Merge tag 'hwmon-for-linus-v4.0-rc2' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / hwmon / pmbus / pmbus_core.c
1 /*
2 * Hardware monitoring driver for PMBus devices
3 *
4 * Copyright (c) 2010, 2011 Ericsson AB.
5 * Copyright (c) 2012 Guenter Roeck
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/err.h>
26 #include <linux/slab.h>
27 #include <linux/i2c.h>
28 #include <linux/hwmon.h>
29 #include <linux/hwmon-sysfs.h>
30 #include <linux/jiffies.h>
31 #include <linux/i2c/pmbus.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include "pmbus.h"
35
36 /*
37 * Number of additional attribute pointers to allocate
38 * with each call to krealloc
39 */
40 #define PMBUS_ATTR_ALLOC_SIZE 32
41
42 /*
43 * Index into status register array, per status register group
44 */
45 #define PB_STATUS_BASE 0
46 #define PB_STATUS_VOUT_BASE (PB_STATUS_BASE + PMBUS_PAGES)
47 #define PB_STATUS_IOUT_BASE (PB_STATUS_VOUT_BASE + PMBUS_PAGES)
48 #define PB_STATUS_FAN_BASE (PB_STATUS_IOUT_BASE + PMBUS_PAGES)
49 #define PB_STATUS_FAN34_BASE (PB_STATUS_FAN_BASE + PMBUS_PAGES)
50 #define PB_STATUS_TEMP_BASE (PB_STATUS_FAN34_BASE + PMBUS_PAGES)
51 #define PB_STATUS_INPUT_BASE (PB_STATUS_TEMP_BASE + PMBUS_PAGES)
52 #define PB_STATUS_VMON_BASE (PB_STATUS_INPUT_BASE + 1)
53
54 #define PB_NUM_STATUS_REG (PB_STATUS_VMON_BASE + 1)
55
56 #define PMBUS_NAME_SIZE 24
57
58 struct pmbus_sensor {
59 struct pmbus_sensor *next;
60 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */
61 struct device_attribute attribute;
62 u8 page; /* page number */
63 u16 reg; /* register */
64 enum pmbus_sensor_classes class; /* sensor class */
65 bool update; /* runtime sensor update needed */
66 int data; /* Sensor data.
67 Negative if there was a read error */
68 };
69 #define to_pmbus_sensor(_attr) \
70 container_of(_attr, struct pmbus_sensor, attribute)
71
72 struct pmbus_boolean {
73 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */
74 struct sensor_device_attribute attribute;
75 struct pmbus_sensor *s1;
76 struct pmbus_sensor *s2;
77 };
78 #define to_pmbus_boolean(_attr) \
79 container_of(_attr, struct pmbus_boolean, attribute)
80
81 struct pmbus_label {
82 char name[PMBUS_NAME_SIZE]; /* sysfs label name */
83 struct device_attribute attribute;
84 char label[PMBUS_NAME_SIZE]; /* label */
85 };
86 #define to_pmbus_label(_attr) \
87 container_of(_attr, struct pmbus_label, attribute)
88
89 struct pmbus_data {
90 struct device *dev;
91 struct device *hwmon_dev;
92
93 u32 flags; /* from platform data */
94
95 int exponent[PMBUS_PAGES];
96 /* linear mode: exponent for output voltages */
97
98 const struct pmbus_driver_info *info;
99
100 int max_attributes;
101 int num_attributes;
102 struct attribute_group group;
103 const struct attribute_group *groups[2];
104
105 struct pmbus_sensor *sensors;
106
107 struct mutex update_lock;
108 bool valid;
109 unsigned long last_updated; /* in jiffies */
110
111 /*
112 * A single status register covers multiple attributes,
113 * so we keep them all together.
114 */
115 u8 status[PB_NUM_STATUS_REG];
116 u8 status_register;
117
118 u8 currpage;
119 };
120
121 void pmbus_clear_cache(struct i2c_client *client)
122 {
123 struct pmbus_data *data = i2c_get_clientdata(client);
124
125 data->valid = false;
126 }
127 EXPORT_SYMBOL_GPL(pmbus_clear_cache);
128
129 int pmbus_set_page(struct i2c_client *client, u8 page)
130 {
131 struct pmbus_data *data = i2c_get_clientdata(client);
132 int rv = 0;
133 int newpage;
134
135 if (page != data->currpage) {
136 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
137 newpage = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
138 if (newpage != page)
139 rv = -EIO;
140 else
141 data->currpage = page;
142 }
143 return rv;
144 }
145 EXPORT_SYMBOL_GPL(pmbus_set_page);
146
147 int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
148 {
149 int rv;
150
151 if (page >= 0) {
152 rv = pmbus_set_page(client, page);
153 if (rv < 0)
154 return rv;
155 }
156
157 return i2c_smbus_write_byte(client, value);
158 }
159 EXPORT_SYMBOL_GPL(pmbus_write_byte);
160
161 /*
162 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
163 * a device specific mapping function exists and calls it if necessary.
164 */
165 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
166 {
167 struct pmbus_data *data = i2c_get_clientdata(client);
168 const struct pmbus_driver_info *info = data->info;
169 int status;
170
171 if (info->write_byte) {
172 status = info->write_byte(client, page, value);
173 if (status != -ENODATA)
174 return status;
175 }
176 return pmbus_write_byte(client, page, value);
177 }
178
179 int pmbus_write_word_data(struct i2c_client *client, u8 page, u8 reg, u16 word)
180 {
181 int rv;
182
183 rv = pmbus_set_page(client, page);
184 if (rv < 0)
185 return rv;
186
187 return i2c_smbus_write_word_data(client, reg, word);
188 }
189 EXPORT_SYMBOL_GPL(pmbus_write_word_data);
190
191 /*
192 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
193 * a device specific mapping function exists and calls it if necessary.
194 */
195 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
196 u16 word)
197 {
198 struct pmbus_data *data = i2c_get_clientdata(client);
199 const struct pmbus_driver_info *info = data->info;
200 int status;
201
202 if (info->write_word_data) {
203 status = info->write_word_data(client, page, reg, word);
204 if (status != -ENODATA)
205 return status;
206 }
207 if (reg >= PMBUS_VIRT_BASE)
208 return -ENXIO;
209 return pmbus_write_word_data(client, page, reg, word);
210 }
211
212 int pmbus_read_word_data(struct i2c_client *client, u8 page, u8 reg)
213 {
214 int rv;
215
216 rv = pmbus_set_page(client, page);
217 if (rv < 0)
218 return rv;
219
220 return i2c_smbus_read_word_data(client, reg);
221 }
222 EXPORT_SYMBOL_GPL(pmbus_read_word_data);
223
224 /*
225 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
226 * a device specific mapping function exists and calls it if necessary.
227 */
228 static int _pmbus_read_word_data(struct i2c_client *client, int page, int reg)
229 {
230 struct pmbus_data *data = i2c_get_clientdata(client);
231 const struct pmbus_driver_info *info = data->info;
232 int status;
233
234 if (info->read_word_data) {
235 status = info->read_word_data(client, page, reg);
236 if (status != -ENODATA)
237 return status;
238 }
239 if (reg >= PMBUS_VIRT_BASE)
240 return -ENXIO;
241 return pmbus_read_word_data(client, page, reg);
242 }
243
244 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
245 {
246 int rv;
247
248 if (page >= 0) {
249 rv = pmbus_set_page(client, page);
250 if (rv < 0)
251 return rv;
252 }
253
254 return i2c_smbus_read_byte_data(client, reg);
255 }
256 EXPORT_SYMBOL_GPL(pmbus_read_byte_data);
257
258 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
259 {
260 int rv;
261
262 rv = pmbus_set_page(client, page);
263 if (rv < 0)
264 return rv;
265
266 return i2c_smbus_write_byte_data(client, reg, value);
267 }
268 EXPORT_SYMBOL_GPL(pmbus_write_byte_data);
269
270 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
271 u8 mask, u8 value)
272 {
273 unsigned int tmp;
274 int rv;
275
276 rv = pmbus_read_byte_data(client, page, reg);
277 if (rv < 0)
278 return rv;
279
280 tmp = (rv & ~mask) | (value & mask);
281
282 if (tmp != rv)
283 rv = pmbus_write_byte_data(client, page, reg, tmp);
284
285 return rv;
286 }
287 EXPORT_SYMBOL_GPL(pmbus_update_byte_data);
288
289 /*
290 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
291 * a device specific mapping function exists and calls it if necessary.
292 */
293 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
294 {
295 struct pmbus_data *data = i2c_get_clientdata(client);
296 const struct pmbus_driver_info *info = data->info;
297 int status;
298
299 if (info->read_byte_data) {
300 status = info->read_byte_data(client, page, reg);
301 if (status != -ENODATA)
302 return status;
303 }
304 return pmbus_read_byte_data(client, page, reg);
305 }
306
307 static void pmbus_clear_fault_page(struct i2c_client *client, int page)
308 {
309 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
310 }
311
312 void pmbus_clear_faults(struct i2c_client *client)
313 {
314 struct pmbus_data *data = i2c_get_clientdata(client);
315 int i;
316
317 for (i = 0; i < data->info->pages; i++)
318 pmbus_clear_fault_page(client, i);
319 }
320 EXPORT_SYMBOL_GPL(pmbus_clear_faults);
321
322 static int pmbus_check_status_cml(struct i2c_client *client)
323 {
324 struct pmbus_data *data = i2c_get_clientdata(client);
325 int status, status2;
326
327 status = _pmbus_read_byte_data(client, -1, data->status_register);
328 if (status < 0 || (status & PB_STATUS_CML)) {
329 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
330 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
331 return -EIO;
332 }
333 return 0;
334 }
335
336 static bool pmbus_check_register(struct i2c_client *client,
337 int (*func)(struct i2c_client *client,
338 int page, int reg),
339 int page, int reg)
340 {
341 int rv;
342 struct pmbus_data *data = i2c_get_clientdata(client);
343
344 rv = func(client, page, reg);
345 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
346 rv = pmbus_check_status_cml(client);
347 pmbus_clear_fault_page(client, -1);
348 return rv >= 0;
349 }
350
351 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
352 {
353 return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
354 }
355 EXPORT_SYMBOL_GPL(pmbus_check_byte_register);
356
357 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
358 {
359 return pmbus_check_register(client, _pmbus_read_word_data, page, reg);
360 }
361 EXPORT_SYMBOL_GPL(pmbus_check_word_register);
362
363 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
364 {
365 struct pmbus_data *data = i2c_get_clientdata(client);
366
367 return data->info;
368 }
369 EXPORT_SYMBOL_GPL(pmbus_get_driver_info);
370
371 static struct _pmbus_status {
372 u32 func;
373 u16 base;
374 u16 reg;
375 } pmbus_status[] = {
376 { PMBUS_HAVE_STATUS_VOUT, PB_STATUS_VOUT_BASE, PMBUS_STATUS_VOUT },
377 { PMBUS_HAVE_STATUS_IOUT, PB_STATUS_IOUT_BASE, PMBUS_STATUS_IOUT },
378 { PMBUS_HAVE_STATUS_TEMP, PB_STATUS_TEMP_BASE,
379 PMBUS_STATUS_TEMPERATURE },
380 { PMBUS_HAVE_STATUS_FAN12, PB_STATUS_FAN_BASE, PMBUS_STATUS_FAN_12 },
381 { PMBUS_HAVE_STATUS_FAN34, PB_STATUS_FAN34_BASE, PMBUS_STATUS_FAN_34 },
382 };
383
384 static struct pmbus_data *pmbus_update_device(struct device *dev)
385 {
386 struct i2c_client *client = to_i2c_client(dev->parent);
387 struct pmbus_data *data = i2c_get_clientdata(client);
388 const struct pmbus_driver_info *info = data->info;
389 struct pmbus_sensor *sensor;
390
391 mutex_lock(&data->update_lock);
392 if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
393 int i, j;
394
395 for (i = 0; i < info->pages; i++) {
396 data->status[PB_STATUS_BASE + i]
397 = _pmbus_read_byte_data(client, i,
398 data->status_register);
399 for (j = 0; j < ARRAY_SIZE(pmbus_status); j++) {
400 struct _pmbus_status *s = &pmbus_status[j];
401
402 if (!(info->func[i] & s->func))
403 continue;
404 data->status[s->base + i]
405 = _pmbus_read_byte_data(client, i,
406 s->reg);
407 }
408 }
409
410 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT)
411 data->status[PB_STATUS_INPUT_BASE]
412 = _pmbus_read_byte_data(client, 0,
413 PMBUS_STATUS_INPUT);
414
415 if (info->func[0] & PMBUS_HAVE_STATUS_VMON)
416 data->status[PB_STATUS_VMON_BASE]
417 = _pmbus_read_byte_data(client, 0,
418 PMBUS_VIRT_STATUS_VMON);
419
420 for (sensor = data->sensors; sensor; sensor = sensor->next) {
421 if (!data->valid || sensor->update)
422 sensor->data
423 = _pmbus_read_word_data(client,
424 sensor->page,
425 sensor->reg);
426 }
427 pmbus_clear_faults(client);
428 data->last_updated = jiffies;
429 data->valid = 1;
430 }
431 mutex_unlock(&data->update_lock);
432 return data;
433 }
434
435 /*
436 * Convert linear sensor values to milli- or micro-units
437 * depending on sensor type.
438 */
439 static long pmbus_reg2data_linear(struct pmbus_data *data,
440 struct pmbus_sensor *sensor)
441 {
442 s16 exponent;
443 s32 mantissa;
444 long val;
445
446 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */
447 exponent = data->exponent[sensor->page];
448 mantissa = (u16) sensor->data;
449 } else { /* LINEAR11 */
450 exponent = ((s16)sensor->data) >> 11;
451 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
452 }
453
454 val = mantissa;
455
456 /* scale result to milli-units for all sensors except fans */
457 if (sensor->class != PSC_FAN)
458 val = val * 1000L;
459
460 /* scale result to micro-units for power sensors */
461 if (sensor->class == PSC_POWER)
462 val = val * 1000L;
463
464 if (exponent >= 0)
465 val <<= exponent;
466 else
467 val >>= -exponent;
468
469 return val;
470 }
471
472 /*
473 * Convert direct sensor values to milli- or micro-units
474 * depending on sensor type.
475 */
476 static long pmbus_reg2data_direct(struct pmbus_data *data,
477 struct pmbus_sensor *sensor)
478 {
479 long val = (s16) sensor->data;
480 long m, b, R;
481
482 m = data->info->m[sensor->class];
483 b = data->info->b[sensor->class];
484 R = data->info->R[sensor->class];
485
486 if (m == 0)
487 return 0;
488
489 /* X = 1/m * (Y * 10^-R - b) */
490 R = -R;
491 /* scale result to milli-units for everything but fans */
492 if (sensor->class != PSC_FAN) {
493 R += 3;
494 b *= 1000;
495 }
496
497 /* scale result to micro-units for power sensors */
498 if (sensor->class == PSC_POWER) {
499 R += 3;
500 b *= 1000;
501 }
502
503 while (R > 0) {
504 val *= 10;
505 R--;
506 }
507 while (R < 0) {
508 val = DIV_ROUND_CLOSEST(val, 10);
509 R++;
510 }
511
512 return (val - b) / m;
513 }
514
515 /*
516 * Convert VID sensor values to milli- or micro-units
517 * depending on sensor type.
518 * We currently only support VR11.
519 */
520 static long pmbus_reg2data_vid(struct pmbus_data *data,
521 struct pmbus_sensor *sensor)
522 {
523 long val = sensor->data;
524
525 if (val < 0x02 || val > 0xb2)
526 return 0;
527 return DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
528 }
529
530 static long pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
531 {
532 long val;
533
534 switch (data->info->format[sensor->class]) {
535 case direct:
536 val = pmbus_reg2data_direct(data, sensor);
537 break;
538 case vid:
539 val = pmbus_reg2data_vid(data, sensor);
540 break;
541 case linear:
542 default:
543 val = pmbus_reg2data_linear(data, sensor);
544 break;
545 }
546 return val;
547 }
548
549 #define MAX_MANTISSA (1023 * 1000)
550 #define MIN_MANTISSA (511 * 1000)
551
552 static u16 pmbus_data2reg_linear(struct pmbus_data *data,
553 struct pmbus_sensor *sensor, long val)
554 {
555 s16 exponent = 0, mantissa;
556 bool negative = false;
557
558 /* simple case */
559 if (val == 0)
560 return 0;
561
562 if (sensor->class == PSC_VOLTAGE_OUT) {
563 /* LINEAR16 does not support negative voltages */
564 if (val < 0)
565 return 0;
566
567 /*
568 * For a static exponents, we don't have a choice
569 * but to adjust the value to it.
570 */
571 if (data->exponent[sensor->page] < 0)
572 val <<= -data->exponent[sensor->page];
573 else
574 val >>= data->exponent[sensor->page];
575 val = DIV_ROUND_CLOSEST(val, 1000);
576 return val & 0xffff;
577 }
578
579 if (val < 0) {
580 negative = true;
581 val = -val;
582 }
583
584 /* Power is in uW. Convert to mW before converting. */
585 if (sensor->class == PSC_POWER)
586 val = DIV_ROUND_CLOSEST(val, 1000L);
587
588 /*
589 * For simplicity, convert fan data to milli-units
590 * before calculating the exponent.
591 */
592 if (sensor->class == PSC_FAN)
593 val = val * 1000;
594
595 /* Reduce large mantissa until it fits into 10 bit */
596 while (val >= MAX_MANTISSA && exponent < 15) {
597 exponent++;
598 val >>= 1;
599 }
600 /* Increase small mantissa to improve precision */
601 while (val < MIN_MANTISSA && exponent > -15) {
602 exponent--;
603 val <<= 1;
604 }
605
606 /* Convert mantissa from milli-units to units */
607 mantissa = DIV_ROUND_CLOSEST(val, 1000);
608
609 /* Ensure that resulting number is within range */
610 if (mantissa > 0x3ff)
611 mantissa = 0x3ff;
612
613 /* restore sign */
614 if (negative)
615 mantissa = -mantissa;
616
617 /* Convert to 5 bit exponent, 11 bit mantissa */
618 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
619 }
620
621 static u16 pmbus_data2reg_direct(struct pmbus_data *data,
622 struct pmbus_sensor *sensor, long val)
623 {
624 long m, b, R;
625
626 m = data->info->m[sensor->class];
627 b = data->info->b[sensor->class];
628 R = data->info->R[sensor->class];
629
630 /* Power is in uW. Adjust R and b. */
631 if (sensor->class == PSC_POWER) {
632 R -= 3;
633 b *= 1000;
634 }
635
636 /* Calculate Y = (m * X + b) * 10^R */
637 if (sensor->class != PSC_FAN) {
638 R -= 3; /* Adjust R and b for data in milli-units */
639 b *= 1000;
640 }
641 val = val * m + b;
642
643 while (R > 0) {
644 val *= 10;
645 R--;
646 }
647 while (R < 0) {
648 val = DIV_ROUND_CLOSEST(val, 10);
649 R++;
650 }
651
652 return val;
653 }
654
655 static u16 pmbus_data2reg_vid(struct pmbus_data *data,
656 struct pmbus_sensor *sensor, long val)
657 {
658 val = clamp_val(val, 500, 1600);
659
660 return 2 + DIV_ROUND_CLOSEST((1600 - val) * 100, 625);
661 }
662
663 static u16 pmbus_data2reg(struct pmbus_data *data,
664 struct pmbus_sensor *sensor, long val)
665 {
666 u16 regval;
667
668 switch (data->info->format[sensor->class]) {
669 case direct:
670 regval = pmbus_data2reg_direct(data, sensor, val);
671 break;
672 case vid:
673 regval = pmbus_data2reg_vid(data, sensor, val);
674 break;
675 case linear:
676 default:
677 regval = pmbus_data2reg_linear(data, sensor, val);
678 break;
679 }
680 return regval;
681 }
682
683 /*
684 * Return boolean calculated from converted data.
685 * <index> defines a status register index and mask.
686 * The mask is in the lower 8 bits, the register index is in bits 8..23.
687 *
688 * The associated pmbus_boolean structure contains optional pointers to two
689 * sensor attributes. If specified, those attributes are compared against each
690 * other to determine if a limit has been exceeded.
691 *
692 * If the sensor attribute pointers are NULL, the function returns true if
693 * (status[reg] & mask) is true.
694 *
695 * If sensor attribute pointers are provided, a comparison against a specified
696 * limit has to be performed to determine the boolean result.
697 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
698 * sensor values referenced by sensor attribute pointers s1 and s2).
699 *
700 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
701 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
702 *
703 * If a negative value is stored in any of the referenced registers, this value
704 * reflects an error code which will be returned.
705 */
706 static int pmbus_get_boolean(struct pmbus_data *data, struct pmbus_boolean *b,
707 int index)
708 {
709 struct pmbus_sensor *s1 = b->s1;
710 struct pmbus_sensor *s2 = b->s2;
711 u16 reg = (index >> 8) & 0xffff;
712 u8 mask = index & 0xff;
713 int ret, status;
714 u8 regval;
715
716 status = data->status[reg];
717 if (status < 0)
718 return status;
719
720 regval = status & mask;
721 if (!s1 && !s2) {
722 ret = !!regval;
723 } else if (!s1 || !s2) {
724 WARN(1, "Bad boolean descriptor %p: s1=%p, s2=%p\n", b, s1, s2);
725 return 0;
726 } else {
727 long v1, v2;
728
729 if (s1->data < 0)
730 return s1->data;
731 if (s2->data < 0)
732 return s2->data;
733
734 v1 = pmbus_reg2data(data, s1);
735 v2 = pmbus_reg2data(data, s2);
736 ret = !!(regval && v1 >= v2);
737 }
738 return ret;
739 }
740
741 static ssize_t pmbus_show_boolean(struct device *dev,
742 struct device_attribute *da, char *buf)
743 {
744 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
745 struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
746 struct pmbus_data *data = pmbus_update_device(dev);
747 int val;
748
749 val = pmbus_get_boolean(data, boolean, attr->index);
750 if (val < 0)
751 return val;
752 return snprintf(buf, PAGE_SIZE, "%d\n", val);
753 }
754
755 static ssize_t pmbus_show_sensor(struct device *dev,
756 struct device_attribute *devattr, char *buf)
757 {
758 struct pmbus_data *data = pmbus_update_device(dev);
759 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
760
761 if (sensor->data < 0)
762 return sensor->data;
763
764 return snprintf(buf, PAGE_SIZE, "%ld\n", pmbus_reg2data(data, sensor));
765 }
766
767 static ssize_t pmbus_set_sensor(struct device *dev,
768 struct device_attribute *devattr,
769 const char *buf, size_t count)
770 {
771 struct i2c_client *client = to_i2c_client(dev->parent);
772 struct pmbus_data *data = i2c_get_clientdata(client);
773 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
774 ssize_t rv = count;
775 long val = 0;
776 int ret;
777 u16 regval;
778
779 if (kstrtol(buf, 10, &val) < 0)
780 return -EINVAL;
781
782 mutex_lock(&data->update_lock);
783 regval = pmbus_data2reg(data, sensor, val);
784 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
785 if (ret < 0)
786 rv = ret;
787 else
788 sensor->data = regval;
789 mutex_unlock(&data->update_lock);
790 return rv;
791 }
792
793 static ssize_t pmbus_show_label(struct device *dev,
794 struct device_attribute *da, char *buf)
795 {
796 struct pmbus_label *label = to_pmbus_label(da);
797
798 return snprintf(buf, PAGE_SIZE, "%s\n", label->label);
799 }
800
801 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
802 {
803 if (data->num_attributes >= data->max_attributes - 1) {
804 int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
805 void *new_attrs = krealloc(data->group.attrs,
806 new_max_attrs * sizeof(void *),
807 GFP_KERNEL);
808 if (!new_attrs)
809 return -ENOMEM;
810 data->group.attrs = new_attrs;
811 data->max_attributes = new_max_attrs;
812 }
813
814 data->group.attrs[data->num_attributes++] = attr;
815 data->group.attrs[data->num_attributes] = NULL;
816 return 0;
817 }
818
819 static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
820 const char *name,
821 umode_t mode,
822 ssize_t (*show)(struct device *dev,
823 struct device_attribute *attr,
824 char *buf),
825 ssize_t (*store)(struct device *dev,
826 struct device_attribute *attr,
827 const char *buf, size_t count))
828 {
829 sysfs_attr_init(&dev_attr->attr);
830 dev_attr->attr.name = name;
831 dev_attr->attr.mode = mode;
832 dev_attr->show = show;
833 dev_attr->store = store;
834 }
835
836 static void pmbus_attr_init(struct sensor_device_attribute *a,
837 const char *name,
838 umode_t mode,
839 ssize_t (*show)(struct device *dev,
840 struct device_attribute *attr,
841 char *buf),
842 ssize_t (*store)(struct device *dev,
843 struct device_attribute *attr,
844 const char *buf, size_t count),
845 int idx)
846 {
847 pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
848 a->index = idx;
849 }
850
851 static int pmbus_add_boolean(struct pmbus_data *data,
852 const char *name, const char *type, int seq,
853 struct pmbus_sensor *s1,
854 struct pmbus_sensor *s2,
855 u16 reg, u8 mask)
856 {
857 struct pmbus_boolean *boolean;
858 struct sensor_device_attribute *a;
859
860 boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
861 if (!boolean)
862 return -ENOMEM;
863
864 a = &boolean->attribute;
865
866 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
867 name, seq, type);
868 boolean->s1 = s1;
869 boolean->s2 = s2;
870 pmbus_attr_init(a, boolean->name, S_IRUGO, pmbus_show_boolean, NULL,
871 (reg << 8) | mask);
872
873 return pmbus_add_attribute(data, &a->dev_attr.attr);
874 }
875
876 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
877 const char *name, const char *type,
878 int seq, int page, int reg,
879 enum pmbus_sensor_classes class,
880 bool update, bool readonly)
881 {
882 struct pmbus_sensor *sensor;
883 struct device_attribute *a;
884
885 sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
886 if (!sensor)
887 return NULL;
888 a = &sensor->attribute;
889
890 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
891 name, seq, type);
892 sensor->page = page;
893 sensor->reg = reg;
894 sensor->class = class;
895 sensor->update = update;
896 pmbus_dev_attr_init(a, sensor->name,
897 readonly ? S_IRUGO : S_IRUGO | S_IWUSR,
898 pmbus_show_sensor, pmbus_set_sensor);
899
900 if (pmbus_add_attribute(data, &a->attr))
901 return NULL;
902
903 sensor->next = data->sensors;
904 data->sensors = sensor;
905
906 return sensor;
907 }
908
909 static int pmbus_add_label(struct pmbus_data *data,
910 const char *name, int seq,
911 const char *lstring, int index)
912 {
913 struct pmbus_label *label;
914 struct device_attribute *a;
915
916 label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
917 if (!label)
918 return -ENOMEM;
919
920 a = &label->attribute;
921
922 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
923 if (!index)
924 strncpy(label->label, lstring, sizeof(label->label) - 1);
925 else
926 snprintf(label->label, sizeof(label->label), "%s%d", lstring,
927 index);
928
929 pmbus_dev_attr_init(a, label->name, S_IRUGO, pmbus_show_label, NULL);
930 return pmbus_add_attribute(data, &a->attr);
931 }
932
933 /*
934 * Search for attributes. Allocate sensors, booleans, and labels as needed.
935 */
936
937 /*
938 * The pmbus_limit_attr structure describes a single limit attribute
939 * and its associated alarm attribute.
940 */
941 struct pmbus_limit_attr {
942 u16 reg; /* Limit register */
943 u16 sbit; /* Alarm attribute status bit */
944 bool update; /* True if register needs updates */
945 bool low; /* True if low limit; for limits with compare
946 functions only */
947 const char *attr; /* Attribute name */
948 const char *alarm; /* Alarm attribute name */
949 };
950
951 /*
952 * The pmbus_sensor_attr structure describes one sensor attribute. This
953 * description includes a reference to the associated limit attributes.
954 */
955 struct pmbus_sensor_attr {
956 u16 reg; /* sensor register */
957 u8 gbit; /* generic status bit */
958 u8 nlimit; /* # of limit registers */
959 enum pmbus_sensor_classes class;/* sensor class */
960 const char *label; /* sensor label */
961 bool paged; /* true if paged sensor */
962 bool update; /* true if update needed */
963 bool compare; /* true if compare function needed */
964 u32 func; /* sensor mask */
965 u32 sfunc; /* sensor status mask */
966 int sbase; /* status base register */
967 const struct pmbus_limit_attr *limit;/* limit registers */
968 };
969
970 /*
971 * Add a set of limit attributes and, if supported, the associated
972 * alarm attributes.
973 * returns 0 if no alarm register found, 1 if an alarm register was found,
974 * < 0 on errors.
975 */
976 static int pmbus_add_limit_attrs(struct i2c_client *client,
977 struct pmbus_data *data,
978 const struct pmbus_driver_info *info,
979 const char *name, int index, int page,
980 struct pmbus_sensor *base,
981 const struct pmbus_sensor_attr *attr)
982 {
983 const struct pmbus_limit_attr *l = attr->limit;
984 int nlimit = attr->nlimit;
985 int have_alarm = 0;
986 int i, ret;
987 struct pmbus_sensor *curr;
988
989 for (i = 0; i < nlimit; i++) {
990 if (pmbus_check_word_register(client, page, l->reg)) {
991 curr = pmbus_add_sensor(data, name, l->attr, index,
992 page, l->reg, attr->class,
993 attr->update || l->update,
994 false);
995 if (!curr)
996 return -ENOMEM;
997 if (l->sbit && (info->func[page] & attr->sfunc)) {
998 ret = pmbus_add_boolean(data, name,
999 l->alarm, index,
1000 attr->compare ? l->low ? curr : base
1001 : NULL,
1002 attr->compare ? l->low ? base : curr
1003 : NULL,
1004 attr->sbase + page, l->sbit);
1005 if (ret)
1006 return ret;
1007 have_alarm = 1;
1008 }
1009 }
1010 l++;
1011 }
1012 return have_alarm;
1013 }
1014
1015 static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1016 struct pmbus_data *data,
1017 const struct pmbus_driver_info *info,
1018 const char *name,
1019 int index, int page,
1020 const struct pmbus_sensor_attr *attr)
1021 {
1022 struct pmbus_sensor *base;
1023 int ret;
1024
1025 if (attr->label) {
1026 ret = pmbus_add_label(data, name, index, attr->label,
1027 attr->paged ? page + 1 : 0);
1028 if (ret)
1029 return ret;
1030 }
1031 base = pmbus_add_sensor(data, name, "input", index, page, attr->reg,
1032 attr->class, true, true);
1033 if (!base)
1034 return -ENOMEM;
1035 if (attr->sfunc) {
1036 ret = pmbus_add_limit_attrs(client, data, info, name,
1037 index, page, base, attr);
1038 if (ret < 0)
1039 return ret;
1040 /*
1041 * Add generic alarm attribute only if there are no individual
1042 * alarm attributes, if there is a global alarm bit, and if
1043 * the generic status register for this page is accessible.
1044 */
1045 if (!ret && attr->gbit &&
1046 pmbus_check_byte_register(client, page,
1047 data->status_register)) {
1048 ret = pmbus_add_boolean(data, name, "alarm", index,
1049 NULL, NULL,
1050 PB_STATUS_BASE + page,
1051 attr->gbit);
1052 if (ret)
1053 return ret;
1054 }
1055 }
1056 return 0;
1057 }
1058
1059 static int pmbus_add_sensor_attrs(struct i2c_client *client,
1060 struct pmbus_data *data,
1061 const char *name,
1062 const struct pmbus_sensor_attr *attrs,
1063 int nattrs)
1064 {
1065 const struct pmbus_driver_info *info = data->info;
1066 int index, i;
1067 int ret;
1068
1069 index = 1;
1070 for (i = 0; i < nattrs; i++) {
1071 int page, pages;
1072
1073 pages = attrs->paged ? info->pages : 1;
1074 for (page = 0; page < pages; page++) {
1075 if (!(info->func[page] & attrs->func))
1076 continue;
1077 ret = pmbus_add_sensor_attrs_one(client, data, info,
1078 name, index, page,
1079 attrs);
1080 if (ret)
1081 return ret;
1082 index++;
1083 }
1084 attrs++;
1085 }
1086 return 0;
1087 }
1088
1089 static const struct pmbus_limit_attr vin_limit_attrs[] = {
1090 {
1091 .reg = PMBUS_VIN_UV_WARN_LIMIT,
1092 .attr = "min",
1093 .alarm = "min_alarm",
1094 .sbit = PB_VOLTAGE_UV_WARNING,
1095 }, {
1096 .reg = PMBUS_VIN_UV_FAULT_LIMIT,
1097 .attr = "lcrit",
1098 .alarm = "lcrit_alarm",
1099 .sbit = PB_VOLTAGE_UV_FAULT,
1100 }, {
1101 .reg = PMBUS_VIN_OV_WARN_LIMIT,
1102 .attr = "max",
1103 .alarm = "max_alarm",
1104 .sbit = PB_VOLTAGE_OV_WARNING,
1105 }, {
1106 .reg = PMBUS_VIN_OV_FAULT_LIMIT,
1107 .attr = "crit",
1108 .alarm = "crit_alarm",
1109 .sbit = PB_VOLTAGE_OV_FAULT,
1110 }, {
1111 .reg = PMBUS_VIRT_READ_VIN_AVG,
1112 .update = true,
1113 .attr = "average",
1114 }, {
1115 .reg = PMBUS_VIRT_READ_VIN_MIN,
1116 .update = true,
1117 .attr = "lowest",
1118 }, {
1119 .reg = PMBUS_VIRT_READ_VIN_MAX,
1120 .update = true,
1121 .attr = "highest",
1122 }, {
1123 .reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1124 .attr = "reset_history",
1125 },
1126 };
1127
1128 static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1129 {
1130 .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1131 .attr = "min",
1132 .alarm = "min_alarm",
1133 .sbit = PB_VOLTAGE_UV_WARNING,
1134 }, {
1135 .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1136 .attr = "lcrit",
1137 .alarm = "lcrit_alarm",
1138 .sbit = PB_VOLTAGE_UV_FAULT,
1139 }, {
1140 .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1141 .attr = "max",
1142 .alarm = "max_alarm",
1143 .sbit = PB_VOLTAGE_OV_WARNING,
1144 }, {
1145 .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1146 .attr = "crit",
1147 .alarm = "crit_alarm",
1148 .sbit = PB_VOLTAGE_OV_FAULT,
1149 }
1150 };
1151
1152 static const struct pmbus_limit_attr vout_limit_attrs[] = {
1153 {
1154 .reg = PMBUS_VOUT_UV_WARN_LIMIT,
1155 .attr = "min",
1156 .alarm = "min_alarm",
1157 .sbit = PB_VOLTAGE_UV_WARNING,
1158 }, {
1159 .reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1160 .attr = "lcrit",
1161 .alarm = "lcrit_alarm",
1162 .sbit = PB_VOLTAGE_UV_FAULT,
1163 }, {
1164 .reg = PMBUS_VOUT_OV_WARN_LIMIT,
1165 .attr = "max",
1166 .alarm = "max_alarm",
1167 .sbit = PB_VOLTAGE_OV_WARNING,
1168 }, {
1169 .reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1170 .attr = "crit",
1171 .alarm = "crit_alarm",
1172 .sbit = PB_VOLTAGE_OV_FAULT,
1173 }, {
1174 .reg = PMBUS_VIRT_READ_VOUT_AVG,
1175 .update = true,
1176 .attr = "average",
1177 }, {
1178 .reg = PMBUS_VIRT_READ_VOUT_MIN,
1179 .update = true,
1180 .attr = "lowest",
1181 }, {
1182 .reg = PMBUS_VIRT_READ_VOUT_MAX,
1183 .update = true,
1184 .attr = "highest",
1185 }, {
1186 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1187 .attr = "reset_history",
1188 }
1189 };
1190
1191 static const struct pmbus_sensor_attr voltage_attributes[] = {
1192 {
1193 .reg = PMBUS_READ_VIN,
1194 .class = PSC_VOLTAGE_IN,
1195 .label = "vin",
1196 .func = PMBUS_HAVE_VIN,
1197 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1198 .sbase = PB_STATUS_INPUT_BASE,
1199 .gbit = PB_STATUS_VIN_UV,
1200 .limit = vin_limit_attrs,
1201 .nlimit = ARRAY_SIZE(vin_limit_attrs),
1202 }, {
1203 .reg = PMBUS_VIRT_READ_VMON,
1204 .class = PSC_VOLTAGE_IN,
1205 .label = "vmon",
1206 .func = PMBUS_HAVE_VMON,
1207 .sfunc = PMBUS_HAVE_STATUS_VMON,
1208 .sbase = PB_STATUS_VMON_BASE,
1209 .limit = vmon_limit_attrs,
1210 .nlimit = ARRAY_SIZE(vmon_limit_attrs),
1211 }, {
1212 .reg = PMBUS_READ_VCAP,
1213 .class = PSC_VOLTAGE_IN,
1214 .label = "vcap",
1215 .func = PMBUS_HAVE_VCAP,
1216 }, {
1217 .reg = PMBUS_READ_VOUT,
1218 .class = PSC_VOLTAGE_OUT,
1219 .label = "vout",
1220 .paged = true,
1221 .func = PMBUS_HAVE_VOUT,
1222 .sfunc = PMBUS_HAVE_STATUS_VOUT,
1223 .sbase = PB_STATUS_VOUT_BASE,
1224 .gbit = PB_STATUS_VOUT_OV,
1225 .limit = vout_limit_attrs,
1226 .nlimit = ARRAY_SIZE(vout_limit_attrs),
1227 }
1228 };
1229
1230 /* Current attributes */
1231
1232 static const struct pmbus_limit_attr iin_limit_attrs[] = {
1233 {
1234 .reg = PMBUS_IIN_OC_WARN_LIMIT,
1235 .attr = "max",
1236 .alarm = "max_alarm",
1237 .sbit = PB_IIN_OC_WARNING,
1238 }, {
1239 .reg = PMBUS_IIN_OC_FAULT_LIMIT,
1240 .attr = "crit",
1241 .alarm = "crit_alarm",
1242 .sbit = PB_IIN_OC_FAULT,
1243 }, {
1244 .reg = PMBUS_VIRT_READ_IIN_AVG,
1245 .update = true,
1246 .attr = "average",
1247 }, {
1248 .reg = PMBUS_VIRT_READ_IIN_MIN,
1249 .update = true,
1250 .attr = "lowest",
1251 }, {
1252 .reg = PMBUS_VIRT_READ_IIN_MAX,
1253 .update = true,
1254 .attr = "highest",
1255 }, {
1256 .reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1257 .attr = "reset_history",
1258 }
1259 };
1260
1261 static const struct pmbus_limit_attr iout_limit_attrs[] = {
1262 {
1263 .reg = PMBUS_IOUT_OC_WARN_LIMIT,
1264 .attr = "max",
1265 .alarm = "max_alarm",
1266 .sbit = PB_IOUT_OC_WARNING,
1267 }, {
1268 .reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1269 .attr = "lcrit",
1270 .alarm = "lcrit_alarm",
1271 .sbit = PB_IOUT_UC_FAULT,
1272 }, {
1273 .reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1274 .attr = "crit",
1275 .alarm = "crit_alarm",
1276 .sbit = PB_IOUT_OC_FAULT,
1277 }, {
1278 .reg = PMBUS_VIRT_READ_IOUT_AVG,
1279 .update = true,
1280 .attr = "average",
1281 }, {
1282 .reg = PMBUS_VIRT_READ_IOUT_MIN,
1283 .update = true,
1284 .attr = "lowest",
1285 }, {
1286 .reg = PMBUS_VIRT_READ_IOUT_MAX,
1287 .update = true,
1288 .attr = "highest",
1289 }, {
1290 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1291 .attr = "reset_history",
1292 }
1293 };
1294
1295 static const struct pmbus_sensor_attr current_attributes[] = {
1296 {
1297 .reg = PMBUS_READ_IIN,
1298 .class = PSC_CURRENT_IN,
1299 .label = "iin",
1300 .func = PMBUS_HAVE_IIN,
1301 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1302 .sbase = PB_STATUS_INPUT_BASE,
1303 .limit = iin_limit_attrs,
1304 .nlimit = ARRAY_SIZE(iin_limit_attrs),
1305 }, {
1306 .reg = PMBUS_READ_IOUT,
1307 .class = PSC_CURRENT_OUT,
1308 .label = "iout",
1309 .paged = true,
1310 .func = PMBUS_HAVE_IOUT,
1311 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1312 .sbase = PB_STATUS_IOUT_BASE,
1313 .gbit = PB_STATUS_IOUT_OC,
1314 .limit = iout_limit_attrs,
1315 .nlimit = ARRAY_SIZE(iout_limit_attrs),
1316 }
1317 };
1318
1319 /* Power attributes */
1320
1321 static const struct pmbus_limit_attr pin_limit_attrs[] = {
1322 {
1323 .reg = PMBUS_PIN_OP_WARN_LIMIT,
1324 .attr = "max",
1325 .alarm = "alarm",
1326 .sbit = PB_PIN_OP_WARNING,
1327 }, {
1328 .reg = PMBUS_VIRT_READ_PIN_AVG,
1329 .update = true,
1330 .attr = "average",
1331 }, {
1332 .reg = PMBUS_VIRT_READ_PIN_MAX,
1333 .update = true,
1334 .attr = "input_highest",
1335 }, {
1336 .reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1337 .attr = "reset_history",
1338 }
1339 };
1340
1341 static const struct pmbus_limit_attr pout_limit_attrs[] = {
1342 {
1343 .reg = PMBUS_POUT_MAX,
1344 .attr = "cap",
1345 .alarm = "cap_alarm",
1346 .sbit = PB_POWER_LIMITING,
1347 }, {
1348 .reg = PMBUS_POUT_OP_WARN_LIMIT,
1349 .attr = "max",
1350 .alarm = "max_alarm",
1351 .sbit = PB_POUT_OP_WARNING,
1352 }, {
1353 .reg = PMBUS_POUT_OP_FAULT_LIMIT,
1354 .attr = "crit",
1355 .alarm = "crit_alarm",
1356 .sbit = PB_POUT_OP_FAULT,
1357 }, {
1358 .reg = PMBUS_VIRT_READ_POUT_AVG,
1359 .update = true,
1360 .attr = "average",
1361 }, {
1362 .reg = PMBUS_VIRT_READ_POUT_MAX,
1363 .update = true,
1364 .attr = "input_highest",
1365 }, {
1366 .reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1367 .attr = "reset_history",
1368 }
1369 };
1370
1371 static const struct pmbus_sensor_attr power_attributes[] = {
1372 {
1373 .reg = PMBUS_READ_PIN,
1374 .class = PSC_POWER,
1375 .label = "pin",
1376 .func = PMBUS_HAVE_PIN,
1377 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1378 .sbase = PB_STATUS_INPUT_BASE,
1379 .limit = pin_limit_attrs,
1380 .nlimit = ARRAY_SIZE(pin_limit_attrs),
1381 }, {
1382 .reg = PMBUS_READ_POUT,
1383 .class = PSC_POWER,
1384 .label = "pout",
1385 .paged = true,
1386 .func = PMBUS_HAVE_POUT,
1387 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1388 .sbase = PB_STATUS_IOUT_BASE,
1389 .limit = pout_limit_attrs,
1390 .nlimit = ARRAY_SIZE(pout_limit_attrs),
1391 }
1392 };
1393
1394 /* Temperature atributes */
1395
1396 static const struct pmbus_limit_attr temp_limit_attrs[] = {
1397 {
1398 .reg = PMBUS_UT_WARN_LIMIT,
1399 .low = true,
1400 .attr = "min",
1401 .alarm = "min_alarm",
1402 .sbit = PB_TEMP_UT_WARNING,
1403 }, {
1404 .reg = PMBUS_UT_FAULT_LIMIT,
1405 .low = true,
1406 .attr = "lcrit",
1407 .alarm = "lcrit_alarm",
1408 .sbit = PB_TEMP_UT_FAULT,
1409 }, {
1410 .reg = PMBUS_OT_WARN_LIMIT,
1411 .attr = "max",
1412 .alarm = "max_alarm",
1413 .sbit = PB_TEMP_OT_WARNING,
1414 }, {
1415 .reg = PMBUS_OT_FAULT_LIMIT,
1416 .attr = "crit",
1417 .alarm = "crit_alarm",
1418 .sbit = PB_TEMP_OT_FAULT,
1419 }, {
1420 .reg = PMBUS_VIRT_READ_TEMP_MIN,
1421 .attr = "lowest",
1422 }, {
1423 .reg = PMBUS_VIRT_READ_TEMP_AVG,
1424 .attr = "average",
1425 }, {
1426 .reg = PMBUS_VIRT_READ_TEMP_MAX,
1427 .attr = "highest",
1428 }, {
1429 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
1430 .attr = "reset_history",
1431 }
1432 };
1433
1434 static const struct pmbus_limit_attr temp_limit_attrs2[] = {
1435 {
1436 .reg = PMBUS_UT_WARN_LIMIT,
1437 .low = true,
1438 .attr = "min",
1439 .alarm = "min_alarm",
1440 .sbit = PB_TEMP_UT_WARNING,
1441 }, {
1442 .reg = PMBUS_UT_FAULT_LIMIT,
1443 .low = true,
1444 .attr = "lcrit",
1445 .alarm = "lcrit_alarm",
1446 .sbit = PB_TEMP_UT_FAULT,
1447 }, {
1448 .reg = PMBUS_OT_WARN_LIMIT,
1449 .attr = "max",
1450 .alarm = "max_alarm",
1451 .sbit = PB_TEMP_OT_WARNING,
1452 }, {
1453 .reg = PMBUS_OT_FAULT_LIMIT,
1454 .attr = "crit",
1455 .alarm = "crit_alarm",
1456 .sbit = PB_TEMP_OT_FAULT,
1457 }, {
1458 .reg = PMBUS_VIRT_READ_TEMP2_MIN,
1459 .attr = "lowest",
1460 }, {
1461 .reg = PMBUS_VIRT_READ_TEMP2_AVG,
1462 .attr = "average",
1463 }, {
1464 .reg = PMBUS_VIRT_READ_TEMP2_MAX,
1465 .attr = "highest",
1466 }, {
1467 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
1468 .attr = "reset_history",
1469 }
1470 };
1471
1472 static const struct pmbus_limit_attr temp_limit_attrs3[] = {
1473 {
1474 .reg = PMBUS_UT_WARN_LIMIT,
1475 .low = true,
1476 .attr = "min",
1477 .alarm = "min_alarm",
1478 .sbit = PB_TEMP_UT_WARNING,
1479 }, {
1480 .reg = PMBUS_UT_FAULT_LIMIT,
1481 .low = true,
1482 .attr = "lcrit",
1483 .alarm = "lcrit_alarm",
1484 .sbit = PB_TEMP_UT_FAULT,
1485 }, {
1486 .reg = PMBUS_OT_WARN_LIMIT,
1487 .attr = "max",
1488 .alarm = "max_alarm",
1489 .sbit = PB_TEMP_OT_WARNING,
1490 }, {
1491 .reg = PMBUS_OT_FAULT_LIMIT,
1492 .attr = "crit",
1493 .alarm = "crit_alarm",
1494 .sbit = PB_TEMP_OT_FAULT,
1495 }
1496 };
1497
1498 static const struct pmbus_sensor_attr temp_attributes[] = {
1499 {
1500 .reg = PMBUS_READ_TEMPERATURE_1,
1501 .class = PSC_TEMPERATURE,
1502 .paged = true,
1503 .update = true,
1504 .compare = true,
1505 .func = PMBUS_HAVE_TEMP,
1506 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1507 .sbase = PB_STATUS_TEMP_BASE,
1508 .gbit = PB_STATUS_TEMPERATURE,
1509 .limit = temp_limit_attrs,
1510 .nlimit = ARRAY_SIZE(temp_limit_attrs),
1511 }, {
1512 .reg = PMBUS_READ_TEMPERATURE_2,
1513 .class = PSC_TEMPERATURE,
1514 .paged = true,
1515 .update = true,
1516 .compare = true,
1517 .func = PMBUS_HAVE_TEMP2,
1518 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1519 .sbase = PB_STATUS_TEMP_BASE,
1520 .gbit = PB_STATUS_TEMPERATURE,
1521 .limit = temp_limit_attrs2,
1522 .nlimit = ARRAY_SIZE(temp_limit_attrs2),
1523 }, {
1524 .reg = PMBUS_READ_TEMPERATURE_3,
1525 .class = PSC_TEMPERATURE,
1526 .paged = true,
1527 .update = true,
1528 .compare = true,
1529 .func = PMBUS_HAVE_TEMP3,
1530 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1531 .sbase = PB_STATUS_TEMP_BASE,
1532 .gbit = PB_STATUS_TEMPERATURE,
1533 .limit = temp_limit_attrs3,
1534 .nlimit = ARRAY_SIZE(temp_limit_attrs3),
1535 }
1536 };
1537
1538 static const int pmbus_fan_registers[] = {
1539 PMBUS_READ_FAN_SPEED_1,
1540 PMBUS_READ_FAN_SPEED_2,
1541 PMBUS_READ_FAN_SPEED_3,
1542 PMBUS_READ_FAN_SPEED_4
1543 };
1544
1545 static const int pmbus_fan_config_registers[] = {
1546 PMBUS_FAN_CONFIG_12,
1547 PMBUS_FAN_CONFIG_12,
1548 PMBUS_FAN_CONFIG_34,
1549 PMBUS_FAN_CONFIG_34
1550 };
1551
1552 static const int pmbus_fan_status_registers[] = {
1553 PMBUS_STATUS_FAN_12,
1554 PMBUS_STATUS_FAN_12,
1555 PMBUS_STATUS_FAN_34,
1556 PMBUS_STATUS_FAN_34
1557 };
1558
1559 static const u32 pmbus_fan_flags[] = {
1560 PMBUS_HAVE_FAN12,
1561 PMBUS_HAVE_FAN12,
1562 PMBUS_HAVE_FAN34,
1563 PMBUS_HAVE_FAN34
1564 };
1565
1566 static const u32 pmbus_fan_status_flags[] = {
1567 PMBUS_HAVE_STATUS_FAN12,
1568 PMBUS_HAVE_STATUS_FAN12,
1569 PMBUS_HAVE_STATUS_FAN34,
1570 PMBUS_HAVE_STATUS_FAN34
1571 };
1572
1573 /* Fans */
1574 static int pmbus_add_fan_attributes(struct i2c_client *client,
1575 struct pmbus_data *data)
1576 {
1577 const struct pmbus_driver_info *info = data->info;
1578 int index = 1;
1579 int page;
1580 int ret;
1581
1582 for (page = 0; page < info->pages; page++) {
1583 int f;
1584
1585 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
1586 int regval;
1587
1588 if (!(info->func[page] & pmbus_fan_flags[f]))
1589 break;
1590
1591 if (!pmbus_check_word_register(client, page,
1592 pmbus_fan_registers[f]))
1593 break;
1594
1595 /*
1596 * Skip fan if not installed.
1597 * Each fan configuration register covers multiple fans,
1598 * so we have to do some magic.
1599 */
1600 regval = _pmbus_read_byte_data(client, page,
1601 pmbus_fan_config_registers[f]);
1602 if (regval < 0 ||
1603 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
1604 continue;
1605
1606 if (pmbus_add_sensor(data, "fan", "input", index,
1607 page, pmbus_fan_registers[f],
1608 PSC_FAN, true, true) == NULL)
1609 return -ENOMEM;
1610
1611 /*
1612 * Each fan status register covers multiple fans,
1613 * so we have to do some magic.
1614 */
1615 if ((info->func[page] & pmbus_fan_status_flags[f]) &&
1616 pmbus_check_byte_register(client,
1617 page, pmbus_fan_status_registers[f])) {
1618 int base;
1619
1620 if (f > 1) /* fan 3, 4 */
1621 base = PB_STATUS_FAN34_BASE + page;
1622 else
1623 base = PB_STATUS_FAN_BASE + page;
1624 ret = pmbus_add_boolean(data, "fan",
1625 "alarm", index, NULL, NULL, base,
1626 PB_FAN_FAN1_WARNING >> (f & 1));
1627 if (ret)
1628 return ret;
1629 ret = pmbus_add_boolean(data, "fan",
1630 "fault", index, NULL, NULL, base,
1631 PB_FAN_FAN1_FAULT >> (f & 1));
1632 if (ret)
1633 return ret;
1634 }
1635 index++;
1636 }
1637 }
1638 return 0;
1639 }
1640
1641 static int pmbus_find_attributes(struct i2c_client *client,
1642 struct pmbus_data *data)
1643 {
1644 int ret;
1645
1646 /* Voltage sensors */
1647 ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
1648 ARRAY_SIZE(voltage_attributes));
1649 if (ret)
1650 return ret;
1651
1652 /* Current sensors */
1653 ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
1654 ARRAY_SIZE(current_attributes));
1655 if (ret)
1656 return ret;
1657
1658 /* Power sensors */
1659 ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
1660 ARRAY_SIZE(power_attributes));
1661 if (ret)
1662 return ret;
1663
1664 /* Temperature sensors */
1665 ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
1666 ARRAY_SIZE(temp_attributes));
1667 if (ret)
1668 return ret;
1669
1670 /* Fans */
1671 ret = pmbus_add_fan_attributes(client, data);
1672 return ret;
1673 }
1674
1675 /*
1676 * Identify chip parameters.
1677 * This function is called for all chips.
1678 */
1679 static int pmbus_identify_common(struct i2c_client *client,
1680 struct pmbus_data *data, int page)
1681 {
1682 int vout_mode = -1;
1683
1684 if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
1685 vout_mode = _pmbus_read_byte_data(client, page,
1686 PMBUS_VOUT_MODE);
1687 if (vout_mode >= 0 && vout_mode != 0xff) {
1688 /*
1689 * Not all chips support the VOUT_MODE command,
1690 * so a failure to read it is not an error.
1691 */
1692 switch (vout_mode >> 5) {
1693 case 0: /* linear mode */
1694 if (data->info->format[PSC_VOLTAGE_OUT] != linear)
1695 return -ENODEV;
1696
1697 data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
1698 break;
1699 case 1: /* VID mode */
1700 if (data->info->format[PSC_VOLTAGE_OUT] != vid)
1701 return -ENODEV;
1702 break;
1703 case 2: /* direct mode */
1704 if (data->info->format[PSC_VOLTAGE_OUT] != direct)
1705 return -ENODEV;
1706 break;
1707 default:
1708 return -ENODEV;
1709 }
1710 }
1711
1712 pmbus_clear_fault_page(client, page);
1713 return 0;
1714 }
1715
1716 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
1717 struct pmbus_driver_info *info)
1718 {
1719 struct device *dev = &client->dev;
1720 int page, ret;
1721
1722 /*
1723 * Some PMBus chips don't support PMBUS_STATUS_BYTE, so try
1724 * to use PMBUS_STATUS_WORD instead if that is the case.
1725 * Bail out if both registers are not supported.
1726 */
1727 data->status_register = PMBUS_STATUS_BYTE;
1728 ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
1729 if (ret < 0 || ret == 0xff) {
1730 data->status_register = PMBUS_STATUS_WORD;
1731 ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
1732 if (ret < 0 || ret == 0xffff) {
1733 dev_err(dev, "PMBus status register not found\n");
1734 return -ENODEV;
1735 }
1736 }
1737
1738 pmbus_clear_faults(client);
1739
1740 if (info->identify) {
1741 ret = (*info->identify)(client, info);
1742 if (ret < 0) {
1743 dev_err(dev, "Chip identification failed\n");
1744 return ret;
1745 }
1746 }
1747
1748 if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
1749 dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
1750 return -ENODEV;
1751 }
1752
1753 for (page = 0; page < info->pages; page++) {
1754 ret = pmbus_identify_common(client, data, page);
1755 if (ret < 0) {
1756 dev_err(dev, "Failed to identify chip capabilities\n");
1757 return ret;
1758 }
1759 }
1760 return 0;
1761 }
1762
1763 #if IS_ENABLED(CONFIG_REGULATOR)
1764 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
1765 {
1766 struct device *dev = rdev_get_dev(rdev);
1767 struct i2c_client *client = to_i2c_client(dev->parent);
1768 u8 page = rdev_get_id(rdev);
1769 int ret;
1770
1771 ret = pmbus_read_byte_data(client, page, PMBUS_OPERATION);
1772 if (ret < 0)
1773 return ret;
1774
1775 return !!(ret & PB_OPERATION_CONTROL_ON);
1776 }
1777
1778 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
1779 {
1780 struct device *dev = rdev_get_dev(rdev);
1781 struct i2c_client *client = to_i2c_client(dev->parent);
1782 u8 page = rdev_get_id(rdev);
1783
1784 return pmbus_update_byte_data(client, page, PMBUS_OPERATION,
1785 PB_OPERATION_CONTROL_ON,
1786 enable ? PB_OPERATION_CONTROL_ON : 0);
1787 }
1788
1789 static int pmbus_regulator_enable(struct regulator_dev *rdev)
1790 {
1791 return _pmbus_regulator_on_off(rdev, 1);
1792 }
1793
1794 static int pmbus_regulator_disable(struct regulator_dev *rdev)
1795 {
1796 return _pmbus_regulator_on_off(rdev, 0);
1797 }
1798
1799 struct regulator_ops pmbus_regulator_ops = {
1800 .enable = pmbus_regulator_enable,
1801 .disable = pmbus_regulator_disable,
1802 .is_enabled = pmbus_regulator_is_enabled,
1803 };
1804 EXPORT_SYMBOL_GPL(pmbus_regulator_ops);
1805
1806 static int pmbus_regulator_register(struct pmbus_data *data)
1807 {
1808 struct device *dev = data->dev;
1809 const struct pmbus_driver_info *info = data->info;
1810 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
1811 struct regulator_dev *rdev;
1812 int i;
1813
1814 for (i = 0; i < info->num_regulators; i++) {
1815 struct regulator_config config = { };
1816
1817 config.dev = dev;
1818 config.driver_data = data;
1819
1820 if (pdata && pdata->reg_init_data)
1821 config.init_data = &pdata->reg_init_data[i];
1822
1823 rdev = devm_regulator_register(dev, &info->reg_desc[i],
1824 &config);
1825 if (IS_ERR(rdev)) {
1826 dev_err(dev, "Failed to register %s regulator\n",
1827 info->reg_desc[i].name);
1828 return PTR_ERR(rdev);
1829 }
1830 }
1831
1832 return 0;
1833 }
1834 #else
1835 static int pmbus_regulator_register(struct pmbus_data *data)
1836 {
1837 return 0;
1838 }
1839 #endif
1840
1841 int pmbus_do_probe(struct i2c_client *client, const struct i2c_device_id *id,
1842 struct pmbus_driver_info *info)
1843 {
1844 struct device *dev = &client->dev;
1845 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
1846 struct pmbus_data *data;
1847 int ret;
1848
1849 if (!info)
1850 return -ENODEV;
1851
1852 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
1853 | I2C_FUNC_SMBUS_BYTE_DATA
1854 | I2C_FUNC_SMBUS_WORD_DATA))
1855 return -ENODEV;
1856
1857 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
1858 if (!data)
1859 return -ENOMEM;
1860
1861 i2c_set_clientdata(client, data);
1862 mutex_init(&data->update_lock);
1863 data->dev = dev;
1864
1865 if (pdata)
1866 data->flags = pdata->flags;
1867 data->info = info;
1868
1869 ret = pmbus_init_common(client, data, info);
1870 if (ret < 0)
1871 return ret;
1872
1873 ret = pmbus_find_attributes(client, data);
1874 if (ret)
1875 goto out_kfree;
1876
1877 /*
1878 * If there are no attributes, something is wrong.
1879 * Bail out instead of trying to register nothing.
1880 */
1881 if (!data->num_attributes) {
1882 dev_err(dev, "No attributes found\n");
1883 ret = -ENODEV;
1884 goto out_kfree;
1885 }
1886
1887 data->groups[0] = &data->group;
1888 data->hwmon_dev = hwmon_device_register_with_groups(dev, client->name,
1889 data, data->groups);
1890 if (IS_ERR(data->hwmon_dev)) {
1891 ret = PTR_ERR(data->hwmon_dev);
1892 dev_err(dev, "Failed to register hwmon device\n");
1893 goto out_kfree;
1894 }
1895
1896 ret = pmbus_regulator_register(data);
1897 if (ret)
1898 goto out_unregister;
1899
1900 return 0;
1901
1902 out_unregister:
1903 hwmon_device_unregister(data->hwmon_dev);
1904 out_kfree:
1905 kfree(data->group.attrs);
1906 return ret;
1907 }
1908 EXPORT_SYMBOL_GPL(pmbus_do_probe);
1909
1910 int pmbus_do_remove(struct i2c_client *client)
1911 {
1912 struct pmbus_data *data = i2c_get_clientdata(client);
1913 hwmon_device_unregister(data->hwmon_dev);
1914 kfree(data->group.attrs);
1915 return 0;
1916 }
1917 EXPORT_SYMBOL_GPL(pmbus_do_remove);
1918
1919 MODULE_AUTHOR("Guenter Roeck");
1920 MODULE_DESCRIPTION("PMBus core driver");
1921 MODULE_LICENSE("GPL");
This page took 0.070189 seconds and 5 git commands to generate.