Merge branch 'drm-nouveau-fixes-3.8' of git://anongit.freedesktop.org/git/nouveau...
[deliverable/linux.git] / drivers / gpu / drm / ttm / ttm_bo.c
1 /**************************************************************************
2 *
3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27 /*
28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29 */
30
31 #define pr_fmt(fmt) "[TTM] " fmt
32
33 #include <drm/ttm/ttm_module.h>
34 #include <drm/ttm/ttm_bo_driver.h>
35 #include <drm/ttm/ttm_placement.h>
36 #include <linux/jiffies.h>
37 #include <linux/slab.h>
38 #include <linux/sched.h>
39 #include <linux/mm.h>
40 #include <linux/file.h>
41 #include <linux/module.h>
42 #include <linux/atomic.h>
43
44 #define TTM_ASSERT_LOCKED(param)
45 #define TTM_DEBUG(fmt, arg...)
46 #define TTM_BO_HASH_ORDER 13
47
48 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
49 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
50 static void ttm_bo_global_kobj_release(struct kobject *kobj);
51
52 static struct attribute ttm_bo_count = {
53 .name = "bo_count",
54 .mode = S_IRUGO
55 };
56
57 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
58 {
59 int i;
60
61 for (i = 0; i <= TTM_PL_PRIV5; i++)
62 if (flags & (1 << i)) {
63 *mem_type = i;
64 return 0;
65 }
66 return -EINVAL;
67 }
68
69 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
70 {
71 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
72
73 pr_err(" has_type: %d\n", man->has_type);
74 pr_err(" use_type: %d\n", man->use_type);
75 pr_err(" flags: 0x%08X\n", man->flags);
76 pr_err(" gpu_offset: 0x%08lX\n", man->gpu_offset);
77 pr_err(" size: %llu\n", man->size);
78 pr_err(" available_caching: 0x%08X\n", man->available_caching);
79 pr_err(" default_caching: 0x%08X\n", man->default_caching);
80 if (mem_type != TTM_PL_SYSTEM)
81 (*man->func->debug)(man, TTM_PFX);
82 }
83
84 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
85 struct ttm_placement *placement)
86 {
87 int i, ret, mem_type;
88
89 pr_err("No space for %p (%lu pages, %luK, %luM)\n",
90 bo, bo->mem.num_pages, bo->mem.size >> 10,
91 bo->mem.size >> 20);
92 for (i = 0; i < placement->num_placement; i++) {
93 ret = ttm_mem_type_from_flags(placement->placement[i],
94 &mem_type);
95 if (ret)
96 return;
97 pr_err(" placement[%d]=0x%08X (%d)\n",
98 i, placement->placement[i], mem_type);
99 ttm_mem_type_debug(bo->bdev, mem_type);
100 }
101 }
102
103 static ssize_t ttm_bo_global_show(struct kobject *kobj,
104 struct attribute *attr,
105 char *buffer)
106 {
107 struct ttm_bo_global *glob =
108 container_of(kobj, struct ttm_bo_global, kobj);
109
110 return snprintf(buffer, PAGE_SIZE, "%lu\n",
111 (unsigned long) atomic_read(&glob->bo_count));
112 }
113
114 static struct attribute *ttm_bo_global_attrs[] = {
115 &ttm_bo_count,
116 NULL
117 };
118
119 static const struct sysfs_ops ttm_bo_global_ops = {
120 .show = &ttm_bo_global_show
121 };
122
123 static struct kobj_type ttm_bo_glob_kobj_type = {
124 .release = &ttm_bo_global_kobj_release,
125 .sysfs_ops = &ttm_bo_global_ops,
126 .default_attrs = ttm_bo_global_attrs
127 };
128
129
130 static inline uint32_t ttm_bo_type_flags(unsigned type)
131 {
132 return 1 << (type);
133 }
134
135 static void ttm_bo_release_list(struct kref *list_kref)
136 {
137 struct ttm_buffer_object *bo =
138 container_of(list_kref, struct ttm_buffer_object, list_kref);
139 struct ttm_bo_device *bdev = bo->bdev;
140 size_t acc_size = bo->acc_size;
141
142 BUG_ON(atomic_read(&bo->list_kref.refcount));
143 BUG_ON(atomic_read(&bo->kref.refcount));
144 BUG_ON(atomic_read(&bo->cpu_writers));
145 BUG_ON(bo->sync_obj != NULL);
146 BUG_ON(bo->mem.mm_node != NULL);
147 BUG_ON(!list_empty(&bo->lru));
148 BUG_ON(!list_empty(&bo->ddestroy));
149
150 if (bo->ttm)
151 ttm_tt_destroy(bo->ttm);
152 atomic_dec(&bo->glob->bo_count);
153 if (bo->destroy)
154 bo->destroy(bo);
155 else {
156 kfree(bo);
157 }
158 ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
159 }
160
161 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
162 {
163 if (interruptible) {
164 return wait_event_interruptible(bo->event_queue,
165 !ttm_bo_is_reserved(bo));
166 } else {
167 wait_event(bo->event_queue, !ttm_bo_is_reserved(bo));
168 return 0;
169 }
170 }
171 EXPORT_SYMBOL(ttm_bo_wait_unreserved);
172
173 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
174 {
175 struct ttm_bo_device *bdev = bo->bdev;
176 struct ttm_mem_type_manager *man;
177
178 BUG_ON(!ttm_bo_is_reserved(bo));
179
180 if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
181
182 BUG_ON(!list_empty(&bo->lru));
183
184 man = &bdev->man[bo->mem.mem_type];
185 list_add_tail(&bo->lru, &man->lru);
186 kref_get(&bo->list_kref);
187
188 if (bo->ttm != NULL) {
189 list_add_tail(&bo->swap, &bo->glob->swap_lru);
190 kref_get(&bo->list_kref);
191 }
192 }
193 }
194
195 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
196 {
197 int put_count = 0;
198
199 if (!list_empty(&bo->swap)) {
200 list_del_init(&bo->swap);
201 ++put_count;
202 }
203 if (!list_empty(&bo->lru)) {
204 list_del_init(&bo->lru);
205 ++put_count;
206 }
207
208 /*
209 * TODO: Add a driver hook to delete from
210 * driver-specific LRU's here.
211 */
212
213 return put_count;
214 }
215
216 int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
217 bool interruptible,
218 bool no_wait, bool use_sequence, uint32_t sequence)
219 {
220 struct ttm_bo_global *glob = bo->glob;
221 int ret;
222
223 while (unlikely(atomic_read(&bo->reserved) != 0)) {
224 /**
225 * Deadlock avoidance for multi-bo reserving.
226 */
227 if (use_sequence && bo->seq_valid) {
228 /**
229 * We've already reserved this one.
230 */
231 if (unlikely(sequence == bo->val_seq))
232 return -EDEADLK;
233 /**
234 * Already reserved by a thread that will not back
235 * off for us. We need to back off.
236 */
237 if (unlikely(sequence - bo->val_seq < (1 << 31)))
238 return -EAGAIN;
239 }
240
241 if (no_wait)
242 return -EBUSY;
243
244 spin_unlock(&glob->lru_lock);
245 ret = ttm_bo_wait_unreserved(bo, interruptible);
246 spin_lock(&glob->lru_lock);
247
248 if (unlikely(ret))
249 return ret;
250 }
251
252 atomic_set(&bo->reserved, 1);
253 if (use_sequence) {
254 /**
255 * Wake up waiters that may need to recheck for deadlock,
256 * if we decreased the sequence number.
257 */
258 if (unlikely((bo->val_seq - sequence < (1 << 31))
259 || !bo->seq_valid))
260 wake_up_all(&bo->event_queue);
261
262 bo->val_seq = sequence;
263 bo->seq_valid = true;
264 } else {
265 bo->seq_valid = false;
266 }
267
268 return 0;
269 }
270 EXPORT_SYMBOL(ttm_bo_reserve);
271
272 static void ttm_bo_ref_bug(struct kref *list_kref)
273 {
274 BUG();
275 }
276
277 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
278 bool never_free)
279 {
280 kref_sub(&bo->list_kref, count,
281 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
282 }
283
284 int ttm_bo_reserve(struct ttm_buffer_object *bo,
285 bool interruptible,
286 bool no_wait, bool use_sequence, uint32_t sequence)
287 {
288 struct ttm_bo_global *glob = bo->glob;
289 int put_count = 0;
290 int ret;
291
292 spin_lock(&glob->lru_lock);
293 ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
294 sequence);
295 if (likely(ret == 0))
296 put_count = ttm_bo_del_from_lru(bo);
297 spin_unlock(&glob->lru_lock);
298
299 ttm_bo_list_ref_sub(bo, put_count, true);
300
301 return ret;
302 }
303
304 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
305 {
306 ttm_bo_add_to_lru(bo);
307 atomic_set(&bo->reserved, 0);
308 wake_up_all(&bo->event_queue);
309 }
310
311 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
312 {
313 struct ttm_bo_global *glob = bo->glob;
314
315 spin_lock(&glob->lru_lock);
316 ttm_bo_unreserve_locked(bo);
317 spin_unlock(&glob->lru_lock);
318 }
319 EXPORT_SYMBOL(ttm_bo_unreserve);
320
321 /*
322 * Call bo->mutex locked.
323 */
324 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
325 {
326 struct ttm_bo_device *bdev = bo->bdev;
327 struct ttm_bo_global *glob = bo->glob;
328 int ret = 0;
329 uint32_t page_flags = 0;
330
331 TTM_ASSERT_LOCKED(&bo->mutex);
332 bo->ttm = NULL;
333
334 if (bdev->need_dma32)
335 page_flags |= TTM_PAGE_FLAG_DMA32;
336
337 switch (bo->type) {
338 case ttm_bo_type_device:
339 if (zero_alloc)
340 page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
341 case ttm_bo_type_kernel:
342 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
343 page_flags, glob->dummy_read_page);
344 if (unlikely(bo->ttm == NULL))
345 ret = -ENOMEM;
346 break;
347 case ttm_bo_type_sg:
348 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
349 page_flags | TTM_PAGE_FLAG_SG,
350 glob->dummy_read_page);
351 if (unlikely(bo->ttm == NULL)) {
352 ret = -ENOMEM;
353 break;
354 }
355 bo->ttm->sg = bo->sg;
356 break;
357 default:
358 pr_err("Illegal buffer object type\n");
359 ret = -EINVAL;
360 break;
361 }
362
363 return ret;
364 }
365
366 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
367 struct ttm_mem_reg *mem,
368 bool evict, bool interruptible,
369 bool no_wait_gpu)
370 {
371 struct ttm_bo_device *bdev = bo->bdev;
372 bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
373 bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
374 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
375 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
376 int ret = 0;
377
378 if (old_is_pci || new_is_pci ||
379 ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
380 ret = ttm_mem_io_lock(old_man, true);
381 if (unlikely(ret != 0))
382 goto out_err;
383 ttm_bo_unmap_virtual_locked(bo);
384 ttm_mem_io_unlock(old_man);
385 }
386
387 /*
388 * Create and bind a ttm if required.
389 */
390
391 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
392 if (bo->ttm == NULL) {
393 bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
394 ret = ttm_bo_add_ttm(bo, zero);
395 if (ret)
396 goto out_err;
397 }
398
399 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
400 if (ret)
401 goto out_err;
402
403 if (mem->mem_type != TTM_PL_SYSTEM) {
404 ret = ttm_tt_bind(bo->ttm, mem);
405 if (ret)
406 goto out_err;
407 }
408
409 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
410 if (bdev->driver->move_notify)
411 bdev->driver->move_notify(bo, mem);
412 bo->mem = *mem;
413 mem->mm_node = NULL;
414 goto moved;
415 }
416 }
417
418 if (bdev->driver->move_notify)
419 bdev->driver->move_notify(bo, mem);
420
421 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
422 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
423 ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem);
424 else if (bdev->driver->move)
425 ret = bdev->driver->move(bo, evict, interruptible,
426 no_wait_gpu, mem);
427 else
428 ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem);
429
430 if (ret) {
431 if (bdev->driver->move_notify) {
432 struct ttm_mem_reg tmp_mem = *mem;
433 *mem = bo->mem;
434 bo->mem = tmp_mem;
435 bdev->driver->move_notify(bo, mem);
436 bo->mem = *mem;
437 *mem = tmp_mem;
438 }
439
440 goto out_err;
441 }
442
443 moved:
444 if (bo->evicted) {
445 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
446 if (ret)
447 pr_err("Can not flush read caches\n");
448 bo->evicted = false;
449 }
450
451 if (bo->mem.mm_node) {
452 bo->offset = (bo->mem.start << PAGE_SHIFT) +
453 bdev->man[bo->mem.mem_type].gpu_offset;
454 bo->cur_placement = bo->mem.placement;
455 } else
456 bo->offset = 0;
457
458 return 0;
459
460 out_err:
461 new_man = &bdev->man[bo->mem.mem_type];
462 if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
463 ttm_tt_unbind(bo->ttm);
464 ttm_tt_destroy(bo->ttm);
465 bo->ttm = NULL;
466 }
467
468 return ret;
469 }
470
471 /**
472 * Call bo::reserved.
473 * Will release GPU memory type usage on destruction.
474 * This is the place to put in driver specific hooks to release
475 * driver private resources.
476 * Will release the bo::reserved lock.
477 */
478
479 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
480 {
481 if (bo->bdev->driver->move_notify)
482 bo->bdev->driver->move_notify(bo, NULL);
483
484 if (bo->ttm) {
485 ttm_tt_unbind(bo->ttm);
486 ttm_tt_destroy(bo->ttm);
487 bo->ttm = NULL;
488 }
489 ttm_bo_mem_put(bo, &bo->mem);
490
491 atomic_set(&bo->reserved, 0);
492 wake_up_all(&bo->event_queue);
493
494 /*
495 * Since the final reference to this bo may not be dropped by
496 * the current task we have to put a memory barrier here to make
497 * sure the changes done in this function are always visible.
498 *
499 * This function only needs protection against the final kref_put.
500 */
501 smp_mb__before_atomic_dec();
502 }
503
504 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
505 {
506 struct ttm_bo_device *bdev = bo->bdev;
507 struct ttm_bo_global *glob = bo->glob;
508 struct ttm_bo_driver *driver = bdev->driver;
509 void *sync_obj = NULL;
510 int put_count;
511 int ret;
512
513 spin_lock(&glob->lru_lock);
514 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
515
516 spin_lock(&bdev->fence_lock);
517 (void) ttm_bo_wait(bo, false, false, true);
518 if (!ret && !bo->sync_obj) {
519 spin_unlock(&bdev->fence_lock);
520 put_count = ttm_bo_del_from_lru(bo);
521
522 spin_unlock(&glob->lru_lock);
523 ttm_bo_cleanup_memtype_use(bo);
524
525 ttm_bo_list_ref_sub(bo, put_count, true);
526
527 return;
528 }
529 if (bo->sync_obj)
530 sync_obj = driver->sync_obj_ref(bo->sync_obj);
531 spin_unlock(&bdev->fence_lock);
532
533 if (!ret) {
534 atomic_set(&bo->reserved, 0);
535 wake_up_all(&bo->event_queue);
536 }
537
538 kref_get(&bo->list_kref);
539 list_add_tail(&bo->ddestroy, &bdev->ddestroy);
540 spin_unlock(&glob->lru_lock);
541
542 if (sync_obj) {
543 driver->sync_obj_flush(sync_obj);
544 driver->sync_obj_unref(&sync_obj);
545 }
546 schedule_delayed_work(&bdev->wq,
547 ((HZ / 100) < 1) ? 1 : HZ / 100);
548 }
549
550 /**
551 * function ttm_bo_cleanup_refs_and_unlock
552 * If bo idle, remove from delayed- and lru lists, and unref.
553 * If not idle, do nothing.
554 *
555 * Must be called with lru_lock and reservation held, this function
556 * will drop both before returning.
557 *
558 * @interruptible Any sleeps should occur interruptibly.
559 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead.
560 */
561
562 static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
563 bool interruptible,
564 bool no_wait_gpu)
565 {
566 struct ttm_bo_device *bdev = bo->bdev;
567 struct ttm_bo_driver *driver = bdev->driver;
568 struct ttm_bo_global *glob = bo->glob;
569 int put_count;
570 int ret;
571
572 spin_lock(&bdev->fence_lock);
573 ret = ttm_bo_wait(bo, false, false, true);
574
575 if (ret && !no_wait_gpu) {
576 void *sync_obj;
577
578 /*
579 * Take a reference to the fence and unreserve,
580 * at this point the buffer should be dead, so
581 * no new sync objects can be attached.
582 */
583 sync_obj = driver->sync_obj_ref(bo->sync_obj);
584 spin_unlock(&bdev->fence_lock);
585
586 atomic_set(&bo->reserved, 0);
587 wake_up_all(&bo->event_queue);
588 spin_unlock(&glob->lru_lock);
589
590 ret = driver->sync_obj_wait(sync_obj, false, interruptible);
591 driver->sync_obj_unref(&sync_obj);
592 if (ret)
593 return ret;
594
595 /*
596 * remove sync_obj with ttm_bo_wait, the wait should be
597 * finished, and no new wait object should have been added.
598 */
599 spin_lock(&bdev->fence_lock);
600 ret = ttm_bo_wait(bo, false, false, true);
601 WARN_ON(ret);
602 spin_unlock(&bdev->fence_lock);
603 if (ret)
604 return ret;
605
606 spin_lock(&glob->lru_lock);
607 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
608
609 /*
610 * We raced, and lost, someone else holds the reservation now,
611 * and is probably busy in ttm_bo_cleanup_memtype_use.
612 *
613 * Even if it's not the case, because we finished waiting any
614 * delayed destruction would succeed, so just return success
615 * here.
616 */
617 if (ret) {
618 spin_unlock(&glob->lru_lock);
619 return 0;
620 }
621 } else
622 spin_unlock(&bdev->fence_lock);
623
624 if (ret || unlikely(list_empty(&bo->ddestroy))) {
625 atomic_set(&bo->reserved, 0);
626 wake_up_all(&bo->event_queue);
627 spin_unlock(&glob->lru_lock);
628 return ret;
629 }
630
631 put_count = ttm_bo_del_from_lru(bo);
632 list_del_init(&bo->ddestroy);
633 ++put_count;
634
635 spin_unlock(&glob->lru_lock);
636 ttm_bo_cleanup_memtype_use(bo);
637
638 ttm_bo_list_ref_sub(bo, put_count, true);
639
640 return 0;
641 }
642
643 /**
644 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
645 * encountered buffers.
646 */
647
648 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
649 {
650 struct ttm_bo_global *glob = bdev->glob;
651 struct ttm_buffer_object *entry = NULL;
652 int ret = 0;
653
654 spin_lock(&glob->lru_lock);
655 if (list_empty(&bdev->ddestroy))
656 goto out_unlock;
657
658 entry = list_first_entry(&bdev->ddestroy,
659 struct ttm_buffer_object, ddestroy);
660 kref_get(&entry->list_kref);
661
662 for (;;) {
663 struct ttm_buffer_object *nentry = NULL;
664
665 if (entry->ddestroy.next != &bdev->ddestroy) {
666 nentry = list_first_entry(&entry->ddestroy,
667 struct ttm_buffer_object, ddestroy);
668 kref_get(&nentry->list_kref);
669 }
670
671 ret = ttm_bo_reserve_locked(entry, false, !remove_all, false, 0);
672 if (!ret)
673 ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
674 !remove_all);
675 else
676 spin_unlock(&glob->lru_lock);
677
678 kref_put(&entry->list_kref, ttm_bo_release_list);
679 entry = nentry;
680
681 if (ret || !entry)
682 goto out;
683
684 spin_lock(&glob->lru_lock);
685 if (list_empty(&entry->ddestroy))
686 break;
687 }
688
689 out_unlock:
690 spin_unlock(&glob->lru_lock);
691 out:
692 if (entry)
693 kref_put(&entry->list_kref, ttm_bo_release_list);
694 return ret;
695 }
696
697 static void ttm_bo_delayed_workqueue(struct work_struct *work)
698 {
699 struct ttm_bo_device *bdev =
700 container_of(work, struct ttm_bo_device, wq.work);
701
702 if (ttm_bo_delayed_delete(bdev, false)) {
703 schedule_delayed_work(&bdev->wq,
704 ((HZ / 100) < 1) ? 1 : HZ / 100);
705 }
706 }
707
708 static void ttm_bo_release(struct kref *kref)
709 {
710 struct ttm_buffer_object *bo =
711 container_of(kref, struct ttm_buffer_object, kref);
712 struct ttm_bo_device *bdev = bo->bdev;
713 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
714
715 write_lock(&bdev->vm_lock);
716 if (likely(bo->vm_node != NULL)) {
717 rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
718 drm_mm_put_block(bo->vm_node);
719 bo->vm_node = NULL;
720 }
721 write_unlock(&bdev->vm_lock);
722 ttm_mem_io_lock(man, false);
723 ttm_mem_io_free_vm(bo);
724 ttm_mem_io_unlock(man);
725 ttm_bo_cleanup_refs_or_queue(bo);
726 kref_put(&bo->list_kref, ttm_bo_release_list);
727 }
728
729 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
730 {
731 struct ttm_buffer_object *bo = *p_bo;
732
733 *p_bo = NULL;
734 kref_put(&bo->kref, ttm_bo_release);
735 }
736 EXPORT_SYMBOL(ttm_bo_unref);
737
738 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
739 {
740 return cancel_delayed_work_sync(&bdev->wq);
741 }
742 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
743
744 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
745 {
746 if (resched)
747 schedule_delayed_work(&bdev->wq,
748 ((HZ / 100) < 1) ? 1 : HZ / 100);
749 }
750 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
751
752 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
753 bool no_wait_gpu)
754 {
755 struct ttm_bo_device *bdev = bo->bdev;
756 struct ttm_mem_reg evict_mem;
757 struct ttm_placement placement;
758 int ret = 0;
759
760 spin_lock(&bdev->fence_lock);
761 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
762 spin_unlock(&bdev->fence_lock);
763
764 if (unlikely(ret != 0)) {
765 if (ret != -ERESTARTSYS) {
766 pr_err("Failed to expire sync object before buffer eviction\n");
767 }
768 goto out;
769 }
770
771 BUG_ON(!ttm_bo_is_reserved(bo));
772
773 evict_mem = bo->mem;
774 evict_mem.mm_node = NULL;
775 evict_mem.bus.io_reserved_vm = false;
776 evict_mem.bus.io_reserved_count = 0;
777
778 placement.fpfn = 0;
779 placement.lpfn = 0;
780 placement.num_placement = 0;
781 placement.num_busy_placement = 0;
782 bdev->driver->evict_flags(bo, &placement);
783 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
784 no_wait_gpu);
785 if (ret) {
786 if (ret != -ERESTARTSYS) {
787 pr_err("Failed to find memory space for buffer 0x%p eviction\n",
788 bo);
789 ttm_bo_mem_space_debug(bo, &placement);
790 }
791 goto out;
792 }
793
794 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
795 no_wait_gpu);
796 if (ret) {
797 if (ret != -ERESTARTSYS)
798 pr_err("Buffer eviction failed\n");
799 ttm_bo_mem_put(bo, &evict_mem);
800 goto out;
801 }
802 bo->evicted = true;
803 out:
804 return ret;
805 }
806
807 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
808 uint32_t mem_type,
809 bool interruptible,
810 bool no_wait_gpu)
811 {
812 struct ttm_bo_global *glob = bdev->glob;
813 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
814 struct ttm_buffer_object *bo;
815 int ret = -EBUSY, put_count;
816
817 spin_lock(&glob->lru_lock);
818 list_for_each_entry(bo, &man->lru, lru) {
819 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
820 if (!ret)
821 break;
822 }
823
824 if (ret) {
825 spin_unlock(&glob->lru_lock);
826 return ret;
827 }
828
829 kref_get(&bo->list_kref);
830
831 if (!list_empty(&bo->ddestroy)) {
832 ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
833 no_wait_gpu);
834 kref_put(&bo->list_kref, ttm_bo_release_list);
835 return ret;
836 }
837
838 put_count = ttm_bo_del_from_lru(bo);
839 spin_unlock(&glob->lru_lock);
840
841 BUG_ON(ret != 0);
842
843 ttm_bo_list_ref_sub(bo, put_count, true);
844
845 ret = ttm_bo_evict(bo, interruptible, no_wait_gpu);
846 ttm_bo_unreserve(bo);
847
848 kref_put(&bo->list_kref, ttm_bo_release_list);
849 return ret;
850 }
851
852 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
853 {
854 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
855
856 if (mem->mm_node)
857 (*man->func->put_node)(man, mem);
858 }
859 EXPORT_SYMBOL(ttm_bo_mem_put);
860
861 /**
862 * Repeatedly evict memory from the LRU for @mem_type until we create enough
863 * space, or we've evicted everything and there isn't enough space.
864 */
865 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
866 uint32_t mem_type,
867 struct ttm_placement *placement,
868 struct ttm_mem_reg *mem,
869 bool interruptible,
870 bool no_wait_gpu)
871 {
872 struct ttm_bo_device *bdev = bo->bdev;
873 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
874 int ret;
875
876 do {
877 ret = (*man->func->get_node)(man, bo, placement, mem);
878 if (unlikely(ret != 0))
879 return ret;
880 if (mem->mm_node)
881 break;
882 ret = ttm_mem_evict_first(bdev, mem_type,
883 interruptible, no_wait_gpu);
884 if (unlikely(ret != 0))
885 return ret;
886 } while (1);
887 if (mem->mm_node == NULL)
888 return -ENOMEM;
889 mem->mem_type = mem_type;
890 return 0;
891 }
892
893 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
894 uint32_t cur_placement,
895 uint32_t proposed_placement)
896 {
897 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
898 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
899
900 /**
901 * Keep current caching if possible.
902 */
903
904 if ((cur_placement & caching) != 0)
905 result |= (cur_placement & caching);
906 else if ((man->default_caching & caching) != 0)
907 result |= man->default_caching;
908 else if ((TTM_PL_FLAG_CACHED & caching) != 0)
909 result |= TTM_PL_FLAG_CACHED;
910 else if ((TTM_PL_FLAG_WC & caching) != 0)
911 result |= TTM_PL_FLAG_WC;
912 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
913 result |= TTM_PL_FLAG_UNCACHED;
914
915 return result;
916 }
917
918 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
919 uint32_t mem_type,
920 uint32_t proposed_placement,
921 uint32_t *masked_placement)
922 {
923 uint32_t cur_flags = ttm_bo_type_flags(mem_type);
924
925 if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
926 return false;
927
928 if ((proposed_placement & man->available_caching) == 0)
929 return false;
930
931 cur_flags |= (proposed_placement & man->available_caching);
932
933 *masked_placement = cur_flags;
934 return true;
935 }
936
937 /**
938 * Creates space for memory region @mem according to its type.
939 *
940 * This function first searches for free space in compatible memory types in
941 * the priority order defined by the driver. If free space isn't found, then
942 * ttm_bo_mem_force_space is attempted in priority order to evict and find
943 * space.
944 */
945 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
946 struct ttm_placement *placement,
947 struct ttm_mem_reg *mem,
948 bool interruptible,
949 bool no_wait_gpu)
950 {
951 struct ttm_bo_device *bdev = bo->bdev;
952 struct ttm_mem_type_manager *man;
953 uint32_t mem_type = TTM_PL_SYSTEM;
954 uint32_t cur_flags = 0;
955 bool type_found = false;
956 bool type_ok = false;
957 bool has_erestartsys = false;
958 int i, ret;
959
960 mem->mm_node = NULL;
961 for (i = 0; i < placement->num_placement; ++i) {
962 ret = ttm_mem_type_from_flags(placement->placement[i],
963 &mem_type);
964 if (ret)
965 return ret;
966 man = &bdev->man[mem_type];
967
968 type_ok = ttm_bo_mt_compatible(man,
969 mem_type,
970 placement->placement[i],
971 &cur_flags);
972
973 if (!type_ok)
974 continue;
975
976 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
977 cur_flags);
978 /*
979 * Use the access and other non-mapping-related flag bits from
980 * the memory placement flags to the current flags
981 */
982 ttm_flag_masked(&cur_flags, placement->placement[i],
983 ~TTM_PL_MASK_MEMTYPE);
984
985 if (mem_type == TTM_PL_SYSTEM)
986 break;
987
988 if (man->has_type && man->use_type) {
989 type_found = true;
990 ret = (*man->func->get_node)(man, bo, placement, mem);
991 if (unlikely(ret))
992 return ret;
993 }
994 if (mem->mm_node)
995 break;
996 }
997
998 if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
999 mem->mem_type = mem_type;
1000 mem->placement = cur_flags;
1001 return 0;
1002 }
1003
1004 if (!type_found)
1005 return -EINVAL;
1006
1007 for (i = 0; i < placement->num_busy_placement; ++i) {
1008 ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1009 &mem_type);
1010 if (ret)
1011 return ret;
1012 man = &bdev->man[mem_type];
1013 if (!man->has_type)
1014 continue;
1015 if (!ttm_bo_mt_compatible(man,
1016 mem_type,
1017 placement->busy_placement[i],
1018 &cur_flags))
1019 continue;
1020
1021 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1022 cur_flags);
1023 /*
1024 * Use the access and other non-mapping-related flag bits from
1025 * the memory placement flags to the current flags
1026 */
1027 ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1028 ~TTM_PL_MASK_MEMTYPE);
1029
1030
1031 if (mem_type == TTM_PL_SYSTEM) {
1032 mem->mem_type = mem_type;
1033 mem->placement = cur_flags;
1034 mem->mm_node = NULL;
1035 return 0;
1036 }
1037
1038 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1039 interruptible, no_wait_gpu);
1040 if (ret == 0 && mem->mm_node) {
1041 mem->placement = cur_flags;
1042 return 0;
1043 }
1044 if (ret == -ERESTARTSYS)
1045 has_erestartsys = true;
1046 }
1047 ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1048 return ret;
1049 }
1050 EXPORT_SYMBOL(ttm_bo_mem_space);
1051
1052 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1053 struct ttm_placement *placement,
1054 bool interruptible,
1055 bool no_wait_gpu)
1056 {
1057 int ret = 0;
1058 struct ttm_mem_reg mem;
1059 struct ttm_bo_device *bdev = bo->bdev;
1060
1061 BUG_ON(!ttm_bo_is_reserved(bo));
1062
1063 /*
1064 * FIXME: It's possible to pipeline buffer moves.
1065 * Have the driver move function wait for idle when necessary,
1066 * instead of doing it here.
1067 */
1068 spin_lock(&bdev->fence_lock);
1069 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1070 spin_unlock(&bdev->fence_lock);
1071 if (ret)
1072 return ret;
1073 mem.num_pages = bo->num_pages;
1074 mem.size = mem.num_pages << PAGE_SHIFT;
1075 mem.page_alignment = bo->mem.page_alignment;
1076 mem.bus.io_reserved_vm = false;
1077 mem.bus.io_reserved_count = 0;
1078 /*
1079 * Determine where to move the buffer.
1080 */
1081 ret = ttm_bo_mem_space(bo, placement, &mem,
1082 interruptible, no_wait_gpu);
1083 if (ret)
1084 goto out_unlock;
1085 ret = ttm_bo_handle_move_mem(bo, &mem, false,
1086 interruptible, no_wait_gpu);
1087 out_unlock:
1088 if (ret && mem.mm_node)
1089 ttm_bo_mem_put(bo, &mem);
1090 return ret;
1091 }
1092
1093 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1094 struct ttm_mem_reg *mem)
1095 {
1096 int i;
1097
1098 if (mem->mm_node && placement->lpfn != 0 &&
1099 (mem->start < placement->fpfn ||
1100 mem->start + mem->num_pages > placement->lpfn))
1101 return -1;
1102
1103 for (i = 0; i < placement->num_placement; i++) {
1104 if ((placement->placement[i] & mem->placement &
1105 TTM_PL_MASK_CACHING) &&
1106 (placement->placement[i] & mem->placement &
1107 TTM_PL_MASK_MEM))
1108 return i;
1109 }
1110 return -1;
1111 }
1112
1113 int ttm_bo_validate(struct ttm_buffer_object *bo,
1114 struct ttm_placement *placement,
1115 bool interruptible,
1116 bool no_wait_gpu)
1117 {
1118 int ret;
1119
1120 BUG_ON(!ttm_bo_is_reserved(bo));
1121 /* Check that range is valid */
1122 if (placement->lpfn || placement->fpfn)
1123 if (placement->fpfn > placement->lpfn ||
1124 (placement->lpfn - placement->fpfn) < bo->num_pages)
1125 return -EINVAL;
1126 /*
1127 * Check whether we need to move buffer.
1128 */
1129 ret = ttm_bo_mem_compat(placement, &bo->mem);
1130 if (ret < 0) {
1131 ret = ttm_bo_move_buffer(bo, placement, interruptible,
1132 no_wait_gpu);
1133 if (ret)
1134 return ret;
1135 } else {
1136 /*
1137 * Use the access and other non-mapping-related flag bits from
1138 * the compatible memory placement flags to the active flags
1139 */
1140 ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1141 ~TTM_PL_MASK_MEMTYPE);
1142 }
1143 /*
1144 * We might need to add a TTM.
1145 */
1146 if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1147 ret = ttm_bo_add_ttm(bo, true);
1148 if (ret)
1149 return ret;
1150 }
1151 return 0;
1152 }
1153 EXPORT_SYMBOL(ttm_bo_validate);
1154
1155 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1156 struct ttm_placement *placement)
1157 {
1158 BUG_ON((placement->fpfn || placement->lpfn) &&
1159 (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1160
1161 return 0;
1162 }
1163
1164 int ttm_bo_init(struct ttm_bo_device *bdev,
1165 struct ttm_buffer_object *bo,
1166 unsigned long size,
1167 enum ttm_bo_type type,
1168 struct ttm_placement *placement,
1169 uint32_t page_alignment,
1170 bool interruptible,
1171 struct file *persistent_swap_storage,
1172 size_t acc_size,
1173 struct sg_table *sg,
1174 void (*destroy) (struct ttm_buffer_object *))
1175 {
1176 int ret = 0;
1177 unsigned long num_pages;
1178 struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1179
1180 ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1181 if (ret) {
1182 pr_err("Out of kernel memory\n");
1183 if (destroy)
1184 (*destroy)(bo);
1185 else
1186 kfree(bo);
1187 return -ENOMEM;
1188 }
1189
1190 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1191 if (num_pages == 0) {
1192 pr_err("Illegal buffer object size\n");
1193 if (destroy)
1194 (*destroy)(bo);
1195 else
1196 kfree(bo);
1197 ttm_mem_global_free(mem_glob, acc_size);
1198 return -EINVAL;
1199 }
1200 bo->destroy = destroy;
1201
1202 kref_init(&bo->kref);
1203 kref_init(&bo->list_kref);
1204 atomic_set(&bo->cpu_writers, 0);
1205 atomic_set(&bo->reserved, 1);
1206 init_waitqueue_head(&bo->event_queue);
1207 INIT_LIST_HEAD(&bo->lru);
1208 INIT_LIST_HEAD(&bo->ddestroy);
1209 INIT_LIST_HEAD(&bo->swap);
1210 INIT_LIST_HEAD(&bo->io_reserve_lru);
1211 bo->bdev = bdev;
1212 bo->glob = bdev->glob;
1213 bo->type = type;
1214 bo->num_pages = num_pages;
1215 bo->mem.size = num_pages << PAGE_SHIFT;
1216 bo->mem.mem_type = TTM_PL_SYSTEM;
1217 bo->mem.num_pages = bo->num_pages;
1218 bo->mem.mm_node = NULL;
1219 bo->mem.page_alignment = page_alignment;
1220 bo->mem.bus.io_reserved_vm = false;
1221 bo->mem.bus.io_reserved_count = 0;
1222 bo->priv_flags = 0;
1223 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1224 bo->seq_valid = false;
1225 bo->persistent_swap_storage = persistent_swap_storage;
1226 bo->acc_size = acc_size;
1227 bo->sg = sg;
1228 atomic_inc(&bo->glob->bo_count);
1229
1230 ret = ttm_bo_check_placement(bo, placement);
1231 if (unlikely(ret != 0))
1232 goto out_err;
1233
1234 /*
1235 * For ttm_bo_type_device buffers, allocate
1236 * address space from the device.
1237 */
1238 if (bo->type == ttm_bo_type_device ||
1239 bo->type == ttm_bo_type_sg) {
1240 ret = ttm_bo_setup_vm(bo);
1241 if (ret)
1242 goto out_err;
1243 }
1244
1245 ret = ttm_bo_validate(bo, placement, interruptible, false);
1246 if (ret)
1247 goto out_err;
1248
1249 ttm_bo_unreserve(bo);
1250 return 0;
1251
1252 out_err:
1253 ttm_bo_unreserve(bo);
1254 ttm_bo_unref(&bo);
1255
1256 return ret;
1257 }
1258 EXPORT_SYMBOL(ttm_bo_init);
1259
1260 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1261 unsigned long bo_size,
1262 unsigned struct_size)
1263 {
1264 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1265 size_t size = 0;
1266
1267 size += ttm_round_pot(struct_size);
1268 size += PAGE_ALIGN(npages * sizeof(void *));
1269 size += ttm_round_pot(sizeof(struct ttm_tt));
1270 return size;
1271 }
1272 EXPORT_SYMBOL(ttm_bo_acc_size);
1273
1274 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1275 unsigned long bo_size,
1276 unsigned struct_size)
1277 {
1278 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1279 size_t size = 0;
1280
1281 size += ttm_round_pot(struct_size);
1282 size += PAGE_ALIGN(npages * sizeof(void *));
1283 size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1284 size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1285 return size;
1286 }
1287 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1288
1289 int ttm_bo_create(struct ttm_bo_device *bdev,
1290 unsigned long size,
1291 enum ttm_bo_type type,
1292 struct ttm_placement *placement,
1293 uint32_t page_alignment,
1294 bool interruptible,
1295 struct file *persistent_swap_storage,
1296 struct ttm_buffer_object **p_bo)
1297 {
1298 struct ttm_buffer_object *bo;
1299 size_t acc_size;
1300 int ret;
1301
1302 bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1303 if (unlikely(bo == NULL))
1304 return -ENOMEM;
1305
1306 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1307 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1308 interruptible, persistent_swap_storage, acc_size,
1309 NULL, NULL);
1310 if (likely(ret == 0))
1311 *p_bo = bo;
1312
1313 return ret;
1314 }
1315 EXPORT_SYMBOL(ttm_bo_create);
1316
1317 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1318 unsigned mem_type, bool allow_errors)
1319 {
1320 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1321 struct ttm_bo_global *glob = bdev->glob;
1322 int ret;
1323
1324 /*
1325 * Can't use standard list traversal since we're unlocking.
1326 */
1327
1328 spin_lock(&glob->lru_lock);
1329 while (!list_empty(&man->lru)) {
1330 spin_unlock(&glob->lru_lock);
1331 ret = ttm_mem_evict_first(bdev, mem_type, false, false);
1332 if (ret) {
1333 if (allow_errors) {
1334 return ret;
1335 } else {
1336 pr_err("Cleanup eviction failed\n");
1337 }
1338 }
1339 spin_lock(&glob->lru_lock);
1340 }
1341 spin_unlock(&glob->lru_lock);
1342 return 0;
1343 }
1344
1345 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1346 {
1347 struct ttm_mem_type_manager *man;
1348 int ret = -EINVAL;
1349
1350 if (mem_type >= TTM_NUM_MEM_TYPES) {
1351 pr_err("Illegal memory type %d\n", mem_type);
1352 return ret;
1353 }
1354 man = &bdev->man[mem_type];
1355
1356 if (!man->has_type) {
1357 pr_err("Trying to take down uninitialized memory manager type %u\n",
1358 mem_type);
1359 return ret;
1360 }
1361
1362 man->use_type = false;
1363 man->has_type = false;
1364
1365 ret = 0;
1366 if (mem_type > 0) {
1367 ttm_bo_force_list_clean(bdev, mem_type, false);
1368
1369 ret = (*man->func->takedown)(man);
1370 }
1371
1372 return ret;
1373 }
1374 EXPORT_SYMBOL(ttm_bo_clean_mm);
1375
1376 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1377 {
1378 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1379
1380 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1381 pr_err("Illegal memory manager memory type %u\n", mem_type);
1382 return -EINVAL;
1383 }
1384
1385 if (!man->has_type) {
1386 pr_err("Memory type %u has not been initialized\n", mem_type);
1387 return 0;
1388 }
1389
1390 return ttm_bo_force_list_clean(bdev, mem_type, true);
1391 }
1392 EXPORT_SYMBOL(ttm_bo_evict_mm);
1393
1394 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1395 unsigned long p_size)
1396 {
1397 int ret = -EINVAL;
1398 struct ttm_mem_type_manager *man;
1399
1400 BUG_ON(type >= TTM_NUM_MEM_TYPES);
1401 man = &bdev->man[type];
1402 BUG_ON(man->has_type);
1403 man->io_reserve_fastpath = true;
1404 man->use_io_reserve_lru = false;
1405 mutex_init(&man->io_reserve_mutex);
1406 INIT_LIST_HEAD(&man->io_reserve_lru);
1407
1408 ret = bdev->driver->init_mem_type(bdev, type, man);
1409 if (ret)
1410 return ret;
1411 man->bdev = bdev;
1412
1413 ret = 0;
1414 if (type != TTM_PL_SYSTEM) {
1415 ret = (*man->func->init)(man, p_size);
1416 if (ret)
1417 return ret;
1418 }
1419 man->has_type = true;
1420 man->use_type = true;
1421 man->size = p_size;
1422
1423 INIT_LIST_HEAD(&man->lru);
1424
1425 return 0;
1426 }
1427 EXPORT_SYMBOL(ttm_bo_init_mm);
1428
1429 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1430 {
1431 struct ttm_bo_global *glob =
1432 container_of(kobj, struct ttm_bo_global, kobj);
1433
1434 ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1435 __free_page(glob->dummy_read_page);
1436 kfree(glob);
1437 }
1438
1439 void ttm_bo_global_release(struct drm_global_reference *ref)
1440 {
1441 struct ttm_bo_global *glob = ref->object;
1442
1443 kobject_del(&glob->kobj);
1444 kobject_put(&glob->kobj);
1445 }
1446 EXPORT_SYMBOL(ttm_bo_global_release);
1447
1448 int ttm_bo_global_init(struct drm_global_reference *ref)
1449 {
1450 struct ttm_bo_global_ref *bo_ref =
1451 container_of(ref, struct ttm_bo_global_ref, ref);
1452 struct ttm_bo_global *glob = ref->object;
1453 int ret;
1454
1455 mutex_init(&glob->device_list_mutex);
1456 spin_lock_init(&glob->lru_lock);
1457 glob->mem_glob = bo_ref->mem_glob;
1458 glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1459
1460 if (unlikely(glob->dummy_read_page == NULL)) {
1461 ret = -ENOMEM;
1462 goto out_no_drp;
1463 }
1464
1465 INIT_LIST_HEAD(&glob->swap_lru);
1466 INIT_LIST_HEAD(&glob->device_list);
1467
1468 ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1469 ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1470 if (unlikely(ret != 0)) {
1471 pr_err("Could not register buffer object swapout\n");
1472 goto out_no_shrink;
1473 }
1474
1475 atomic_set(&glob->bo_count, 0);
1476
1477 ret = kobject_init_and_add(
1478 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1479 if (unlikely(ret != 0))
1480 kobject_put(&glob->kobj);
1481 return ret;
1482 out_no_shrink:
1483 __free_page(glob->dummy_read_page);
1484 out_no_drp:
1485 kfree(glob);
1486 return ret;
1487 }
1488 EXPORT_SYMBOL(ttm_bo_global_init);
1489
1490
1491 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1492 {
1493 int ret = 0;
1494 unsigned i = TTM_NUM_MEM_TYPES;
1495 struct ttm_mem_type_manager *man;
1496 struct ttm_bo_global *glob = bdev->glob;
1497
1498 while (i--) {
1499 man = &bdev->man[i];
1500 if (man->has_type) {
1501 man->use_type = false;
1502 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1503 ret = -EBUSY;
1504 pr_err("DRM memory manager type %d is not clean\n",
1505 i);
1506 }
1507 man->has_type = false;
1508 }
1509 }
1510
1511 mutex_lock(&glob->device_list_mutex);
1512 list_del(&bdev->device_list);
1513 mutex_unlock(&glob->device_list_mutex);
1514
1515 cancel_delayed_work_sync(&bdev->wq);
1516
1517 while (ttm_bo_delayed_delete(bdev, true))
1518 ;
1519
1520 spin_lock(&glob->lru_lock);
1521 if (list_empty(&bdev->ddestroy))
1522 TTM_DEBUG("Delayed destroy list was clean\n");
1523
1524 if (list_empty(&bdev->man[0].lru))
1525 TTM_DEBUG("Swap list was clean\n");
1526 spin_unlock(&glob->lru_lock);
1527
1528 BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1529 write_lock(&bdev->vm_lock);
1530 drm_mm_takedown(&bdev->addr_space_mm);
1531 write_unlock(&bdev->vm_lock);
1532
1533 return ret;
1534 }
1535 EXPORT_SYMBOL(ttm_bo_device_release);
1536
1537 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1538 struct ttm_bo_global *glob,
1539 struct ttm_bo_driver *driver,
1540 uint64_t file_page_offset,
1541 bool need_dma32)
1542 {
1543 int ret = -EINVAL;
1544
1545 rwlock_init(&bdev->vm_lock);
1546 bdev->driver = driver;
1547
1548 memset(bdev->man, 0, sizeof(bdev->man));
1549
1550 /*
1551 * Initialize the system memory buffer type.
1552 * Other types need to be driver / IOCTL initialized.
1553 */
1554 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1555 if (unlikely(ret != 0))
1556 goto out_no_sys;
1557
1558 bdev->addr_space_rb = RB_ROOT;
1559 ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1560 if (unlikely(ret != 0))
1561 goto out_no_addr_mm;
1562
1563 INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1564 INIT_LIST_HEAD(&bdev->ddestroy);
1565 bdev->dev_mapping = NULL;
1566 bdev->glob = glob;
1567 bdev->need_dma32 = need_dma32;
1568 bdev->val_seq = 0;
1569 spin_lock_init(&bdev->fence_lock);
1570 mutex_lock(&glob->device_list_mutex);
1571 list_add_tail(&bdev->device_list, &glob->device_list);
1572 mutex_unlock(&glob->device_list_mutex);
1573
1574 return 0;
1575 out_no_addr_mm:
1576 ttm_bo_clean_mm(bdev, 0);
1577 out_no_sys:
1578 return ret;
1579 }
1580 EXPORT_SYMBOL(ttm_bo_device_init);
1581
1582 /*
1583 * buffer object vm functions.
1584 */
1585
1586 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1587 {
1588 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1589
1590 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1591 if (mem->mem_type == TTM_PL_SYSTEM)
1592 return false;
1593
1594 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1595 return false;
1596
1597 if (mem->placement & TTM_PL_FLAG_CACHED)
1598 return false;
1599 }
1600 return true;
1601 }
1602
1603 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1604 {
1605 struct ttm_bo_device *bdev = bo->bdev;
1606 loff_t offset = (loff_t) bo->addr_space_offset;
1607 loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1608
1609 if (!bdev->dev_mapping)
1610 return;
1611 unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1612 ttm_mem_io_free_vm(bo);
1613 }
1614
1615 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1616 {
1617 struct ttm_bo_device *bdev = bo->bdev;
1618 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1619
1620 ttm_mem_io_lock(man, false);
1621 ttm_bo_unmap_virtual_locked(bo);
1622 ttm_mem_io_unlock(man);
1623 }
1624
1625
1626 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1627
1628 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1629 {
1630 struct ttm_bo_device *bdev = bo->bdev;
1631 struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1632 struct rb_node *parent = NULL;
1633 struct ttm_buffer_object *cur_bo;
1634 unsigned long offset = bo->vm_node->start;
1635 unsigned long cur_offset;
1636
1637 while (*cur) {
1638 parent = *cur;
1639 cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1640 cur_offset = cur_bo->vm_node->start;
1641 if (offset < cur_offset)
1642 cur = &parent->rb_left;
1643 else if (offset > cur_offset)
1644 cur = &parent->rb_right;
1645 else
1646 BUG();
1647 }
1648
1649 rb_link_node(&bo->vm_rb, parent, cur);
1650 rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1651 }
1652
1653 /**
1654 * ttm_bo_setup_vm:
1655 *
1656 * @bo: the buffer to allocate address space for
1657 *
1658 * Allocate address space in the drm device so that applications
1659 * can mmap the buffer and access the contents. This only
1660 * applies to ttm_bo_type_device objects as others are not
1661 * placed in the drm device address space.
1662 */
1663
1664 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1665 {
1666 struct ttm_bo_device *bdev = bo->bdev;
1667 int ret;
1668
1669 retry_pre_get:
1670 ret = drm_mm_pre_get(&bdev->addr_space_mm);
1671 if (unlikely(ret != 0))
1672 return ret;
1673
1674 write_lock(&bdev->vm_lock);
1675 bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1676 bo->mem.num_pages, 0, 0);
1677
1678 if (unlikely(bo->vm_node == NULL)) {
1679 ret = -ENOMEM;
1680 goto out_unlock;
1681 }
1682
1683 bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1684 bo->mem.num_pages, 0);
1685
1686 if (unlikely(bo->vm_node == NULL)) {
1687 write_unlock(&bdev->vm_lock);
1688 goto retry_pre_get;
1689 }
1690
1691 ttm_bo_vm_insert_rb(bo);
1692 write_unlock(&bdev->vm_lock);
1693 bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1694
1695 return 0;
1696 out_unlock:
1697 write_unlock(&bdev->vm_lock);
1698 return ret;
1699 }
1700
1701 int ttm_bo_wait(struct ttm_buffer_object *bo,
1702 bool lazy, bool interruptible, bool no_wait)
1703 {
1704 struct ttm_bo_driver *driver = bo->bdev->driver;
1705 struct ttm_bo_device *bdev = bo->bdev;
1706 void *sync_obj;
1707 int ret = 0;
1708
1709 if (likely(bo->sync_obj == NULL))
1710 return 0;
1711
1712 while (bo->sync_obj) {
1713
1714 if (driver->sync_obj_signaled(bo->sync_obj)) {
1715 void *tmp_obj = bo->sync_obj;
1716 bo->sync_obj = NULL;
1717 clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1718 spin_unlock(&bdev->fence_lock);
1719 driver->sync_obj_unref(&tmp_obj);
1720 spin_lock(&bdev->fence_lock);
1721 continue;
1722 }
1723
1724 if (no_wait)
1725 return -EBUSY;
1726
1727 sync_obj = driver->sync_obj_ref(bo->sync_obj);
1728 spin_unlock(&bdev->fence_lock);
1729 ret = driver->sync_obj_wait(sync_obj,
1730 lazy, interruptible);
1731 if (unlikely(ret != 0)) {
1732 driver->sync_obj_unref(&sync_obj);
1733 spin_lock(&bdev->fence_lock);
1734 return ret;
1735 }
1736 spin_lock(&bdev->fence_lock);
1737 if (likely(bo->sync_obj == sync_obj)) {
1738 void *tmp_obj = bo->sync_obj;
1739 bo->sync_obj = NULL;
1740 clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1741 &bo->priv_flags);
1742 spin_unlock(&bdev->fence_lock);
1743 driver->sync_obj_unref(&sync_obj);
1744 driver->sync_obj_unref(&tmp_obj);
1745 spin_lock(&bdev->fence_lock);
1746 } else {
1747 spin_unlock(&bdev->fence_lock);
1748 driver->sync_obj_unref(&sync_obj);
1749 spin_lock(&bdev->fence_lock);
1750 }
1751 }
1752 return 0;
1753 }
1754 EXPORT_SYMBOL(ttm_bo_wait);
1755
1756 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1757 {
1758 struct ttm_bo_device *bdev = bo->bdev;
1759 int ret = 0;
1760
1761 /*
1762 * Using ttm_bo_reserve makes sure the lru lists are updated.
1763 */
1764
1765 ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1766 if (unlikely(ret != 0))
1767 return ret;
1768 spin_lock(&bdev->fence_lock);
1769 ret = ttm_bo_wait(bo, false, true, no_wait);
1770 spin_unlock(&bdev->fence_lock);
1771 if (likely(ret == 0))
1772 atomic_inc(&bo->cpu_writers);
1773 ttm_bo_unreserve(bo);
1774 return ret;
1775 }
1776 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1777
1778 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1779 {
1780 atomic_dec(&bo->cpu_writers);
1781 }
1782 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1783
1784 /**
1785 * A buffer object shrink method that tries to swap out the first
1786 * buffer object on the bo_global::swap_lru list.
1787 */
1788
1789 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1790 {
1791 struct ttm_bo_global *glob =
1792 container_of(shrink, struct ttm_bo_global, shrink);
1793 struct ttm_buffer_object *bo;
1794 int ret = -EBUSY;
1795 int put_count;
1796 uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1797
1798 spin_lock(&glob->lru_lock);
1799 list_for_each_entry(bo, &glob->swap_lru, swap) {
1800 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1801 if (!ret)
1802 break;
1803 }
1804
1805 if (ret) {
1806 spin_unlock(&glob->lru_lock);
1807 return ret;
1808 }
1809
1810 kref_get(&bo->list_kref);
1811
1812 if (!list_empty(&bo->ddestroy)) {
1813 ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false);
1814 kref_put(&bo->list_kref, ttm_bo_release_list);
1815 return ret;
1816 }
1817
1818 put_count = ttm_bo_del_from_lru(bo);
1819 spin_unlock(&glob->lru_lock);
1820
1821 ttm_bo_list_ref_sub(bo, put_count, true);
1822
1823 /**
1824 * Wait for GPU, then move to system cached.
1825 */
1826
1827 spin_lock(&bo->bdev->fence_lock);
1828 ret = ttm_bo_wait(bo, false, false, false);
1829 spin_unlock(&bo->bdev->fence_lock);
1830
1831 if (unlikely(ret != 0))
1832 goto out;
1833
1834 if ((bo->mem.placement & swap_placement) != swap_placement) {
1835 struct ttm_mem_reg evict_mem;
1836
1837 evict_mem = bo->mem;
1838 evict_mem.mm_node = NULL;
1839 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1840 evict_mem.mem_type = TTM_PL_SYSTEM;
1841
1842 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1843 false, false);
1844 if (unlikely(ret != 0))
1845 goto out;
1846 }
1847
1848 ttm_bo_unmap_virtual(bo);
1849
1850 /**
1851 * Swap out. Buffer will be swapped in again as soon as
1852 * anyone tries to access a ttm page.
1853 */
1854
1855 if (bo->bdev->driver->swap_notify)
1856 bo->bdev->driver->swap_notify(bo);
1857
1858 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1859 out:
1860
1861 /**
1862 *
1863 * Unreserve without putting on LRU to avoid swapping out an
1864 * already swapped buffer.
1865 */
1866
1867 atomic_set(&bo->reserved, 0);
1868 wake_up_all(&bo->event_queue);
1869 kref_put(&bo->list_kref, ttm_bo_release_list);
1870 return ret;
1871 }
1872
1873 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1874 {
1875 while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1876 ;
1877 }
1878 EXPORT_SYMBOL(ttm_bo_swapout_all);
This page took 0.0994 seconds and 5 git commands to generate.