Merge git://git.kernel.org/pub/scm/linux/kernel/git/agk/linux-2.6-dm
[deliverable/linux.git] / drivers / hwmon / adm1031.c
1 /*
2 adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
3 monitoring
4 Based on lm75.c and lm85.c
5 Supports adm1030 / adm1031
6 Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
7 Reworked by Jean Delvare <khali@linux-fr.org>
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 */
23
24 #include <linux/module.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/jiffies.h>
28 #include <linux/i2c.h>
29 #include <linux/hwmon.h>
30 #include <linux/hwmon-sysfs.h>
31 #include <linux/err.h>
32 #include <linux/mutex.h>
33
34 /* Following macros takes channel parameter starting from 0 to 2 */
35 #define ADM1031_REG_FAN_SPEED(nr) (0x08 + (nr))
36 #define ADM1031_REG_FAN_DIV(nr) (0x20 + (nr))
37 #define ADM1031_REG_PWM (0x22)
38 #define ADM1031_REG_FAN_MIN(nr) (0x10 + (nr))
39
40 #define ADM1031_REG_TEMP_MAX(nr) (0x14 + 4 * (nr))
41 #define ADM1031_REG_TEMP_MIN(nr) (0x15 + 4 * (nr))
42 #define ADM1031_REG_TEMP_CRIT(nr) (0x16 + 4 * (nr))
43
44 #define ADM1031_REG_TEMP(nr) (0x0a + (nr))
45 #define ADM1031_REG_AUTO_TEMP(nr) (0x24 + (nr))
46
47 #define ADM1031_REG_STATUS(nr) (0x2 + (nr))
48
49 #define ADM1031_REG_CONF1 0x00
50 #define ADM1031_REG_CONF2 0x01
51 #define ADM1031_REG_EXT_TEMP 0x06
52
53 #define ADM1031_CONF1_MONITOR_ENABLE 0x01 /* Monitoring enable */
54 #define ADM1031_CONF1_PWM_INVERT 0x08 /* PWM Invert */
55 #define ADM1031_CONF1_AUTO_MODE 0x80 /* Auto FAN */
56
57 #define ADM1031_CONF2_PWM1_ENABLE 0x01
58 #define ADM1031_CONF2_PWM2_ENABLE 0x02
59 #define ADM1031_CONF2_TACH1_ENABLE 0x04
60 #define ADM1031_CONF2_TACH2_ENABLE 0x08
61 #define ADM1031_CONF2_TEMP_ENABLE(chan) (0x10 << (chan))
62
63 /* Addresses to scan */
64 static unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
65
66 /* Insmod parameters */
67 I2C_CLIENT_INSMOD_2(adm1030, adm1031);
68
69 typedef u8 auto_chan_table_t[8][2];
70
71 /* Each client has this additional data */
72 struct adm1031_data {
73 struct i2c_client client;
74 struct device *hwmon_dev;
75 struct mutex update_lock;
76 int chip_type;
77 char valid; /* !=0 if following fields are valid */
78 unsigned long last_updated; /* In jiffies */
79 /* The chan_select_table contains the possible configurations for
80 * auto fan control.
81 */
82 const auto_chan_table_t *chan_select_table;
83 u16 alarm;
84 u8 conf1;
85 u8 conf2;
86 u8 fan[2];
87 u8 fan_div[2];
88 u8 fan_min[2];
89 u8 pwm[2];
90 u8 old_pwm[2];
91 s8 temp[3];
92 u8 ext_temp[3];
93 u8 auto_temp[3];
94 u8 auto_temp_min[3];
95 u8 auto_temp_off[3];
96 u8 auto_temp_max[3];
97 s8 temp_min[3];
98 s8 temp_max[3];
99 s8 temp_crit[3];
100 };
101
102 static int adm1031_attach_adapter(struct i2c_adapter *adapter);
103 static int adm1031_detect(struct i2c_adapter *adapter, int address, int kind);
104 static void adm1031_init_client(struct i2c_client *client);
105 static int adm1031_detach_client(struct i2c_client *client);
106 static struct adm1031_data *adm1031_update_device(struct device *dev);
107
108 /* This is the driver that will be inserted */
109 static struct i2c_driver adm1031_driver = {
110 .driver = {
111 .name = "adm1031",
112 },
113 .attach_adapter = adm1031_attach_adapter,
114 .detach_client = adm1031_detach_client,
115 };
116
117 static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
118 {
119 return i2c_smbus_read_byte_data(client, reg);
120 }
121
122 static inline int
123 adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
124 {
125 return i2c_smbus_write_byte_data(client, reg, value);
126 }
127
128
129 #define TEMP_TO_REG(val) (((val) < 0 ? ((val - 500) / 1000) : \
130 ((val + 500) / 1000)))
131
132 #define TEMP_FROM_REG(val) ((val) * 1000)
133
134 #define TEMP_FROM_REG_EXT(val, ext) (TEMP_FROM_REG(val) + (ext) * 125)
135
136 #define FAN_FROM_REG(reg, div) ((reg) ? (11250 * 60) / ((reg) * (div)) : 0)
137
138 static int FAN_TO_REG(int reg, int div)
139 {
140 int tmp;
141 tmp = FAN_FROM_REG(SENSORS_LIMIT(reg, 0, 65535), div);
142 return tmp > 255 ? 255 : tmp;
143 }
144
145 #define FAN_DIV_FROM_REG(reg) (1<<(((reg)&0xc0)>>6))
146
147 #define PWM_TO_REG(val) (SENSORS_LIMIT((val), 0, 255) >> 4)
148 #define PWM_FROM_REG(val) ((val) << 4)
149
150 #define FAN_CHAN_FROM_REG(reg) (((reg) >> 5) & 7)
151 #define FAN_CHAN_TO_REG(val, reg) \
152 (((reg) & 0x1F) | (((val) << 5) & 0xe0))
153
154 #define AUTO_TEMP_MIN_TO_REG(val, reg) \
155 ((((val)/500) & 0xf8)|((reg) & 0x7))
156 #define AUTO_TEMP_RANGE_FROM_REG(reg) (5000 * (1<< ((reg)&0x7)))
157 #define AUTO_TEMP_MIN_FROM_REG(reg) (1000 * ((((reg) >> 3) & 0x1f) << 2))
158
159 #define AUTO_TEMP_MIN_FROM_REG_DEG(reg) ((((reg) >> 3) & 0x1f) << 2)
160
161 #define AUTO_TEMP_OFF_FROM_REG(reg) \
162 (AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
163
164 #define AUTO_TEMP_MAX_FROM_REG(reg) \
165 (AUTO_TEMP_RANGE_FROM_REG(reg) + \
166 AUTO_TEMP_MIN_FROM_REG(reg))
167
168 static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
169 {
170 int ret;
171 int range = val - AUTO_TEMP_MIN_FROM_REG(reg);
172
173 range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm);
174 ret = ((reg & 0xf8) |
175 (range < 10000 ? 0 :
176 range < 20000 ? 1 :
177 range < 40000 ? 2 : range < 80000 ? 3 : 4));
178 return ret;
179 }
180
181 /* FAN auto control */
182 #define GET_FAN_AUTO_BITFIELD(data, idx) \
183 (*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx%2]
184
185 /* The tables below contains the possible values for the auto fan
186 * control bitfields. the index in the table is the register value.
187 * MSb is the auto fan control enable bit, so the four first entries
188 * in the table disables auto fan control when both bitfields are zero.
189 */
190 static const auto_chan_table_t auto_channel_select_table_adm1031 = {
191 { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
192 { 2 /* 0b010 */ , 4 /* 0b100 */ },
193 { 2 /* 0b010 */ , 2 /* 0b010 */ },
194 { 4 /* 0b100 */ , 4 /* 0b100 */ },
195 { 7 /* 0b111 */ , 7 /* 0b111 */ },
196 };
197
198 static const auto_chan_table_t auto_channel_select_table_adm1030 = {
199 { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
200 { 2 /* 0b10 */ , 0 },
201 { 0xff /* invalid */ , 0 },
202 { 0xff /* invalid */ , 0 },
203 { 3 /* 0b11 */ , 0 },
204 };
205
206 /* That function checks if a bitfield is valid and returns the other bitfield
207 * nearest match if no exact match where found.
208 */
209 static int
210 get_fan_auto_nearest(struct adm1031_data *data,
211 int chan, u8 val, u8 reg, u8 * new_reg)
212 {
213 int i;
214 int first_match = -1, exact_match = -1;
215 u8 other_reg_val =
216 (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
217
218 if (val == 0) {
219 *new_reg = 0;
220 return 0;
221 }
222
223 for (i = 0; i < 8; i++) {
224 if ((val == (*data->chan_select_table)[i][chan]) &&
225 ((*data->chan_select_table)[i][chan ? 0 : 1] ==
226 other_reg_val)) {
227 /* We found an exact match */
228 exact_match = i;
229 break;
230 } else if (val == (*data->chan_select_table)[i][chan] &&
231 first_match == -1) {
232 /* Save the first match in case of an exact match has
233 * not been found
234 */
235 first_match = i;
236 }
237 }
238
239 if (exact_match >= 0) {
240 *new_reg = exact_match;
241 } else if (first_match >= 0) {
242 *new_reg = first_match;
243 } else {
244 return -EINVAL;
245 }
246 return 0;
247 }
248
249 static ssize_t show_fan_auto_channel(struct device *dev,
250 struct device_attribute *attr, char *buf)
251 {
252 int nr = to_sensor_dev_attr(attr)->index;
253 struct adm1031_data *data = adm1031_update_device(dev);
254 return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
255 }
256
257 static ssize_t
258 set_fan_auto_channel(struct device *dev, struct device_attribute *attr,
259 const char *buf, size_t count)
260 {
261 struct i2c_client *client = to_i2c_client(dev);
262 struct adm1031_data *data = i2c_get_clientdata(client);
263 int nr = to_sensor_dev_attr(attr)->index;
264 int val = simple_strtol(buf, NULL, 10);
265 u8 reg;
266 int ret;
267 u8 old_fan_mode;
268
269 old_fan_mode = data->conf1;
270
271 mutex_lock(&data->update_lock);
272
273 if ((ret = get_fan_auto_nearest(data, nr, val, data->conf1, &reg))) {
274 mutex_unlock(&data->update_lock);
275 return ret;
276 }
277 data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
278 if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
279 (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
280 if (data->conf1 & ADM1031_CONF1_AUTO_MODE){
281 /* Switch to Auto Fan Mode
282 * Save PWM registers
283 * Set PWM registers to 33% Both */
284 data->old_pwm[0] = data->pwm[0];
285 data->old_pwm[1] = data->pwm[1];
286 adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
287 } else {
288 /* Switch to Manual Mode */
289 data->pwm[0] = data->old_pwm[0];
290 data->pwm[1] = data->old_pwm[1];
291 /* Restore PWM registers */
292 adm1031_write_value(client, ADM1031_REG_PWM,
293 data->pwm[0] | (data->pwm[1] << 4));
294 }
295 }
296 data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
297 adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
298 mutex_unlock(&data->update_lock);
299 return count;
300 }
301
302 static SENSOR_DEVICE_ATTR(auto_fan1_channel, S_IRUGO | S_IWUSR,
303 show_fan_auto_channel, set_fan_auto_channel, 0);
304 static SENSOR_DEVICE_ATTR(auto_fan2_channel, S_IRUGO | S_IWUSR,
305 show_fan_auto_channel, set_fan_auto_channel, 1);
306
307 /* Auto Temps */
308 static ssize_t show_auto_temp_off(struct device *dev,
309 struct device_attribute *attr, char *buf)
310 {
311 int nr = to_sensor_dev_attr(attr)->index;
312 struct adm1031_data *data = adm1031_update_device(dev);
313 return sprintf(buf, "%d\n",
314 AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
315 }
316 static ssize_t show_auto_temp_min(struct device *dev,
317 struct device_attribute *attr, char *buf)
318 {
319 int nr = to_sensor_dev_attr(attr)->index;
320 struct adm1031_data *data = adm1031_update_device(dev);
321 return sprintf(buf, "%d\n",
322 AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
323 }
324 static ssize_t
325 set_auto_temp_min(struct device *dev, struct device_attribute *attr,
326 const char *buf, size_t count)
327 {
328 struct i2c_client *client = to_i2c_client(dev);
329 struct adm1031_data *data = i2c_get_clientdata(client);
330 int nr = to_sensor_dev_attr(attr)->index;
331 int val = simple_strtol(buf, NULL, 10);
332
333 mutex_lock(&data->update_lock);
334 data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
335 adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
336 data->auto_temp[nr]);
337 mutex_unlock(&data->update_lock);
338 return count;
339 }
340 static ssize_t show_auto_temp_max(struct device *dev,
341 struct device_attribute *attr, char *buf)
342 {
343 int nr = to_sensor_dev_attr(attr)->index;
344 struct adm1031_data *data = adm1031_update_device(dev);
345 return sprintf(buf, "%d\n",
346 AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
347 }
348 static ssize_t
349 set_auto_temp_max(struct device *dev, struct device_attribute *attr,
350 const char *buf, size_t count)
351 {
352 struct i2c_client *client = to_i2c_client(dev);
353 struct adm1031_data *data = i2c_get_clientdata(client);
354 int nr = to_sensor_dev_attr(attr)->index;
355 int val = simple_strtol(buf, NULL, 10);
356
357 mutex_lock(&data->update_lock);
358 data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr], data->pwm[nr]);
359 adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
360 data->temp_max[nr]);
361 mutex_unlock(&data->update_lock);
362 return count;
363 }
364
365 #define auto_temp_reg(offset) \
366 static SENSOR_DEVICE_ATTR(auto_temp##offset##_off, S_IRUGO, \
367 show_auto_temp_off, NULL, offset - 1); \
368 static SENSOR_DEVICE_ATTR(auto_temp##offset##_min, S_IRUGO | S_IWUSR, \
369 show_auto_temp_min, set_auto_temp_min, offset - 1); \
370 static SENSOR_DEVICE_ATTR(auto_temp##offset##_max, S_IRUGO | S_IWUSR, \
371 show_auto_temp_max, set_auto_temp_max, offset - 1)
372
373 auto_temp_reg(1);
374 auto_temp_reg(2);
375 auto_temp_reg(3);
376
377 /* pwm */
378 static ssize_t show_pwm(struct device *dev,
379 struct device_attribute *attr, char *buf)
380 {
381 int nr = to_sensor_dev_attr(attr)->index;
382 struct adm1031_data *data = adm1031_update_device(dev);
383 return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
384 }
385 static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
386 const char *buf, size_t count)
387 {
388 struct i2c_client *client = to_i2c_client(dev);
389 struct adm1031_data *data = i2c_get_clientdata(client);
390 int nr = to_sensor_dev_attr(attr)->index;
391 int val = simple_strtol(buf, NULL, 10);
392 int reg;
393
394 mutex_lock(&data->update_lock);
395 if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
396 (((val>>4) & 0xf) != 5)) {
397 /* In automatic mode, the only PWM accepted is 33% */
398 mutex_unlock(&data->update_lock);
399 return -EINVAL;
400 }
401 data->pwm[nr] = PWM_TO_REG(val);
402 reg = adm1031_read_value(client, ADM1031_REG_PWM);
403 adm1031_write_value(client, ADM1031_REG_PWM,
404 nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
405 : (data->pwm[nr] & 0xf) | (reg & 0xf0));
406 mutex_unlock(&data->update_lock);
407 return count;
408 }
409
410 static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 0);
411 static SENSOR_DEVICE_ATTR(pwm2, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 1);
412 static SENSOR_DEVICE_ATTR(auto_fan1_min_pwm, S_IRUGO | S_IWUSR,
413 show_pwm, set_pwm, 0);
414 static SENSOR_DEVICE_ATTR(auto_fan2_min_pwm, S_IRUGO | S_IWUSR,
415 show_pwm, set_pwm, 1);
416
417 /* Fans */
418
419 /*
420 * That function checks the cases where the fan reading is not
421 * relevant. It is used to provide 0 as fan reading when the fan is
422 * not supposed to run
423 */
424 static int trust_fan_readings(struct adm1031_data *data, int chan)
425 {
426 int res = 0;
427
428 if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
429 switch (data->conf1 & 0x60) {
430 case 0x00: /* remote temp1 controls fan1 remote temp2 controls fan2 */
431 res = data->temp[chan+1] >=
432 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
433 break;
434 case 0x20: /* remote temp1 controls both fans */
435 res =
436 data->temp[1] >=
437 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
438 break;
439 case 0x40: /* remote temp2 controls both fans */
440 res =
441 data->temp[2] >=
442 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
443 break;
444 case 0x60: /* max controls both fans */
445 res =
446 data->temp[0] >=
447 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
448 || data->temp[1] >=
449 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
450 || (data->chip_type == adm1031
451 && data->temp[2] >=
452 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
453 break;
454 }
455 } else {
456 res = data->pwm[chan] > 0;
457 }
458 return res;
459 }
460
461
462 static ssize_t show_fan(struct device *dev,
463 struct device_attribute *attr, char *buf)
464 {
465 int nr = to_sensor_dev_attr(attr)->index;
466 struct adm1031_data *data = adm1031_update_device(dev);
467 int value;
468
469 value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
470 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
471 return sprintf(buf, "%d\n", value);
472 }
473
474 static ssize_t show_fan_div(struct device *dev,
475 struct device_attribute *attr, char *buf)
476 {
477 int nr = to_sensor_dev_attr(attr)->index;
478 struct adm1031_data *data = adm1031_update_device(dev);
479 return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
480 }
481 static ssize_t show_fan_min(struct device *dev,
482 struct device_attribute *attr, char *buf)
483 {
484 int nr = to_sensor_dev_attr(attr)->index;
485 struct adm1031_data *data = adm1031_update_device(dev);
486 return sprintf(buf, "%d\n",
487 FAN_FROM_REG(data->fan_min[nr],
488 FAN_DIV_FROM_REG(data->fan_div[nr])));
489 }
490 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
491 const char *buf, size_t count)
492 {
493 struct i2c_client *client = to_i2c_client(dev);
494 struct adm1031_data *data = i2c_get_clientdata(client);
495 int nr = to_sensor_dev_attr(attr)->index;
496 int val = simple_strtol(buf, NULL, 10);
497
498 mutex_lock(&data->update_lock);
499 if (val) {
500 data->fan_min[nr] =
501 FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
502 } else {
503 data->fan_min[nr] = 0xff;
504 }
505 adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
506 mutex_unlock(&data->update_lock);
507 return count;
508 }
509 static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
510 const char *buf, size_t count)
511 {
512 struct i2c_client *client = to_i2c_client(dev);
513 struct adm1031_data *data = i2c_get_clientdata(client);
514 int nr = to_sensor_dev_attr(attr)->index;
515 int val = simple_strtol(buf, NULL, 10);
516 u8 tmp;
517 int old_div;
518 int new_min;
519
520 tmp = val == 8 ? 0xc0 :
521 val == 4 ? 0x80 :
522 val == 2 ? 0x40 :
523 val == 1 ? 0x00 :
524 0xff;
525 if (tmp == 0xff)
526 return -EINVAL;
527
528 mutex_lock(&data->update_lock);
529 /* Get fresh readings */
530 data->fan_div[nr] = adm1031_read_value(client,
531 ADM1031_REG_FAN_DIV(nr));
532 data->fan_min[nr] = adm1031_read_value(client,
533 ADM1031_REG_FAN_MIN(nr));
534
535 /* Write the new clock divider and fan min */
536 old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
537 data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
538 new_min = data->fan_min[nr] * old_div / val;
539 data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
540
541 adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
542 data->fan_div[nr]);
543 adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
544 data->fan_min[nr]);
545
546 /* Invalidate the cache: fan speed is no longer valid */
547 data->valid = 0;
548 mutex_unlock(&data->update_lock);
549 return count;
550 }
551
552 #define fan_offset(offset) \
553 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
554 show_fan, NULL, offset - 1); \
555 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
556 show_fan_min, set_fan_min, offset - 1); \
557 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
558 show_fan_div, set_fan_div, offset - 1)
559
560 fan_offset(1);
561 fan_offset(2);
562
563
564 /* Temps */
565 static ssize_t show_temp(struct device *dev,
566 struct device_attribute *attr, char *buf)
567 {
568 int nr = to_sensor_dev_attr(attr)->index;
569 struct adm1031_data *data = adm1031_update_device(dev);
570 int ext;
571 ext = nr == 0 ?
572 ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
573 (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
574 return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
575 }
576 static ssize_t show_temp_min(struct device *dev,
577 struct device_attribute *attr, char *buf)
578 {
579 int nr = to_sensor_dev_attr(attr)->index;
580 struct adm1031_data *data = adm1031_update_device(dev);
581 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
582 }
583 static ssize_t show_temp_max(struct device *dev,
584 struct device_attribute *attr, char *buf)
585 {
586 int nr = to_sensor_dev_attr(attr)->index;
587 struct adm1031_data *data = adm1031_update_device(dev);
588 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
589 }
590 static ssize_t show_temp_crit(struct device *dev,
591 struct device_attribute *attr, char *buf)
592 {
593 int nr = to_sensor_dev_attr(attr)->index;
594 struct adm1031_data *data = adm1031_update_device(dev);
595 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
596 }
597 static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
598 const char *buf, size_t count)
599 {
600 struct i2c_client *client = to_i2c_client(dev);
601 struct adm1031_data *data = i2c_get_clientdata(client);
602 int nr = to_sensor_dev_attr(attr)->index;
603 int val;
604
605 val = simple_strtol(buf, NULL, 10);
606 val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
607 mutex_lock(&data->update_lock);
608 data->temp_min[nr] = TEMP_TO_REG(val);
609 adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
610 data->temp_min[nr]);
611 mutex_unlock(&data->update_lock);
612 return count;
613 }
614 static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
615 const char *buf, size_t count)
616 {
617 struct i2c_client *client = to_i2c_client(dev);
618 struct adm1031_data *data = i2c_get_clientdata(client);
619 int nr = to_sensor_dev_attr(attr)->index;
620 int val;
621
622 val = simple_strtol(buf, NULL, 10);
623 val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
624 mutex_lock(&data->update_lock);
625 data->temp_max[nr] = TEMP_TO_REG(val);
626 adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
627 data->temp_max[nr]);
628 mutex_unlock(&data->update_lock);
629 return count;
630 }
631 static ssize_t set_temp_crit(struct device *dev, struct device_attribute *attr,
632 const char *buf, size_t count)
633 {
634 struct i2c_client *client = to_i2c_client(dev);
635 struct adm1031_data *data = i2c_get_clientdata(client);
636 int nr = to_sensor_dev_attr(attr)->index;
637 int val;
638
639 val = simple_strtol(buf, NULL, 10);
640 val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
641 mutex_lock(&data->update_lock);
642 data->temp_crit[nr] = TEMP_TO_REG(val);
643 adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
644 data->temp_crit[nr]);
645 mutex_unlock(&data->update_lock);
646 return count;
647 }
648
649 #define temp_reg(offset) \
650 static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
651 show_temp, NULL, offset - 1); \
652 static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
653 show_temp_min, set_temp_min, offset - 1); \
654 static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
655 show_temp_max, set_temp_max, offset - 1); \
656 static SENSOR_DEVICE_ATTR(temp##offset##_crit, S_IRUGO | S_IWUSR, \
657 show_temp_crit, set_temp_crit, offset - 1)
658
659 temp_reg(1);
660 temp_reg(2);
661 temp_reg(3);
662
663 /* Alarms */
664 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf)
665 {
666 struct adm1031_data *data = adm1031_update_device(dev);
667 return sprintf(buf, "%d\n", data->alarm);
668 }
669
670 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
671
672 static ssize_t show_alarm(struct device *dev,
673 struct device_attribute *attr, char *buf)
674 {
675 int bitnr = to_sensor_dev_attr(attr)->index;
676 struct adm1031_data *data = adm1031_update_device(dev);
677 return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
678 }
679
680 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 0);
681 static SENSOR_DEVICE_ATTR(fan1_fault, S_IRUGO, show_alarm, NULL, 1);
682 static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 2);
683 static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
684 static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 4);
685 static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 5);
686 static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
687 static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 7);
688 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 8);
689 static SENSOR_DEVICE_ATTR(fan2_fault, S_IRUGO, show_alarm, NULL, 9);
690 static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 10);
691 static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
692 static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 12);
693 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 13);
694 static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 14);
695
696 static int adm1031_attach_adapter(struct i2c_adapter *adapter)
697 {
698 if (!(adapter->class & I2C_CLASS_HWMON))
699 return 0;
700 return i2c_probe(adapter, &addr_data, adm1031_detect);
701 }
702
703 static struct attribute *adm1031_attributes[] = {
704 &sensor_dev_attr_fan1_input.dev_attr.attr,
705 &sensor_dev_attr_fan1_div.dev_attr.attr,
706 &sensor_dev_attr_fan1_min.dev_attr.attr,
707 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
708 &sensor_dev_attr_fan1_fault.dev_attr.attr,
709 &sensor_dev_attr_pwm1.dev_attr.attr,
710 &sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
711 &sensor_dev_attr_temp1_input.dev_attr.attr,
712 &sensor_dev_attr_temp1_min.dev_attr.attr,
713 &sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
714 &sensor_dev_attr_temp1_max.dev_attr.attr,
715 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
716 &sensor_dev_attr_temp1_crit.dev_attr.attr,
717 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
718 &sensor_dev_attr_temp2_input.dev_attr.attr,
719 &sensor_dev_attr_temp2_min.dev_attr.attr,
720 &sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
721 &sensor_dev_attr_temp2_max.dev_attr.attr,
722 &sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
723 &sensor_dev_attr_temp2_crit.dev_attr.attr,
724 &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
725 &sensor_dev_attr_temp2_fault.dev_attr.attr,
726
727 &sensor_dev_attr_auto_temp1_off.dev_attr.attr,
728 &sensor_dev_attr_auto_temp1_min.dev_attr.attr,
729 &sensor_dev_attr_auto_temp1_max.dev_attr.attr,
730
731 &sensor_dev_attr_auto_temp2_off.dev_attr.attr,
732 &sensor_dev_attr_auto_temp2_min.dev_attr.attr,
733 &sensor_dev_attr_auto_temp2_max.dev_attr.attr,
734
735 &sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
736
737 &dev_attr_alarms.attr,
738
739 NULL
740 };
741
742 static const struct attribute_group adm1031_group = {
743 .attrs = adm1031_attributes,
744 };
745
746 static struct attribute *adm1031_attributes_opt[] = {
747 &sensor_dev_attr_fan2_input.dev_attr.attr,
748 &sensor_dev_attr_fan2_div.dev_attr.attr,
749 &sensor_dev_attr_fan2_min.dev_attr.attr,
750 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
751 &sensor_dev_attr_fan2_fault.dev_attr.attr,
752 &sensor_dev_attr_pwm2.dev_attr.attr,
753 &sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
754 &sensor_dev_attr_temp3_input.dev_attr.attr,
755 &sensor_dev_attr_temp3_min.dev_attr.attr,
756 &sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
757 &sensor_dev_attr_temp3_max.dev_attr.attr,
758 &sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
759 &sensor_dev_attr_temp3_crit.dev_attr.attr,
760 &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
761 &sensor_dev_attr_temp3_fault.dev_attr.attr,
762 &sensor_dev_attr_auto_temp3_off.dev_attr.attr,
763 &sensor_dev_attr_auto_temp3_min.dev_attr.attr,
764 &sensor_dev_attr_auto_temp3_max.dev_attr.attr,
765 &sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
766 NULL
767 };
768
769 static const struct attribute_group adm1031_group_opt = {
770 .attrs = adm1031_attributes_opt,
771 };
772
773 /* This function is called by i2c_probe */
774 static int adm1031_detect(struct i2c_adapter *adapter, int address, int kind)
775 {
776 struct i2c_client *client;
777 struct adm1031_data *data;
778 int err = 0;
779 const char *name = "";
780
781 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
782 goto exit;
783
784 if (!(data = kzalloc(sizeof(struct adm1031_data), GFP_KERNEL))) {
785 err = -ENOMEM;
786 goto exit;
787 }
788
789 client = &data->client;
790 i2c_set_clientdata(client, data);
791 client->addr = address;
792 client->adapter = adapter;
793 client->driver = &adm1031_driver;
794
795 if (kind < 0) {
796 int id, co;
797 id = i2c_smbus_read_byte_data(client, 0x3d);
798 co = i2c_smbus_read_byte_data(client, 0x3e);
799
800 if (!((id == 0x31 || id == 0x30) && co == 0x41))
801 goto exit_free;
802 kind = (id == 0x30) ? adm1030 : adm1031;
803 }
804
805 if (kind <= 0)
806 kind = adm1031;
807
808 /* Given the detected chip type, set the chip name and the
809 * auto fan control helper table. */
810 if (kind == adm1030) {
811 name = "adm1030";
812 data->chan_select_table = &auto_channel_select_table_adm1030;
813 } else if (kind == adm1031) {
814 name = "adm1031";
815 data->chan_select_table = &auto_channel_select_table_adm1031;
816 }
817 data->chip_type = kind;
818
819 strlcpy(client->name, name, I2C_NAME_SIZE);
820 mutex_init(&data->update_lock);
821
822 /* Tell the I2C layer a new client has arrived */
823 if ((err = i2c_attach_client(client)))
824 goto exit_free;
825
826 /* Initialize the ADM1031 chip */
827 adm1031_init_client(client);
828
829 /* Register sysfs hooks */
830 if ((err = sysfs_create_group(&client->dev.kobj, &adm1031_group)))
831 goto exit_detach;
832
833 if (kind == adm1031) {
834 if ((err = sysfs_create_group(&client->dev.kobj,
835 &adm1031_group_opt)))
836 goto exit_remove;
837 }
838
839 data->hwmon_dev = hwmon_device_register(&client->dev);
840 if (IS_ERR(data->hwmon_dev)) {
841 err = PTR_ERR(data->hwmon_dev);
842 goto exit_remove;
843 }
844
845 return 0;
846
847 exit_remove:
848 sysfs_remove_group(&client->dev.kobj, &adm1031_group);
849 sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
850 exit_detach:
851 i2c_detach_client(client);
852 exit_free:
853 kfree(data);
854 exit:
855 return err;
856 }
857
858 static int adm1031_detach_client(struct i2c_client *client)
859 {
860 struct adm1031_data *data = i2c_get_clientdata(client);
861 int ret;
862
863 hwmon_device_unregister(data->hwmon_dev);
864 sysfs_remove_group(&client->dev.kobj, &adm1031_group);
865 sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
866 if ((ret = i2c_detach_client(client)) != 0) {
867 return ret;
868 }
869 kfree(data);
870 return 0;
871 }
872
873 static void adm1031_init_client(struct i2c_client *client)
874 {
875 unsigned int read_val;
876 unsigned int mask;
877 struct adm1031_data *data = i2c_get_clientdata(client);
878
879 mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
880 if (data->chip_type == adm1031) {
881 mask |= (ADM1031_CONF2_PWM2_ENABLE |
882 ADM1031_CONF2_TACH2_ENABLE);
883 }
884 /* Initialize the ADM1031 chip (enables fan speed reading ) */
885 read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
886 if ((read_val | mask) != read_val) {
887 adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
888 }
889
890 read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
891 if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
892 adm1031_write_value(client, ADM1031_REG_CONF1, read_val |
893 ADM1031_CONF1_MONITOR_ENABLE);
894 }
895
896 }
897
898 static struct adm1031_data *adm1031_update_device(struct device *dev)
899 {
900 struct i2c_client *client = to_i2c_client(dev);
901 struct adm1031_data *data = i2c_get_clientdata(client);
902 int chan;
903
904 mutex_lock(&data->update_lock);
905
906 if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
907 || !data->valid) {
908
909 dev_dbg(&client->dev, "Starting adm1031 update\n");
910 for (chan = 0;
911 chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
912 u8 oldh, newh;
913
914 oldh =
915 adm1031_read_value(client, ADM1031_REG_TEMP(chan));
916 data->ext_temp[chan] =
917 adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
918 newh =
919 adm1031_read_value(client, ADM1031_REG_TEMP(chan));
920 if (newh != oldh) {
921 data->ext_temp[chan] =
922 adm1031_read_value(client,
923 ADM1031_REG_EXT_TEMP);
924 #ifdef DEBUG
925 oldh =
926 adm1031_read_value(client,
927 ADM1031_REG_TEMP(chan));
928
929 /* oldh is actually newer */
930 if (newh != oldh)
931 dev_warn(&client->dev,
932 "Remote temperature may be "
933 "wrong.\n");
934 #endif
935 }
936 data->temp[chan] = newh;
937
938 data->temp_min[chan] =
939 adm1031_read_value(client,
940 ADM1031_REG_TEMP_MIN(chan));
941 data->temp_max[chan] =
942 adm1031_read_value(client,
943 ADM1031_REG_TEMP_MAX(chan));
944 data->temp_crit[chan] =
945 adm1031_read_value(client,
946 ADM1031_REG_TEMP_CRIT(chan));
947 data->auto_temp[chan] =
948 adm1031_read_value(client,
949 ADM1031_REG_AUTO_TEMP(chan));
950
951 }
952
953 data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
954 data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
955
956 data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
957 | (adm1031_read_value(client, ADM1031_REG_STATUS(1))
958 << 8);
959 if (data->chip_type == adm1030) {
960 data->alarm &= 0xc0ff;
961 }
962
963 for (chan=0; chan<(data->chip_type == adm1030 ? 1 : 2); chan++) {
964 data->fan_div[chan] =
965 adm1031_read_value(client, ADM1031_REG_FAN_DIV(chan));
966 data->fan_min[chan] =
967 adm1031_read_value(client, ADM1031_REG_FAN_MIN(chan));
968 data->fan[chan] =
969 adm1031_read_value(client, ADM1031_REG_FAN_SPEED(chan));
970 data->pwm[chan] =
971 0xf & (adm1031_read_value(client, ADM1031_REG_PWM) >>
972 (4*chan));
973 }
974 data->last_updated = jiffies;
975 data->valid = 1;
976 }
977
978 mutex_unlock(&data->update_lock);
979
980 return data;
981 }
982
983 static int __init sensors_adm1031_init(void)
984 {
985 return i2c_add_driver(&adm1031_driver);
986 }
987
988 static void __exit sensors_adm1031_exit(void)
989 {
990 i2c_del_driver(&adm1031_driver);
991 }
992
993 MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
994 MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
995 MODULE_LICENSE("GPL");
996
997 module_init(sensors_adm1031_init);
998 module_exit(sensors_adm1031_exit);
This page took 0.053858 seconds and 6 git commands to generate.