drm/nouveau/clk: namespace + nvidia gpu names (no binary change)
[deliverable/linux.git] / drivers / gpu / drm / nouveau / nvkm / subdev / clk / gk20a.c
1 /*
2 * Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 *
22 * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c
23 *
24 */
25 #include <subdev/clk.h>
26 #include <subdev/timer.h>
27
28 #ifdef __KERNEL__
29 #include <nouveau_platform.h>
30 #endif
31
32 #define MHZ (1000 * 1000)
33
34 #define MASK(w) ((1 << w) - 1)
35
36 #define SYS_GPCPLL_CFG_BASE 0x00137000
37 #define GPC_BCASE_GPCPLL_CFG_BASE 0x00132800
38
39 #define GPCPLL_CFG (SYS_GPCPLL_CFG_BASE + 0)
40 #define GPCPLL_CFG_ENABLE BIT(0)
41 #define GPCPLL_CFG_IDDQ BIT(1)
42 #define GPCPLL_CFG_LOCK_DET_OFF BIT(4)
43 #define GPCPLL_CFG_LOCK BIT(17)
44
45 #define GPCPLL_COEFF (SYS_GPCPLL_CFG_BASE + 4)
46 #define GPCPLL_COEFF_M_SHIFT 0
47 #define GPCPLL_COEFF_M_WIDTH 8
48 #define GPCPLL_COEFF_N_SHIFT 8
49 #define GPCPLL_COEFF_N_WIDTH 8
50 #define GPCPLL_COEFF_P_SHIFT 16
51 #define GPCPLL_COEFF_P_WIDTH 6
52
53 #define GPCPLL_CFG2 (SYS_GPCPLL_CFG_BASE + 0xc)
54 #define GPCPLL_CFG2_SETUP2_SHIFT 16
55 #define GPCPLL_CFG2_PLL_STEPA_SHIFT 24
56
57 #define GPCPLL_CFG3 (SYS_GPCPLL_CFG_BASE + 0x18)
58 #define GPCPLL_CFG3_PLL_STEPB_SHIFT 16
59
60 #define GPCPLL_NDIV_SLOWDOWN (SYS_GPCPLL_CFG_BASE + 0x1c)
61 #define GPCPLL_NDIV_SLOWDOWN_NDIV_LO_SHIFT 0
62 #define GPCPLL_NDIV_SLOWDOWN_NDIV_MID_SHIFT 8
63 #define GPCPLL_NDIV_SLOWDOWN_STEP_SIZE_LO2MID_SHIFT 16
64 #define GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT 22
65 #define GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT 31
66
67 #define SEL_VCO (SYS_GPCPLL_CFG_BASE + 0x100)
68 #define SEL_VCO_GPC2CLK_OUT_SHIFT 0
69
70 #define GPC2CLK_OUT (SYS_GPCPLL_CFG_BASE + 0x250)
71 #define GPC2CLK_OUT_SDIV14_INDIV4_WIDTH 1
72 #define GPC2CLK_OUT_SDIV14_INDIV4_SHIFT 31
73 #define GPC2CLK_OUT_SDIV14_INDIV4_MODE 1
74 #define GPC2CLK_OUT_VCODIV_WIDTH 6
75 #define GPC2CLK_OUT_VCODIV_SHIFT 8
76 #define GPC2CLK_OUT_VCODIV1 0
77 #define GPC2CLK_OUT_VCODIV_MASK (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << \
78 GPC2CLK_OUT_VCODIV_SHIFT)
79 #define GPC2CLK_OUT_BYPDIV_WIDTH 6
80 #define GPC2CLK_OUT_BYPDIV_SHIFT 0
81 #define GPC2CLK_OUT_BYPDIV31 0x3c
82 #define GPC2CLK_OUT_INIT_MASK ((MASK(GPC2CLK_OUT_SDIV14_INDIV4_WIDTH) << \
83 GPC2CLK_OUT_SDIV14_INDIV4_SHIFT)\
84 | (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << GPC2CLK_OUT_VCODIV_SHIFT)\
85 | (MASK(GPC2CLK_OUT_BYPDIV_WIDTH) << GPC2CLK_OUT_BYPDIV_SHIFT))
86 #define GPC2CLK_OUT_INIT_VAL ((GPC2CLK_OUT_SDIV14_INDIV4_MODE << \
87 GPC2CLK_OUT_SDIV14_INDIV4_SHIFT) \
88 | (GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT) \
89 | (GPC2CLK_OUT_BYPDIV31 << GPC2CLK_OUT_BYPDIV_SHIFT))
90
91 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG (GPC_BCASE_GPCPLL_CFG_BASE + 0xa0)
92 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT 24
93 #define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK \
94 (0x1 << GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT)
95
96 static const u8 pl_to_div[] = {
97 /* PL: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 */
98 /* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32,
99 };
100
101 /* All frequencies in Mhz */
102 struct gk20a_clk_pllg_params {
103 u32 min_vco, max_vco;
104 u32 min_u, max_u;
105 u32 min_m, max_m;
106 u32 min_n, max_n;
107 u32 min_pl, max_pl;
108 };
109
110 static const struct gk20a_clk_pllg_params gk20a_pllg_params = {
111 .min_vco = 1000, .max_vco = 2064,
112 .min_u = 12, .max_u = 38,
113 .min_m = 1, .max_m = 255,
114 .min_n = 8, .max_n = 255,
115 .min_pl = 1, .max_pl = 32,
116 };
117
118 struct gk20a_clk_priv {
119 struct nvkm_clk base;
120 const struct gk20a_clk_pllg_params *params;
121 u32 m, n, pl;
122 u32 parent_rate;
123 };
124 #define to_gk20a_clk(base) container_of(base, struct gk20a_clk_priv, base)
125
126 static void
127 gk20a_pllg_read_mnp(struct gk20a_clk_priv *priv)
128 {
129 u32 val;
130
131 val = nv_rd32(priv, GPCPLL_COEFF);
132 priv->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
133 priv->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);
134 priv->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
135 }
136
137 static u32
138 gk20a_pllg_calc_rate(struct gk20a_clk_priv *priv)
139 {
140 u32 rate;
141 u32 divider;
142
143 rate = priv->parent_rate * priv->n;
144 divider = priv->m * pl_to_div[priv->pl];
145 do_div(rate, divider);
146
147 return rate / 2;
148 }
149
150 static int
151 gk20a_pllg_calc_mnp(struct gk20a_clk_priv *priv, unsigned long rate)
152 {
153 u32 target_clk_f, ref_clk_f, target_freq;
154 u32 min_vco_f, max_vco_f;
155 u32 low_pl, high_pl, best_pl;
156 u32 target_vco_f, vco_f;
157 u32 best_m, best_n;
158 u32 u_f;
159 u32 m, n, n2;
160 u32 delta, lwv, best_delta = ~0;
161 u32 pl;
162
163 target_clk_f = rate * 2 / MHZ;
164 ref_clk_f = priv->parent_rate / MHZ;
165
166 max_vco_f = priv->params->max_vco;
167 min_vco_f = priv->params->min_vco;
168 best_m = priv->params->max_m;
169 best_n = priv->params->min_n;
170 best_pl = priv->params->min_pl;
171
172 target_vco_f = target_clk_f + target_clk_f / 50;
173 if (max_vco_f < target_vco_f)
174 max_vco_f = target_vco_f;
175
176 /* min_pl <= high_pl <= max_pl */
177 high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f;
178 high_pl = min(high_pl, priv->params->max_pl);
179 high_pl = max(high_pl, priv->params->min_pl);
180
181 /* min_pl <= low_pl <= max_pl */
182 low_pl = min_vco_f / target_vco_f;
183 low_pl = min(low_pl, priv->params->max_pl);
184 low_pl = max(low_pl, priv->params->min_pl);
185
186 /* Find Indices of high_pl and low_pl */
187 for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
188 if (pl_to_div[pl] >= low_pl) {
189 low_pl = pl;
190 break;
191 }
192 }
193 for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
194 if (pl_to_div[pl] >= high_pl) {
195 high_pl = pl;
196 break;
197 }
198 }
199
200 nv_debug(priv, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
201 pl_to_div[low_pl], high_pl, pl_to_div[high_pl]);
202
203 /* Select lowest possible VCO */
204 for (pl = low_pl; pl <= high_pl; pl++) {
205 target_vco_f = target_clk_f * pl_to_div[pl];
206 for (m = priv->params->min_m; m <= priv->params->max_m; m++) {
207 u_f = ref_clk_f / m;
208
209 if (u_f < priv->params->min_u)
210 break;
211 if (u_f > priv->params->max_u)
212 continue;
213
214 n = (target_vco_f * m) / ref_clk_f;
215 n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f;
216
217 if (n > priv->params->max_n)
218 break;
219
220 for (; n <= n2; n++) {
221 if (n < priv->params->min_n)
222 continue;
223 if (n > priv->params->max_n)
224 break;
225
226 vco_f = ref_clk_f * n / m;
227
228 if (vco_f >= min_vco_f && vco_f <= max_vco_f) {
229 lwv = (vco_f + (pl_to_div[pl] / 2))
230 / pl_to_div[pl];
231 delta = abs(lwv - target_clk_f);
232
233 if (delta < best_delta) {
234 best_delta = delta;
235 best_m = m;
236 best_n = n;
237 best_pl = pl;
238
239 if (best_delta == 0)
240 goto found_match;
241 }
242 }
243 }
244 }
245 }
246
247 found_match:
248 WARN_ON(best_delta == ~0);
249
250 if (best_delta != 0)
251 nv_debug(priv, "no best match for target @ %dMHz on gpc_pll",
252 target_clk_f);
253
254 priv->m = best_m;
255 priv->n = best_n;
256 priv->pl = best_pl;
257
258 target_freq = gk20a_pllg_calc_rate(priv) / MHZ;
259
260 nv_debug(priv, "actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n",
261 target_freq, priv->m, priv->n, priv->pl, pl_to_div[priv->pl]);
262 return 0;
263 }
264
265 static int
266 gk20a_pllg_slide(struct gk20a_clk_priv *priv, u32 n)
267 {
268 u32 val;
269 int ramp_timeout;
270
271 /* get old coefficients */
272 val = nv_rd32(priv, GPCPLL_COEFF);
273 /* do nothing if NDIV is the same */
274 if (n == ((val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH)))
275 return 0;
276
277 /* setup */
278 nv_mask(priv, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT,
279 0x2b << GPCPLL_CFG2_PLL_STEPA_SHIFT);
280 nv_mask(priv, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT,
281 0xb << GPCPLL_CFG3_PLL_STEPB_SHIFT);
282
283 /* pll slowdown mode */
284 nv_mask(priv, GPCPLL_NDIV_SLOWDOWN,
285 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
286 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));
287
288 /* new ndiv ready for ramp */
289 val = nv_rd32(priv, GPCPLL_COEFF);
290 val &= ~(MASK(GPCPLL_COEFF_N_WIDTH) << GPCPLL_COEFF_N_SHIFT);
291 val |= (n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT;
292 udelay(1);
293 nv_wr32(priv, GPCPLL_COEFF, val);
294
295 /* dynamic ramp to new ndiv */
296 val = nv_rd32(priv, GPCPLL_NDIV_SLOWDOWN);
297 val |= 0x1 << GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT;
298 udelay(1);
299 nv_wr32(priv, GPCPLL_NDIV_SLOWDOWN, val);
300
301 for (ramp_timeout = 500; ramp_timeout > 0; ramp_timeout--) {
302 udelay(1);
303 val = nv_rd32(priv, GPC_BCAST_NDIV_SLOWDOWN_DEBUG);
304 if (val & GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK)
305 break;
306 }
307
308 /* exit slowdown mode */
309 nv_mask(priv, GPCPLL_NDIV_SLOWDOWN,
310 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
311 BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
312 nv_rd32(priv, GPCPLL_NDIV_SLOWDOWN);
313
314 if (ramp_timeout <= 0) {
315 nv_error(priv, "gpcpll dynamic ramp timeout\n");
316 return -ETIMEDOUT;
317 }
318
319 return 0;
320 }
321
322 static void
323 _gk20a_pllg_enable(struct gk20a_clk_priv *priv)
324 {
325 nv_mask(priv, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
326 nv_rd32(priv, GPCPLL_CFG);
327 }
328
329 static void
330 _gk20a_pllg_disable(struct gk20a_clk_priv *priv)
331 {
332 nv_mask(priv, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
333 nv_rd32(priv, GPCPLL_CFG);
334 }
335
336 static int
337 _gk20a_pllg_program_mnp(struct gk20a_clk_priv *priv, bool allow_slide)
338 {
339 u32 val, cfg;
340 u32 m_old, pl_old, n_lo;
341
342 /* get old coefficients */
343 val = nv_rd32(priv, GPCPLL_COEFF);
344 m_old = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
345 pl_old = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
346
347 /* do NDIV slide if there is no change in M and PL */
348 cfg = nv_rd32(priv, GPCPLL_CFG);
349 if (allow_slide && priv->m == m_old && priv->pl == pl_old &&
350 (cfg & GPCPLL_CFG_ENABLE)) {
351 return gk20a_pllg_slide(priv, priv->n);
352 }
353
354 /* slide down to NDIV_LO */
355 n_lo = DIV_ROUND_UP(m_old * priv->params->min_vco,
356 priv->parent_rate / MHZ);
357 if (allow_slide && (cfg & GPCPLL_CFG_ENABLE)) {
358 int ret = gk20a_pllg_slide(priv, n_lo);
359
360 if (ret)
361 return ret;
362 }
363
364 /* split FO-to-bypass jump in halfs by setting out divider 1:2 */
365 nv_mask(priv, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
366 0x2 << GPC2CLK_OUT_VCODIV_SHIFT);
367
368 /* put PLL in bypass before programming it */
369 val = nv_rd32(priv, SEL_VCO);
370 val &= ~(BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
371 udelay(2);
372 nv_wr32(priv, SEL_VCO, val);
373
374 /* get out from IDDQ */
375 val = nv_rd32(priv, GPCPLL_CFG);
376 if (val & GPCPLL_CFG_IDDQ) {
377 val &= ~GPCPLL_CFG_IDDQ;
378 nv_wr32(priv, GPCPLL_CFG, val);
379 nv_rd32(priv, GPCPLL_CFG);
380 udelay(2);
381 }
382
383 _gk20a_pllg_disable(priv);
384
385 nv_debug(priv, "%s: m=%d n=%d pl=%d\n", __func__, priv->m, priv->n,
386 priv->pl);
387
388 n_lo = DIV_ROUND_UP(priv->m * priv->params->min_vco,
389 priv->parent_rate / MHZ);
390 val = priv->m << GPCPLL_COEFF_M_SHIFT;
391 val |= (allow_slide ? n_lo : priv->n) << GPCPLL_COEFF_N_SHIFT;
392 val |= priv->pl << GPCPLL_COEFF_P_SHIFT;
393 nv_wr32(priv, GPCPLL_COEFF, val);
394
395 _gk20a_pllg_enable(priv);
396
397 val = nv_rd32(priv, GPCPLL_CFG);
398 if (val & GPCPLL_CFG_LOCK_DET_OFF) {
399 val &= ~GPCPLL_CFG_LOCK_DET_OFF;
400 nv_wr32(priv, GPCPLL_CFG, val);
401 }
402
403 if (!nvkm_timer_wait_eq(priv, 300000, GPCPLL_CFG, GPCPLL_CFG_LOCK,
404 GPCPLL_CFG_LOCK)) {
405 nv_error(priv, "%s: timeout waiting for pllg lock\n", __func__);
406 return -ETIMEDOUT;
407 }
408
409 /* switch to VCO mode */
410 nv_mask(priv, SEL_VCO, 0, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
411
412 /* restore out divider 1:1 */
413 val = nv_rd32(priv, GPC2CLK_OUT);
414 val &= ~GPC2CLK_OUT_VCODIV_MASK;
415 udelay(2);
416 nv_wr32(priv, GPC2CLK_OUT, val);
417
418 /* slide up to new NDIV */
419 return allow_slide ? gk20a_pllg_slide(priv, priv->n) : 0;
420 }
421
422 static int
423 gk20a_pllg_program_mnp(struct gk20a_clk_priv *priv)
424 {
425 int err;
426
427 err = _gk20a_pllg_program_mnp(priv, true);
428 if (err)
429 err = _gk20a_pllg_program_mnp(priv, false);
430
431 return err;
432 }
433
434 static void
435 gk20a_pllg_disable(struct gk20a_clk_priv *priv)
436 {
437 u32 val;
438
439 /* slide to VCO min */
440 val = nv_rd32(priv, GPCPLL_CFG);
441 if (val & GPCPLL_CFG_ENABLE) {
442 u32 coeff, m, n_lo;
443
444 coeff = nv_rd32(priv, GPCPLL_COEFF);
445 m = (coeff >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
446 n_lo = DIV_ROUND_UP(m * priv->params->min_vco,
447 priv->parent_rate / MHZ);
448 gk20a_pllg_slide(priv, n_lo);
449 }
450
451 /* put PLL in bypass before disabling it */
452 nv_mask(priv, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
453
454 _gk20a_pllg_disable(priv);
455 }
456
457 #define GK20A_CLK_GPC_MDIV 1000
458
459 static struct nvkm_domain
460 gk20a_domains[] = {
461 { nv_clk_src_crystal, 0xff },
462 { nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
463 { nv_clk_src_max }
464 };
465
466 static struct nvkm_pstate
467 gk20a_pstates[] = {
468 {
469 .base = {
470 .domain[nv_clk_src_gpc] = 72000,
471 .voltage = 0,
472 },
473 },
474 {
475 .base = {
476 .domain[nv_clk_src_gpc] = 108000,
477 .voltage = 1,
478 },
479 },
480 {
481 .base = {
482 .domain[nv_clk_src_gpc] = 180000,
483 .voltage = 2,
484 },
485 },
486 {
487 .base = {
488 .domain[nv_clk_src_gpc] = 252000,
489 .voltage = 3,
490 },
491 },
492 {
493 .base = {
494 .domain[nv_clk_src_gpc] = 324000,
495 .voltage = 4,
496 },
497 },
498 {
499 .base = {
500 .domain[nv_clk_src_gpc] = 396000,
501 .voltage = 5,
502 },
503 },
504 {
505 .base = {
506 .domain[nv_clk_src_gpc] = 468000,
507 .voltage = 6,
508 },
509 },
510 {
511 .base = {
512 .domain[nv_clk_src_gpc] = 540000,
513 .voltage = 7,
514 },
515 },
516 {
517 .base = {
518 .domain[nv_clk_src_gpc] = 612000,
519 .voltage = 8,
520 },
521 },
522 {
523 .base = {
524 .domain[nv_clk_src_gpc] = 648000,
525 .voltage = 9,
526 },
527 },
528 {
529 .base = {
530 .domain[nv_clk_src_gpc] = 684000,
531 .voltage = 10,
532 },
533 },
534 {
535 .base = {
536 .domain[nv_clk_src_gpc] = 708000,
537 .voltage = 11,
538 },
539 },
540 {
541 .base = {
542 .domain[nv_clk_src_gpc] = 756000,
543 .voltage = 12,
544 },
545 },
546 {
547 .base = {
548 .domain[nv_clk_src_gpc] = 804000,
549 .voltage = 13,
550 },
551 },
552 {
553 .base = {
554 .domain[nv_clk_src_gpc] = 852000,
555 .voltage = 14,
556 },
557 },
558 };
559
560 static int
561 gk20a_clk_read(struct nvkm_clk *clk, enum nv_clk_src src)
562 {
563 struct gk20a_clk_priv *priv = (void *)clk;
564
565 switch (src) {
566 case nv_clk_src_crystal:
567 return nv_device(clk)->crystal;
568 case nv_clk_src_gpc:
569 gk20a_pllg_read_mnp(priv);
570 return gk20a_pllg_calc_rate(priv) / GK20A_CLK_GPC_MDIV;
571 default:
572 nv_error(clk, "invalid clock source %d\n", src);
573 return -EINVAL;
574 }
575 }
576
577 static int
578 gk20a_clk_calc(struct nvkm_clk *clk, struct nvkm_cstate *cstate)
579 {
580 struct gk20a_clk_priv *priv = (void *)clk;
581
582 return gk20a_pllg_calc_mnp(priv, cstate->domain[nv_clk_src_gpc] *
583 GK20A_CLK_GPC_MDIV);
584 }
585
586 static int
587 gk20a_clk_prog(struct nvkm_clk *clk)
588 {
589 struct gk20a_clk_priv *priv = (void *)clk;
590
591 return gk20a_pllg_program_mnp(priv);
592 }
593
594 static void
595 gk20a_clk_tidy(struct nvkm_clk *clk)
596 {
597 }
598
599 static int
600 gk20a_clk_fini(struct nvkm_object *object, bool suspend)
601 {
602 struct gk20a_clk_priv *priv = (void *)object;
603 int ret;
604
605 ret = nvkm_clk_fini(&priv->base, false);
606
607 gk20a_pllg_disable(priv);
608
609 return ret;
610 }
611
612 static int
613 gk20a_clk_init(struct nvkm_object *object)
614 {
615 struct gk20a_clk_priv *priv = (void *)object;
616 int ret;
617
618 nv_mask(priv, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, GPC2CLK_OUT_INIT_VAL);
619
620 ret = nvkm_clk_init(&priv->base);
621 if (ret)
622 return ret;
623
624 ret = gk20a_clk_prog(&priv->base);
625 if (ret) {
626 nv_error(priv, "cannot initialize clock\n");
627 return ret;
628 }
629
630 return 0;
631 }
632
633 static int
634 gk20a_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
635 struct nvkm_oclass *oclass, void *data, u32 size,
636 struct nvkm_object **pobject)
637 {
638 struct gk20a_clk_priv *priv;
639 struct nouveau_platform_device *plat;
640 int ret;
641 int i;
642
643 /* Finish initializing the pstates */
644 for (i = 0; i < ARRAY_SIZE(gk20a_pstates); i++) {
645 INIT_LIST_HEAD(&gk20a_pstates[i].list);
646 gk20a_pstates[i].pstate = i + 1;
647 }
648
649 ret = nvkm_clk_create(parent, engine, oclass, gk20a_domains,
650 gk20a_pstates, ARRAY_SIZE(gk20a_pstates),
651 true, &priv);
652 *pobject = nv_object(priv);
653 if (ret)
654 return ret;
655
656 priv->params = &gk20a_pllg_params;
657
658 plat = nv_device_to_platform(nv_device(parent));
659 priv->parent_rate = clk_get_rate(plat->gpu->clk);
660 nv_info(priv, "parent clock rate: %d Mhz\n", priv->parent_rate / MHZ);
661
662 priv->base.read = gk20a_clk_read;
663 priv->base.calc = gk20a_clk_calc;
664 priv->base.prog = gk20a_clk_prog;
665 priv->base.tidy = gk20a_clk_tidy;
666 return 0;
667 }
668
669 struct nvkm_oclass
670 gk20a_clk_oclass = {
671 .handle = NV_SUBDEV(CLK, 0xea),
672 .ofuncs = &(struct nvkm_ofuncs) {
673 .ctor = gk20a_clk_ctor,
674 .dtor = _nvkm_subdev_dtor,
675 .init = gk20a_clk_init,
676 .fini = gk20a_clk_fini,
677 },
678 };
This page took 0.163781 seconds and 5 git commands to generate.