Fix common misspellings
[deliverable/linux.git] / drivers / hwmon / lm85.c
1 /*
2 lm85.c - Part of lm_sensors, Linux kernel modules for hardware
3 monitoring
4 Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
5 Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
6 Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de>
7 Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com>
8 Copyright (C) 2007--2009 Jean Delvare <khali@linux-fr.org>
9
10 Chip details at <http://www.national.com/ds/LM/LM85.pdf>
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/slab.h>
30 #include <linux/jiffies.h>
31 #include <linux/i2c.h>
32 #include <linux/hwmon.h>
33 #include <linux/hwmon-vid.h>
34 #include <linux/hwmon-sysfs.h>
35 #include <linux/err.h>
36 #include <linux/mutex.h>
37
38 /* Addresses to scan */
39 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
40
41 enum chips {
42 any_chip, lm85b, lm85c,
43 adm1027, adt7463, adt7468,
44 emc6d100, emc6d102, emc6d103, emc6d103s
45 };
46
47 /* The LM85 registers */
48
49 #define LM85_REG_IN(nr) (0x20 + (nr))
50 #define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2)
51 #define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2)
52
53 #define LM85_REG_TEMP(nr) (0x25 + (nr))
54 #define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2)
55 #define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2)
56
57 /* Fan speeds are LSB, MSB (2 bytes) */
58 #define LM85_REG_FAN(nr) (0x28 + (nr) * 2)
59 #define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2)
60
61 #define LM85_REG_PWM(nr) (0x30 + (nr))
62
63 #define LM85_REG_COMPANY 0x3e
64 #define LM85_REG_VERSTEP 0x3f
65
66 #define ADT7468_REG_CFG5 0x7c
67 #define ADT7468_OFF64 (1 << 0)
68 #define ADT7468_HFPWM (1 << 1)
69 #define IS_ADT7468_OFF64(data) \
70 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
71 #define IS_ADT7468_HFPWM(data) \
72 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
73
74 /* These are the recognized values for the above regs */
75 #define LM85_COMPANY_NATIONAL 0x01
76 #define LM85_COMPANY_ANALOG_DEV 0x41
77 #define LM85_COMPANY_SMSC 0x5c
78 #define LM85_VERSTEP_VMASK 0xf0
79 #define LM85_VERSTEP_GENERIC 0x60
80 #define LM85_VERSTEP_GENERIC2 0x70
81 #define LM85_VERSTEP_LM85C 0x60
82 #define LM85_VERSTEP_LM85B 0x62
83 #define LM85_VERSTEP_LM96000_1 0x68
84 #define LM85_VERSTEP_LM96000_2 0x69
85 #define LM85_VERSTEP_ADM1027 0x60
86 #define LM85_VERSTEP_ADT7463 0x62
87 #define LM85_VERSTEP_ADT7463C 0x6A
88 #define LM85_VERSTEP_ADT7468_1 0x71
89 #define LM85_VERSTEP_ADT7468_2 0x72
90 #define LM85_VERSTEP_EMC6D100_A0 0x60
91 #define LM85_VERSTEP_EMC6D100_A1 0x61
92 #define LM85_VERSTEP_EMC6D102 0x65
93 #define LM85_VERSTEP_EMC6D103_A0 0x68
94 #define LM85_VERSTEP_EMC6D103_A1 0x69
95 #define LM85_VERSTEP_EMC6D103S 0x6A /* Also known as EMC6D103:A2 */
96
97 #define LM85_REG_CONFIG 0x40
98
99 #define LM85_REG_ALARM1 0x41
100 #define LM85_REG_ALARM2 0x42
101
102 #define LM85_REG_VID 0x43
103
104 /* Automated FAN control */
105 #define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr))
106 #define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr))
107 #define LM85_REG_AFAN_SPIKE1 0x62
108 #define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr))
109 #define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr))
110 #define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr))
111 #define LM85_REG_AFAN_HYST1 0x6d
112 #define LM85_REG_AFAN_HYST2 0x6e
113
114 #define ADM1027_REG_EXTEND_ADC1 0x76
115 #define ADM1027_REG_EXTEND_ADC2 0x77
116
117 #define EMC6D100_REG_ALARM3 0x7d
118 /* IN5, IN6 and IN7 */
119 #define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5))
120 #define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2)
121 #define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2)
122 #define EMC6D102_REG_EXTEND_ADC1 0x85
123 #define EMC6D102_REG_EXTEND_ADC2 0x86
124 #define EMC6D102_REG_EXTEND_ADC3 0x87
125 #define EMC6D102_REG_EXTEND_ADC4 0x88
126
127
128 /* Conversions. Rounding and limit checking is only done on the TO_REG
129 variants. Note that you should be a bit careful with which arguments
130 these macros are called: arguments may be evaluated more than once.
131 */
132
133 /* IN are scaled according to built-in resistors */
134 static const int lm85_scaling[] = { /* .001 Volts */
135 2500, 2250, 3300, 5000, 12000,
136 3300, 1500, 1800 /*EMC6D100*/
137 };
138 #define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from))
139
140 #define INS_TO_REG(n, val) \
141 SENSORS_LIMIT(SCALE(val, lm85_scaling[n], 192), 0, 255)
142
143 #define INSEXT_FROM_REG(n, val, ext) \
144 SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
145
146 #define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n])
147
148 /* FAN speed is measured using 90kHz clock */
149 static inline u16 FAN_TO_REG(unsigned long val)
150 {
151 if (!val)
152 return 0xffff;
153 return SENSORS_LIMIT(5400000 / val, 1, 0xfffe);
154 }
155 #define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
156 5400000 / (val))
157
158 /* Temperature is reported in .001 degC increments */
159 #define TEMP_TO_REG(val) \
160 SENSORS_LIMIT(SCALE(val, 1000, 1), -127, 127)
161 #define TEMPEXT_FROM_REG(val, ext) \
162 SCALE(((val) << 4) + (ext), 16, 1000)
163 #define TEMP_FROM_REG(val) ((val) * 1000)
164
165 #define PWM_TO_REG(val) SENSORS_LIMIT(val, 0, 255)
166 #define PWM_FROM_REG(val) (val)
167
168
169 /* ZONEs have the following parameters:
170 * Limit (low) temp, 1. degC
171 * Hysteresis (below limit), 1. degC (0-15)
172 * Range of speed control, .1 degC (2-80)
173 * Critical (high) temp, 1. degC
174 *
175 * FAN PWMs have the following parameters:
176 * Reference Zone, 1, 2, 3, etc.
177 * Spinup time, .05 sec
178 * PWM value at limit/low temp, 1 count
179 * PWM Frequency, 1. Hz
180 * PWM is Min or OFF below limit, flag
181 * Invert PWM output, flag
182 *
183 * Some chips filter the temp, others the fan.
184 * Filter constant (or disabled) .1 seconds
185 */
186
187 /* These are the zone temperature range encodings in .001 degree C */
188 static const int lm85_range_map[] = {
189 2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
190 13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
191 };
192
193 static int RANGE_TO_REG(int range)
194 {
195 int i;
196
197 /* Find the closest match */
198 for (i = 0; i < 15; ++i) {
199 if (range <= (lm85_range_map[i] + lm85_range_map[i + 1]) / 2)
200 break;
201 }
202
203 return i;
204 }
205 #define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f]
206
207 /* These are the PWM frequency encodings */
208 static const int lm85_freq_map[8] = { /* 1 Hz */
209 10, 15, 23, 30, 38, 47, 61, 94
210 };
211 static const int adm1027_freq_map[8] = { /* 1 Hz */
212 11, 15, 22, 29, 35, 44, 59, 88
213 };
214
215 static int FREQ_TO_REG(const int *map, int freq)
216 {
217 int i;
218
219 /* Find the closest match */
220 for (i = 0; i < 7; ++i)
221 if (freq <= (map[i] + map[i + 1]) / 2)
222 break;
223 return i;
224 }
225
226 static int FREQ_FROM_REG(const int *map, u8 reg)
227 {
228 return map[reg & 0x07];
229 }
230
231 /* Since we can't use strings, I'm abusing these numbers
232 * to stand in for the following meanings:
233 * 1 -- PWM responds to Zone 1
234 * 2 -- PWM responds to Zone 2
235 * 3 -- PWM responds to Zone 3
236 * 23 -- PWM responds to the higher temp of Zone 2 or 3
237 * 123 -- PWM responds to highest of Zone 1, 2, or 3
238 * 0 -- PWM is always at 0% (ie, off)
239 * -1 -- PWM is always at 100%
240 * -2 -- PWM responds to manual control
241 */
242
243 static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
244 #define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5]
245
246 static int ZONE_TO_REG(int zone)
247 {
248 int i;
249
250 for (i = 0; i <= 7; ++i)
251 if (zone == lm85_zone_map[i])
252 break;
253 if (i > 7) /* Not found. */
254 i = 3; /* Always 100% */
255 return i << 5;
256 }
257
258 #define HYST_TO_REG(val) SENSORS_LIMIT(((val) + 500) / 1000, 0, 15)
259 #define HYST_FROM_REG(val) ((val) * 1000)
260
261 /* Chip sampling rates
262 *
263 * Some sensors are not updated more frequently than once per second
264 * so it doesn't make sense to read them more often than that.
265 * We cache the results and return the saved data if the driver
266 * is called again before a second has elapsed.
267 *
268 * Also, there is significant configuration data for this chip
269 * given the automatic PWM fan control that is possible. There
270 * are about 47 bytes of config data to only 22 bytes of actual
271 * readings. So, we keep the config data up to date in the cache
272 * when it is written and only sample it once every 1 *minute*
273 */
274 #define LM85_DATA_INTERVAL (HZ + HZ / 2)
275 #define LM85_CONFIG_INTERVAL (1 * 60 * HZ)
276
277 /* LM85 can automatically adjust fan speeds based on temperature
278 * This structure encapsulates an entire Zone config. There are
279 * three zones (one for each temperature input) on the lm85
280 */
281 struct lm85_zone {
282 s8 limit; /* Low temp limit */
283 u8 hyst; /* Low limit hysteresis. (0-15) */
284 u8 range; /* Temp range, encoded */
285 s8 critical; /* "All fans ON" temp limit */
286 u8 max_desired; /* Actual "max" temperature specified. Preserved
287 * to prevent "drift" as other autofan control
288 * values change.
289 */
290 };
291
292 struct lm85_autofan {
293 u8 config; /* Register value */
294 u8 min_pwm; /* Minimum PWM value, encoded */
295 u8 min_off; /* Min PWM or OFF below "limit", flag */
296 };
297
298 /* For each registered chip, we need to keep some data in memory.
299 The structure is dynamically allocated. */
300 struct lm85_data {
301 struct device *hwmon_dev;
302 const int *freq_map;
303 enum chips type;
304
305 bool has_vid5; /* true if VID5 is configured for ADT7463 or ADT7468 */
306
307 struct mutex update_lock;
308 int valid; /* !=0 if following fields are valid */
309 unsigned long last_reading; /* In jiffies */
310 unsigned long last_config; /* In jiffies */
311
312 u8 in[8]; /* Register value */
313 u8 in_max[8]; /* Register value */
314 u8 in_min[8]; /* Register value */
315 s8 temp[3]; /* Register value */
316 s8 temp_min[3]; /* Register value */
317 s8 temp_max[3]; /* Register value */
318 u16 fan[4]; /* Register value */
319 u16 fan_min[4]; /* Register value */
320 u8 pwm[3]; /* Register value */
321 u8 pwm_freq[3]; /* Register encoding */
322 u8 temp_ext[3]; /* Decoded values */
323 u8 in_ext[8]; /* Decoded values */
324 u8 vid; /* Register value */
325 u8 vrm; /* VRM version */
326 u32 alarms; /* Register encoding, combined */
327 u8 cfg5; /* Config Register 5 on ADT7468 */
328 struct lm85_autofan autofan[3];
329 struct lm85_zone zone[3];
330 };
331
332 static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info);
333 static int lm85_probe(struct i2c_client *client,
334 const struct i2c_device_id *id);
335 static int lm85_remove(struct i2c_client *client);
336
337 static int lm85_read_value(struct i2c_client *client, u8 reg);
338 static void lm85_write_value(struct i2c_client *client, u8 reg, int value);
339 static struct lm85_data *lm85_update_device(struct device *dev);
340
341
342 static const struct i2c_device_id lm85_id[] = {
343 { "adm1027", adm1027 },
344 { "adt7463", adt7463 },
345 { "adt7468", adt7468 },
346 { "lm85", any_chip },
347 { "lm85b", lm85b },
348 { "lm85c", lm85c },
349 { "emc6d100", emc6d100 },
350 { "emc6d101", emc6d100 },
351 { "emc6d102", emc6d102 },
352 { "emc6d103", emc6d103 },
353 { "emc6d103s", emc6d103s },
354 { }
355 };
356 MODULE_DEVICE_TABLE(i2c, lm85_id);
357
358 static struct i2c_driver lm85_driver = {
359 .class = I2C_CLASS_HWMON,
360 .driver = {
361 .name = "lm85",
362 },
363 .probe = lm85_probe,
364 .remove = lm85_remove,
365 .id_table = lm85_id,
366 .detect = lm85_detect,
367 .address_list = normal_i2c,
368 };
369
370
371 /* 4 Fans */
372 static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
373 char *buf)
374 {
375 int nr = to_sensor_dev_attr(attr)->index;
376 struct lm85_data *data = lm85_update_device(dev);
377 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
378 }
379
380 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
381 char *buf)
382 {
383 int nr = to_sensor_dev_attr(attr)->index;
384 struct lm85_data *data = lm85_update_device(dev);
385 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
386 }
387
388 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
389 const char *buf, size_t count)
390 {
391 int nr = to_sensor_dev_attr(attr)->index;
392 struct i2c_client *client = to_i2c_client(dev);
393 struct lm85_data *data = i2c_get_clientdata(client);
394 unsigned long val = simple_strtoul(buf, NULL, 10);
395
396 mutex_lock(&data->update_lock);
397 data->fan_min[nr] = FAN_TO_REG(val);
398 lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
399 mutex_unlock(&data->update_lock);
400 return count;
401 }
402
403 #define show_fan_offset(offset) \
404 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
405 show_fan, NULL, offset - 1); \
406 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
407 show_fan_min, set_fan_min, offset - 1)
408
409 show_fan_offset(1);
410 show_fan_offset(2);
411 show_fan_offset(3);
412 show_fan_offset(4);
413
414 /* vid, vrm, alarms */
415
416 static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr,
417 char *buf)
418 {
419 struct lm85_data *data = lm85_update_device(dev);
420 int vid;
421
422 if (data->has_vid5) {
423 /* 6-pin VID (VRM 10) */
424 vid = vid_from_reg(data->vid & 0x3f, data->vrm);
425 } else {
426 /* 5-pin VID (VRM 9) */
427 vid = vid_from_reg(data->vid & 0x1f, data->vrm);
428 }
429
430 return sprintf(buf, "%d\n", vid);
431 }
432
433 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
434
435 static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr,
436 char *buf)
437 {
438 struct lm85_data *data = dev_get_drvdata(dev);
439 return sprintf(buf, "%ld\n", (long) data->vrm);
440 }
441
442 static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr,
443 const char *buf, size_t count)
444 {
445 struct lm85_data *data = dev_get_drvdata(dev);
446 data->vrm = simple_strtoul(buf, NULL, 10);
447 return count;
448 }
449
450 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
451
452 static ssize_t show_alarms_reg(struct device *dev, struct device_attribute
453 *attr, char *buf)
454 {
455 struct lm85_data *data = lm85_update_device(dev);
456 return sprintf(buf, "%u\n", data->alarms);
457 }
458
459 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
460
461 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
462 char *buf)
463 {
464 int nr = to_sensor_dev_attr(attr)->index;
465 struct lm85_data *data = lm85_update_device(dev);
466 return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
467 }
468
469 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
470 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
471 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
472 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
473 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
474 static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
475 static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
476 static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
477 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
478 static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
479 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
480 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
481 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
482 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
483 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
484 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
485 static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
486
487 /* pwm */
488
489 static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
490 char *buf)
491 {
492 int nr = to_sensor_dev_attr(attr)->index;
493 struct lm85_data *data = lm85_update_device(dev);
494 return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
495 }
496
497 static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
498 const char *buf, size_t count)
499 {
500 int nr = to_sensor_dev_attr(attr)->index;
501 struct i2c_client *client = to_i2c_client(dev);
502 struct lm85_data *data = i2c_get_clientdata(client);
503 long val = simple_strtol(buf, NULL, 10);
504
505 mutex_lock(&data->update_lock);
506 data->pwm[nr] = PWM_TO_REG(val);
507 lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
508 mutex_unlock(&data->update_lock);
509 return count;
510 }
511
512 static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
513 *attr, char *buf)
514 {
515 int nr = to_sensor_dev_attr(attr)->index;
516 struct lm85_data *data = lm85_update_device(dev);
517 int pwm_zone, enable;
518
519 pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
520 switch (pwm_zone) {
521 case -1: /* PWM is always at 100% */
522 enable = 0;
523 break;
524 case 0: /* PWM is always at 0% */
525 case -2: /* PWM responds to manual control */
526 enable = 1;
527 break;
528 default: /* PWM in automatic mode */
529 enable = 2;
530 }
531 return sprintf(buf, "%d\n", enable);
532 }
533
534 static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
535 *attr, const char *buf, size_t count)
536 {
537 int nr = to_sensor_dev_attr(attr)->index;
538 struct i2c_client *client = to_i2c_client(dev);
539 struct lm85_data *data = i2c_get_clientdata(client);
540 long val = simple_strtol(buf, NULL, 10);
541 u8 config;
542
543 switch (val) {
544 case 0:
545 config = 3;
546 break;
547 case 1:
548 config = 7;
549 break;
550 case 2:
551 /* Here we have to choose arbitrarily one of the 5 possible
552 configurations; I go for the safest */
553 config = 6;
554 break;
555 default:
556 return -EINVAL;
557 }
558
559 mutex_lock(&data->update_lock);
560 data->autofan[nr].config = lm85_read_value(client,
561 LM85_REG_AFAN_CONFIG(nr));
562 data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
563 | (config << 5);
564 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
565 data->autofan[nr].config);
566 mutex_unlock(&data->update_lock);
567 return count;
568 }
569
570 static ssize_t show_pwm_freq(struct device *dev,
571 struct device_attribute *attr, char *buf)
572 {
573 int nr = to_sensor_dev_attr(attr)->index;
574 struct lm85_data *data = lm85_update_device(dev);
575 int freq;
576
577 if (IS_ADT7468_HFPWM(data))
578 freq = 22500;
579 else
580 freq = FREQ_FROM_REG(data->freq_map, data->pwm_freq[nr]);
581
582 return sprintf(buf, "%d\n", freq);
583 }
584
585 static ssize_t set_pwm_freq(struct device *dev,
586 struct device_attribute *attr, const char *buf, size_t count)
587 {
588 int nr = to_sensor_dev_attr(attr)->index;
589 struct i2c_client *client = to_i2c_client(dev);
590 struct lm85_data *data = i2c_get_clientdata(client);
591 long val = simple_strtol(buf, NULL, 10);
592
593 mutex_lock(&data->update_lock);
594 /* The ADT7468 has a special high-frequency PWM output mode,
595 * where all PWM outputs are driven by a 22.5 kHz clock.
596 * This might confuse the user, but there's not much we can do. */
597 if (data->type == adt7468 && val >= 11300) { /* High freq. mode */
598 data->cfg5 &= ~ADT7468_HFPWM;
599 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
600 } else { /* Low freq. mode */
601 data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map, val);
602 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
603 (data->zone[nr].range << 4)
604 | data->pwm_freq[nr]);
605 if (data->type == adt7468) {
606 data->cfg5 |= ADT7468_HFPWM;
607 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
608 }
609 }
610 mutex_unlock(&data->update_lock);
611 return count;
612 }
613
614 #define show_pwm_reg(offset) \
615 static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR, \
616 show_pwm, set_pwm, offset - 1); \
617 static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR, \
618 show_pwm_enable, set_pwm_enable, offset - 1); \
619 static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR, \
620 show_pwm_freq, set_pwm_freq, offset - 1)
621
622 show_pwm_reg(1);
623 show_pwm_reg(2);
624 show_pwm_reg(3);
625
626 /* Voltages */
627
628 static ssize_t show_in(struct device *dev, struct device_attribute *attr,
629 char *buf)
630 {
631 int nr = to_sensor_dev_attr(attr)->index;
632 struct lm85_data *data = lm85_update_device(dev);
633 return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
634 data->in_ext[nr]));
635 }
636
637 static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
638 char *buf)
639 {
640 int nr = to_sensor_dev_attr(attr)->index;
641 struct lm85_data *data = lm85_update_device(dev);
642 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
643 }
644
645 static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
646 const char *buf, size_t count)
647 {
648 int nr = to_sensor_dev_attr(attr)->index;
649 struct i2c_client *client = to_i2c_client(dev);
650 struct lm85_data *data = i2c_get_clientdata(client);
651 long val = simple_strtol(buf, NULL, 10);
652
653 mutex_lock(&data->update_lock);
654 data->in_min[nr] = INS_TO_REG(nr, val);
655 lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
656 mutex_unlock(&data->update_lock);
657 return count;
658 }
659
660 static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
661 char *buf)
662 {
663 int nr = to_sensor_dev_attr(attr)->index;
664 struct lm85_data *data = lm85_update_device(dev);
665 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
666 }
667
668 static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
669 const char *buf, size_t count)
670 {
671 int nr = to_sensor_dev_attr(attr)->index;
672 struct i2c_client *client = to_i2c_client(dev);
673 struct lm85_data *data = i2c_get_clientdata(client);
674 long val = simple_strtol(buf, NULL, 10);
675
676 mutex_lock(&data->update_lock);
677 data->in_max[nr] = INS_TO_REG(nr, val);
678 lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
679 mutex_unlock(&data->update_lock);
680 return count;
681 }
682
683 #define show_in_reg(offset) \
684 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
685 show_in, NULL, offset); \
686 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
687 show_in_min, set_in_min, offset); \
688 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
689 show_in_max, set_in_max, offset)
690
691 show_in_reg(0);
692 show_in_reg(1);
693 show_in_reg(2);
694 show_in_reg(3);
695 show_in_reg(4);
696 show_in_reg(5);
697 show_in_reg(6);
698 show_in_reg(7);
699
700 /* Temps */
701
702 static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
703 char *buf)
704 {
705 int nr = to_sensor_dev_attr(attr)->index;
706 struct lm85_data *data = lm85_update_device(dev);
707 return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
708 data->temp_ext[nr]));
709 }
710
711 static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
712 char *buf)
713 {
714 int nr = to_sensor_dev_attr(attr)->index;
715 struct lm85_data *data = lm85_update_device(dev);
716 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
717 }
718
719 static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
720 const char *buf, size_t count)
721 {
722 int nr = to_sensor_dev_attr(attr)->index;
723 struct i2c_client *client = to_i2c_client(dev);
724 struct lm85_data *data = i2c_get_clientdata(client);
725 long val = simple_strtol(buf, NULL, 10);
726
727 if (IS_ADT7468_OFF64(data))
728 val += 64;
729
730 mutex_lock(&data->update_lock);
731 data->temp_min[nr] = TEMP_TO_REG(val);
732 lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
733 mutex_unlock(&data->update_lock);
734 return count;
735 }
736
737 static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
738 char *buf)
739 {
740 int nr = to_sensor_dev_attr(attr)->index;
741 struct lm85_data *data = lm85_update_device(dev);
742 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
743 }
744
745 static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
746 const char *buf, size_t count)
747 {
748 int nr = to_sensor_dev_attr(attr)->index;
749 struct i2c_client *client = to_i2c_client(dev);
750 struct lm85_data *data = i2c_get_clientdata(client);
751 long val = simple_strtol(buf, NULL, 10);
752
753 if (IS_ADT7468_OFF64(data))
754 val += 64;
755
756 mutex_lock(&data->update_lock);
757 data->temp_max[nr] = TEMP_TO_REG(val);
758 lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
759 mutex_unlock(&data->update_lock);
760 return count;
761 }
762
763 #define show_temp_reg(offset) \
764 static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
765 show_temp, NULL, offset - 1); \
766 static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
767 show_temp_min, set_temp_min, offset - 1); \
768 static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
769 show_temp_max, set_temp_max, offset - 1);
770
771 show_temp_reg(1);
772 show_temp_reg(2);
773 show_temp_reg(3);
774
775
776 /* Automatic PWM control */
777
778 static ssize_t show_pwm_auto_channels(struct device *dev,
779 struct device_attribute *attr, char *buf)
780 {
781 int nr = to_sensor_dev_attr(attr)->index;
782 struct lm85_data *data = lm85_update_device(dev);
783 return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
784 }
785
786 static ssize_t set_pwm_auto_channels(struct device *dev,
787 struct device_attribute *attr, const char *buf, size_t count)
788 {
789 int nr = to_sensor_dev_attr(attr)->index;
790 struct i2c_client *client = to_i2c_client(dev);
791 struct lm85_data *data = i2c_get_clientdata(client);
792 long val = simple_strtol(buf, NULL, 10);
793
794 mutex_lock(&data->update_lock);
795 data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
796 | ZONE_TO_REG(val);
797 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
798 data->autofan[nr].config);
799 mutex_unlock(&data->update_lock);
800 return count;
801 }
802
803 static ssize_t show_pwm_auto_pwm_min(struct device *dev,
804 struct device_attribute *attr, char *buf)
805 {
806 int nr = to_sensor_dev_attr(attr)->index;
807 struct lm85_data *data = lm85_update_device(dev);
808 return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
809 }
810
811 static ssize_t set_pwm_auto_pwm_min(struct device *dev,
812 struct device_attribute *attr, const char *buf, size_t count)
813 {
814 int nr = to_sensor_dev_attr(attr)->index;
815 struct i2c_client *client = to_i2c_client(dev);
816 struct lm85_data *data = i2c_get_clientdata(client);
817 long val = simple_strtol(buf, NULL, 10);
818
819 mutex_lock(&data->update_lock);
820 data->autofan[nr].min_pwm = PWM_TO_REG(val);
821 lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
822 data->autofan[nr].min_pwm);
823 mutex_unlock(&data->update_lock);
824 return count;
825 }
826
827 static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
828 struct device_attribute *attr, char *buf)
829 {
830 int nr = to_sensor_dev_attr(attr)->index;
831 struct lm85_data *data = lm85_update_device(dev);
832 return sprintf(buf, "%d\n", data->autofan[nr].min_off);
833 }
834
835 static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
836 struct device_attribute *attr, const char *buf, size_t count)
837 {
838 int nr = to_sensor_dev_attr(attr)->index;
839 struct i2c_client *client = to_i2c_client(dev);
840 struct lm85_data *data = i2c_get_clientdata(client);
841 long val = simple_strtol(buf, NULL, 10);
842 u8 tmp;
843
844 mutex_lock(&data->update_lock);
845 data->autofan[nr].min_off = val;
846 tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
847 tmp &= ~(0x20 << nr);
848 if (data->autofan[nr].min_off)
849 tmp |= 0x20 << nr;
850 lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
851 mutex_unlock(&data->update_lock);
852 return count;
853 }
854
855 #define pwm_auto(offset) \
856 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels, \
857 S_IRUGO | S_IWUSR, show_pwm_auto_channels, \
858 set_pwm_auto_channels, offset - 1); \
859 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min, \
860 S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min, \
861 set_pwm_auto_pwm_min, offset - 1); \
862 static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl, \
863 S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl, \
864 set_pwm_auto_pwm_minctl, offset - 1)
865
866 pwm_auto(1);
867 pwm_auto(2);
868 pwm_auto(3);
869
870 /* Temperature settings for automatic PWM control */
871
872 static ssize_t show_temp_auto_temp_off(struct device *dev,
873 struct device_attribute *attr, char *buf)
874 {
875 int nr = to_sensor_dev_attr(attr)->index;
876 struct lm85_data *data = lm85_update_device(dev);
877 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
878 HYST_FROM_REG(data->zone[nr].hyst));
879 }
880
881 static ssize_t set_temp_auto_temp_off(struct device *dev,
882 struct device_attribute *attr, const char *buf, size_t count)
883 {
884 int nr = to_sensor_dev_attr(attr)->index;
885 struct i2c_client *client = to_i2c_client(dev);
886 struct lm85_data *data = i2c_get_clientdata(client);
887 int min;
888 long val = simple_strtol(buf, NULL, 10);
889
890 mutex_lock(&data->update_lock);
891 min = TEMP_FROM_REG(data->zone[nr].limit);
892 data->zone[nr].hyst = HYST_TO_REG(min - val);
893 if (nr == 0 || nr == 1) {
894 lm85_write_value(client, LM85_REG_AFAN_HYST1,
895 (data->zone[0].hyst << 4)
896 | data->zone[1].hyst);
897 } else {
898 lm85_write_value(client, LM85_REG_AFAN_HYST2,
899 (data->zone[2].hyst << 4));
900 }
901 mutex_unlock(&data->update_lock);
902 return count;
903 }
904
905 static ssize_t show_temp_auto_temp_min(struct device *dev,
906 struct device_attribute *attr, char *buf)
907 {
908 int nr = to_sensor_dev_attr(attr)->index;
909 struct lm85_data *data = lm85_update_device(dev);
910 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
911 }
912
913 static ssize_t set_temp_auto_temp_min(struct device *dev,
914 struct device_attribute *attr, const char *buf, size_t count)
915 {
916 int nr = to_sensor_dev_attr(attr)->index;
917 struct i2c_client *client = to_i2c_client(dev);
918 struct lm85_data *data = i2c_get_clientdata(client);
919 long val = simple_strtol(buf, NULL, 10);
920
921 mutex_lock(&data->update_lock);
922 data->zone[nr].limit = TEMP_TO_REG(val);
923 lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
924 data->zone[nr].limit);
925
926 /* Update temp_auto_max and temp_auto_range */
927 data->zone[nr].range = RANGE_TO_REG(
928 TEMP_FROM_REG(data->zone[nr].max_desired) -
929 TEMP_FROM_REG(data->zone[nr].limit));
930 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
931 ((data->zone[nr].range & 0x0f) << 4)
932 | (data->pwm_freq[nr] & 0x07));
933
934 mutex_unlock(&data->update_lock);
935 return count;
936 }
937
938 static ssize_t show_temp_auto_temp_max(struct device *dev,
939 struct device_attribute *attr, char *buf)
940 {
941 int nr = to_sensor_dev_attr(attr)->index;
942 struct lm85_data *data = lm85_update_device(dev);
943 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
944 RANGE_FROM_REG(data->zone[nr].range));
945 }
946
947 static ssize_t set_temp_auto_temp_max(struct device *dev,
948 struct device_attribute *attr, const char *buf, size_t count)
949 {
950 int nr = to_sensor_dev_attr(attr)->index;
951 struct i2c_client *client = to_i2c_client(dev);
952 struct lm85_data *data = i2c_get_clientdata(client);
953 int min;
954 long val = simple_strtol(buf, NULL, 10);
955
956 mutex_lock(&data->update_lock);
957 min = TEMP_FROM_REG(data->zone[nr].limit);
958 data->zone[nr].max_desired = TEMP_TO_REG(val);
959 data->zone[nr].range = RANGE_TO_REG(
960 val - min);
961 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
962 ((data->zone[nr].range & 0x0f) << 4)
963 | (data->pwm_freq[nr] & 0x07));
964 mutex_unlock(&data->update_lock);
965 return count;
966 }
967
968 static ssize_t show_temp_auto_temp_crit(struct device *dev,
969 struct device_attribute *attr, char *buf)
970 {
971 int nr = to_sensor_dev_attr(attr)->index;
972 struct lm85_data *data = lm85_update_device(dev);
973 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
974 }
975
976 static ssize_t set_temp_auto_temp_crit(struct device *dev,
977 struct device_attribute *attr, const char *buf, size_t count)
978 {
979 int nr = to_sensor_dev_attr(attr)->index;
980 struct i2c_client *client = to_i2c_client(dev);
981 struct lm85_data *data = i2c_get_clientdata(client);
982 long val = simple_strtol(buf, NULL, 10);
983
984 mutex_lock(&data->update_lock);
985 data->zone[nr].critical = TEMP_TO_REG(val);
986 lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
987 data->zone[nr].critical);
988 mutex_unlock(&data->update_lock);
989 return count;
990 }
991
992 #define temp_auto(offset) \
993 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off, \
994 S_IRUGO | S_IWUSR, show_temp_auto_temp_off, \
995 set_temp_auto_temp_off, offset - 1); \
996 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min, \
997 S_IRUGO | S_IWUSR, show_temp_auto_temp_min, \
998 set_temp_auto_temp_min, offset - 1); \
999 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max, \
1000 S_IRUGO | S_IWUSR, show_temp_auto_temp_max, \
1001 set_temp_auto_temp_max, offset - 1); \
1002 static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit, \
1003 S_IRUGO | S_IWUSR, show_temp_auto_temp_crit, \
1004 set_temp_auto_temp_crit, offset - 1);
1005
1006 temp_auto(1);
1007 temp_auto(2);
1008 temp_auto(3);
1009
1010 static struct attribute *lm85_attributes[] = {
1011 &sensor_dev_attr_fan1_input.dev_attr.attr,
1012 &sensor_dev_attr_fan2_input.dev_attr.attr,
1013 &sensor_dev_attr_fan3_input.dev_attr.attr,
1014 &sensor_dev_attr_fan4_input.dev_attr.attr,
1015 &sensor_dev_attr_fan1_min.dev_attr.attr,
1016 &sensor_dev_attr_fan2_min.dev_attr.attr,
1017 &sensor_dev_attr_fan3_min.dev_attr.attr,
1018 &sensor_dev_attr_fan4_min.dev_attr.attr,
1019 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
1020 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
1021 &sensor_dev_attr_fan3_alarm.dev_attr.attr,
1022 &sensor_dev_attr_fan4_alarm.dev_attr.attr,
1023
1024 &sensor_dev_attr_pwm1.dev_attr.attr,
1025 &sensor_dev_attr_pwm2.dev_attr.attr,
1026 &sensor_dev_attr_pwm3.dev_attr.attr,
1027 &sensor_dev_attr_pwm1_enable.dev_attr.attr,
1028 &sensor_dev_attr_pwm2_enable.dev_attr.attr,
1029 &sensor_dev_attr_pwm3_enable.dev_attr.attr,
1030 &sensor_dev_attr_pwm1_freq.dev_attr.attr,
1031 &sensor_dev_attr_pwm2_freq.dev_attr.attr,
1032 &sensor_dev_attr_pwm3_freq.dev_attr.attr,
1033
1034 &sensor_dev_attr_in0_input.dev_attr.attr,
1035 &sensor_dev_attr_in1_input.dev_attr.attr,
1036 &sensor_dev_attr_in2_input.dev_attr.attr,
1037 &sensor_dev_attr_in3_input.dev_attr.attr,
1038 &sensor_dev_attr_in0_min.dev_attr.attr,
1039 &sensor_dev_attr_in1_min.dev_attr.attr,
1040 &sensor_dev_attr_in2_min.dev_attr.attr,
1041 &sensor_dev_attr_in3_min.dev_attr.attr,
1042 &sensor_dev_attr_in0_max.dev_attr.attr,
1043 &sensor_dev_attr_in1_max.dev_attr.attr,
1044 &sensor_dev_attr_in2_max.dev_attr.attr,
1045 &sensor_dev_attr_in3_max.dev_attr.attr,
1046 &sensor_dev_attr_in0_alarm.dev_attr.attr,
1047 &sensor_dev_attr_in1_alarm.dev_attr.attr,
1048 &sensor_dev_attr_in2_alarm.dev_attr.attr,
1049 &sensor_dev_attr_in3_alarm.dev_attr.attr,
1050
1051 &sensor_dev_attr_temp1_input.dev_attr.attr,
1052 &sensor_dev_attr_temp2_input.dev_attr.attr,
1053 &sensor_dev_attr_temp3_input.dev_attr.attr,
1054 &sensor_dev_attr_temp1_min.dev_attr.attr,
1055 &sensor_dev_attr_temp2_min.dev_attr.attr,
1056 &sensor_dev_attr_temp3_min.dev_attr.attr,
1057 &sensor_dev_attr_temp1_max.dev_attr.attr,
1058 &sensor_dev_attr_temp2_max.dev_attr.attr,
1059 &sensor_dev_attr_temp3_max.dev_attr.attr,
1060 &sensor_dev_attr_temp1_alarm.dev_attr.attr,
1061 &sensor_dev_attr_temp2_alarm.dev_attr.attr,
1062 &sensor_dev_attr_temp3_alarm.dev_attr.attr,
1063 &sensor_dev_attr_temp1_fault.dev_attr.attr,
1064 &sensor_dev_attr_temp3_fault.dev_attr.attr,
1065
1066 &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1067 &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1068 &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1069 &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1070 &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1071 &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1072
1073 &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1074 &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1075 &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1076 &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1077 &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1078 &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1079 &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1080 &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1081 &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1082
1083 &dev_attr_vrm.attr,
1084 &dev_attr_cpu0_vid.attr,
1085 &dev_attr_alarms.attr,
1086 NULL
1087 };
1088
1089 static const struct attribute_group lm85_group = {
1090 .attrs = lm85_attributes,
1091 };
1092
1093 static struct attribute *lm85_attributes_minctl[] = {
1094 &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1095 &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1096 &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1097 };
1098
1099 static const struct attribute_group lm85_group_minctl = {
1100 .attrs = lm85_attributes_minctl,
1101 };
1102
1103 static struct attribute *lm85_attributes_temp_off[] = {
1104 &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1105 &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1106 &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1107 };
1108
1109 static const struct attribute_group lm85_group_temp_off = {
1110 .attrs = lm85_attributes_temp_off,
1111 };
1112
1113 static struct attribute *lm85_attributes_in4[] = {
1114 &sensor_dev_attr_in4_input.dev_attr.attr,
1115 &sensor_dev_attr_in4_min.dev_attr.attr,
1116 &sensor_dev_attr_in4_max.dev_attr.attr,
1117 &sensor_dev_attr_in4_alarm.dev_attr.attr,
1118 NULL
1119 };
1120
1121 static const struct attribute_group lm85_group_in4 = {
1122 .attrs = lm85_attributes_in4,
1123 };
1124
1125 static struct attribute *lm85_attributes_in567[] = {
1126 &sensor_dev_attr_in5_input.dev_attr.attr,
1127 &sensor_dev_attr_in6_input.dev_attr.attr,
1128 &sensor_dev_attr_in7_input.dev_attr.attr,
1129 &sensor_dev_attr_in5_min.dev_attr.attr,
1130 &sensor_dev_attr_in6_min.dev_attr.attr,
1131 &sensor_dev_attr_in7_min.dev_attr.attr,
1132 &sensor_dev_attr_in5_max.dev_attr.attr,
1133 &sensor_dev_attr_in6_max.dev_attr.attr,
1134 &sensor_dev_attr_in7_max.dev_attr.attr,
1135 &sensor_dev_attr_in5_alarm.dev_attr.attr,
1136 &sensor_dev_attr_in6_alarm.dev_attr.attr,
1137 &sensor_dev_attr_in7_alarm.dev_attr.attr,
1138 NULL
1139 };
1140
1141 static const struct attribute_group lm85_group_in567 = {
1142 .attrs = lm85_attributes_in567,
1143 };
1144
1145 static void lm85_init_client(struct i2c_client *client)
1146 {
1147 int value;
1148
1149 /* Start monitoring if needed */
1150 value = lm85_read_value(client, LM85_REG_CONFIG);
1151 if (!(value & 0x01)) {
1152 dev_info(&client->dev, "Starting monitoring\n");
1153 lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1154 }
1155
1156 /* Warn about unusual configuration bits */
1157 if (value & 0x02)
1158 dev_warn(&client->dev, "Device configuration is locked\n");
1159 if (!(value & 0x04))
1160 dev_warn(&client->dev, "Device is not ready\n");
1161 }
1162
1163 static int lm85_is_fake(struct i2c_client *client)
1164 {
1165 /*
1166 * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1167 * emulate the former except that it has no hardware monitoring function
1168 * so the readings are always 0.
1169 */
1170 int i;
1171 u8 in_temp, fan;
1172
1173 for (i = 0; i < 8; i++) {
1174 in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1175 fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1176 if (in_temp != 0x00 || fan != 0xff)
1177 return 0;
1178 }
1179
1180 return 1;
1181 }
1182
1183 /* Return 0 if detection is successful, -ENODEV otherwise */
1184 static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1185 {
1186 struct i2c_adapter *adapter = client->adapter;
1187 int address = client->addr;
1188 const char *type_name;
1189 int company, verstep;
1190
1191 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1192 /* We need to be able to do byte I/O */
1193 return -ENODEV;
1194 }
1195
1196 /* Determine the chip type */
1197 company = lm85_read_value(client, LM85_REG_COMPANY);
1198 verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1199
1200 dev_dbg(&adapter->dev, "Detecting device at 0x%02x with "
1201 "COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1202 address, company, verstep);
1203
1204 /* All supported chips have the version in common */
1205 if ((verstep & LM85_VERSTEP_VMASK) != LM85_VERSTEP_GENERIC &&
1206 (verstep & LM85_VERSTEP_VMASK) != LM85_VERSTEP_GENERIC2) {
1207 dev_dbg(&adapter->dev,
1208 "Autodetection failed: unsupported version\n");
1209 return -ENODEV;
1210 }
1211 type_name = "lm85";
1212
1213 /* Now, refine the detection */
1214 if (company == LM85_COMPANY_NATIONAL) {
1215 switch (verstep) {
1216 case LM85_VERSTEP_LM85C:
1217 type_name = "lm85c";
1218 break;
1219 case LM85_VERSTEP_LM85B:
1220 type_name = "lm85b";
1221 break;
1222 case LM85_VERSTEP_LM96000_1:
1223 case LM85_VERSTEP_LM96000_2:
1224 /* Check for Winbond WPCD377I */
1225 if (lm85_is_fake(client)) {
1226 dev_dbg(&adapter->dev,
1227 "Found Winbond WPCD377I, ignoring\n");
1228 return -ENODEV;
1229 }
1230 break;
1231 }
1232 } else if (company == LM85_COMPANY_ANALOG_DEV) {
1233 switch (verstep) {
1234 case LM85_VERSTEP_ADM1027:
1235 type_name = "adm1027";
1236 break;
1237 case LM85_VERSTEP_ADT7463:
1238 case LM85_VERSTEP_ADT7463C:
1239 type_name = "adt7463";
1240 break;
1241 case LM85_VERSTEP_ADT7468_1:
1242 case LM85_VERSTEP_ADT7468_2:
1243 type_name = "adt7468";
1244 break;
1245 }
1246 } else if (company == LM85_COMPANY_SMSC) {
1247 switch (verstep) {
1248 case LM85_VERSTEP_EMC6D100_A0:
1249 case LM85_VERSTEP_EMC6D100_A1:
1250 /* Note: we can't tell a '100 from a '101 */
1251 type_name = "emc6d100";
1252 break;
1253 case LM85_VERSTEP_EMC6D102:
1254 type_name = "emc6d102";
1255 break;
1256 case LM85_VERSTEP_EMC6D103_A0:
1257 case LM85_VERSTEP_EMC6D103_A1:
1258 type_name = "emc6d103";
1259 break;
1260 case LM85_VERSTEP_EMC6D103S:
1261 type_name = "emc6d103s";
1262 break;
1263 }
1264 } else {
1265 dev_dbg(&adapter->dev,
1266 "Autodetection failed: unknown vendor\n");
1267 return -ENODEV;
1268 }
1269
1270 strlcpy(info->type, type_name, I2C_NAME_SIZE);
1271
1272 return 0;
1273 }
1274
1275 static void lm85_remove_files(struct i2c_client *client, struct lm85_data *data)
1276 {
1277 sysfs_remove_group(&client->dev.kobj, &lm85_group);
1278 if (data->type != emc6d103s) {
1279 sysfs_remove_group(&client->dev.kobj, &lm85_group_minctl);
1280 sysfs_remove_group(&client->dev.kobj, &lm85_group_temp_off);
1281 }
1282 if (!data->has_vid5)
1283 sysfs_remove_group(&client->dev.kobj, &lm85_group_in4);
1284 if (data->type == emc6d100)
1285 sysfs_remove_group(&client->dev.kobj, &lm85_group_in567);
1286 }
1287
1288 static int lm85_probe(struct i2c_client *client,
1289 const struct i2c_device_id *id)
1290 {
1291 struct lm85_data *data;
1292 int err;
1293
1294 data = kzalloc(sizeof(struct lm85_data), GFP_KERNEL);
1295 if (!data)
1296 return -ENOMEM;
1297
1298 i2c_set_clientdata(client, data);
1299 data->type = id->driver_data;
1300 mutex_init(&data->update_lock);
1301
1302 /* Fill in the chip specific driver values */
1303 switch (data->type) {
1304 case adm1027:
1305 case adt7463:
1306 case adt7468:
1307 case emc6d100:
1308 case emc6d102:
1309 case emc6d103:
1310 case emc6d103s:
1311 data->freq_map = adm1027_freq_map;
1312 break;
1313 default:
1314 data->freq_map = lm85_freq_map;
1315 }
1316
1317 /* Set the VRM version */
1318 data->vrm = vid_which_vrm();
1319
1320 /* Initialize the LM85 chip */
1321 lm85_init_client(client);
1322
1323 /* Register sysfs hooks */
1324 err = sysfs_create_group(&client->dev.kobj, &lm85_group);
1325 if (err)
1326 goto err_kfree;
1327
1328 /* minctl and temp_off exist on all chips except emc6d103s */
1329 if (data->type != emc6d103s) {
1330 err = sysfs_create_group(&client->dev.kobj, &lm85_group_minctl);
1331 if (err)
1332 goto err_kfree;
1333 err = sysfs_create_group(&client->dev.kobj,
1334 &lm85_group_temp_off);
1335 if (err)
1336 goto err_kfree;
1337 }
1338
1339 /* The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1340 as a sixth digital VID input rather than an analog input. */
1341 if (data->type == adt7463 || data->type == adt7468) {
1342 u8 vid = lm85_read_value(client, LM85_REG_VID);
1343 if (vid & 0x80)
1344 data->has_vid5 = true;
1345 }
1346
1347 if (!data->has_vid5)
1348 if ((err = sysfs_create_group(&client->dev.kobj,
1349 &lm85_group_in4)))
1350 goto err_remove_files;
1351
1352 /* The EMC6D100 has 3 additional voltage inputs */
1353 if (data->type == emc6d100)
1354 if ((err = sysfs_create_group(&client->dev.kobj,
1355 &lm85_group_in567)))
1356 goto err_remove_files;
1357
1358 data->hwmon_dev = hwmon_device_register(&client->dev);
1359 if (IS_ERR(data->hwmon_dev)) {
1360 err = PTR_ERR(data->hwmon_dev);
1361 goto err_remove_files;
1362 }
1363
1364 return 0;
1365
1366 /* Error out and cleanup code */
1367 err_remove_files:
1368 lm85_remove_files(client, data);
1369 err_kfree:
1370 kfree(data);
1371 return err;
1372 }
1373
1374 static int lm85_remove(struct i2c_client *client)
1375 {
1376 struct lm85_data *data = i2c_get_clientdata(client);
1377 hwmon_device_unregister(data->hwmon_dev);
1378 lm85_remove_files(client, data);
1379 kfree(data);
1380 return 0;
1381 }
1382
1383
1384 static int lm85_read_value(struct i2c_client *client, u8 reg)
1385 {
1386 int res;
1387
1388 /* What size location is it? */
1389 switch (reg) {
1390 case LM85_REG_FAN(0): /* Read WORD data */
1391 case LM85_REG_FAN(1):
1392 case LM85_REG_FAN(2):
1393 case LM85_REG_FAN(3):
1394 case LM85_REG_FAN_MIN(0):
1395 case LM85_REG_FAN_MIN(1):
1396 case LM85_REG_FAN_MIN(2):
1397 case LM85_REG_FAN_MIN(3):
1398 case LM85_REG_ALARM1: /* Read both bytes at once */
1399 res = i2c_smbus_read_byte_data(client, reg) & 0xff;
1400 res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
1401 break;
1402 default: /* Read BYTE data */
1403 res = i2c_smbus_read_byte_data(client, reg);
1404 break;
1405 }
1406
1407 return res;
1408 }
1409
1410 static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
1411 {
1412 switch (reg) {
1413 case LM85_REG_FAN(0): /* Write WORD data */
1414 case LM85_REG_FAN(1):
1415 case LM85_REG_FAN(2):
1416 case LM85_REG_FAN(3):
1417 case LM85_REG_FAN_MIN(0):
1418 case LM85_REG_FAN_MIN(1):
1419 case LM85_REG_FAN_MIN(2):
1420 case LM85_REG_FAN_MIN(3):
1421 /* NOTE: ALARM is read only, so not included here */
1422 i2c_smbus_write_byte_data(client, reg, value & 0xff);
1423 i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
1424 break;
1425 default: /* Write BYTE data */
1426 i2c_smbus_write_byte_data(client, reg, value);
1427 break;
1428 }
1429 }
1430
1431 static struct lm85_data *lm85_update_device(struct device *dev)
1432 {
1433 struct i2c_client *client = to_i2c_client(dev);
1434 struct lm85_data *data = i2c_get_clientdata(client);
1435 int i;
1436
1437 mutex_lock(&data->update_lock);
1438
1439 if (!data->valid ||
1440 time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
1441 /* Things that change quickly */
1442 dev_dbg(&client->dev, "Reading sensor values\n");
1443
1444 /* Have to read extended bits first to "freeze" the
1445 * more significant bits that are read later.
1446 * There are 2 additional resolution bits per channel and we
1447 * have room for 4, so we shift them to the left.
1448 */
1449 if (data->type == adm1027 || data->type == adt7463 ||
1450 data->type == adt7468) {
1451 int ext1 = lm85_read_value(client,
1452 ADM1027_REG_EXTEND_ADC1);
1453 int ext2 = lm85_read_value(client,
1454 ADM1027_REG_EXTEND_ADC2);
1455 int val = (ext1 << 8) + ext2;
1456
1457 for (i = 0; i <= 4; i++)
1458 data->in_ext[i] =
1459 ((val >> (i * 2)) & 0x03) << 2;
1460
1461 for (i = 0; i <= 2; i++)
1462 data->temp_ext[i] =
1463 (val >> ((i + 4) * 2)) & 0x0c;
1464 }
1465
1466 data->vid = lm85_read_value(client, LM85_REG_VID);
1467
1468 for (i = 0; i <= 3; ++i) {
1469 data->in[i] =
1470 lm85_read_value(client, LM85_REG_IN(i));
1471 data->fan[i] =
1472 lm85_read_value(client, LM85_REG_FAN(i));
1473 }
1474
1475 if (!data->has_vid5)
1476 data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
1477
1478 if (data->type == adt7468)
1479 data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
1480
1481 for (i = 0; i <= 2; ++i) {
1482 data->temp[i] =
1483 lm85_read_value(client, LM85_REG_TEMP(i));
1484 data->pwm[i] =
1485 lm85_read_value(client, LM85_REG_PWM(i));
1486
1487 if (IS_ADT7468_OFF64(data))
1488 data->temp[i] -= 64;
1489 }
1490
1491 data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
1492
1493 if (data->type == emc6d100) {
1494 /* Three more voltage sensors */
1495 for (i = 5; i <= 7; ++i) {
1496 data->in[i] = lm85_read_value(client,
1497 EMC6D100_REG_IN(i));
1498 }
1499 /* More alarm bits */
1500 data->alarms |= lm85_read_value(client,
1501 EMC6D100_REG_ALARM3) << 16;
1502 } else if (data->type == emc6d102 || data->type == emc6d103 ||
1503 data->type == emc6d103s) {
1504 /* Have to read LSB bits after the MSB ones because
1505 the reading of the MSB bits has frozen the
1506 LSBs (backward from the ADM1027).
1507 */
1508 int ext1 = lm85_read_value(client,
1509 EMC6D102_REG_EXTEND_ADC1);
1510 int ext2 = lm85_read_value(client,
1511 EMC6D102_REG_EXTEND_ADC2);
1512 int ext3 = lm85_read_value(client,
1513 EMC6D102_REG_EXTEND_ADC3);
1514 int ext4 = lm85_read_value(client,
1515 EMC6D102_REG_EXTEND_ADC4);
1516 data->in_ext[0] = ext3 & 0x0f;
1517 data->in_ext[1] = ext4 & 0x0f;
1518 data->in_ext[2] = ext4 >> 4;
1519 data->in_ext[3] = ext3 >> 4;
1520 data->in_ext[4] = ext2 >> 4;
1521
1522 data->temp_ext[0] = ext1 & 0x0f;
1523 data->temp_ext[1] = ext2 & 0x0f;
1524 data->temp_ext[2] = ext1 >> 4;
1525 }
1526
1527 data->last_reading = jiffies;
1528 } /* last_reading */
1529
1530 if (!data->valid ||
1531 time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
1532 /* Things that don't change often */
1533 dev_dbg(&client->dev, "Reading config values\n");
1534
1535 for (i = 0; i <= 3; ++i) {
1536 data->in_min[i] =
1537 lm85_read_value(client, LM85_REG_IN_MIN(i));
1538 data->in_max[i] =
1539 lm85_read_value(client, LM85_REG_IN_MAX(i));
1540 data->fan_min[i] =
1541 lm85_read_value(client, LM85_REG_FAN_MIN(i));
1542 }
1543
1544 if (!data->has_vid5) {
1545 data->in_min[4] = lm85_read_value(client,
1546 LM85_REG_IN_MIN(4));
1547 data->in_max[4] = lm85_read_value(client,
1548 LM85_REG_IN_MAX(4));
1549 }
1550
1551 if (data->type == emc6d100) {
1552 for (i = 5; i <= 7; ++i) {
1553 data->in_min[i] = lm85_read_value(client,
1554 EMC6D100_REG_IN_MIN(i));
1555 data->in_max[i] = lm85_read_value(client,
1556 EMC6D100_REG_IN_MAX(i));
1557 }
1558 }
1559
1560 for (i = 0; i <= 2; ++i) {
1561 int val;
1562
1563 data->temp_min[i] =
1564 lm85_read_value(client, LM85_REG_TEMP_MIN(i));
1565 data->temp_max[i] =
1566 lm85_read_value(client, LM85_REG_TEMP_MAX(i));
1567
1568 data->autofan[i].config =
1569 lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
1570 val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
1571 data->pwm_freq[i] = val & 0x07;
1572 data->zone[i].range = val >> 4;
1573 data->autofan[i].min_pwm =
1574 lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
1575 data->zone[i].limit =
1576 lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
1577 data->zone[i].critical =
1578 lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
1579
1580 if (IS_ADT7468_OFF64(data)) {
1581 data->temp_min[i] -= 64;
1582 data->temp_max[i] -= 64;
1583 data->zone[i].limit -= 64;
1584 data->zone[i].critical -= 64;
1585 }
1586 }
1587
1588 if (data->type != emc6d103s) {
1589 i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1590 data->autofan[0].min_off = (i & 0x20) != 0;
1591 data->autofan[1].min_off = (i & 0x40) != 0;
1592 data->autofan[2].min_off = (i & 0x80) != 0;
1593
1594 i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
1595 data->zone[0].hyst = i >> 4;
1596 data->zone[1].hyst = i & 0x0f;
1597
1598 i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
1599 data->zone[2].hyst = i >> 4;
1600 }
1601
1602 data->last_config = jiffies;
1603 } /* last_config */
1604
1605 data->valid = 1;
1606
1607 mutex_unlock(&data->update_lock);
1608
1609 return data;
1610 }
1611
1612
1613 static int __init sm_lm85_init(void)
1614 {
1615 return i2c_add_driver(&lm85_driver);
1616 }
1617
1618 static void __exit sm_lm85_exit(void)
1619 {
1620 i2c_del_driver(&lm85_driver);
1621 }
1622
1623 MODULE_LICENSE("GPL");
1624 MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1625 "Margit Schubert-While <margitsw@t-online.de>, "
1626 "Justin Thiessen <jthiessen@penguincomputing.com>");
1627 MODULE_DESCRIPTION("LM85-B, LM85-C driver");
1628
1629 module_init(sm_lm85_init);
1630 module_exit(sm_lm85_exit);
This page took 0.106942 seconds and 5 git commands to generate.