Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[deliverable/linux.git] / drivers / hv / hv_balloon.c
1 /*
2 * Copyright (c) 2012, Microsoft Corporation.
3 *
4 * Author:
5 * K. Y. Srinivasan <kys@microsoft.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published
9 * by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more
15 * details.
16 *
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/kernel.h>
22 #include <linux/jiffies.h>
23 #include <linux/mman.h>
24 #include <linux/delay.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/kthread.h>
29 #include <linux/completion.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/memory.h>
32 #include <linux/notifier.h>
33 #include <linux/percpu_counter.h>
34
35 #include <linux/hyperv.h>
36
37 /*
38 * We begin with definitions supporting the Dynamic Memory protocol
39 * with the host.
40 *
41 * Begin protocol definitions.
42 */
43
44
45
46 /*
47 * Protocol versions. The low word is the minor version, the high word the major
48 * version.
49 *
50 * History:
51 * Initial version 1.0
52 * Changed to 0.1 on 2009/03/25
53 * Changes to 0.2 on 2009/05/14
54 * Changes to 0.3 on 2009/12/03
55 * Changed to 1.0 on 2011/04/05
56 */
57
58 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
59 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
60 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
61
62 enum {
63 DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
64 DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
65
66 DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
67 DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
68
69 DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN8
70 };
71
72
73
74 /*
75 * Message Types
76 */
77
78 enum dm_message_type {
79 /*
80 * Version 0.3
81 */
82 DM_ERROR = 0,
83 DM_VERSION_REQUEST = 1,
84 DM_VERSION_RESPONSE = 2,
85 DM_CAPABILITIES_REPORT = 3,
86 DM_CAPABILITIES_RESPONSE = 4,
87 DM_STATUS_REPORT = 5,
88 DM_BALLOON_REQUEST = 6,
89 DM_BALLOON_RESPONSE = 7,
90 DM_UNBALLOON_REQUEST = 8,
91 DM_UNBALLOON_RESPONSE = 9,
92 DM_MEM_HOT_ADD_REQUEST = 10,
93 DM_MEM_HOT_ADD_RESPONSE = 11,
94 DM_VERSION_03_MAX = 11,
95 /*
96 * Version 1.0.
97 */
98 DM_INFO_MESSAGE = 12,
99 DM_VERSION_1_MAX = 12
100 };
101
102
103 /*
104 * Structures defining the dynamic memory management
105 * protocol.
106 */
107
108 union dm_version {
109 struct {
110 __u16 minor_version;
111 __u16 major_version;
112 };
113 __u32 version;
114 } __packed;
115
116
117 union dm_caps {
118 struct {
119 __u64 balloon:1;
120 __u64 hot_add:1;
121 /*
122 * To support guests that may have alignment
123 * limitations on hot-add, the guest can specify
124 * its alignment requirements; a value of n
125 * represents an alignment of 2^n in mega bytes.
126 */
127 __u64 hot_add_alignment:4;
128 __u64 reservedz:58;
129 } cap_bits;
130 __u64 caps;
131 } __packed;
132
133 union dm_mem_page_range {
134 struct {
135 /*
136 * The PFN number of the first page in the range.
137 * 40 bits is the architectural limit of a PFN
138 * number for AMD64.
139 */
140 __u64 start_page:40;
141 /*
142 * The number of pages in the range.
143 */
144 __u64 page_cnt:24;
145 } finfo;
146 __u64 page_range;
147 } __packed;
148
149
150
151 /*
152 * The header for all dynamic memory messages:
153 *
154 * type: Type of the message.
155 * size: Size of the message in bytes; including the header.
156 * trans_id: The guest is responsible for manufacturing this ID.
157 */
158
159 struct dm_header {
160 __u16 type;
161 __u16 size;
162 __u32 trans_id;
163 } __packed;
164
165 /*
166 * A generic message format for dynamic memory.
167 * Specific message formats are defined later in the file.
168 */
169
170 struct dm_message {
171 struct dm_header hdr;
172 __u8 data[]; /* enclosed message */
173 } __packed;
174
175
176 /*
177 * Specific message types supporting the dynamic memory protocol.
178 */
179
180 /*
181 * Version negotiation message. Sent from the guest to the host.
182 * The guest is free to try different versions until the host
183 * accepts the version.
184 *
185 * dm_version: The protocol version requested.
186 * is_last_attempt: If TRUE, this is the last version guest will request.
187 * reservedz: Reserved field, set to zero.
188 */
189
190 struct dm_version_request {
191 struct dm_header hdr;
192 union dm_version version;
193 __u32 is_last_attempt:1;
194 __u32 reservedz:31;
195 } __packed;
196
197 /*
198 * Version response message; Host to Guest and indicates
199 * if the host has accepted the version sent by the guest.
200 *
201 * is_accepted: If TRUE, host has accepted the version and the guest
202 * should proceed to the next stage of the protocol. FALSE indicates that
203 * guest should re-try with a different version.
204 *
205 * reservedz: Reserved field, set to zero.
206 */
207
208 struct dm_version_response {
209 struct dm_header hdr;
210 __u64 is_accepted:1;
211 __u64 reservedz:63;
212 } __packed;
213
214 /*
215 * Message reporting capabilities. This is sent from the guest to the
216 * host.
217 */
218
219 struct dm_capabilities {
220 struct dm_header hdr;
221 union dm_caps caps;
222 __u64 min_page_cnt;
223 __u64 max_page_number;
224 } __packed;
225
226 /*
227 * Response to the capabilities message. This is sent from the host to the
228 * guest. This message notifies if the host has accepted the guest's
229 * capabilities. If the host has not accepted, the guest must shutdown
230 * the service.
231 *
232 * is_accepted: Indicates if the host has accepted guest's capabilities.
233 * reservedz: Must be 0.
234 */
235
236 struct dm_capabilities_resp_msg {
237 struct dm_header hdr;
238 __u64 is_accepted:1;
239 __u64 reservedz:63;
240 } __packed;
241
242 /*
243 * This message is used to report memory pressure from the guest.
244 * This message is not part of any transaction and there is no
245 * response to this message.
246 *
247 * num_avail: Available memory in pages.
248 * num_committed: Committed memory in pages.
249 * page_file_size: The accumulated size of all page files
250 * in the system in pages.
251 * zero_free: The nunber of zero and free pages.
252 * page_file_writes: The writes to the page file in pages.
253 * io_diff: An indicator of file cache efficiency or page file activity,
254 * calculated as File Cache Page Fault Count - Page Read Count.
255 * This value is in pages.
256 *
257 * Some of these metrics are Windows specific and fortunately
258 * the algorithm on the host side that computes the guest memory
259 * pressure only uses num_committed value.
260 */
261
262 struct dm_status {
263 struct dm_header hdr;
264 __u64 num_avail;
265 __u64 num_committed;
266 __u64 page_file_size;
267 __u64 zero_free;
268 __u32 page_file_writes;
269 __u32 io_diff;
270 } __packed;
271
272
273 /*
274 * Message to ask the guest to allocate memory - balloon up message.
275 * This message is sent from the host to the guest. The guest may not be
276 * able to allocate as much memory as requested.
277 *
278 * num_pages: number of pages to allocate.
279 */
280
281 struct dm_balloon {
282 struct dm_header hdr;
283 __u32 num_pages;
284 __u32 reservedz;
285 } __packed;
286
287
288 /*
289 * Balloon response message; this message is sent from the guest
290 * to the host in response to the balloon message.
291 *
292 * reservedz: Reserved; must be set to zero.
293 * more_pages: If FALSE, this is the last message of the transaction.
294 * if TRUE there will atleast one more message from the guest.
295 *
296 * range_count: The number of ranges in the range array.
297 *
298 * range_array: An array of page ranges returned to the host.
299 *
300 */
301
302 struct dm_balloon_response {
303 struct dm_header hdr;
304 __u32 reservedz;
305 __u32 more_pages:1;
306 __u32 range_count:31;
307 union dm_mem_page_range range_array[];
308 } __packed;
309
310 /*
311 * Un-balloon message; this message is sent from the host
312 * to the guest to give guest more memory.
313 *
314 * more_pages: If FALSE, this is the last message of the transaction.
315 * if TRUE there will atleast one more message from the guest.
316 *
317 * reservedz: Reserved; must be set to zero.
318 *
319 * range_count: The number of ranges in the range array.
320 *
321 * range_array: An array of page ranges returned to the host.
322 *
323 */
324
325 struct dm_unballoon_request {
326 struct dm_header hdr;
327 __u32 more_pages:1;
328 __u32 reservedz:31;
329 __u32 range_count;
330 union dm_mem_page_range range_array[];
331 } __packed;
332
333 /*
334 * Un-balloon response message; this message is sent from the guest
335 * to the host in response to an unballoon request.
336 *
337 */
338
339 struct dm_unballoon_response {
340 struct dm_header hdr;
341 } __packed;
342
343
344 /*
345 * Hot add request message. Message sent from the host to the guest.
346 *
347 * mem_range: Memory range to hot add.
348 *
349 * On Linux we currently don't support this since we cannot hot add
350 * arbitrary granularity of memory.
351 */
352
353 struct dm_hot_add {
354 struct dm_header hdr;
355 union dm_mem_page_range range;
356 } __packed;
357
358 /*
359 * Hot add response message.
360 * This message is sent by the guest to report the status of a hot add request.
361 * If page_count is less than the requested page count, then the host should
362 * assume all further hot add requests will fail, since this indicates that
363 * the guest has hit an upper physical memory barrier.
364 *
365 * Hot adds may also fail due to low resources; in this case, the guest must
366 * not complete this message until the hot add can succeed, and the host must
367 * not send a new hot add request until the response is sent.
368 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
369 * times it fails the request.
370 *
371 *
372 * page_count: number of pages that were successfully hot added.
373 *
374 * result: result of the operation 1: success, 0: failure.
375 *
376 */
377
378 struct dm_hot_add_response {
379 struct dm_header hdr;
380 __u32 page_count;
381 __u32 result;
382 } __packed;
383
384 /*
385 * Types of information sent from host to the guest.
386 */
387
388 enum dm_info_type {
389 INFO_TYPE_MAX_PAGE_CNT = 0,
390 MAX_INFO_TYPE
391 };
392
393
394 /*
395 * Header for the information message.
396 */
397
398 struct dm_info_header {
399 enum dm_info_type type;
400 __u32 data_size;
401 } __packed;
402
403 /*
404 * This message is sent from the host to the guest to pass
405 * some relevant information (win8 addition).
406 *
407 * reserved: no used.
408 * info_size: size of the information blob.
409 * info: information blob.
410 */
411
412 struct dm_info_msg {
413 struct dm_header hdr;
414 __u32 reserved;
415 __u32 info_size;
416 __u8 info[];
417 };
418
419 /*
420 * End protocol definitions.
421 */
422
423 /*
424 * State to manage hot adding memory into the guest.
425 * The range start_pfn : end_pfn specifies the range
426 * that the host has asked us to hot add. The range
427 * start_pfn : ha_end_pfn specifies the range that we have
428 * currently hot added. We hot add in multiples of 128M
429 * chunks; it is possible that we may not be able to bring
430 * online all the pages in the region. The range
431 * covered_end_pfn defines the pages that can
432 * be brough online.
433 */
434
435 struct hv_hotadd_state {
436 struct list_head list;
437 unsigned long start_pfn;
438 unsigned long covered_end_pfn;
439 unsigned long ha_end_pfn;
440 unsigned long end_pfn;
441 };
442
443 struct balloon_state {
444 __u32 num_pages;
445 struct work_struct wrk;
446 };
447
448 struct hot_add_wrk {
449 union dm_mem_page_range ha_page_range;
450 union dm_mem_page_range ha_region_range;
451 struct work_struct wrk;
452 };
453
454 static bool hot_add = true;
455 static bool do_hot_add;
456 /*
457 * Delay reporting memory pressure by
458 * the specified number of seconds.
459 */
460 static uint pressure_report_delay = 45;
461
462 /*
463 * The last time we posted a pressure report to host.
464 */
465 static unsigned long last_post_time;
466
467 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
468 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
469
470 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
471 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
472 static atomic_t trans_id = ATOMIC_INIT(0);
473
474 static int dm_ring_size = (5 * PAGE_SIZE);
475
476 /*
477 * Driver specific state.
478 */
479
480 enum hv_dm_state {
481 DM_INITIALIZING = 0,
482 DM_INITIALIZED,
483 DM_BALLOON_UP,
484 DM_BALLOON_DOWN,
485 DM_HOT_ADD,
486 DM_INIT_ERROR
487 };
488
489
490 static __u8 recv_buffer[PAGE_SIZE];
491 static __u8 *send_buffer;
492 #define PAGES_IN_2M 512
493 #define HA_CHUNK (32 * 1024)
494
495 struct hv_dynmem_device {
496 struct hv_device *dev;
497 enum hv_dm_state state;
498 struct completion host_event;
499 struct completion config_event;
500
501 /*
502 * Number of pages we have currently ballooned out.
503 */
504 unsigned int num_pages_ballooned;
505 unsigned int num_pages_onlined;
506 unsigned int num_pages_added;
507
508 /*
509 * State to manage the ballooning (up) operation.
510 */
511 struct balloon_state balloon_wrk;
512
513 /*
514 * State to execute the "hot-add" operation.
515 */
516 struct hot_add_wrk ha_wrk;
517
518 /*
519 * This state tracks if the host has specified a hot-add
520 * region.
521 */
522 bool host_specified_ha_region;
523
524 /*
525 * State to synchronize hot-add.
526 */
527 struct completion ol_waitevent;
528 bool ha_waiting;
529 /*
530 * This thread handles hot-add
531 * requests from the host as well as notifying
532 * the host with regards to memory pressure in
533 * the guest.
534 */
535 struct task_struct *thread;
536
537 struct mutex ha_region_mutex;
538
539 /*
540 * A list of hot-add regions.
541 */
542 struct list_head ha_region_list;
543
544 /*
545 * We start with the highest version we can support
546 * and downgrade based on the host; we save here the
547 * next version to try.
548 */
549 __u32 next_version;
550 };
551
552 static struct hv_dynmem_device dm_device;
553
554 static void post_status(struct hv_dynmem_device *dm);
555
556 #ifdef CONFIG_MEMORY_HOTPLUG
557 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
558 void *v)
559 {
560 struct memory_notify *mem = (struct memory_notify *)v;
561
562 switch (val) {
563 case MEM_GOING_ONLINE:
564 mutex_lock(&dm_device.ha_region_mutex);
565 break;
566
567 case MEM_ONLINE:
568 dm_device.num_pages_onlined += mem->nr_pages;
569 case MEM_CANCEL_ONLINE:
570 mutex_unlock(&dm_device.ha_region_mutex);
571 if (dm_device.ha_waiting) {
572 dm_device.ha_waiting = false;
573 complete(&dm_device.ol_waitevent);
574 }
575 break;
576
577 case MEM_OFFLINE:
578 mutex_lock(&dm_device.ha_region_mutex);
579 dm_device.num_pages_onlined -= mem->nr_pages;
580 mutex_unlock(&dm_device.ha_region_mutex);
581 break;
582 case MEM_GOING_OFFLINE:
583 case MEM_CANCEL_OFFLINE:
584 break;
585 }
586 return NOTIFY_OK;
587 }
588
589 static struct notifier_block hv_memory_nb = {
590 .notifier_call = hv_memory_notifier,
591 .priority = 0
592 };
593
594
595 static void hv_bring_pgs_online(unsigned long start_pfn, unsigned long size)
596 {
597 int i;
598
599 for (i = 0; i < size; i++) {
600 struct page *pg;
601 pg = pfn_to_page(start_pfn + i);
602 __online_page_set_limits(pg);
603 __online_page_increment_counters(pg);
604 __online_page_free(pg);
605 }
606 }
607
608 static void hv_mem_hot_add(unsigned long start, unsigned long size,
609 unsigned long pfn_count,
610 struct hv_hotadd_state *has)
611 {
612 int ret = 0;
613 int i, nid;
614 unsigned long start_pfn;
615 unsigned long processed_pfn;
616 unsigned long total_pfn = pfn_count;
617
618 for (i = 0; i < (size/HA_CHUNK); i++) {
619 start_pfn = start + (i * HA_CHUNK);
620 has->ha_end_pfn += HA_CHUNK;
621
622 if (total_pfn > HA_CHUNK) {
623 processed_pfn = HA_CHUNK;
624 total_pfn -= HA_CHUNK;
625 } else {
626 processed_pfn = total_pfn;
627 total_pfn = 0;
628 }
629
630 has->covered_end_pfn += processed_pfn;
631
632 init_completion(&dm_device.ol_waitevent);
633 dm_device.ha_waiting = true;
634
635 mutex_unlock(&dm_device.ha_region_mutex);
636 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
637 ret = add_memory(nid, PFN_PHYS((start_pfn)),
638 (HA_CHUNK << PAGE_SHIFT));
639
640 if (ret) {
641 pr_info("hot_add memory failed error is %d\n", ret);
642 if (ret == -EEXIST) {
643 /*
644 * This error indicates that the error
645 * is not a transient failure. This is the
646 * case where the guest's physical address map
647 * precludes hot adding memory. Stop all further
648 * memory hot-add.
649 */
650 do_hot_add = false;
651 }
652 has->ha_end_pfn -= HA_CHUNK;
653 has->covered_end_pfn -= processed_pfn;
654 mutex_lock(&dm_device.ha_region_mutex);
655 break;
656 }
657
658 /*
659 * Wait for the memory block to be onlined.
660 * Since the hot add has succeeded, it is ok to
661 * proceed even if the pages in the hot added region
662 * have not been "onlined" within the allowed time.
663 */
664 wait_for_completion_timeout(&dm_device.ol_waitevent, 5*HZ);
665 mutex_lock(&dm_device.ha_region_mutex);
666 post_status(&dm_device);
667 }
668
669 return;
670 }
671
672 static void hv_online_page(struct page *pg)
673 {
674 struct list_head *cur;
675 struct hv_hotadd_state *has;
676 unsigned long cur_start_pgp;
677 unsigned long cur_end_pgp;
678
679 list_for_each(cur, &dm_device.ha_region_list) {
680 has = list_entry(cur, struct hv_hotadd_state, list);
681 cur_start_pgp = (unsigned long)pfn_to_page(has->start_pfn);
682 cur_end_pgp = (unsigned long)pfn_to_page(has->covered_end_pfn);
683
684 if (((unsigned long)pg >= cur_start_pgp) &&
685 ((unsigned long)pg < cur_end_pgp)) {
686 /*
687 * This frame is currently backed; online the
688 * page.
689 */
690 __online_page_set_limits(pg);
691 __online_page_increment_counters(pg);
692 __online_page_free(pg);
693 }
694 }
695 }
696
697 static bool pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
698 {
699 struct list_head *cur;
700 struct hv_hotadd_state *has;
701 unsigned long residual, new_inc;
702
703 if (list_empty(&dm_device.ha_region_list))
704 return false;
705
706 list_for_each(cur, &dm_device.ha_region_list) {
707 has = list_entry(cur, struct hv_hotadd_state, list);
708
709 /*
710 * If the pfn range we are dealing with is not in the current
711 * "hot add block", move on.
712 */
713 if ((start_pfn >= has->end_pfn))
714 continue;
715 /*
716 * If the current hot add-request extends beyond
717 * our current limit; extend it.
718 */
719 if ((start_pfn + pfn_cnt) > has->end_pfn) {
720 residual = (start_pfn + pfn_cnt - has->end_pfn);
721 /*
722 * Extend the region by multiples of HA_CHUNK.
723 */
724 new_inc = (residual / HA_CHUNK) * HA_CHUNK;
725 if (residual % HA_CHUNK)
726 new_inc += HA_CHUNK;
727
728 has->end_pfn += new_inc;
729 }
730
731 /*
732 * If the current start pfn is not where the covered_end
733 * is, update it.
734 */
735
736 if (has->covered_end_pfn != start_pfn)
737 has->covered_end_pfn = start_pfn;
738
739 return true;
740
741 }
742
743 return false;
744 }
745
746 static unsigned long handle_pg_range(unsigned long pg_start,
747 unsigned long pg_count)
748 {
749 unsigned long start_pfn = pg_start;
750 unsigned long pfn_cnt = pg_count;
751 unsigned long size;
752 struct list_head *cur;
753 struct hv_hotadd_state *has;
754 unsigned long pgs_ol = 0;
755 unsigned long old_covered_state;
756
757 if (list_empty(&dm_device.ha_region_list))
758 return 0;
759
760 list_for_each(cur, &dm_device.ha_region_list) {
761 has = list_entry(cur, struct hv_hotadd_state, list);
762
763 /*
764 * If the pfn range we are dealing with is not in the current
765 * "hot add block", move on.
766 */
767 if ((start_pfn >= has->end_pfn))
768 continue;
769
770 old_covered_state = has->covered_end_pfn;
771
772 if (start_pfn < has->ha_end_pfn) {
773 /*
774 * This is the case where we are backing pages
775 * in an already hot added region. Bring
776 * these pages online first.
777 */
778 pgs_ol = has->ha_end_pfn - start_pfn;
779 if (pgs_ol > pfn_cnt)
780 pgs_ol = pfn_cnt;
781
782 /*
783 * Check if the corresponding memory block is already
784 * online by checking its last previously backed page.
785 * In case it is we need to bring rest (which was not
786 * backed previously) online too.
787 */
788 if (start_pfn > has->start_pfn &&
789 !PageReserved(pfn_to_page(start_pfn - 1)))
790 hv_bring_pgs_online(start_pfn, pgs_ol);
791
792 has->covered_end_pfn += pgs_ol;
793 pfn_cnt -= pgs_ol;
794 }
795
796 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
797 /*
798 * We have some residual hot add range
799 * that needs to be hot added; hot add
800 * it now. Hot add a multiple of
801 * of HA_CHUNK that fully covers the pages
802 * we have.
803 */
804 size = (has->end_pfn - has->ha_end_pfn);
805 if (pfn_cnt <= size) {
806 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
807 if (pfn_cnt % HA_CHUNK)
808 size += HA_CHUNK;
809 } else {
810 pfn_cnt = size;
811 }
812 hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
813 }
814 /*
815 * If we managed to online any pages that were given to us,
816 * we declare success.
817 */
818 return has->covered_end_pfn - old_covered_state;
819
820 }
821
822 return 0;
823 }
824
825 static unsigned long process_hot_add(unsigned long pg_start,
826 unsigned long pfn_cnt,
827 unsigned long rg_start,
828 unsigned long rg_size)
829 {
830 struct hv_hotadd_state *ha_region = NULL;
831
832 if (pfn_cnt == 0)
833 return 0;
834
835 if (!dm_device.host_specified_ha_region)
836 if (pfn_covered(pg_start, pfn_cnt))
837 goto do_pg_range;
838
839 /*
840 * If the host has specified a hot-add range; deal with it first.
841 */
842
843 if (rg_size != 0) {
844 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
845 if (!ha_region)
846 return 0;
847
848 INIT_LIST_HEAD(&ha_region->list);
849
850 list_add_tail(&ha_region->list, &dm_device.ha_region_list);
851 ha_region->start_pfn = rg_start;
852 ha_region->ha_end_pfn = rg_start;
853 ha_region->covered_end_pfn = pg_start;
854 ha_region->end_pfn = rg_start + rg_size;
855 }
856
857 do_pg_range:
858 /*
859 * Process the page range specified; bringing them
860 * online if possible.
861 */
862 return handle_pg_range(pg_start, pfn_cnt);
863 }
864
865 #endif
866
867 static void hot_add_req(struct work_struct *dummy)
868 {
869 struct dm_hot_add_response resp;
870 #ifdef CONFIG_MEMORY_HOTPLUG
871 unsigned long pg_start, pfn_cnt;
872 unsigned long rg_start, rg_sz;
873 #endif
874 struct hv_dynmem_device *dm = &dm_device;
875
876 memset(&resp, 0, sizeof(struct dm_hot_add_response));
877 resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
878 resp.hdr.size = sizeof(struct dm_hot_add_response);
879
880 #ifdef CONFIG_MEMORY_HOTPLUG
881 mutex_lock(&dm_device.ha_region_mutex);
882 pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
883 pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
884
885 rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
886 rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
887
888 if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
889 unsigned long region_size;
890 unsigned long region_start;
891
892 /*
893 * The host has not specified the hot-add region.
894 * Based on the hot-add page range being specified,
895 * compute a hot-add region that can cover the pages
896 * that need to be hot-added while ensuring the alignment
897 * and size requirements of Linux as it relates to hot-add.
898 */
899 region_start = pg_start;
900 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
901 if (pfn_cnt % HA_CHUNK)
902 region_size += HA_CHUNK;
903
904 region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
905
906 rg_start = region_start;
907 rg_sz = region_size;
908 }
909
910 if (do_hot_add)
911 resp.page_count = process_hot_add(pg_start, pfn_cnt,
912 rg_start, rg_sz);
913
914 dm->num_pages_added += resp.page_count;
915 mutex_unlock(&dm_device.ha_region_mutex);
916 #endif
917 /*
918 * The result field of the response structure has the
919 * following semantics:
920 *
921 * 1. If all or some pages hot-added: Guest should return success.
922 *
923 * 2. If no pages could be hot-added:
924 *
925 * If the guest returns success, then the host
926 * will not attempt any further hot-add operations. This
927 * signifies a permanent failure.
928 *
929 * If the guest returns failure, then this failure will be
930 * treated as a transient failure and the host may retry the
931 * hot-add operation after some delay.
932 */
933 if (resp.page_count > 0)
934 resp.result = 1;
935 else if (!do_hot_add)
936 resp.result = 1;
937 else
938 resp.result = 0;
939
940 if (!do_hot_add || (resp.page_count == 0))
941 pr_info("Memory hot add failed\n");
942
943 dm->state = DM_INITIALIZED;
944 resp.hdr.trans_id = atomic_inc_return(&trans_id);
945 vmbus_sendpacket(dm->dev->channel, &resp,
946 sizeof(struct dm_hot_add_response),
947 (unsigned long)NULL,
948 VM_PKT_DATA_INBAND, 0);
949 }
950
951 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
952 {
953 struct dm_info_header *info_hdr;
954
955 info_hdr = (struct dm_info_header *)msg->info;
956
957 switch (info_hdr->type) {
958 case INFO_TYPE_MAX_PAGE_CNT:
959 pr_info("Received INFO_TYPE_MAX_PAGE_CNT\n");
960 pr_info("Data Size is %d\n", info_hdr->data_size);
961 break;
962 default:
963 pr_info("Received Unknown type: %d\n", info_hdr->type);
964 }
965 }
966
967 static unsigned long compute_balloon_floor(void)
968 {
969 unsigned long min_pages;
970 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
971 /* Simple continuous piecewiese linear function:
972 * max MiB -> min MiB gradient
973 * 0 0
974 * 16 16
975 * 32 24
976 * 128 72 (1/2)
977 * 512 168 (1/4)
978 * 2048 360 (1/8)
979 * 8192 744 (1/16)
980 * 32768 1512 (1/32)
981 */
982 if (totalram_pages < MB2PAGES(128))
983 min_pages = MB2PAGES(8) + (totalram_pages >> 1);
984 else if (totalram_pages < MB2PAGES(512))
985 min_pages = MB2PAGES(40) + (totalram_pages >> 2);
986 else if (totalram_pages < MB2PAGES(2048))
987 min_pages = MB2PAGES(104) + (totalram_pages >> 3);
988 else if (totalram_pages < MB2PAGES(8192))
989 min_pages = MB2PAGES(232) + (totalram_pages >> 4);
990 else
991 min_pages = MB2PAGES(488) + (totalram_pages >> 5);
992 #undef MB2PAGES
993 return min_pages;
994 }
995
996 /*
997 * Post our status as it relates memory pressure to the
998 * host. Host expects the guests to post this status
999 * periodically at 1 second intervals.
1000 *
1001 * The metrics specified in this protocol are very Windows
1002 * specific and so we cook up numbers here to convey our memory
1003 * pressure.
1004 */
1005
1006 static void post_status(struct hv_dynmem_device *dm)
1007 {
1008 struct dm_status status;
1009 struct sysinfo val;
1010 unsigned long now = jiffies;
1011 unsigned long last_post = last_post_time;
1012
1013 if (pressure_report_delay > 0) {
1014 --pressure_report_delay;
1015 return;
1016 }
1017
1018 if (!time_after(now, (last_post_time + HZ)))
1019 return;
1020
1021 si_meminfo(&val);
1022 memset(&status, 0, sizeof(struct dm_status));
1023 status.hdr.type = DM_STATUS_REPORT;
1024 status.hdr.size = sizeof(struct dm_status);
1025 status.hdr.trans_id = atomic_inc_return(&trans_id);
1026
1027 /*
1028 * The host expects the guest to report free and committed memory.
1029 * Furthermore, the host expects the pressure information to include
1030 * the ballooned out pages. For a given amount of memory that we are
1031 * managing we need to compute a floor below which we should not
1032 * balloon. Compute this and add it to the pressure report.
1033 * We also need to report all offline pages (num_pages_added -
1034 * num_pages_onlined) as committed to the host, otherwise it can try
1035 * asking us to balloon them out.
1036 */
1037 status.num_avail = val.freeram;
1038 status.num_committed = vm_memory_committed() +
1039 dm->num_pages_ballooned +
1040 (dm->num_pages_added > dm->num_pages_onlined ?
1041 dm->num_pages_added - dm->num_pages_onlined : 0) +
1042 compute_balloon_floor();
1043
1044 /*
1045 * If our transaction ID is no longer current, just don't
1046 * send the status. This can happen if we were interrupted
1047 * after we picked our transaction ID.
1048 */
1049 if (status.hdr.trans_id != atomic_read(&trans_id))
1050 return;
1051
1052 /*
1053 * If the last post time that we sampled has changed,
1054 * we have raced, don't post the status.
1055 */
1056 if (last_post != last_post_time)
1057 return;
1058
1059 last_post_time = jiffies;
1060 vmbus_sendpacket(dm->dev->channel, &status,
1061 sizeof(struct dm_status),
1062 (unsigned long)NULL,
1063 VM_PKT_DATA_INBAND, 0);
1064
1065 }
1066
1067 static void free_balloon_pages(struct hv_dynmem_device *dm,
1068 union dm_mem_page_range *range_array)
1069 {
1070 int num_pages = range_array->finfo.page_cnt;
1071 __u64 start_frame = range_array->finfo.start_page;
1072 struct page *pg;
1073 int i;
1074
1075 for (i = 0; i < num_pages; i++) {
1076 pg = pfn_to_page(i + start_frame);
1077 __free_page(pg);
1078 dm->num_pages_ballooned--;
1079 }
1080 }
1081
1082
1083
1084 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1085 unsigned int num_pages,
1086 struct dm_balloon_response *bl_resp,
1087 int alloc_unit)
1088 {
1089 unsigned int i = 0;
1090 struct page *pg;
1091
1092 if (num_pages < alloc_unit)
1093 return 0;
1094
1095 for (i = 0; (i * alloc_unit) < num_pages; i++) {
1096 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1097 PAGE_SIZE)
1098 return i * alloc_unit;
1099
1100 /*
1101 * We execute this code in a thread context. Furthermore,
1102 * we don't want the kernel to try too hard.
1103 */
1104 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1105 __GFP_NOMEMALLOC | __GFP_NOWARN,
1106 get_order(alloc_unit << PAGE_SHIFT));
1107
1108 if (!pg)
1109 return i * alloc_unit;
1110
1111 dm->num_pages_ballooned += alloc_unit;
1112
1113 /*
1114 * If we allocatted 2M pages; split them so we
1115 * can free them in any order we get.
1116 */
1117
1118 if (alloc_unit != 1)
1119 split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1120
1121 bl_resp->range_count++;
1122 bl_resp->range_array[i].finfo.start_page =
1123 page_to_pfn(pg);
1124 bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1125 bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1126
1127 }
1128
1129 return num_pages;
1130 }
1131
1132
1133
1134 static void balloon_up(struct work_struct *dummy)
1135 {
1136 unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1137 unsigned int num_ballooned = 0;
1138 struct dm_balloon_response *bl_resp;
1139 int alloc_unit;
1140 int ret;
1141 bool done = false;
1142 int i;
1143 struct sysinfo val;
1144 unsigned long floor;
1145
1146 /* The host balloons pages in 2M granularity. */
1147 WARN_ON_ONCE(num_pages % PAGES_IN_2M != 0);
1148
1149 /*
1150 * We will attempt 2M allocations. However, if we fail to
1151 * allocate 2M chunks, we will go back to 4k allocations.
1152 */
1153 alloc_unit = 512;
1154
1155 si_meminfo(&val);
1156 floor = compute_balloon_floor();
1157
1158 /* Refuse to balloon below the floor, keep the 2M granularity. */
1159 if (val.freeram < num_pages || val.freeram - num_pages < floor) {
1160 num_pages = val.freeram > floor ? (val.freeram - floor) : 0;
1161 num_pages -= num_pages % PAGES_IN_2M;
1162 }
1163
1164 while (!done) {
1165 bl_resp = (struct dm_balloon_response *)send_buffer;
1166 memset(send_buffer, 0, PAGE_SIZE);
1167 bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1168 bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1169 bl_resp->more_pages = 1;
1170
1171
1172 num_pages -= num_ballooned;
1173 num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1174 bl_resp, alloc_unit);
1175
1176 if (alloc_unit != 1 && num_ballooned == 0) {
1177 alloc_unit = 1;
1178 continue;
1179 }
1180
1181 if (num_ballooned == 0 || num_ballooned == num_pages) {
1182 bl_resp->more_pages = 0;
1183 done = true;
1184 dm_device.state = DM_INITIALIZED;
1185 }
1186
1187 /*
1188 * We are pushing a lot of data through the channel;
1189 * deal with transient failures caused because of the
1190 * lack of space in the ring buffer.
1191 */
1192
1193 do {
1194 bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1195 ret = vmbus_sendpacket(dm_device.dev->channel,
1196 bl_resp,
1197 bl_resp->hdr.size,
1198 (unsigned long)NULL,
1199 VM_PKT_DATA_INBAND, 0);
1200
1201 if (ret == -EAGAIN)
1202 msleep(20);
1203 post_status(&dm_device);
1204 } while (ret == -EAGAIN);
1205
1206 if (ret) {
1207 /*
1208 * Free up the memory we allocatted.
1209 */
1210 pr_info("Balloon response failed\n");
1211
1212 for (i = 0; i < bl_resp->range_count; i++)
1213 free_balloon_pages(&dm_device,
1214 &bl_resp->range_array[i]);
1215
1216 done = true;
1217 }
1218 }
1219
1220 }
1221
1222 static void balloon_down(struct hv_dynmem_device *dm,
1223 struct dm_unballoon_request *req)
1224 {
1225 union dm_mem_page_range *range_array = req->range_array;
1226 int range_count = req->range_count;
1227 struct dm_unballoon_response resp;
1228 int i;
1229
1230 for (i = 0; i < range_count; i++) {
1231 free_balloon_pages(dm, &range_array[i]);
1232 complete(&dm_device.config_event);
1233 }
1234
1235 if (req->more_pages == 1)
1236 return;
1237
1238 memset(&resp, 0, sizeof(struct dm_unballoon_response));
1239 resp.hdr.type = DM_UNBALLOON_RESPONSE;
1240 resp.hdr.trans_id = atomic_inc_return(&trans_id);
1241 resp.hdr.size = sizeof(struct dm_unballoon_response);
1242
1243 vmbus_sendpacket(dm_device.dev->channel, &resp,
1244 sizeof(struct dm_unballoon_response),
1245 (unsigned long)NULL,
1246 VM_PKT_DATA_INBAND, 0);
1247
1248 dm->state = DM_INITIALIZED;
1249 }
1250
1251 static void balloon_onchannelcallback(void *context);
1252
1253 static int dm_thread_func(void *dm_dev)
1254 {
1255 struct hv_dynmem_device *dm = dm_dev;
1256
1257 while (!kthread_should_stop()) {
1258 wait_for_completion_interruptible_timeout(
1259 &dm_device.config_event, 1*HZ);
1260 /*
1261 * The host expects us to post information on the memory
1262 * pressure every second.
1263 */
1264 reinit_completion(&dm_device.config_event);
1265 post_status(dm);
1266 }
1267
1268 return 0;
1269 }
1270
1271
1272 static void version_resp(struct hv_dynmem_device *dm,
1273 struct dm_version_response *vresp)
1274 {
1275 struct dm_version_request version_req;
1276 int ret;
1277
1278 if (vresp->is_accepted) {
1279 /*
1280 * We are done; wakeup the
1281 * context waiting for version
1282 * negotiation.
1283 */
1284 complete(&dm->host_event);
1285 return;
1286 }
1287 /*
1288 * If there are more versions to try, continue
1289 * with negotiations; if not
1290 * shutdown the service since we are not able
1291 * to negotiate a suitable version number
1292 * with the host.
1293 */
1294 if (dm->next_version == 0)
1295 goto version_error;
1296
1297 dm->next_version = 0;
1298 memset(&version_req, 0, sizeof(struct dm_version_request));
1299 version_req.hdr.type = DM_VERSION_REQUEST;
1300 version_req.hdr.size = sizeof(struct dm_version_request);
1301 version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1302 version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN7;
1303 version_req.is_last_attempt = 1;
1304
1305 ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1306 sizeof(struct dm_version_request),
1307 (unsigned long)NULL,
1308 VM_PKT_DATA_INBAND, 0);
1309
1310 if (ret)
1311 goto version_error;
1312
1313 return;
1314
1315 version_error:
1316 dm->state = DM_INIT_ERROR;
1317 complete(&dm->host_event);
1318 }
1319
1320 static void cap_resp(struct hv_dynmem_device *dm,
1321 struct dm_capabilities_resp_msg *cap_resp)
1322 {
1323 if (!cap_resp->is_accepted) {
1324 pr_info("Capabilities not accepted by host\n");
1325 dm->state = DM_INIT_ERROR;
1326 }
1327 complete(&dm->host_event);
1328 }
1329
1330 static void balloon_onchannelcallback(void *context)
1331 {
1332 struct hv_device *dev = context;
1333 u32 recvlen;
1334 u64 requestid;
1335 struct dm_message *dm_msg;
1336 struct dm_header *dm_hdr;
1337 struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1338 struct dm_balloon *bal_msg;
1339 struct dm_hot_add *ha_msg;
1340 union dm_mem_page_range *ha_pg_range;
1341 union dm_mem_page_range *ha_region;
1342
1343 memset(recv_buffer, 0, sizeof(recv_buffer));
1344 vmbus_recvpacket(dev->channel, recv_buffer,
1345 PAGE_SIZE, &recvlen, &requestid);
1346
1347 if (recvlen > 0) {
1348 dm_msg = (struct dm_message *)recv_buffer;
1349 dm_hdr = &dm_msg->hdr;
1350
1351 switch (dm_hdr->type) {
1352 case DM_VERSION_RESPONSE:
1353 version_resp(dm,
1354 (struct dm_version_response *)dm_msg);
1355 break;
1356
1357 case DM_CAPABILITIES_RESPONSE:
1358 cap_resp(dm,
1359 (struct dm_capabilities_resp_msg *)dm_msg);
1360 break;
1361
1362 case DM_BALLOON_REQUEST:
1363 if (dm->state == DM_BALLOON_UP)
1364 pr_warn("Currently ballooning\n");
1365 bal_msg = (struct dm_balloon *)recv_buffer;
1366 dm->state = DM_BALLOON_UP;
1367 dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1368 schedule_work(&dm_device.balloon_wrk.wrk);
1369 break;
1370
1371 case DM_UNBALLOON_REQUEST:
1372 dm->state = DM_BALLOON_DOWN;
1373 balloon_down(dm,
1374 (struct dm_unballoon_request *)recv_buffer);
1375 break;
1376
1377 case DM_MEM_HOT_ADD_REQUEST:
1378 if (dm->state == DM_HOT_ADD)
1379 pr_warn("Currently hot-adding\n");
1380 dm->state = DM_HOT_ADD;
1381 ha_msg = (struct dm_hot_add *)recv_buffer;
1382 if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1383 /*
1384 * This is a normal hot-add request specifying
1385 * hot-add memory.
1386 */
1387 ha_pg_range = &ha_msg->range;
1388 dm->ha_wrk.ha_page_range = *ha_pg_range;
1389 dm->ha_wrk.ha_region_range.page_range = 0;
1390 } else {
1391 /*
1392 * Host is specifying that we first hot-add
1393 * a region and then partially populate this
1394 * region.
1395 */
1396 dm->host_specified_ha_region = true;
1397 ha_pg_range = &ha_msg->range;
1398 ha_region = &ha_pg_range[1];
1399 dm->ha_wrk.ha_page_range = *ha_pg_range;
1400 dm->ha_wrk.ha_region_range = *ha_region;
1401 }
1402 schedule_work(&dm_device.ha_wrk.wrk);
1403 break;
1404
1405 case DM_INFO_MESSAGE:
1406 process_info(dm, (struct dm_info_msg *)dm_msg);
1407 break;
1408
1409 default:
1410 pr_err("Unhandled message: type: %d\n", dm_hdr->type);
1411
1412 }
1413 }
1414
1415 }
1416
1417 static int balloon_probe(struct hv_device *dev,
1418 const struct hv_vmbus_device_id *dev_id)
1419 {
1420 int ret;
1421 unsigned long t;
1422 struct dm_version_request version_req;
1423 struct dm_capabilities cap_msg;
1424
1425 do_hot_add = hot_add;
1426
1427 /*
1428 * First allocate a send buffer.
1429 */
1430
1431 send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1432 if (!send_buffer)
1433 return -ENOMEM;
1434
1435 ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1436 balloon_onchannelcallback, dev);
1437
1438 if (ret)
1439 goto probe_error0;
1440
1441 dm_device.dev = dev;
1442 dm_device.state = DM_INITIALIZING;
1443 dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1444 init_completion(&dm_device.host_event);
1445 init_completion(&dm_device.config_event);
1446 INIT_LIST_HEAD(&dm_device.ha_region_list);
1447 mutex_init(&dm_device.ha_region_mutex);
1448 INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1449 INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1450 dm_device.host_specified_ha_region = false;
1451
1452 dm_device.thread =
1453 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1454 if (IS_ERR(dm_device.thread)) {
1455 ret = PTR_ERR(dm_device.thread);
1456 goto probe_error1;
1457 }
1458
1459 #ifdef CONFIG_MEMORY_HOTPLUG
1460 set_online_page_callback(&hv_online_page);
1461 register_memory_notifier(&hv_memory_nb);
1462 #endif
1463
1464 hv_set_drvdata(dev, &dm_device);
1465 /*
1466 * Initiate the hand shake with the host and negotiate
1467 * a version that the host can support. We start with the
1468 * highest version number and go down if the host cannot
1469 * support it.
1470 */
1471 memset(&version_req, 0, sizeof(struct dm_version_request));
1472 version_req.hdr.type = DM_VERSION_REQUEST;
1473 version_req.hdr.size = sizeof(struct dm_version_request);
1474 version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1475 version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN8;
1476 version_req.is_last_attempt = 0;
1477
1478 ret = vmbus_sendpacket(dev->channel, &version_req,
1479 sizeof(struct dm_version_request),
1480 (unsigned long)NULL,
1481 VM_PKT_DATA_INBAND, 0);
1482 if (ret)
1483 goto probe_error2;
1484
1485 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1486 if (t == 0) {
1487 ret = -ETIMEDOUT;
1488 goto probe_error2;
1489 }
1490
1491 /*
1492 * If we could not negotiate a compatible version with the host
1493 * fail the probe function.
1494 */
1495 if (dm_device.state == DM_INIT_ERROR) {
1496 ret = -ETIMEDOUT;
1497 goto probe_error2;
1498 }
1499 /*
1500 * Now submit our capabilities to the host.
1501 */
1502 memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1503 cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1504 cap_msg.hdr.size = sizeof(struct dm_capabilities);
1505 cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1506
1507 cap_msg.caps.cap_bits.balloon = 1;
1508 cap_msg.caps.cap_bits.hot_add = 1;
1509
1510 /*
1511 * Specify our alignment requirements as it relates
1512 * memory hot-add. Specify 128MB alignment.
1513 */
1514 cap_msg.caps.cap_bits.hot_add_alignment = 7;
1515
1516 /*
1517 * Currently the host does not use these
1518 * values and we set them to what is done in the
1519 * Windows driver.
1520 */
1521 cap_msg.min_page_cnt = 0;
1522 cap_msg.max_page_number = -1;
1523
1524 ret = vmbus_sendpacket(dev->channel, &cap_msg,
1525 sizeof(struct dm_capabilities),
1526 (unsigned long)NULL,
1527 VM_PKT_DATA_INBAND, 0);
1528 if (ret)
1529 goto probe_error2;
1530
1531 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1532 if (t == 0) {
1533 ret = -ETIMEDOUT;
1534 goto probe_error2;
1535 }
1536
1537 /*
1538 * If the host does not like our capabilities,
1539 * fail the probe function.
1540 */
1541 if (dm_device.state == DM_INIT_ERROR) {
1542 ret = -ETIMEDOUT;
1543 goto probe_error2;
1544 }
1545
1546 dm_device.state = DM_INITIALIZED;
1547
1548 return 0;
1549
1550 probe_error2:
1551 #ifdef CONFIG_MEMORY_HOTPLUG
1552 restore_online_page_callback(&hv_online_page);
1553 #endif
1554 kthread_stop(dm_device.thread);
1555
1556 probe_error1:
1557 vmbus_close(dev->channel);
1558 probe_error0:
1559 kfree(send_buffer);
1560 return ret;
1561 }
1562
1563 static int balloon_remove(struct hv_device *dev)
1564 {
1565 struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1566 struct list_head *cur, *tmp;
1567 struct hv_hotadd_state *has;
1568
1569 if (dm->num_pages_ballooned != 0)
1570 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1571
1572 cancel_work_sync(&dm->balloon_wrk.wrk);
1573 cancel_work_sync(&dm->ha_wrk.wrk);
1574
1575 vmbus_close(dev->channel);
1576 kthread_stop(dm->thread);
1577 kfree(send_buffer);
1578 #ifdef CONFIG_MEMORY_HOTPLUG
1579 restore_online_page_callback(&hv_online_page);
1580 unregister_memory_notifier(&hv_memory_nb);
1581 #endif
1582 list_for_each_safe(cur, tmp, &dm->ha_region_list) {
1583 has = list_entry(cur, struct hv_hotadd_state, list);
1584 list_del(&has->list);
1585 kfree(has);
1586 }
1587
1588 return 0;
1589 }
1590
1591 static const struct hv_vmbus_device_id id_table[] = {
1592 /* Dynamic Memory Class ID */
1593 /* 525074DC-8985-46e2-8057-A307DC18A502 */
1594 { HV_DM_GUID, },
1595 { },
1596 };
1597
1598 MODULE_DEVICE_TABLE(vmbus, id_table);
1599
1600 static struct hv_driver balloon_drv = {
1601 .name = "hv_balloon",
1602 .id_table = id_table,
1603 .probe = balloon_probe,
1604 .remove = balloon_remove,
1605 };
1606
1607 static int __init init_balloon_drv(void)
1608 {
1609
1610 return vmbus_driver_register(&balloon_drv);
1611 }
1612
1613 module_init(init_balloon_drv);
1614
1615 MODULE_DESCRIPTION("Hyper-V Balloon");
1616 MODULE_LICENSE("GPL");
This page took 0.069485 seconds and 6 git commands to generate.