Merge branches 'acpi-smbus', 'acpi-ec' and 'acpi-pci'
[deliverable/linux.git] / drivers / hid / hid-rmi.c
1 /*
2 * Copyright (c) 2013 Andrew Duggan <aduggan@synaptics.com>
3 * Copyright (c) 2013 Synaptics Incorporated
4 * Copyright (c) 2014 Benjamin Tissoires <benjamin.tissoires@gmail.com>
5 * Copyright (c) 2014 Red Hat, Inc
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the Free
9 * Software Foundation; either version 2 of the License, or (at your option)
10 * any later version.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/hid.h>
15 #include <linux/input.h>
16 #include <linux/input/mt.h>
17 #include <linux/module.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/wait.h>
21 #include <linux/sched.h>
22 #include "hid-ids.h"
23
24 #define RMI_MOUSE_REPORT_ID 0x01 /* Mouse emulation Report */
25 #define RMI_WRITE_REPORT_ID 0x09 /* Output Report */
26 #define RMI_READ_ADDR_REPORT_ID 0x0a /* Output Report */
27 #define RMI_READ_DATA_REPORT_ID 0x0b /* Input Report */
28 #define RMI_ATTN_REPORT_ID 0x0c /* Input Report */
29 #define RMI_SET_RMI_MODE_REPORT_ID 0x0f /* Feature Report */
30
31 /* flags */
32 #define RMI_READ_REQUEST_PENDING 0
33 #define RMI_READ_DATA_PENDING 1
34 #define RMI_STARTED 2
35
36 #define RMI_SLEEP_NORMAL 0x0
37 #define RMI_SLEEP_DEEP_SLEEP 0x1
38
39 /* device flags */
40 #define RMI_DEVICE BIT(0)
41 #define RMI_DEVICE_HAS_PHYS_BUTTONS BIT(1)
42
43 /*
44 * retrieve the ctrl registers
45 * the ctrl register has a size of 20 but a fw bug split it into 16 + 4,
46 * and there is no way to know if the first 20 bytes are here or not.
47 * We use only the first 12 bytes, so get only them.
48 */
49 #define RMI_F11_CTRL_REG_COUNT 12
50
51 enum rmi_mode_type {
52 RMI_MODE_OFF = 0,
53 RMI_MODE_ATTN_REPORTS = 1,
54 RMI_MODE_NO_PACKED_ATTN_REPORTS = 2,
55 };
56
57 struct rmi_function {
58 unsigned page; /* page of the function */
59 u16 query_base_addr; /* base address for queries */
60 u16 command_base_addr; /* base address for commands */
61 u16 control_base_addr; /* base address for controls */
62 u16 data_base_addr; /* base address for datas */
63 unsigned int interrupt_base; /* cross-function interrupt number
64 * (uniq in the device)*/
65 unsigned int interrupt_count; /* number of interrupts */
66 unsigned int report_size; /* size of a report */
67 unsigned long irq_mask; /* mask of the interrupts
68 * (to be applied against ATTN IRQ) */
69 };
70
71 /**
72 * struct rmi_data - stores information for hid communication
73 *
74 * @page_mutex: Locks current page to avoid changing pages in unexpected ways.
75 * @page: Keeps track of the current virtual page
76 *
77 * @wait: Used for waiting for read data
78 *
79 * @writeReport: output buffer when writing RMI registers
80 * @readReport: input buffer when reading RMI registers
81 *
82 * @input_report_size: size of an input report (advertised by HID)
83 * @output_report_size: size of an output report (advertised by HID)
84 *
85 * @flags: flags for the current device (started, reading, etc...)
86 *
87 * @f11: placeholder of internal RMI function F11 description
88 * @f30: placeholder of internal RMI function F30 description
89 *
90 * @max_fingers: maximum finger count reported by the device
91 * @max_x: maximum x value reported by the device
92 * @max_y: maximum y value reported by the device
93 *
94 * @gpio_led_count: count of GPIOs + LEDs reported by F30
95 * @button_count: actual physical buttons count
96 * @button_mask: button mask used to decode GPIO ATTN reports
97 * @button_state_mask: pull state of the buttons
98 *
99 * @input: pointer to the kernel input device
100 *
101 * @reset_work: worker which will be called in case of a mouse report
102 * @hdev: pointer to the struct hid_device
103 */
104 struct rmi_data {
105 struct mutex page_mutex;
106 int page;
107
108 wait_queue_head_t wait;
109
110 u8 *writeReport;
111 u8 *readReport;
112
113 int input_report_size;
114 int output_report_size;
115
116 unsigned long flags;
117
118 struct rmi_function f01;
119 struct rmi_function f11;
120 struct rmi_function f30;
121
122 unsigned int max_fingers;
123 unsigned int max_x;
124 unsigned int max_y;
125 unsigned int x_size_mm;
126 unsigned int y_size_mm;
127 bool read_f11_ctrl_regs;
128 u8 f11_ctrl_regs[RMI_F11_CTRL_REG_COUNT];
129
130 unsigned int gpio_led_count;
131 unsigned int button_count;
132 unsigned long button_mask;
133 unsigned long button_state_mask;
134
135 struct input_dev *input;
136
137 struct work_struct reset_work;
138 struct hid_device *hdev;
139
140 unsigned long device_flags;
141 unsigned long firmware_id;
142
143 u8 f01_ctrl0;
144 u8 interrupt_enable_mask;
145 bool restore_interrupt_mask;
146 };
147
148 #define RMI_PAGE(addr) (((addr) >> 8) & 0xff)
149
150 static int rmi_write_report(struct hid_device *hdev, u8 *report, int len);
151
152 /**
153 * rmi_set_page - Set RMI page
154 * @hdev: The pointer to the hid_device struct
155 * @page: The new page address.
156 *
157 * RMI devices have 16-bit addressing, but some of the physical
158 * implementations (like SMBus) only have 8-bit addressing. So RMI implements
159 * a page address at 0xff of every page so we can reliable page addresses
160 * every 256 registers.
161 *
162 * The page_mutex lock must be held when this function is entered.
163 *
164 * Returns zero on success, non-zero on failure.
165 */
166 static int rmi_set_page(struct hid_device *hdev, u8 page)
167 {
168 struct rmi_data *data = hid_get_drvdata(hdev);
169 int retval;
170
171 data->writeReport[0] = RMI_WRITE_REPORT_ID;
172 data->writeReport[1] = 1;
173 data->writeReport[2] = 0xFF;
174 data->writeReport[4] = page;
175
176 retval = rmi_write_report(hdev, data->writeReport,
177 data->output_report_size);
178 if (retval != data->output_report_size) {
179 dev_err(&hdev->dev,
180 "%s: set page failed: %d.", __func__, retval);
181 return retval;
182 }
183
184 data->page = page;
185 return 0;
186 }
187
188 static int rmi_set_mode(struct hid_device *hdev, u8 mode)
189 {
190 int ret;
191 u8 txbuf[2] = {RMI_SET_RMI_MODE_REPORT_ID, mode};
192
193 ret = hid_hw_raw_request(hdev, RMI_SET_RMI_MODE_REPORT_ID, txbuf,
194 sizeof(txbuf), HID_FEATURE_REPORT, HID_REQ_SET_REPORT);
195 if (ret < 0) {
196 dev_err(&hdev->dev, "unable to set rmi mode to %d (%d)\n", mode,
197 ret);
198 return ret;
199 }
200
201 return 0;
202 }
203
204 static int rmi_write_report(struct hid_device *hdev, u8 *report, int len)
205 {
206 int ret;
207
208 ret = hid_hw_output_report(hdev, (void *)report, len);
209 if (ret < 0) {
210 dev_err(&hdev->dev, "failed to write hid report (%d)\n", ret);
211 return ret;
212 }
213
214 return ret;
215 }
216
217 static int rmi_read_block(struct hid_device *hdev, u16 addr, void *buf,
218 const int len)
219 {
220 struct rmi_data *data = hid_get_drvdata(hdev);
221 int ret;
222 int bytes_read;
223 int bytes_needed;
224 int retries;
225 int read_input_count;
226
227 mutex_lock(&data->page_mutex);
228
229 if (RMI_PAGE(addr) != data->page) {
230 ret = rmi_set_page(hdev, RMI_PAGE(addr));
231 if (ret < 0)
232 goto exit;
233 }
234
235 for (retries = 5; retries > 0; retries--) {
236 data->writeReport[0] = RMI_READ_ADDR_REPORT_ID;
237 data->writeReport[1] = 0; /* old 1 byte read count */
238 data->writeReport[2] = addr & 0xFF;
239 data->writeReport[3] = (addr >> 8) & 0xFF;
240 data->writeReport[4] = len & 0xFF;
241 data->writeReport[5] = (len >> 8) & 0xFF;
242
243 set_bit(RMI_READ_REQUEST_PENDING, &data->flags);
244
245 ret = rmi_write_report(hdev, data->writeReport,
246 data->output_report_size);
247 if (ret != data->output_report_size) {
248 clear_bit(RMI_READ_REQUEST_PENDING, &data->flags);
249 dev_err(&hdev->dev,
250 "failed to write request output report (%d)\n",
251 ret);
252 goto exit;
253 }
254
255 bytes_read = 0;
256 bytes_needed = len;
257 while (bytes_read < len) {
258 if (!wait_event_timeout(data->wait,
259 test_bit(RMI_READ_DATA_PENDING, &data->flags),
260 msecs_to_jiffies(1000))) {
261 hid_warn(hdev, "%s: timeout elapsed\n",
262 __func__);
263 ret = -EAGAIN;
264 break;
265 }
266
267 read_input_count = data->readReport[1];
268 memcpy(buf + bytes_read, &data->readReport[2],
269 read_input_count < bytes_needed ?
270 read_input_count : bytes_needed);
271
272 bytes_read += read_input_count;
273 bytes_needed -= read_input_count;
274 clear_bit(RMI_READ_DATA_PENDING, &data->flags);
275 }
276
277 if (ret >= 0) {
278 ret = 0;
279 break;
280 }
281 }
282
283 exit:
284 clear_bit(RMI_READ_REQUEST_PENDING, &data->flags);
285 mutex_unlock(&data->page_mutex);
286 return ret;
287 }
288
289 static inline int rmi_read(struct hid_device *hdev, u16 addr, void *buf)
290 {
291 return rmi_read_block(hdev, addr, buf, 1);
292 }
293
294 static int rmi_write_block(struct hid_device *hdev, u16 addr, void *buf,
295 const int len)
296 {
297 struct rmi_data *data = hid_get_drvdata(hdev);
298 int ret;
299
300 mutex_lock(&data->page_mutex);
301
302 if (RMI_PAGE(addr) != data->page) {
303 ret = rmi_set_page(hdev, RMI_PAGE(addr));
304 if (ret < 0)
305 goto exit;
306 }
307
308 data->writeReport[0] = RMI_WRITE_REPORT_ID;
309 data->writeReport[1] = len;
310 data->writeReport[2] = addr & 0xFF;
311 data->writeReport[3] = (addr >> 8) & 0xFF;
312 memcpy(&data->writeReport[4], buf, len);
313
314 ret = rmi_write_report(hdev, data->writeReport,
315 data->output_report_size);
316 if (ret < 0) {
317 dev_err(&hdev->dev,
318 "failed to write request output report (%d)\n",
319 ret);
320 goto exit;
321 }
322 ret = 0;
323
324 exit:
325 mutex_unlock(&data->page_mutex);
326 return ret;
327 }
328
329 static inline int rmi_write(struct hid_device *hdev, u16 addr, void *buf)
330 {
331 return rmi_write_block(hdev, addr, buf, 1);
332 }
333
334 static void rmi_f11_process_touch(struct rmi_data *hdata, int slot,
335 u8 finger_state, u8 *touch_data)
336 {
337 int x, y, wx, wy;
338 int wide, major, minor;
339 int z;
340
341 input_mt_slot(hdata->input, slot);
342 input_mt_report_slot_state(hdata->input, MT_TOOL_FINGER,
343 finger_state == 0x01);
344 if (finger_state == 0x01) {
345 x = (touch_data[0] << 4) | (touch_data[2] & 0x0F);
346 y = (touch_data[1] << 4) | (touch_data[2] >> 4);
347 wx = touch_data[3] & 0x0F;
348 wy = touch_data[3] >> 4;
349 wide = (wx > wy);
350 major = max(wx, wy);
351 minor = min(wx, wy);
352 z = touch_data[4];
353
354 /* y is inverted */
355 y = hdata->max_y - y;
356
357 input_event(hdata->input, EV_ABS, ABS_MT_POSITION_X, x);
358 input_event(hdata->input, EV_ABS, ABS_MT_POSITION_Y, y);
359 input_event(hdata->input, EV_ABS, ABS_MT_ORIENTATION, wide);
360 input_event(hdata->input, EV_ABS, ABS_MT_PRESSURE, z);
361 input_event(hdata->input, EV_ABS, ABS_MT_TOUCH_MAJOR, major);
362 input_event(hdata->input, EV_ABS, ABS_MT_TOUCH_MINOR, minor);
363 }
364 }
365
366 static int rmi_reset_attn_mode(struct hid_device *hdev)
367 {
368 struct rmi_data *data = hid_get_drvdata(hdev);
369 int ret;
370
371 ret = rmi_set_mode(hdev, RMI_MODE_ATTN_REPORTS);
372 if (ret)
373 return ret;
374
375 if (data->restore_interrupt_mask) {
376 ret = rmi_write(hdev, data->f01.control_base_addr + 1,
377 &data->interrupt_enable_mask);
378 if (ret) {
379 hid_err(hdev, "can not write F01 control register\n");
380 return ret;
381 }
382 }
383
384 return 0;
385 }
386
387 static void rmi_reset_work(struct work_struct *work)
388 {
389 struct rmi_data *hdata = container_of(work, struct rmi_data,
390 reset_work);
391
392 /* switch the device to RMI if we receive a generic mouse report */
393 rmi_reset_attn_mode(hdata->hdev);
394 }
395
396 static inline int rmi_schedule_reset(struct hid_device *hdev)
397 {
398 struct rmi_data *hdata = hid_get_drvdata(hdev);
399 return schedule_work(&hdata->reset_work);
400 }
401
402 static int rmi_f11_input_event(struct hid_device *hdev, u8 irq, u8 *data,
403 int size)
404 {
405 struct rmi_data *hdata = hid_get_drvdata(hdev);
406 int offset;
407 int i;
408
409 if (!(irq & hdata->f11.irq_mask) || size <= 0)
410 return 0;
411
412 offset = (hdata->max_fingers >> 2) + 1;
413 for (i = 0; i < hdata->max_fingers; i++) {
414 int fs_byte_position = i >> 2;
415 int fs_bit_position = (i & 0x3) << 1;
416 int finger_state = (data[fs_byte_position] >> fs_bit_position) &
417 0x03;
418 int position = offset + 5 * i;
419
420 if (position + 5 > size) {
421 /* partial report, go on with what we received */
422 printk_once(KERN_WARNING
423 "%s %s: Detected incomplete finger report. Finger reports may occasionally get dropped on this platform.\n",
424 dev_driver_string(&hdev->dev),
425 dev_name(&hdev->dev));
426 hid_dbg(hdev, "Incomplete finger report\n");
427 break;
428 }
429
430 rmi_f11_process_touch(hdata, i, finger_state, &data[position]);
431 }
432 input_mt_sync_frame(hdata->input);
433 input_sync(hdata->input);
434 return hdata->f11.report_size;
435 }
436
437 static int rmi_f30_input_event(struct hid_device *hdev, u8 irq, u8 *data,
438 int size)
439 {
440 struct rmi_data *hdata = hid_get_drvdata(hdev);
441 int i;
442 int button = 0;
443 bool value;
444
445 if (!(irq & hdata->f30.irq_mask))
446 return 0;
447
448 if (size < (int)hdata->f30.report_size) {
449 hid_warn(hdev, "Click Button pressed, but the click data is missing\n");
450 return 0;
451 }
452
453 for (i = 0; i < hdata->gpio_led_count; i++) {
454 if (test_bit(i, &hdata->button_mask)) {
455 value = (data[i / 8] >> (i & 0x07)) & BIT(0);
456 if (test_bit(i, &hdata->button_state_mask))
457 value = !value;
458 input_event(hdata->input, EV_KEY, BTN_LEFT + button++,
459 value);
460 }
461 }
462 return hdata->f30.report_size;
463 }
464
465 static int rmi_input_event(struct hid_device *hdev, u8 *data, int size)
466 {
467 struct rmi_data *hdata = hid_get_drvdata(hdev);
468 unsigned long irq_mask = 0;
469 unsigned index = 2;
470
471 if (!(test_bit(RMI_STARTED, &hdata->flags)))
472 return 0;
473
474 irq_mask |= hdata->f11.irq_mask;
475 irq_mask |= hdata->f30.irq_mask;
476
477 if (data[1] & ~irq_mask)
478 hid_dbg(hdev, "unknown intr source:%02lx %s:%d\n",
479 data[1] & ~irq_mask, __FILE__, __LINE__);
480
481 if (hdata->f11.interrupt_base < hdata->f30.interrupt_base) {
482 index += rmi_f11_input_event(hdev, data[1], &data[index],
483 size - index);
484 index += rmi_f30_input_event(hdev, data[1], &data[index],
485 size - index);
486 } else {
487 index += rmi_f30_input_event(hdev, data[1], &data[index],
488 size - index);
489 index += rmi_f11_input_event(hdev, data[1], &data[index],
490 size - index);
491 }
492
493 return 1;
494 }
495
496 static int rmi_read_data_event(struct hid_device *hdev, u8 *data, int size)
497 {
498 struct rmi_data *hdata = hid_get_drvdata(hdev);
499
500 if (!test_bit(RMI_READ_REQUEST_PENDING, &hdata->flags)) {
501 hid_dbg(hdev, "no read request pending\n");
502 return 0;
503 }
504
505 memcpy(hdata->readReport, data, size < hdata->input_report_size ?
506 size : hdata->input_report_size);
507 set_bit(RMI_READ_DATA_PENDING, &hdata->flags);
508 wake_up(&hdata->wait);
509
510 return 1;
511 }
512
513 static int rmi_check_sanity(struct hid_device *hdev, u8 *data, int size)
514 {
515 int valid_size = size;
516 /*
517 * On the Dell XPS 13 9333, the bus sometimes get confused and fills
518 * the report with a sentinel value "ff". Synaptics told us that such
519 * behavior does not comes from the touchpad itself, so we filter out
520 * such reports here.
521 */
522
523 while ((data[valid_size - 1] == 0xff) && valid_size > 0)
524 valid_size--;
525
526 return valid_size;
527 }
528
529 static int rmi_raw_event(struct hid_device *hdev,
530 struct hid_report *report, u8 *data, int size)
531 {
532 size = rmi_check_sanity(hdev, data, size);
533 if (size < 2)
534 return 0;
535
536 switch (data[0]) {
537 case RMI_READ_DATA_REPORT_ID:
538 return rmi_read_data_event(hdev, data, size);
539 case RMI_ATTN_REPORT_ID:
540 return rmi_input_event(hdev, data, size);
541 default:
542 return 1;
543 }
544
545 return 0;
546 }
547
548 static int rmi_event(struct hid_device *hdev, struct hid_field *field,
549 struct hid_usage *usage, __s32 value)
550 {
551 struct rmi_data *data = hid_get_drvdata(hdev);
552
553 if ((data->device_flags & RMI_DEVICE) &&
554 (field->application == HID_GD_POINTER ||
555 field->application == HID_GD_MOUSE)) {
556 if (data->device_flags & RMI_DEVICE_HAS_PHYS_BUTTONS) {
557 if ((usage->hid & HID_USAGE_PAGE) == HID_UP_BUTTON)
558 return 0;
559
560 if ((usage->hid == HID_GD_X || usage->hid == HID_GD_Y)
561 && !value)
562 return 1;
563 }
564
565 rmi_schedule_reset(hdev);
566 return 1;
567 }
568
569 return 0;
570 }
571
572 #ifdef CONFIG_PM
573 static int rmi_set_sleep_mode(struct hid_device *hdev, int sleep_mode)
574 {
575 struct rmi_data *data = hid_get_drvdata(hdev);
576 int ret;
577 u8 f01_ctrl0;
578
579 f01_ctrl0 = (data->f01_ctrl0 & ~0x3) | sleep_mode;
580
581 ret = rmi_write(hdev, data->f01.control_base_addr,
582 &f01_ctrl0);
583 if (ret) {
584 hid_err(hdev, "can not write sleep mode\n");
585 return ret;
586 }
587
588 return 0;
589 }
590
591 static int rmi_suspend(struct hid_device *hdev, pm_message_t message)
592 {
593 struct rmi_data *data = hid_get_drvdata(hdev);
594 int ret;
595 u8 buf[RMI_F11_CTRL_REG_COUNT];
596
597 ret = rmi_read_block(hdev, data->f11.control_base_addr, buf,
598 RMI_F11_CTRL_REG_COUNT);
599 if (ret)
600 hid_warn(hdev, "can not read F11 control registers\n");
601 else
602 memcpy(data->f11_ctrl_regs, buf, RMI_F11_CTRL_REG_COUNT);
603
604
605 if (!device_may_wakeup(hdev->dev.parent))
606 return rmi_set_sleep_mode(hdev, RMI_SLEEP_DEEP_SLEEP);
607
608 return 0;
609 }
610
611 static int rmi_post_reset(struct hid_device *hdev)
612 {
613 struct rmi_data *data = hid_get_drvdata(hdev);
614 int ret;
615
616 ret = rmi_reset_attn_mode(hdev);
617 if (ret) {
618 hid_err(hdev, "can not set rmi mode\n");
619 return ret;
620 }
621
622 if (data->read_f11_ctrl_regs) {
623 ret = rmi_write_block(hdev, data->f11.control_base_addr,
624 data->f11_ctrl_regs, RMI_F11_CTRL_REG_COUNT);
625 if (ret)
626 hid_warn(hdev,
627 "can not write F11 control registers after reset\n");
628 }
629
630 if (!device_may_wakeup(hdev->dev.parent)) {
631 ret = rmi_set_sleep_mode(hdev, RMI_SLEEP_NORMAL);
632 if (ret) {
633 hid_err(hdev, "can not write sleep mode\n");
634 return ret;
635 }
636 }
637
638 return ret;
639 }
640
641 static int rmi_post_resume(struct hid_device *hdev)
642 {
643 return rmi_reset_attn_mode(hdev);
644 }
645 #endif /* CONFIG_PM */
646
647 #define RMI4_MAX_PAGE 0xff
648 #define RMI4_PAGE_SIZE 0x0100
649
650 #define PDT_START_SCAN_LOCATION 0x00e9
651 #define PDT_END_SCAN_LOCATION 0x0005
652 #define RMI4_END_OF_PDT(id) ((id) == 0x00 || (id) == 0xff)
653
654 struct pdt_entry {
655 u8 query_base_addr:8;
656 u8 command_base_addr:8;
657 u8 control_base_addr:8;
658 u8 data_base_addr:8;
659 u8 interrupt_source_count:3;
660 u8 bits3and4:2;
661 u8 function_version:2;
662 u8 bit7:1;
663 u8 function_number:8;
664 } __attribute__((__packed__));
665
666 static inline unsigned long rmi_gen_mask(unsigned irq_base, unsigned irq_count)
667 {
668 return GENMASK(irq_count + irq_base - 1, irq_base);
669 }
670
671 static void rmi_register_function(struct rmi_data *data,
672 struct pdt_entry *pdt_entry, int page, unsigned interrupt_count)
673 {
674 struct rmi_function *f = NULL;
675 u16 page_base = page << 8;
676
677 switch (pdt_entry->function_number) {
678 case 0x01:
679 f = &data->f01;
680 break;
681 case 0x11:
682 f = &data->f11;
683 break;
684 case 0x30:
685 f = &data->f30;
686 break;
687 }
688
689 if (f) {
690 f->page = page;
691 f->query_base_addr = page_base | pdt_entry->query_base_addr;
692 f->command_base_addr = page_base | pdt_entry->command_base_addr;
693 f->control_base_addr = page_base | pdt_entry->control_base_addr;
694 f->data_base_addr = page_base | pdt_entry->data_base_addr;
695 f->interrupt_base = interrupt_count;
696 f->interrupt_count = pdt_entry->interrupt_source_count;
697 f->irq_mask = rmi_gen_mask(f->interrupt_base,
698 f->interrupt_count);
699 data->interrupt_enable_mask |= f->irq_mask;
700 }
701 }
702
703 static int rmi_scan_pdt(struct hid_device *hdev)
704 {
705 struct rmi_data *data = hid_get_drvdata(hdev);
706 struct pdt_entry entry;
707 int page;
708 bool page_has_function;
709 int i;
710 int retval;
711 int interrupt = 0;
712 u16 page_start, pdt_start , pdt_end;
713
714 hid_info(hdev, "Scanning PDT...\n");
715
716 for (page = 0; (page <= RMI4_MAX_PAGE); page++) {
717 page_start = RMI4_PAGE_SIZE * page;
718 pdt_start = page_start + PDT_START_SCAN_LOCATION;
719 pdt_end = page_start + PDT_END_SCAN_LOCATION;
720
721 page_has_function = false;
722 for (i = pdt_start; i >= pdt_end; i -= sizeof(entry)) {
723 retval = rmi_read_block(hdev, i, &entry, sizeof(entry));
724 if (retval) {
725 hid_err(hdev,
726 "Read of PDT entry at %#06x failed.\n",
727 i);
728 goto error_exit;
729 }
730
731 if (RMI4_END_OF_PDT(entry.function_number))
732 break;
733
734 page_has_function = true;
735
736 hid_info(hdev, "Found F%02X on page %#04x\n",
737 entry.function_number, page);
738
739 rmi_register_function(data, &entry, page, interrupt);
740 interrupt += entry.interrupt_source_count;
741 }
742
743 if (!page_has_function)
744 break;
745 }
746
747 hid_info(hdev, "%s: Done with PDT scan.\n", __func__);
748 retval = 0;
749
750 error_exit:
751 return retval;
752 }
753
754 #define RMI_DEVICE_F01_BASIC_QUERY_LEN 11
755
756 static int rmi_populate_f01(struct hid_device *hdev)
757 {
758 struct rmi_data *data = hid_get_drvdata(hdev);
759 u8 basic_queries[RMI_DEVICE_F01_BASIC_QUERY_LEN];
760 u8 info[3];
761 int ret;
762 bool has_query42;
763 bool has_lts;
764 bool has_sensor_id;
765 bool has_ds4_queries = false;
766 bool has_build_id_query = false;
767 bool has_package_id_query = false;
768 u16 query_offset = data->f01.query_base_addr;
769 u16 prod_info_addr;
770 u8 ds4_query_len;
771
772 ret = rmi_read_block(hdev, query_offset, basic_queries,
773 RMI_DEVICE_F01_BASIC_QUERY_LEN);
774 if (ret) {
775 hid_err(hdev, "Can not read basic queries from Function 0x1.\n");
776 return ret;
777 }
778
779 has_lts = !!(basic_queries[0] & BIT(2));
780 has_sensor_id = !!(basic_queries[1] & BIT(3));
781 has_query42 = !!(basic_queries[1] & BIT(7));
782
783 query_offset += 11;
784 prod_info_addr = query_offset + 6;
785 query_offset += 10;
786
787 if (has_lts)
788 query_offset += 20;
789
790 if (has_sensor_id)
791 query_offset++;
792
793 if (has_query42) {
794 ret = rmi_read(hdev, query_offset, info);
795 if (ret) {
796 hid_err(hdev, "Can not read query42.\n");
797 return ret;
798 }
799 has_ds4_queries = !!(info[0] & BIT(0));
800 query_offset++;
801 }
802
803 if (has_ds4_queries) {
804 ret = rmi_read(hdev, query_offset, &ds4_query_len);
805 if (ret) {
806 hid_err(hdev, "Can not read DS4 Query length.\n");
807 return ret;
808 }
809 query_offset++;
810
811 if (ds4_query_len > 0) {
812 ret = rmi_read(hdev, query_offset, info);
813 if (ret) {
814 hid_err(hdev, "Can not read DS4 query.\n");
815 return ret;
816 }
817
818 has_package_id_query = !!(info[0] & BIT(0));
819 has_build_id_query = !!(info[0] & BIT(1));
820 }
821 }
822
823 if (has_package_id_query)
824 prod_info_addr++;
825
826 if (has_build_id_query) {
827 ret = rmi_read_block(hdev, prod_info_addr, info, 3);
828 if (ret) {
829 hid_err(hdev, "Can not read product info.\n");
830 return ret;
831 }
832
833 data->firmware_id = info[1] << 8 | info[0];
834 data->firmware_id += info[2] * 65536;
835 }
836
837 ret = rmi_read_block(hdev, data->f01.control_base_addr, info,
838 2);
839
840 if (ret) {
841 hid_err(hdev, "can not read f01 ctrl registers\n");
842 return ret;
843 }
844
845 data->f01_ctrl0 = info[0];
846
847 if (!info[1]) {
848 /*
849 * Do to a firmware bug in some touchpads the F01 interrupt
850 * enable control register will be cleared on reset.
851 * This will stop the touchpad from reporting data, so
852 * if F01 CTRL1 is 0 then we need to explicitly enable
853 * interrupts for the functions we want data for.
854 */
855 data->restore_interrupt_mask = true;
856
857 ret = rmi_write(hdev, data->f01.control_base_addr + 1,
858 &data->interrupt_enable_mask);
859 if (ret) {
860 hid_err(hdev, "can not write to control reg 1: %d.\n",
861 ret);
862 return ret;
863 }
864 }
865
866 return 0;
867 }
868
869 static int rmi_populate_f11(struct hid_device *hdev)
870 {
871 struct rmi_data *data = hid_get_drvdata(hdev);
872 u8 buf[20];
873 int ret;
874 bool has_query9;
875 bool has_query10 = false;
876 bool has_query11;
877 bool has_query12;
878 bool has_query27;
879 bool has_query28;
880 bool has_query36 = false;
881 bool has_physical_props;
882 bool has_gestures;
883 bool has_rel;
884 bool has_data40 = false;
885 bool has_dribble = false;
886 bool has_palm_detect = false;
887 unsigned x_size, y_size;
888 u16 query_offset;
889
890 if (!data->f11.query_base_addr) {
891 hid_err(hdev, "No 2D sensor found, giving up.\n");
892 return -ENODEV;
893 }
894
895 /* query 0 contains some useful information */
896 ret = rmi_read(hdev, data->f11.query_base_addr, buf);
897 if (ret) {
898 hid_err(hdev, "can not get query 0: %d.\n", ret);
899 return ret;
900 }
901 has_query9 = !!(buf[0] & BIT(3));
902 has_query11 = !!(buf[0] & BIT(4));
903 has_query12 = !!(buf[0] & BIT(5));
904 has_query27 = !!(buf[0] & BIT(6));
905 has_query28 = !!(buf[0] & BIT(7));
906
907 /* query 1 to get the max number of fingers */
908 ret = rmi_read(hdev, data->f11.query_base_addr + 1, buf);
909 if (ret) {
910 hid_err(hdev, "can not get NumberOfFingers: %d.\n", ret);
911 return ret;
912 }
913 data->max_fingers = (buf[0] & 0x07) + 1;
914 if (data->max_fingers > 5)
915 data->max_fingers = 10;
916
917 data->f11.report_size = data->max_fingers * 5 +
918 DIV_ROUND_UP(data->max_fingers, 4);
919
920 if (!(buf[0] & BIT(4))) {
921 hid_err(hdev, "No absolute events, giving up.\n");
922 return -ENODEV;
923 }
924
925 has_rel = !!(buf[0] & BIT(3));
926 has_gestures = !!(buf[0] & BIT(5));
927
928 ret = rmi_read(hdev, data->f11.query_base_addr + 5, buf);
929 if (ret) {
930 hid_err(hdev, "can not get absolute data sources: %d.\n", ret);
931 return ret;
932 }
933
934 has_dribble = !!(buf[0] & BIT(4));
935
936 /*
937 * At least 4 queries are guaranteed to be present in F11
938 * +1 for query 5 which is present since absolute events are
939 * reported and +1 for query 12.
940 */
941 query_offset = 6;
942
943 if (has_rel)
944 ++query_offset; /* query 6 is present */
945
946 if (has_gestures) {
947 /* query 8 to find out if query 10 exists */
948 ret = rmi_read(hdev,
949 data->f11.query_base_addr + query_offset + 1, buf);
950 if (ret) {
951 hid_err(hdev, "can not read gesture information: %d.\n",
952 ret);
953 return ret;
954 }
955 has_palm_detect = !!(buf[0] & BIT(0));
956 has_query10 = !!(buf[0] & BIT(2));
957
958 query_offset += 2; /* query 7 and 8 are present */
959 }
960
961 if (has_query9)
962 ++query_offset;
963
964 if (has_query10)
965 ++query_offset;
966
967 if (has_query11)
968 ++query_offset;
969
970 /* query 12 to know if the physical properties are reported */
971 if (has_query12) {
972 ret = rmi_read(hdev, data->f11.query_base_addr
973 + query_offset, buf);
974 if (ret) {
975 hid_err(hdev, "can not get query 12: %d.\n", ret);
976 return ret;
977 }
978 has_physical_props = !!(buf[0] & BIT(5));
979
980 if (has_physical_props) {
981 query_offset += 1;
982 ret = rmi_read_block(hdev,
983 data->f11.query_base_addr
984 + query_offset, buf, 4);
985 if (ret) {
986 hid_err(hdev, "can not read query 15-18: %d.\n",
987 ret);
988 return ret;
989 }
990
991 x_size = buf[0] | (buf[1] << 8);
992 y_size = buf[2] | (buf[3] << 8);
993
994 data->x_size_mm = DIV_ROUND_CLOSEST(x_size, 10);
995 data->y_size_mm = DIV_ROUND_CLOSEST(y_size, 10);
996
997 hid_info(hdev, "%s: size in mm: %d x %d\n",
998 __func__, data->x_size_mm, data->y_size_mm);
999
1000 /*
1001 * query 15 - 18 contain the size of the sensor
1002 * and query 19 - 26 contain bezel dimensions
1003 */
1004 query_offset += 12;
1005 }
1006 }
1007
1008 if (has_query27)
1009 ++query_offset;
1010
1011 if (has_query28) {
1012 ret = rmi_read(hdev, data->f11.query_base_addr
1013 + query_offset, buf);
1014 if (ret) {
1015 hid_err(hdev, "can not get query 28: %d.\n", ret);
1016 return ret;
1017 }
1018
1019 has_query36 = !!(buf[0] & BIT(6));
1020 }
1021
1022 if (has_query36) {
1023 query_offset += 2;
1024 ret = rmi_read(hdev, data->f11.query_base_addr
1025 + query_offset, buf);
1026 if (ret) {
1027 hid_err(hdev, "can not get query 36: %d.\n", ret);
1028 return ret;
1029 }
1030
1031 has_data40 = !!(buf[0] & BIT(5));
1032 }
1033
1034
1035 if (has_data40)
1036 data->f11.report_size += data->max_fingers * 2;
1037
1038 ret = rmi_read_block(hdev, data->f11.control_base_addr,
1039 data->f11_ctrl_regs, RMI_F11_CTRL_REG_COUNT);
1040 if (ret) {
1041 hid_err(hdev, "can not read ctrl block of size 11: %d.\n", ret);
1042 return ret;
1043 }
1044
1045 /* data->f11_ctrl_regs now contains valid register data */
1046 data->read_f11_ctrl_regs = true;
1047
1048 data->max_x = data->f11_ctrl_regs[6] | (data->f11_ctrl_regs[7] << 8);
1049 data->max_y = data->f11_ctrl_regs[8] | (data->f11_ctrl_regs[9] << 8);
1050
1051 if (has_dribble) {
1052 data->f11_ctrl_regs[0] = data->f11_ctrl_regs[0] & ~BIT(6);
1053 ret = rmi_write(hdev, data->f11.control_base_addr,
1054 data->f11_ctrl_regs);
1055 if (ret) {
1056 hid_err(hdev, "can not write to control reg 0: %d.\n",
1057 ret);
1058 return ret;
1059 }
1060 }
1061
1062 if (has_palm_detect) {
1063 data->f11_ctrl_regs[11] = data->f11_ctrl_regs[11] & ~BIT(0);
1064 ret = rmi_write(hdev, data->f11.control_base_addr + 11,
1065 &data->f11_ctrl_regs[11]);
1066 if (ret) {
1067 hid_err(hdev, "can not write to control reg 11: %d.\n",
1068 ret);
1069 return ret;
1070 }
1071 }
1072
1073 return 0;
1074 }
1075
1076 static int rmi_populate_f30(struct hid_device *hdev)
1077 {
1078 struct rmi_data *data = hid_get_drvdata(hdev);
1079 u8 buf[20];
1080 int ret;
1081 bool has_gpio, has_led;
1082 unsigned bytes_per_ctrl;
1083 u8 ctrl2_addr;
1084 int ctrl2_3_length;
1085 int i;
1086
1087 /* function F30 is for physical buttons */
1088 if (!data->f30.query_base_addr) {
1089 hid_err(hdev, "No GPIO/LEDs found, giving up.\n");
1090 return -ENODEV;
1091 }
1092
1093 ret = rmi_read_block(hdev, data->f30.query_base_addr, buf, 2);
1094 if (ret) {
1095 hid_err(hdev, "can not get F30 query registers: %d.\n", ret);
1096 return ret;
1097 }
1098
1099 has_gpio = !!(buf[0] & BIT(3));
1100 has_led = !!(buf[0] & BIT(2));
1101 data->gpio_led_count = buf[1] & 0x1f;
1102
1103 /* retrieve ctrl 2 & 3 registers */
1104 bytes_per_ctrl = (data->gpio_led_count + 7) / 8;
1105 /* Ctrl0 is present only if both has_gpio and has_led are set*/
1106 ctrl2_addr = (has_gpio && has_led) ? bytes_per_ctrl : 0;
1107 /* Ctrl1 is always be present */
1108 ctrl2_addr += bytes_per_ctrl;
1109 ctrl2_3_length = 2 * bytes_per_ctrl;
1110
1111 data->f30.report_size = bytes_per_ctrl;
1112
1113 ret = rmi_read_block(hdev, data->f30.control_base_addr + ctrl2_addr,
1114 buf, ctrl2_3_length);
1115 if (ret) {
1116 hid_err(hdev, "can not read ctrl 2&3 block of size %d: %d.\n",
1117 ctrl2_3_length, ret);
1118 return ret;
1119 }
1120
1121 for (i = 0; i < data->gpio_led_count; i++) {
1122 int byte_position = i >> 3;
1123 int bit_position = i & 0x07;
1124 u8 dir_byte = buf[byte_position];
1125 u8 data_byte = buf[byte_position + bytes_per_ctrl];
1126 bool dir = (dir_byte >> bit_position) & BIT(0);
1127 bool dat = (data_byte >> bit_position) & BIT(0);
1128
1129 if (dir == 0) {
1130 /* input mode */
1131 if (dat) {
1132 /* actual buttons have pull up resistor */
1133 data->button_count++;
1134 set_bit(i, &data->button_mask);
1135 set_bit(i, &data->button_state_mask);
1136 }
1137 }
1138
1139 }
1140
1141 return 0;
1142 }
1143
1144 static int rmi_populate(struct hid_device *hdev)
1145 {
1146 struct rmi_data *data = hid_get_drvdata(hdev);
1147 int ret;
1148
1149 ret = rmi_scan_pdt(hdev);
1150 if (ret) {
1151 hid_err(hdev, "PDT scan failed with code %d.\n", ret);
1152 return ret;
1153 }
1154
1155 ret = rmi_populate_f01(hdev);
1156 if (ret) {
1157 hid_err(hdev, "Error while initializing F01 (%d).\n", ret);
1158 return ret;
1159 }
1160
1161 ret = rmi_populate_f11(hdev);
1162 if (ret) {
1163 hid_err(hdev, "Error while initializing F11 (%d).\n", ret);
1164 return ret;
1165 }
1166
1167 if (!(data->device_flags & RMI_DEVICE_HAS_PHYS_BUTTONS)) {
1168 ret = rmi_populate_f30(hdev);
1169 if (ret)
1170 hid_warn(hdev, "Error while initializing F30 (%d).\n", ret);
1171 }
1172
1173 return 0;
1174 }
1175
1176 static int rmi_input_configured(struct hid_device *hdev, struct hid_input *hi)
1177 {
1178 struct rmi_data *data = hid_get_drvdata(hdev);
1179 struct input_dev *input = hi->input;
1180 int ret;
1181 int res_x, res_y, i;
1182
1183 data->input = input;
1184
1185 hid_dbg(hdev, "Opening low level driver\n");
1186 ret = hid_hw_open(hdev);
1187 if (ret)
1188 return ret;
1189
1190 if (!(data->device_flags & RMI_DEVICE))
1191 return 0;
1192
1193 /* Allow incoming hid reports */
1194 hid_device_io_start(hdev);
1195
1196 ret = rmi_set_mode(hdev, RMI_MODE_ATTN_REPORTS);
1197 if (ret < 0) {
1198 dev_err(&hdev->dev, "failed to set rmi mode\n");
1199 goto exit;
1200 }
1201
1202 ret = rmi_set_page(hdev, 0);
1203 if (ret < 0) {
1204 dev_err(&hdev->dev, "failed to set page select to 0.\n");
1205 goto exit;
1206 }
1207
1208 ret = rmi_populate(hdev);
1209 if (ret)
1210 goto exit;
1211
1212 hid_info(hdev, "firmware id: %ld\n", data->firmware_id);
1213
1214 __set_bit(EV_ABS, input->evbit);
1215 input_set_abs_params(input, ABS_MT_POSITION_X, 1, data->max_x, 0, 0);
1216 input_set_abs_params(input, ABS_MT_POSITION_Y, 1, data->max_y, 0, 0);
1217
1218 if (data->x_size_mm && data->y_size_mm) {
1219 res_x = (data->max_x - 1) / data->x_size_mm;
1220 res_y = (data->max_y - 1) / data->y_size_mm;
1221
1222 input_abs_set_res(input, ABS_MT_POSITION_X, res_x);
1223 input_abs_set_res(input, ABS_MT_POSITION_Y, res_y);
1224 }
1225
1226 input_set_abs_params(input, ABS_MT_ORIENTATION, 0, 1, 0, 0);
1227 input_set_abs_params(input, ABS_MT_PRESSURE, 0, 0xff, 0, 0);
1228 input_set_abs_params(input, ABS_MT_TOUCH_MAJOR, 0, 0x0f, 0, 0);
1229 input_set_abs_params(input, ABS_MT_TOUCH_MINOR, 0, 0x0f, 0, 0);
1230
1231 ret = input_mt_init_slots(input, data->max_fingers, INPUT_MT_POINTER);
1232 if (ret < 0)
1233 goto exit;
1234
1235 if (data->button_count) {
1236 __set_bit(EV_KEY, input->evbit);
1237 for (i = 0; i < data->button_count; i++)
1238 __set_bit(BTN_LEFT + i, input->keybit);
1239
1240 if (data->button_count == 1)
1241 __set_bit(INPUT_PROP_BUTTONPAD, input->propbit);
1242 }
1243
1244 set_bit(RMI_STARTED, &data->flags);
1245
1246 exit:
1247 hid_device_io_stop(hdev);
1248 hid_hw_close(hdev);
1249 return ret;
1250 }
1251
1252 static int rmi_input_mapping(struct hid_device *hdev,
1253 struct hid_input *hi, struct hid_field *field,
1254 struct hid_usage *usage, unsigned long **bit, int *max)
1255 {
1256 struct rmi_data *data = hid_get_drvdata(hdev);
1257
1258 /*
1259 * we want to make HID ignore the advertised HID collection
1260 * for RMI deivces
1261 */
1262 if (data->device_flags & RMI_DEVICE) {
1263 if ((data->device_flags & RMI_DEVICE_HAS_PHYS_BUTTONS) &&
1264 ((usage->hid & HID_USAGE_PAGE) == HID_UP_BUTTON))
1265 return 0;
1266
1267 return -1;
1268 }
1269
1270 return 0;
1271 }
1272
1273 static int rmi_check_valid_report_id(struct hid_device *hdev, unsigned type,
1274 unsigned id, struct hid_report **report)
1275 {
1276 int i;
1277
1278 *report = hdev->report_enum[type].report_id_hash[id];
1279 if (*report) {
1280 for (i = 0; i < (*report)->maxfield; i++) {
1281 unsigned app = (*report)->field[i]->application;
1282 if ((app & HID_USAGE_PAGE) >= HID_UP_MSVENDOR)
1283 return 1;
1284 }
1285 }
1286
1287 return 0;
1288 }
1289
1290 static int rmi_probe(struct hid_device *hdev, const struct hid_device_id *id)
1291 {
1292 struct rmi_data *data = NULL;
1293 int ret;
1294 size_t alloc_size;
1295 struct hid_report *input_report;
1296 struct hid_report *output_report;
1297 struct hid_report *feature_report;
1298
1299 data = devm_kzalloc(&hdev->dev, sizeof(struct rmi_data), GFP_KERNEL);
1300 if (!data)
1301 return -ENOMEM;
1302
1303 INIT_WORK(&data->reset_work, rmi_reset_work);
1304 data->hdev = hdev;
1305
1306 hid_set_drvdata(hdev, data);
1307
1308 hdev->quirks |= HID_QUIRK_NO_INIT_REPORTS;
1309
1310 ret = hid_parse(hdev);
1311 if (ret) {
1312 hid_err(hdev, "parse failed\n");
1313 return ret;
1314 }
1315
1316 if (id->driver_data)
1317 data->device_flags = id->driver_data;
1318
1319 /*
1320 * Check for the RMI specific report ids. If they are misisng
1321 * simply return and let the events be processed by hid-input
1322 */
1323 if (!rmi_check_valid_report_id(hdev, HID_FEATURE_REPORT,
1324 RMI_SET_RMI_MODE_REPORT_ID, &feature_report)) {
1325 hid_dbg(hdev, "device does not have set mode feature report\n");
1326 goto start;
1327 }
1328
1329 if (!rmi_check_valid_report_id(hdev, HID_INPUT_REPORT,
1330 RMI_ATTN_REPORT_ID, &input_report)) {
1331 hid_dbg(hdev, "device does not have attention input report\n");
1332 goto start;
1333 }
1334
1335 data->input_report_size = hid_report_len(input_report);
1336
1337 if (!rmi_check_valid_report_id(hdev, HID_OUTPUT_REPORT,
1338 RMI_WRITE_REPORT_ID, &output_report)) {
1339 hid_dbg(hdev,
1340 "device does not have rmi write output report\n");
1341 goto start;
1342 }
1343
1344 data->output_report_size = hid_report_len(output_report);
1345
1346 data->device_flags |= RMI_DEVICE;
1347 alloc_size = data->output_report_size + data->input_report_size;
1348
1349 data->writeReport = devm_kzalloc(&hdev->dev, alloc_size, GFP_KERNEL);
1350 if (!data->writeReport) {
1351 ret = -ENOMEM;
1352 return ret;
1353 }
1354
1355 data->readReport = data->writeReport + data->output_report_size;
1356
1357 init_waitqueue_head(&data->wait);
1358
1359 mutex_init(&data->page_mutex);
1360
1361 start:
1362 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
1363 if (ret) {
1364 hid_err(hdev, "hw start failed\n");
1365 return ret;
1366 }
1367
1368 if ((data->device_flags & RMI_DEVICE) &&
1369 !test_bit(RMI_STARTED, &data->flags))
1370 /*
1371 * The device maybe in the bootloader if rmi_input_configured
1372 * failed to find F11 in the PDT. Print an error, but don't
1373 * return an error from rmi_probe so that hidraw will be
1374 * accessible from userspace. That way a userspace tool
1375 * can be used to reload working firmware on the touchpad.
1376 */
1377 hid_err(hdev, "Device failed to be properly configured\n");
1378
1379 return 0;
1380 }
1381
1382 static void rmi_remove(struct hid_device *hdev)
1383 {
1384 struct rmi_data *hdata = hid_get_drvdata(hdev);
1385
1386 clear_bit(RMI_STARTED, &hdata->flags);
1387
1388 hid_hw_stop(hdev);
1389 }
1390
1391 static const struct hid_device_id rmi_id[] = {
1392 { HID_USB_DEVICE(USB_VENDOR_ID_RAZER, USB_DEVICE_ID_RAZER_BLADE_14),
1393 .driver_data = RMI_DEVICE_HAS_PHYS_BUTTONS },
1394 { HID_DEVICE(HID_BUS_ANY, HID_GROUP_RMI, HID_ANY_ID, HID_ANY_ID) },
1395 { }
1396 };
1397 MODULE_DEVICE_TABLE(hid, rmi_id);
1398
1399 static struct hid_driver rmi_driver = {
1400 .name = "hid-rmi",
1401 .id_table = rmi_id,
1402 .probe = rmi_probe,
1403 .remove = rmi_remove,
1404 .event = rmi_event,
1405 .raw_event = rmi_raw_event,
1406 .input_mapping = rmi_input_mapping,
1407 .input_configured = rmi_input_configured,
1408 #ifdef CONFIG_PM
1409 .suspend = rmi_suspend,
1410 .resume = rmi_post_resume,
1411 .reset_resume = rmi_post_reset,
1412 #endif
1413 };
1414
1415 module_hid_driver(rmi_driver);
1416
1417 MODULE_AUTHOR("Andrew Duggan <aduggan@synaptics.com>");
1418 MODULE_DESCRIPTION("RMI HID driver");
1419 MODULE_LICENSE("GPL");
This page took 0.057686 seconds and 6 git commands to generate.