temp));
1903 } else {
1904 evo_mthd(push, 0x0200 + (nv_encoder->or * 0x20), 1);
1905 evo_data(push, (nv_encoder->ctrl = temp));
1906 }
1907 evo_kick(push, mast);
1908 }
1909 }
1910
1911 static void
1912 nv50_sor_disconnect(struct drm_encoder *encoder)
1913 {
1914 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1915 struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1916
1917 nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
1918 nv_encoder->crtc = NULL;
1919
1920 if (nv_crtc) {
1921 nv50_crtc_prepare(&nv_crtc->base);
1922 nv50_sor_ctrl(nv_encoder, 1 << nv_crtc->index, 0);
1923 nv50_audio_disconnect(encoder, nv_crtc);
1924 nv50_hdmi_disconnect(&nv_encoder->base.base, nv_crtc);
1925 }
1926 }
1927
1928 static void
1929 nv50_sor_commit(struct drm_encoder *encoder)
1930 {
1931 }
1932
1933 static void
1934 nv50_sor_mode_set(struct drm_encoder *encoder, struct drm_display_mode *umode,
1935 struct drm_display_mode *mode)
1936 {
1937 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1938 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1939 struct {
1940 struct nv50_disp_mthd_v1 base;
1941 struct nv50_disp_sor_lvds_script_v0 lvds;
1942 } lvds = {
1943 .base.version = 1,
1944 .base.method = NV50_DISP_MTHD_V1_SOR_LVDS_SCRIPT,
1945 .base.hasht = nv_encoder->dcb->hasht,
1946 .base.hashm = nv_encoder->dcb->hashm,
1947 };
1948 struct nv50_disp *disp = nv50_disp(encoder->dev);
1949 struct nv50_mast *mast = nv50_mast(encoder->dev);
1950 struct drm_device *dev = encoder->dev;
1951 struct nouveau_drm *drm = nouveau_drm(dev);
1952 struct nouveau_connector *nv_connector;
1953 struct nvbios *bios = &drm->vbios;
1954 u32 mask, ctrl;
1955 u8 owner = 1 << nv_crtc->index;
1956 u8 proto = 0xf;
1957 u8 depth = 0x0;
1958
1959 nv_connector = nouveau_encoder_connector_get(nv_encoder);
1960 nv_encoder->crtc = encoder->crtc;
1961
1962 switch (nv_encoder->dcb->type) {
1963 case DCB_OUTPUT_TMDS:
1964 if (nv_encoder->dcb->sorconf.link & 1) {
1965 if (mode->clock < 165000)
1966 proto = 0x1;
1967 else
1968 proto = 0x5;
1969 } else {
1970 proto = 0x2;
1971 }
1972
1973 nv50_hdmi_mode_set(&nv_encoder->base.base, mode);
1974 break;
1975 case DCB_OUTPUT_LVDS:
1976 proto = 0x0;
1977
1978 if (bios->fp_no_ddc) {
1979 if (bios->fp.dual_link)
1980 lvds.lvds.script |= 0x0100;
1981 if (bios->fp.if_is_24bit)
1982 lvds.lvds.script |= 0x0200;
1983 } else {
1984 if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1985 if (((u8 *)nv_connector->edid)[121] == 2)
1986 lvds.lvds.script |= 0x0100;
1987 } else
1988 if (mode->clock >= bios->fp.duallink_transition_clk) {
1989 lvds.lvds.script |= 0x0100;
1990 }
1991
1992 if (lvds.lvds.script & 0x0100) {
1993 if (bios->fp.strapless_is_24bit & 2)
1994 lvds.lvds.script |= 0x0200;
1995 } else {
1996 if (bios->fp.strapless_is_24bit & 1)
1997 lvds.lvds.script |= 0x0200;
1998 }
1999
2000 if (nv_connector->base.display_info.bpc == 8)
2001 lvds.lvds.script |= 0x0200;
2002 }
2003
2004 nvif_mthd(disp->disp, 0, &lvds, sizeof(lvds));
2005 break;
2006 case DCB_OUTPUT_DP:
2007 if (nv_connector->base.display_info.bpc == 6) {
2008 nv_encoder->dp.datarate = mode->clock * 18 / 8;
2009 depth = 0x2;
2010 } else
2011 if (nv_connector->base.display_info.bpc == 8) {
2012 nv_encoder->dp.datarate = mode->clock * 24 / 8;
2013 depth = 0x5;
2014 } else {
2015 nv_encoder->dp.datarate = mode->clock * 30 / 8;
2016 depth = 0x6;
2017 }
2018
2019 if (nv_encoder->dcb->sorconf.link & 1)
2020 proto = 0x8;
2021 else
2022 proto = 0x9;
2023 nv50_audio_mode_set(encoder, mode);
2024 break;
2025 default:
2026 BUG_ON(1);
2027 break;
2028 }
2029
2030 nv50_sor_dpms(&nv_encoder->base.base, DRM_MODE_DPMS_ON);
2031
2032 if (nv50_vers(mast) >= GF110_DISP) {
2033 u32 *push = evo_wait(mast, 3);
2034 if (push) {
2035 u32 magic = 0x31ec6000 | (nv_crtc->index << 25);
2036 u32 syncs = 0x00000001;
2037
2038 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
2039 syncs |= 0x00000008;
2040 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
2041 syncs |= 0x00000010;
2042
2043 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
2044 magic |= 0x00000001;
2045
2046 evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
2047 evo_data(push, syncs | (depth << 6));
2048 evo_data(push, magic);
2049 evo_kick(push, mast);
2050 }
2051
2052 ctrl = proto << 8;
2053 mask = 0x00000f00;
2054 } else {
2055 ctrl = (depth << 16) | (proto << 8);
2056 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
2057 ctrl |= 0x00001000;
2058 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
2059 ctrl |= 0x00002000;
2060 mask = 0x000f3f00;
2061 }
2062
2063 nv50_sor_ctrl(nv_encoder, mask | owner, ctrl | owner);
2064 }
2065
2066 static void
2067 nv50_sor_destroy(struct drm_encoder *encoder)
2068 {
2069 drm_encoder_cleanup(encoder);
2070 kfree(encoder);
2071 }
2072
2073 static const struct drm_encoder_helper_funcs nv50_sor_hfunc = {
2074 .dpms = nv50_sor_dpms,
2075 .mode_fixup = nv50_encoder_mode_fixup,
2076 .prepare = nv50_sor_disconnect,
2077 .commit = nv50_sor_commit,
2078 .mode_set = nv50_sor_mode_set,
2079 .disable = nv50_sor_disconnect,
2080 .get_crtc = nv50_display_crtc_get,
2081 };
2082
2083 static const struct drm_encoder_funcs nv50_sor_func = {
2084 .destroy = nv50_sor_destroy,
2085 };
2086
2087 static int
2088 nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
2089 {
2090 struct nouveau_drm *drm = nouveau_drm(connector->dev);
2091 struct nvkm_i2c *i2c = nvxx_i2c(&drm->device);
2092 struct nouveau_encoder *nv_encoder;
2093 struct drm_encoder *encoder;
2094 int type;
2095
2096 switch (dcbe->type) {
2097 case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
2098 case DCB_OUTPUT_TMDS:
2099 case DCB_OUTPUT_DP:
2100 default:
2101 type = DRM_MODE_ENCODER_TMDS;
2102 break;
2103 }
2104
2105 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
2106 if (!nv_encoder)
2107 return -ENOMEM;
2108 nv_encoder->dcb = dcbe;
2109 nv_encoder->or = ffs(dcbe->or) - 1;
2110 nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
2111
2112 if (dcbe->type == DCB_OUTPUT_DP) {
2113 struct nvkm_i2c_aux *aux =
2114 nvkm_i2c_aux_find(i2c, dcbe->i2c_index);
2115 if (aux) {
2116 nv_encoder->i2c = &aux->i2c;
2117 nv_encoder->aux = aux;
2118 }
2119 } else {
2120 struct nvkm_i2c_bus *bus =
2121 nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
2122 if (bus)
2123 nv_encoder->i2c = &bus->i2c;
2124 }
2125
2126 encoder = to_drm_encoder(nv_encoder);
2127 encoder->possible_crtcs = dcbe->heads;
2128 encoder->possible_clones = 0;
2129 drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type);
2130 drm_encoder_helper_add(encoder, &nv50_sor_hfunc);
2131
2132 drm_mode_connector_attach_encoder(connector, encoder);
2133 return 0;
2134 }
2135
2136 /******************************************************************************
2137 * PIOR
2138 *****************************************************************************/
2139
2140 static void
2141 nv50_pior_dpms(struct drm_encoder *encoder, int mode)
2142 {
2143 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
2144 struct nv50_disp *disp = nv50_disp(encoder->dev);
2145 struct {
2146 struct nv50_disp_mthd_v1 base;
2147 struct nv50_disp_pior_pwr_v0 pwr;
2148 } args = {
2149 .base.version = 1,
2150 .base.method = NV50_DISP_MTHD_V1_PIOR_PWR,
2151 .base.hasht = nv_encoder->dcb->hasht,
2152 .base.hashm = nv_encoder->dcb->hashm,
2153 .pwr.state = mode == DRM_MODE_DPMS_ON,
2154 .pwr.type = nv_encoder->dcb->type,
2155 };
2156
2157 nvif_mthd(disp->disp, 0, &args, sizeof(args));
2158 }
2159
2160 static bool
2161 nv50_pior_mode_fixup(struct drm_encoder *encoder,
2162 const struct drm_display_mode *mode,
2163 struct drm_display_mode *adjusted_mode)
2164 {
2165 if (!nv50_encoder_mode_fixup(encoder, mode, adjusted_mode))
2166 return false;
2167 adjusted_mode->clock *= 2;
2168 return true;
2169 }
2170
2171 static void
2172 nv50_pior_commit(struct drm_encoder *encoder)
2173 {
2174 }
2175
2176 static void
2177 nv50_pior_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
2178 struct drm_display_mode *adjusted_mode)
2179 {
2180 struct nv50_mast *mast = nv50_mast(encoder->dev);
2181 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
2182 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
2183 struct nouveau_connector *nv_connector;
2184 u8 owner = 1 << nv_crtc->index;
2185 u8 proto, depth;
2186 u32 *push;
2187
2188 nv_connector = nouveau_encoder_connector_get(nv_encoder);
2189 switch (nv_connector->base.display_info.bpc) {
2190 case 10: depth = 0x6; break;
2191 case 8: depth = 0x5; break;
2192 case 6: depth = 0x2; break;
2193 default: depth = 0x0; break;
2194 }
2195
2196 switch (nv_encoder->dcb->type) {
2197 case DCB_OUTPUT_TMDS:
2198 case DCB_OUTPUT_DP:
2199 proto = 0x0;
2200 break;
2201 default:
2202 BUG_ON(1);
2203 break;
2204 }
2205
2206 nv50_pior_dpms(encoder, DRM_MODE_DPMS_ON);
2207
2208 push = evo_wait(mast, 8);
2209 if (push) {
2210 if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
2211 u32 ctrl = (depth << 16) | (proto << 8) | owner;
2212 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
2213 ctrl |= 0x00001000;
2214 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
2215 ctrl |= 0x00002000;
2216 evo_mthd(push, 0x0700 + (nv_encoder->or * 0x040), 1);
2217 evo_data(push, ctrl);
2218 }
2219
2220 evo_kick(push, mast);
2221 }
2222
2223 nv_encoder->crtc = encoder->crtc;
2224 }
2225
2226 static void
2227 nv50_pior_disconnect(struct drm_encoder *encoder)
2228 {
2229 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
2230 struct nv50_mast *mast = nv50_mast(encoder->dev);
2231 const int or = nv_encoder->or;
2232 u32 *push;
2233
2234 if (nv_encoder->crtc) {
2235 nv50_crtc_prepare(nv_encoder->crtc);
2236
2237 push = evo_wait(mast, 4);
2238 if (push) {
2239 if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
2240 evo_mthd(push, 0x0700 + (or * 0x040), 1);
2241 evo_data(push, 0x00000000);
2242 }
2243 evo_kick(push, mast);
2244 }
2245 }
2246
2247 nv_encoder->crtc = NULL;
2248 }
2249
2250 static void
2251 nv50_pior_destroy(struct drm_encoder *encoder)
2252 {
2253 drm_encoder_cleanup(encoder);
2254 kfree(encoder);
2255 }
2256
2257 static const struct drm_encoder_helper_funcs nv50_pior_hfunc = {
2258 .dpms = nv50_pior_dpms,
2259 .mode_fixup = nv50_pior_mode_fixup,
2260 .prepare = nv50_pior_disconnect,
2261 .commit = nv50_pior_commit,
2262 .mode_set = nv50_pior_mode_set,
2263 .disable = nv50_pior_disconnect,
2264 .get_crtc = nv50_display_crtc_get,
2265 };
2266
2267 static const struct drm_encoder_funcs nv50_pior_func = {
2268 .destroy = nv50_pior_destroy,
2269 };
2270
2271 static int
2272 nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe)
2273 {
2274 struct nouveau_drm *drm = nouveau_drm(connector->dev);
2275 struct nvkm_i2c *i2c = nvxx_i2c(&drm->device);
2276 struct nvkm_i2c_bus *bus = NULL;
2277 struct nvkm_i2c_aux *aux = NULL;
2278 struct i2c_adapter *ddc;
2279 struct nouveau_encoder *nv_encoder;
2280 struct drm_encoder *encoder;
2281 int type;
2282
2283 switch (dcbe->type) {
2284 case DCB_OUTPUT_TMDS:
2285 bus = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev));
2286 ddc = bus ? &bus->i2c : NULL;
2287 type = DRM_MODE_ENCODER_TMDS;
2288 break;
2289 case DCB_OUTPUT_DP:
2290 aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev));
2291 ddc = aux ? &aux->i2c : NULL;
2292 type = DRM_MODE_ENCODER_TMDS;
2293 break;
2294 default:
2295 return -ENODEV;
2296 }
2297
2298 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
2299 if (!nv_encoder)
2300 return -ENOMEM;
2301 nv_encoder->dcb = dcbe;
2302 nv_encoder->or = ffs(dcbe->or) - 1;
2303 nv_encoder->i2c = ddc;
2304 nv_encoder->aux = aux;
2305
2306 encoder = to_drm_encoder(nv_encoder);
2307 encoder->possible_crtcs = dcbe->heads;
2308 encoder->possible_clones = 0;
2309 drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type);
2310 drm_encoder_helper_add(encoder, &nv50_pior_hfunc);
2311
2312 drm_mode_connector_attach_encoder(connector, encoder);
2313 return 0;
2314 }
2315
2316 /******************************************************************************
2317 * Framebuffer
2318 *****************************************************************************/
2319
2320 static void
2321 nv50_fbdma_fini(struct nv50_fbdma *fbdma)
2322 {
2323 int i;
2324 for (i = 0; i < ARRAY_SIZE(fbdma->base); i++)
2325 nvif_object_fini(&fbdma->base[i]);
2326 nvif_object_fini(&fbdma->core);
2327 list_del(&fbdma->head);
2328 kfree(fbdma);
2329 }
2330
2331 static int
2332 nv50_fbdma_init(struct drm_device *dev, u32 name, u64 offset, u64 length, u8 kind)
2333 {
2334 struct nouveau_drm *drm = nouveau_drm(dev);
2335 struct nv50_disp *disp = nv50_disp(dev);
2336 struct nv50_mast *mast = nv50_mast(dev);
2337 struct __attribute__ ((packed)) {
2338 struct nv_dma_v0 base;
2339 union {
2340 struct nv50_dma_v0 nv50;
2341 struct gf100_dma_v0 gf100;
2342 struct gf119_dma_v0 gf119;
2343 };
2344 } args = {};
2345 struct nv50_fbdma *fbdma;
2346 struct drm_crtc *crtc;
2347 u32 size = sizeof(args.base);
2348 int ret;
2349
2350 list_for_each_entry(fbdma, &disp->fbdma, head) {
2351 if (fbdma->core.handle == name)
2352 return 0;
2353 }
2354
2355 fbdma = kzalloc(sizeof(*fbdma), GFP_KERNEL);
2356 if (!fbdma)
2357 return -ENOMEM;
2358 list_add(&fbdma->head, &disp->fbdma);
2359
2360 args.base.target = NV_DMA_V0_TARGET_VRAM;
2361 args.base.access = NV_DMA_V0_ACCESS_RDWR;
2362 args.base.start = offset;
2363 args.base.limit = offset + length - 1;
2364
2365 if (drm->device.info.chipset < 0x80) {
2366 args.nv50.part = NV50_DMA_V0_PART_256;
2367 size += sizeof(args.nv50);
2368 } else
2369 if (drm->device.info.chipset < 0xc0) {
2370 args.nv50.part = NV50_DMA_V0_PART_256;
2371 args.nv50.kind = kind;
2372 size += sizeof(args.nv50);
2373 } else
2374 if (drm->device.info.chipset < 0xd0) {
2375 args.gf100.kind = kind;
2376 size += sizeof(args.gf100);
2377 } else {
2378 args.gf119.page = GF119_DMA_V0_PAGE_LP;
2379 args.gf119.kind = kind;
2380 size += sizeof(args.gf119);
2381 }
2382
2383 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2384 struct nv50_head *head = nv50_head(crtc);
2385 int ret = nvif_object_init(&head->sync.base.base.user, name,
2386 NV_DMA_IN_MEMORY, &args, size,
2387 &fbdma->base[head->base.index]);
2388 if (ret) {
2389 nv50_fbdma_fini(fbdma);
2390 return ret;
2391 }
2392 }
2393
2394 ret = nvif_object_init(&mast->base.base.user, name, NV_DMA_IN_MEMORY,
2395 &args, size, &fbdma->core);
2396 if (ret) {
2397 nv50_fbdma_fini(fbdma);
2398 return ret;
2399 }
2400
2401 return 0;
2402 }
2403
2404 static void
2405 nv50_fb_dtor(struct drm_framebuffer *fb)
2406 {
2407 }
2408
2409 static int
2410 nv50_fb_ctor(struct drm_framebuffer *fb)
2411 {
2412 struct nouveau_framebuffer *nv_fb = nouveau_framebuffer(fb);
2413 struct nouveau_drm *drm = nouveau_drm(fb->dev);
2414 struct nouveau_bo *nvbo = nv_fb->nvbo;
2415 struct nv50_disp *disp = nv50_disp(fb->dev);
2416 u8 kind = nouveau_bo_tile_layout(nvbo) >> 8;
2417 u8 tile = nvbo->tile_mode;
2418
2419 if (drm->device.info.chipset >= 0xc0)
2420 tile >>= 4; /* yep.. */
2421
2422 switch (fb->depth) {
2423 case 8: nv_fb->r_format = 0x1e00; break;
2424 case 15: nv_fb->r_format = 0xe900; break;
2425 case 16: nv_fb->r_format = 0xe800; break;
2426 case 24:
2427 case 32: nv_fb->r_format = 0xcf00; break;
2428 case 30: nv_fb->r_format = 0xd100; break;
2429 default:
2430 NV_ERROR(drm, "unknown depth %d\n", fb->depth);
2431 return -EINVAL;
2432 }
2433
2434 if (disp->disp->oclass < G82_DISP) {
2435 nv_fb->r_pitch = kind ? (((fb->pitches[0] / 4) << 4) | tile) :
2436 (fb->pitches[0] | 0x00100000);
2437 nv_fb->r_format |= kind << 16;
2438 } else
2439 if (disp->disp->oclass < GF110_DISP) {
2440 nv_fb->r_pitch = kind ? (((fb->pitches[0] / 4) << 4) | tile) :
2441 (fb->pitches[0] | 0x00100000);
2442 } else {
2443 nv_fb->r_pitch = kind ? (((fb->pitches[0] / 4) << 4) | tile) :
2444 (fb->pitches[0] | 0x01000000);
2445 }
2446 nv_fb->r_handle = 0xffff0000 | kind;
2447
2448 return nv50_fbdma_init(fb->dev, nv_fb->r_handle, 0,
2449 drm->device.info.ram_user, kind);
2450 }
2451
2452 /******************************************************************************
2453 * Init
2454 *****************************************************************************/
2455
2456 void
2457 nv50_display_fini(struct drm_device *dev)
2458 {
2459 }
2460
2461 int
2462 nv50_display_init(struct drm_device *dev)
2463 {
2464 struct nv50_disp *disp = nv50_disp(dev);
2465 struct drm_crtc *crtc;
2466 u32 *push;
2467
2468 push = evo_wait(nv50_mast(dev), 32);
2469 if (!push)
2470 return -EBUSY;
2471
2472 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2473 struct nv50_sync *sync = nv50_sync(crtc);
2474
2475 nv50_crtc_lut_load(crtc);
2476 nouveau_bo_wr32(disp->sync, sync->addr / 4, sync->data);
2477 }
2478
2479 evo_mthd(push, 0x0088, 1);
2480 evo_data(push, nv50_mast(dev)->base.sync.handle);
2481 evo_kick(push, nv50_mast(dev));
2482 return 0;
2483 }
2484
2485 void
2486 nv50_display_destroy(struct drm_device *dev)
2487 {
2488 struct nv50_disp *disp = nv50_disp(dev);
2489 struct nv50_fbdma *fbdma, *fbtmp;
2490
2491 list_for_each_entry_safe(fbdma, fbtmp, &disp->fbdma, head) {
2492 nv50_fbdma_fini(fbdma);
2493 }
2494
2495 nv50_dmac_destroy(&disp->mast.base, disp->disp);
2496
2497 nouveau_bo_unmap(disp->sync);
2498 if (disp->sync)
2499 nouveau_bo_unpin(disp->sync);
2500 nouveau_bo_ref(NULL, &disp->sync);
2501
2502 nouveau_display(dev)->priv = NULL;
2503 kfree(disp);
2504 }
2505
2506 int
2507 nv50_display_create(struct drm_device *dev)
2508 {
2509 struct nvif_device *device = &nouveau_drm(dev)->device;
2510 struct nouveau_drm *drm = nouveau_drm(dev);
2511 struct dcb_table *dcb = &drm->vbios.dcb;
2512 struct drm_connector *connector, *tmp;
2513 struct nv50_disp *disp;
2514 struct dcb_output *dcbe;
2515 int crtcs, ret, i;
2516
2517 disp = kzalloc(sizeof(*disp), GFP_KERNEL);
2518 if (!disp)
2519 return -ENOMEM;
2520 INIT_LIST_HEAD(&disp->fbdma);
2521
2522 nouveau_display(dev)->priv = disp;
2523 nouveau_display(dev)->dtor = nv50_display_destroy;
2524 nouveau_display(dev)->init = nv50_display_init;
2525 nouveau_display(dev)->fini = nv50_display_fini;
2526 nouveau_display(dev)->fb_ctor = nv50_fb_ctor;
2527 nouveau_display(dev)->fb_dtor = nv50_fb_dtor;
2528 disp->disp = &nouveau_display(dev)->disp;
2529
2530 /* small shared memory area we use for notifiers and semaphores */
2531 ret = nouveau_bo_new(dev, 4096, 0x1000, TTM_PL_FLAG_VRAM,
2532 0, 0x0000, NULL, NULL, &disp->sync);
2533 if (!ret) {
2534 ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM, true);
2535 if (!ret) {
2536 ret = nouveau_bo_map(disp->sync);
2537 if (ret)
2538 nouveau_bo_unpin(disp->sync);
2539 }
2540 if (ret)
2541 nouveau_bo_ref(NULL, &disp->sync);
2542 }
2543
2544 if (ret)
2545 goto out;
2546
2547 /* allocate master evo channel */
2548 ret = nv50_core_create(device, disp->disp, disp->sync->bo.offset,
2549 &disp->mast);
2550 if (ret)
2551 goto out;
2552
2553 /* create crtc objects to represent the hw heads */
2554 if (disp->disp->oclass >= GF110_DISP)
2555 crtcs = nvif_rd32(&device->object, 0x022448);
2556 else
2557 crtcs = 2;
2558
2559 for (i = 0; i < crtcs; i++) {
2560 ret = nv50_crtc_create(dev, i);
2561 if (ret)
2562 goto out;
2563 }
2564
2565 /* create encoder/connector objects based on VBIOS DCB table */
2566 for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
2567 connector = nouveau_connector_create(dev, dcbe->connector);
2568 if (IS_ERR(connector))
2569 continue;
2570
2571 if (dcbe->location == DCB_LOC_ON_CHIP) {
2572 switch (dcbe->type) {
2573 case DCB_OUTPUT_TMDS:
2574 case DCB_OUTPUT_LVDS:
2575 case DCB_OUTPUT_DP:
2576 ret = nv50_sor_create(connector, dcbe);
2577 break;
2578 case DCB_OUTPUT_ANALOG:
2579 ret = nv50_dac_create(connector, dcbe);
2580 break;
2581 default:
2582 ret = -ENODEV;
2583 break;
2584 }
2585 } else {
2586 ret = nv50_pior_create(connector, dcbe);
2587 }
2588
2589 if (ret) {
2590 NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
2591 dcbe->location, dcbe->type,
2592 ffs(dcbe->or) - 1, ret);
2593 ret = 0;
2594 }
2595 }
2596
2597 /* cull any connectors we created that don't have an encoder */
2598 list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
2599 if (connector->encoder_ids[0])
2600 continue;
2601
2602 NV_WARN(drm, "%s has no encoders, removing\n",
2603 connector->name);
2604 connector->funcs->destroy(connector);
2605 }
2606
2607 out:
2608 if (ret)
2609 nv50_display_destroy(dev);
2610 return ret;
2611 }
This page took 0.090657 seconds and 5 git commands to generate.