Merge branch 'linux-next' of git://git.open-osd.org/linux-open-osd
[deliverable/linux.git] / drivers / hwmon / w83791d.c
1 /*
2 * w83791d.c - Part of lm_sensors, Linux kernel modules for hardware
3 * monitoring
4 *
5 * Copyright (C) 2006-2007 Charles Spirakis <bezaur@gmail.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22 /*
23 * Supports following chips:
24 *
25 * Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA
26 * w83791d 10 5 5 3 0x71 0x5ca3 yes no
27 *
28 * The w83791d chip appears to be part way between the 83781d and the
29 * 83792d. Thus, this file is derived from both the w83792d.c and
30 * w83781d.c files.
31 *
32 * The w83791g chip is the same as the w83791d but lead-free.
33 */
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/i2c.h>
39 #include <linux/hwmon.h>
40 #include <linux/hwmon-vid.h>
41 #include <linux/hwmon-sysfs.h>
42 #include <linux/err.h>
43 #include <linux/mutex.h>
44
45 #define NUMBER_OF_VIN 10
46 #define NUMBER_OF_FANIN 5
47 #define NUMBER_OF_TEMPIN 3
48 #define NUMBER_OF_PWM 5
49
50 /* Addresses to scan */
51 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, 0x2f,
52 I2C_CLIENT_END };
53
54 /* Insmod parameters */
55
56 static unsigned short force_subclients[4];
57 module_param_array(force_subclients, short, NULL, 0);
58 MODULE_PARM_DESC(force_subclients, "List of subclient addresses: "
59 "{bus, clientaddr, subclientaddr1, subclientaddr2}");
60
61 static bool reset;
62 module_param(reset, bool, 0);
63 MODULE_PARM_DESC(reset, "Set to one to force a hardware chip reset");
64
65 static bool init;
66 module_param(init, bool, 0);
67 MODULE_PARM_DESC(init, "Set to one to force extra software initialization");
68
69 /* The W83791D registers */
70 static const u8 W83791D_REG_IN[NUMBER_OF_VIN] = {
71 0x20, /* VCOREA in DataSheet */
72 0x21, /* VINR0 in DataSheet */
73 0x22, /* +3.3VIN in DataSheet */
74 0x23, /* VDD5V in DataSheet */
75 0x24, /* +12VIN in DataSheet */
76 0x25, /* -12VIN in DataSheet */
77 0x26, /* -5VIN in DataSheet */
78 0xB0, /* 5VSB in DataSheet */
79 0xB1, /* VBAT in DataSheet */
80 0xB2 /* VINR1 in DataSheet */
81 };
82
83 static const u8 W83791D_REG_IN_MAX[NUMBER_OF_VIN] = {
84 0x2B, /* VCOREA High Limit in DataSheet */
85 0x2D, /* VINR0 High Limit in DataSheet */
86 0x2F, /* +3.3VIN High Limit in DataSheet */
87 0x31, /* VDD5V High Limit in DataSheet */
88 0x33, /* +12VIN High Limit in DataSheet */
89 0x35, /* -12VIN High Limit in DataSheet */
90 0x37, /* -5VIN High Limit in DataSheet */
91 0xB4, /* 5VSB High Limit in DataSheet */
92 0xB6, /* VBAT High Limit in DataSheet */
93 0xB8 /* VINR1 High Limit in DataSheet */
94 };
95 static const u8 W83791D_REG_IN_MIN[NUMBER_OF_VIN] = {
96 0x2C, /* VCOREA Low Limit in DataSheet */
97 0x2E, /* VINR0 Low Limit in DataSheet */
98 0x30, /* +3.3VIN Low Limit in DataSheet */
99 0x32, /* VDD5V Low Limit in DataSheet */
100 0x34, /* +12VIN Low Limit in DataSheet */
101 0x36, /* -12VIN Low Limit in DataSheet */
102 0x38, /* -5VIN Low Limit in DataSheet */
103 0xB5, /* 5VSB Low Limit in DataSheet */
104 0xB7, /* VBAT Low Limit in DataSheet */
105 0xB9 /* VINR1 Low Limit in DataSheet */
106 };
107 static const u8 W83791D_REG_FAN[NUMBER_OF_FANIN] = {
108 0x28, /* FAN 1 Count in DataSheet */
109 0x29, /* FAN 2 Count in DataSheet */
110 0x2A, /* FAN 3 Count in DataSheet */
111 0xBA, /* FAN 4 Count in DataSheet */
112 0xBB, /* FAN 5 Count in DataSheet */
113 };
114 static const u8 W83791D_REG_FAN_MIN[NUMBER_OF_FANIN] = {
115 0x3B, /* FAN 1 Count Low Limit in DataSheet */
116 0x3C, /* FAN 2 Count Low Limit in DataSheet */
117 0x3D, /* FAN 3 Count Low Limit in DataSheet */
118 0xBC, /* FAN 4 Count Low Limit in DataSheet */
119 0xBD, /* FAN 5 Count Low Limit in DataSheet */
120 };
121
122 static const u8 W83791D_REG_PWM[NUMBER_OF_PWM] = {
123 0x81, /* PWM 1 duty cycle register in DataSheet */
124 0x83, /* PWM 2 duty cycle register in DataSheet */
125 0x94, /* PWM 3 duty cycle register in DataSheet */
126 0xA0, /* PWM 4 duty cycle register in DataSheet */
127 0xA1, /* PWM 5 duty cycle register in DataSheet */
128 };
129
130 static const u8 W83791D_REG_TEMP_TARGET[3] = {
131 0x85, /* PWM 1 target temperature for temp 1 */
132 0x86, /* PWM 2 target temperature for temp 2 */
133 0x96, /* PWM 3 target temperature for temp 3 */
134 };
135
136 static const u8 W83791D_REG_TEMP_TOL[2] = {
137 0x87, /* PWM 1/2 temperature tolerance */
138 0x97, /* PWM 3 temperature tolerance */
139 };
140
141 static const u8 W83791D_REG_FAN_CFG[2] = {
142 0x84, /* FAN 1/2 configuration */
143 0x95, /* FAN 3 configuration */
144 };
145
146 static const u8 W83791D_REG_FAN_DIV[3] = {
147 0x47, /* contains FAN1 and FAN2 Divisor */
148 0x4b, /* contains FAN3 Divisor */
149 0x5C, /* contains FAN4 and FAN5 Divisor */
150 };
151
152 #define W83791D_REG_BANK 0x4E
153 #define W83791D_REG_TEMP2_CONFIG 0xC2
154 #define W83791D_REG_TEMP3_CONFIG 0xCA
155
156 static const u8 W83791D_REG_TEMP1[3] = {
157 0x27, /* TEMP 1 in DataSheet */
158 0x39, /* TEMP 1 Over in DataSheet */
159 0x3A, /* TEMP 1 Hyst in DataSheet */
160 };
161
162 static const u8 W83791D_REG_TEMP_ADD[2][6] = {
163 {0xC0, /* TEMP 2 in DataSheet */
164 0xC1, /* TEMP 2(0.5 deg) in DataSheet */
165 0xC5, /* TEMP 2 Over High part in DataSheet */
166 0xC6, /* TEMP 2 Over Low part in DataSheet */
167 0xC3, /* TEMP 2 Thyst High part in DataSheet */
168 0xC4}, /* TEMP 2 Thyst Low part in DataSheet */
169 {0xC8, /* TEMP 3 in DataSheet */
170 0xC9, /* TEMP 3(0.5 deg) in DataSheet */
171 0xCD, /* TEMP 3 Over High part in DataSheet */
172 0xCE, /* TEMP 3 Over Low part in DataSheet */
173 0xCB, /* TEMP 3 Thyst High part in DataSheet */
174 0xCC} /* TEMP 3 Thyst Low part in DataSheet */
175 };
176
177 #define W83791D_REG_BEEP_CONFIG 0x4D
178
179 static const u8 W83791D_REG_BEEP_CTRL[3] = {
180 0x56, /* BEEP Control Register 1 */
181 0x57, /* BEEP Control Register 2 */
182 0xA3, /* BEEP Control Register 3 */
183 };
184
185 #define W83791D_REG_GPIO 0x15
186 #define W83791D_REG_CONFIG 0x40
187 #define W83791D_REG_VID_FANDIV 0x47
188 #define W83791D_REG_DID_VID4 0x49
189 #define W83791D_REG_WCHIPID 0x58
190 #define W83791D_REG_CHIPMAN 0x4F
191 #define W83791D_REG_PIN 0x4B
192 #define W83791D_REG_I2C_SUBADDR 0x4A
193
194 #define W83791D_REG_ALARM1 0xA9 /* realtime status register1 */
195 #define W83791D_REG_ALARM2 0xAA /* realtime status register2 */
196 #define W83791D_REG_ALARM3 0xAB /* realtime status register3 */
197
198 #define W83791D_REG_VBAT 0x5D
199 #define W83791D_REG_I2C_ADDR 0x48
200
201 /*
202 * The SMBus locks itself. The Winbond W83791D has a bank select register
203 * (index 0x4e), but the driver only accesses registers in bank 0. Since
204 * we don't switch banks, we don't need any special code to handle
205 * locking access between bank switches
206 */
207 static inline int w83791d_read(struct i2c_client *client, u8 reg)
208 {
209 return i2c_smbus_read_byte_data(client, reg);
210 }
211
212 static inline int w83791d_write(struct i2c_client *client, u8 reg, u8 value)
213 {
214 return i2c_smbus_write_byte_data(client, reg, value);
215 }
216
217 /*
218 * The analog voltage inputs have 16mV LSB. Since the sysfs output is
219 * in mV as would be measured on the chip input pin, need to just
220 * multiply/divide by 16 to translate from/to register values.
221 */
222 #define IN_TO_REG(val) (SENSORS_LIMIT((((val) + 8) / 16), 0, 255))
223 #define IN_FROM_REG(val) ((val) * 16)
224
225 static u8 fan_to_reg(long rpm, int div)
226 {
227 if (rpm == 0)
228 return 255;
229 rpm = SENSORS_LIMIT(rpm, 1, 1000000);
230 return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
231 }
232
233 #define FAN_FROM_REG(val, div) ((val) == 0 ? -1 : \
234 ((val) == 255 ? 0 : \
235 1350000 / ((val) * (div))))
236
237 /* for temp1 which is 8-bit resolution, LSB = 1 degree Celsius */
238 #define TEMP1_FROM_REG(val) ((val) * 1000)
239 #define TEMP1_TO_REG(val) ((val) <= -128000 ? -128 : \
240 (val) >= 127000 ? 127 : \
241 (val) < 0 ? ((val) - 500) / 1000 : \
242 ((val) + 500) / 1000)
243
244 /*
245 * for temp2 and temp3 which are 9-bit resolution, LSB = 0.5 degree Celsius
246 * Assumes the top 8 bits are the integral amount and the bottom 8 bits
247 * are the fractional amount. Since we only have 0.5 degree resolution,
248 * the bottom 7 bits will always be zero
249 */
250 #define TEMP23_FROM_REG(val) ((val) / 128 * 500)
251 #define TEMP23_TO_REG(val) ((val) <= -128000 ? 0x8000 : \
252 (val) >= 127500 ? 0x7F80 : \
253 (val) < 0 ? ((val) - 250) / 500 * 128 : \
254 ((val) + 250) / 500 * 128)
255
256 /* for thermal cruise target temp, 7-bits, LSB = 1 degree Celsius */
257 #define TARGET_TEMP_TO_REG(val) ((val) < 0 ? 0 : \
258 (val) >= 127000 ? 127 : \
259 ((val) + 500) / 1000)
260
261 /* for thermal cruise temp tolerance, 4-bits, LSB = 1 degree Celsius */
262 #define TOL_TEMP_TO_REG(val) ((val) >= 15000 ? 15 : \
263 ((val) + 500) / 1000)
264
265 #define BEEP_MASK_TO_REG(val) ((val) & 0xffffff)
266 #define BEEP_MASK_FROM_REG(val) ((val) & 0xffffff)
267
268 #define DIV_FROM_REG(val) (1 << (val))
269
270 static u8 div_to_reg(int nr, long val)
271 {
272 int i;
273
274 /* fan divisors max out at 128 */
275 val = SENSORS_LIMIT(val, 1, 128) >> 1;
276 for (i = 0; i < 7; i++) {
277 if (val == 0)
278 break;
279 val >>= 1;
280 }
281 return (u8) i;
282 }
283
284 struct w83791d_data {
285 struct device *hwmon_dev;
286 struct mutex update_lock;
287
288 char valid; /* !=0 if following fields are valid */
289 unsigned long last_updated; /* In jiffies */
290
291 /* array of 2 pointers to subclients */
292 struct i2c_client *lm75[2];
293
294 /* volts */
295 u8 in[NUMBER_OF_VIN]; /* Register value */
296 u8 in_max[NUMBER_OF_VIN]; /* Register value */
297 u8 in_min[NUMBER_OF_VIN]; /* Register value */
298
299 /* fans */
300 u8 fan[NUMBER_OF_FANIN]; /* Register value */
301 u8 fan_min[NUMBER_OF_FANIN]; /* Register value */
302 u8 fan_div[NUMBER_OF_FANIN]; /* Register encoding, shifted right */
303
304 /* Temperature sensors */
305
306 s8 temp1[3]; /* current, over, thyst */
307 s16 temp_add[2][3]; /* fixed point value. Top 8 bits are the
308 * integral part, bottom 8 bits are the
309 * fractional part. We only use the top
310 * 9 bits as the resolution is only
311 * to the 0.5 degree C...
312 * two sensors with three values
313 * (cur, over, hyst)
314 */
315
316 /* PWMs */
317 u8 pwm[5]; /* pwm duty cycle */
318 u8 pwm_enable[3]; /* pwm enable status for fan 1-3
319 * (fan 4-5 only support manual mode)
320 */
321
322 u8 temp_target[3]; /* pwm 1-3 target temperature */
323 u8 temp_tolerance[3]; /* pwm 1-3 temperature tolerance */
324
325 /* Misc */
326 u32 alarms; /* realtime status register encoding,combined */
327 u8 beep_enable; /* Global beep enable */
328 u32 beep_mask; /* Mask off specific beeps */
329 u8 vid; /* Register encoding, combined */
330 u8 vrm; /* hwmon-vid */
331 };
332
333 static int w83791d_probe(struct i2c_client *client,
334 const struct i2c_device_id *id);
335 static int w83791d_detect(struct i2c_client *client,
336 struct i2c_board_info *info);
337 static int w83791d_remove(struct i2c_client *client);
338
339 static int w83791d_read(struct i2c_client *client, u8 reg);
340 static int w83791d_write(struct i2c_client *client, u8 reg, u8 value);
341 static struct w83791d_data *w83791d_update_device(struct device *dev);
342
343 #ifdef DEBUG
344 static void w83791d_print_debug(struct w83791d_data *data, struct device *dev);
345 #endif
346
347 static void w83791d_init_client(struct i2c_client *client);
348
349 static const struct i2c_device_id w83791d_id[] = {
350 { "w83791d", 0 },
351 { }
352 };
353 MODULE_DEVICE_TABLE(i2c, w83791d_id);
354
355 static struct i2c_driver w83791d_driver = {
356 .class = I2C_CLASS_HWMON,
357 .driver = {
358 .name = "w83791d",
359 },
360 .probe = w83791d_probe,
361 .remove = w83791d_remove,
362 .id_table = w83791d_id,
363 .detect = w83791d_detect,
364 .address_list = normal_i2c,
365 };
366
367 /* following are the sysfs callback functions */
368 #define show_in_reg(reg) \
369 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
370 char *buf) \
371 { \
372 struct sensor_device_attribute *sensor_attr = \
373 to_sensor_dev_attr(attr); \
374 struct w83791d_data *data = w83791d_update_device(dev); \
375 int nr = sensor_attr->index; \
376 return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
377 }
378
379 show_in_reg(in);
380 show_in_reg(in_min);
381 show_in_reg(in_max);
382
383 #define store_in_reg(REG, reg) \
384 static ssize_t store_in_##reg(struct device *dev, \
385 struct device_attribute *attr, \
386 const char *buf, size_t count) \
387 { \
388 struct sensor_device_attribute *sensor_attr = \
389 to_sensor_dev_attr(attr); \
390 struct i2c_client *client = to_i2c_client(dev); \
391 struct w83791d_data *data = i2c_get_clientdata(client); \
392 int nr = sensor_attr->index; \
393 unsigned long val; \
394 int err = kstrtoul(buf, 10, &val); \
395 if (err) \
396 return err; \
397 mutex_lock(&data->update_lock); \
398 data->in_##reg[nr] = IN_TO_REG(val); \
399 w83791d_write(client, W83791D_REG_IN_##REG[nr], data->in_##reg[nr]); \
400 mutex_unlock(&data->update_lock); \
401 \
402 return count; \
403 }
404 store_in_reg(MIN, min);
405 store_in_reg(MAX, max);
406
407 static struct sensor_device_attribute sda_in_input[] = {
408 SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0),
409 SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1),
410 SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2),
411 SENSOR_ATTR(in3_input, S_IRUGO, show_in, NULL, 3),
412 SENSOR_ATTR(in4_input, S_IRUGO, show_in, NULL, 4),
413 SENSOR_ATTR(in5_input, S_IRUGO, show_in, NULL, 5),
414 SENSOR_ATTR(in6_input, S_IRUGO, show_in, NULL, 6),
415 SENSOR_ATTR(in7_input, S_IRUGO, show_in, NULL, 7),
416 SENSOR_ATTR(in8_input, S_IRUGO, show_in, NULL, 8),
417 SENSOR_ATTR(in9_input, S_IRUGO, show_in, NULL, 9),
418 };
419
420 static struct sensor_device_attribute sda_in_min[] = {
421 SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0),
422 SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1),
423 SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2),
424 SENSOR_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3),
425 SENSOR_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4),
426 SENSOR_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5),
427 SENSOR_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6),
428 SENSOR_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7),
429 SENSOR_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8),
430 SENSOR_ATTR(in9_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 9),
431 };
432
433 static struct sensor_device_attribute sda_in_max[] = {
434 SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0),
435 SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1),
436 SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2),
437 SENSOR_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3),
438 SENSOR_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4),
439 SENSOR_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5),
440 SENSOR_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6),
441 SENSOR_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7),
442 SENSOR_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8),
443 SENSOR_ATTR(in9_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 9),
444 };
445
446
447 static ssize_t show_beep(struct device *dev, struct device_attribute *attr,
448 char *buf)
449 {
450 struct sensor_device_attribute *sensor_attr =
451 to_sensor_dev_attr(attr);
452 struct w83791d_data *data = w83791d_update_device(dev);
453 int bitnr = sensor_attr->index;
454
455 return sprintf(buf, "%d\n", (data->beep_mask >> bitnr) & 1);
456 }
457
458 static ssize_t store_beep(struct device *dev, struct device_attribute *attr,
459 const char *buf, size_t count)
460 {
461 struct sensor_device_attribute *sensor_attr =
462 to_sensor_dev_attr(attr);
463 struct i2c_client *client = to_i2c_client(dev);
464 struct w83791d_data *data = i2c_get_clientdata(client);
465 int bitnr = sensor_attr->index;
466 int bytenr = bitnr / 8;
467 unsigned long val;
468 int err;
469
470 err = kstrtoul(buf, 10, &val);
471 if (err)
472 return err;
473
474 val = val ? 1 : 0;
475
476 mutex_lock(&data->update_lock);
477
478 data->beep_mask &= ~(0xff << (bytenr * 8));
479 data->beep_mask |= w83791d_read(client, W83791D_REG_BEEP_CTRL[bytenr])
480 << (bytenr * 8);
481
482 data->beep_mask &= ~(1 << bitnr);
483 data->beep_mask |= val << bitnr;
484
485 w83791d_write(client, W83791D_REG_BEEP_CTRL[bytenr],
486 (data->beep_mask >> (bytenr * 8)) & 0xff);
487
488 mutex_unlock(&data->update_lock);
489
490 return count;
491 }
492
493 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
494 char *buf)
495 {
496 struct sensor_device_attribute *sensor_attr =
497 to_sensor_dev_attr(attr);
498 struct w83791d_data *data = w83791d_update_device(dev);
499 int bitnr = sensor_attr->index;
500
501 return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1);
502 }
503
504 /*
505 * Note: The bitmask for the beep enable/disable is different than
506 * the bitmask for the alarm.
507 */
508 static struct sensor_device_attribute sda_in_beep[] = {
509 SENSOR_ATTR(in0_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 0),
510 SENSOR_ATTR(in1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 13),
511 SENSOR_ATTR(in2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 2),
512 SENSOR_ATTR(in3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 3),
513 SENSOR_ATTR(in4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 8),
514 SENSOR_ATTR(in5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 9),
515 SENSOR_ATTR(in6_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 10),
516 SENSOR_ATTR(in7_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 16),
517 SENSOR_ATTR(in8_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 17),
518 SENSOR_ATTR(in9_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 14),
519 };
520
521 static struct sensor_device_attribute sda_in_alarm[] = {
522 SENSOR_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0),
523 SENSOR_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1),
524 SENSOR_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2),
525 SENSOR_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3),
526 SENSOR_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8),
527 SENSOR_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 9),
528 SENSOR_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 10),
529 SENSOR_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 19),
530 SENSOR_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 20),
531 SENSOR_ATTR(in9_alarm, S_IRUGO, show_alarm, NULL, 14),
532 };
533
534 #define show_fan_reg(reg) \
535 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
536 char *buf) \
537 { \
538 struct sensor_device_attribute *sensor_attr = \
539 to_sensor_dev_attr(attr); \
540 struct w83791d_data *data = w83791d_update_device(dev); \
541 int nr = sensor_attr->index; \
542 return sprintf(buf, "%d\n", \
543 FAN_FROM_REG(data->reg[nr], DIV_FROM_REG(data->fan_div[nr]))); \
544 }
545
546 show_fan_reg(fan);
547 show_fan_reg(fan_min);
548
549 static ssize_t store_fan_min(struct device *dev, struct device_attribute *attr,
550 const char *buf, size_t count)
551 {
552 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
553 struct i2c_client *client = to_i2c_client(dev);
554 struct w83791d_data *data = i2c_get_clientdata(client);
555 int nr = sensor_attr->index;
556 unsigned long val;
557 int err;
558
559 err = kstrtoul(buf, 10, &val);
560 if (err)
561 return err;
562
563 mutex_lock(&data->update_lock);
564 data->fan_min[nr] = fan_to_reg(val, DIV_FROM_REG(data->fan_div[nr]));
565 w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]);
566 mutex_unlock(&data->update_lock);
567
568 return count;
569 }
570
571 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
572 char *buf)
573 {
574 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
575 int nr = sensor_attr->index;
576 struct w83791d_data *data = w83791d_update_device(dev);
577 return sprintf(buf, "%u\n", DIV_FROM_REG(data->fan_div[nr]));
578 }
579
580 /*
581 * Note: we save and restore the fan minimum here, because its value is
582 * determined in part by the fan divisor. This follows the principle of
583 * least surprise; the user doesn't expect the fan minimum to change just
584 * because the divisor changed.
585 */
586 static ssize_t store_fan_div(struct device *dev, struct device_attribute *attr,
587 const char *buf, size_t count)
588 {
589 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
590 struct i2c_client *client = to_i2c_client(dev);
591 struct w83791d_data *data = i2c_get_clientdata(client);
592 int nr = sensor_attr->index;
593 unsigned long min;
594 u8 tmp_fan_div;
595 u8 fan_div_reg;
596 u8 vbat_reg;
597 int indx = 0;
598 u8 keep_mask = 0;
599 u8 new_shift = 0;
600 unsigned long val;
601 int err;
602
603 err = kstrtoul(buf, 10, &val);
604 if (err)
605 return err;
606
607 /* Save fan_min */
608 min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr]));
609
610 mutex_lock(&data->update_lock);
611 data->fan_div[nr] = div_to_reg(nr, val);
612
613 switch (nr) {
614 case 0:
615 indx = 0;
616 keep_mask = 0xcf;
617 new_shift = 4;
618 break;
619 case 1:
620 indx = 0;
621 keep_mask = 0x3f;
622 new_shift = 6;
623 break;
624 case 2:
625 indx = 1;
626 keep_mask = 0x3f;
627 new_shift = 6;
628 break;
629 case 3:
630 indx = 2;
631 keep_mask = 0xf8;
632 new_shift = 0;
633 break;
634 case 4:
635 indx = 2;
636 keep_mask = 0x8f;
637 new_shift = 4;
638 break;
639 #ifdef DEBUG
640 default:
641 dev_warn(dev, "store_fan_div: Unexpected nr seen: %d\n", nr);
642 count = -EINVAL;
643 goto err_exit;
644 #endif
645 }
646
647 fan_div_reg = w83791d_read(client, W83791D_REG_FAN_DIV[indx])
648 & keep_mask;
649 tmp_fan_div = (data->fan_div[nr] << new_shift) & ~keep_mask;
650
651 w83791d_write(client, W83791D_REG_FAN_DIV[indx],
652 fan_div_reg | tmp_fan_div);
653
654 /* Bit 2 of fans 0-2 is stored in the vbat register (bits 5-7) */
655 if (nr < 3) {
656 keep_mask = ~(1 << (nr + 5));
657 vbat_reg = w83791d_read(client, W83791D_REG_VBAT)
658 & keep_mask;
659 tmp_fan_div = (data->fan_div[nr] << (3 + nr)) & ~keep_mask;
660 w83791d_write(client, W83791D_REG_VBAT,
661 vbat_reg | tmp_fan_div);
662 }
663
664 /* Restore fan_min */
665 data->fan_min[nr] = fan_to_reg(min, DIV_FROM_REG(data->fan_div[nr]));
666 w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]);
667
668 #ifdef DEBUG
669 err_exit:
670 #endif
671 mutex_unlock(&data->update_lock);
672
673 return count;
674 }
675
676 static struct sensor_device_attribute sda_fan_input[] = {
677 SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0),
678 SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1),
679 SENSOR_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2),
680 SENSOR_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3),
681 SENSOR_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 4),
682 };
683
684 static struct sensor_device_attribute sda_fan_min[] = {
685 SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO,
686 show_fan_min, store_fan_min, 0),
687 SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO,
688 show_fan_min, store_fan_min, 1),
689 SENSOR_ATTR(fan3_min, S_IWUSR | S_IRUGO,
690 show_fan_min, store_fan_min, 2),
691 SENSOR_ATTR(fan4_min, S_IWUSR | S_IRUGO,
692 show_fan_min, store_fan_min, 3),
693 SENSOR_ATTR(fan5_min, S_IWUSR | S_IRUGO,
694 show_fan_min, store_fan_min, 4),
695 };
696
697 static struct sensor_device_attribute sda_fan_div[] = {
698 SENSOR_ATTR(fan1_div, S_IWUSR | S_IRUGO,
699 show_fan_div, store_fan_div, 0),
700 SENSOR_ATTR(fan2_div, S_IWUSR | S_IRUGO,
701 show_fan_div, store_fan_div, 1),
702 SENSOR_ATTR(fan3_div, S_IWUSR | S_IRUGO,
703 show_fan_div, store_fan_div, 2),
704 SENSOR_ATTR(fan4_div, S_IWUSR | S_IRUGO,
705 show_fan_div, store_fan_div, 3),
706 SENSOR_ATTR(fan5_div, S_IWUSR | S_IRUGO,
707 show_fan_div, store_fan_div, 4),
708 };
709
710 static struct sensor_device_attribute sda_fan_beep[] = {
711 SENSOR_ATTR(fan1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 6),
712 SENSOR_ATTR(fan2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 7),
713 SENSOR_ATTR(fan3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 11),
714 SENSOR_ATTR(fan4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 21),
715 SENSOR_ATTR(fan5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 22),
716 };
717
718 static struct sensor_device_attribute sda_fan_alarm[] = {
719 SENSOR_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6),
720 SENSOR_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7),
721 SENSOR_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11),
722 SENSOR_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 21),
723 SENSOR_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 22),
724 };
725
726 /* read/write PWMs */
727 static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
728 char *buf)
729 {
730 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
731 int nr = sensor_attr->index;
732 struct w83791d_data *data = w83791d_update_device(dev);
733 return sprintf(buf, "%u\n", data->pwm[nr]);
734 }
735
736 static ssize_t store_pwm(struct device *dev, struct device_attribute *attr,
737 const char *buf, size_t count)
738 {
739 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
740 struct i2c_client *client = to_i2c_client(dev);
741 struct w83791d_data *data = i2c_get_clientdata(client);
742 int nr = sensor_attr->index;
743 unsigned long val;
744
745 if (kstrtoul(buf, 10, &val))
746 return -EINVAL;
747
748 mutex_lock(&data->update_lock);
749 data->pwm[nr] = SENSORS_LIMIT(val, 0, 255);
750 w83791d_write(client, W83791D_REG_PWM[nr], data->pwm[nr]);
751 mutex_unlock(&data->update_lock);
752 return count;
753 }
754
755 static struct sensor_device_attribute sda_pwm[] = {
756 SENSOR_ATTR(pwm1, S_IWUSR | S_IRUGO,
757 show_pwm, store_pwm, 0),
758 SENSOR_ATTR(pwm2, S_IWUSR | S_IRUGO,
759 show_pwm, store_pwm, 1),
760 SENSOR_ATTR(pwm3, S_IWUSR | S_IRUGO,
761 show_pwm, store_pwm, 2),
762 SENSOR_ATTR(pwm4, S_IWUSR | S_IRUGO,
763 show_pwm, store_pwm, 3),
764 SENSOR_ATTR(pwm5, S_IWUSR | S_IRUGO,
765 show_pwm, store_pwm, 4),
766 };
767
768 static ssize_t show_pwmenable(struct device *dev, struct device_attribute *attr,
769 char *buf)
770 {
771 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
772 int nr = sensor_attr->index;
773 struct w83791d_data *data = w83791d_update_device(dev);
774 return sprintf(buf, "%u\n", data->pwm_enable[nr] + 1);
775 }
776
777 static ssize_t store_pwmenable(struct device *dev,
778 struct device_attribute *attr, const char *buf, size_t count)
779 {
780 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
781 struct i2c_client *client = to_i2c_client(dev);
782 struct w83791d_data *data = i2c_get_clientdata(client);
783 int nr = sensor_attr->index;
784 unsigned long val;
785 u8 reg_cfg_tmp;
786 u8 reg_idx = 0;
787 u8 val_shift = 0;
788 u8 keep_mask = 0;
789
790 int ret = kstrtoul(buf, 10, &val);
791
792 if (ret || val < 1 || val > 3)
793 return -EINVAL;
794
795 mutex_lock(&data->update_lock);
796 data->pwm_enable[nr] = val - 1;
797 switch (nr) {
798 case 0:
799 reg_idx = 0;
800 val_shift = 2;
801 keep_mask = 0xf3;
802 break;
803 case 1:
804 reg_idx = 0;
805 val_shift = 4;
806 keep_mask = 0xcf;
807 break;
808 case 2:
809 reg_idx = 1;
810 val_shift = 2;
811 keep_mask = 0xf3;
812 break;
813 }
814
815 reg_cfg_tmp = w83791d_read(client, W83791D_REG_FAN_CFG[reg_idx]);
816 reg_cfg_tmp = (reg_cfg_tmp & keep_mask) |
817 data->pwm_enable[nr] << val_shift;
818
819 w83791d_write(client, W83791D_REG_FAN_CFG[reg_idx], reg_cfg_tmp);
820 mutex_unlock(&data->update_lock);
821
822 return count;
823 }
824 static struct sensor_device_attribute sda_pwmenable[] = {
825 SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO,
826 show_pwmenable, store_pwmenable, 0),
827 SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO,
828 show_pwmenable, store_pwmenable, 1),
829 SENSOR_ATTR(pwm3_enable, S_IWUSR | S_IRUGO,
830 show_pwmenable, store_pwmenable, 2),
831 };
832
833 /* For Smart Fan I / Thermal Cruise */
834 static ssize_t show_temp_target(struct device *dev,
835 struct device_attribute *attr, char *buf)
836 {
837 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
838 struct w83791d_data *data = w83791d_update_device(dev);
839 int nr = sensor_attr->index;
840 return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_target[nr]));
841 }
842
843 static ssize_t store_temp_target(struct device *dev,
844 struct device_attribute *attr, const char *buf, size_t count)
845 {
846 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
847 struct i2c_client *client = to_i2c_client(dev);
848 struct w83791d_data *data = i2c_get_clientdata(client);
849 int nr = sensor_attr->index;
850 long val;
851 u8 target_mask;
852
853 if (kstrtol(buf, 10, &val))
854 return -EINVAL;
855
856 mutex_lock(&data->update_lock);
857 data->temp_target[nr] = TARGET_TEMP_TO_REG(val);
858 target_mask = w83791d_read(client,
859 W83791D_REG_TEMP_TARGET[nr]) & 0x80;
860 w83791d_write(client, W83791D_REG_TEMP_TARGET[nr],
861 data->temp_target[nr] | target_mask);
862 mutex_unlock(&data->update_lock);
863 return count;
864 }
865
866 static struct sensor_device_attribute sda_temp_target[] = {
867 SENSOR_ATTR(temp1_target, S_IWUSR | S_IRUGO,
868 show_temp_target, store_temp_target, 0),
869 SENSOR_ATTR(temp2_target, S_IWUSR | S_IRUGO,
870 show_temp_target, store_temp_target, 1),
871 SENSOR_ATTR(temp3_target, S_IWUSR | S_IRUGO,
872 show_temp_target, store_temp_target, 2),
873 };
874
875 static ssize_t show_temp_tolerance(struct device *dev,
876 struct device_attribute *attr, char *buf)
877 {
878 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
879 struct w83791d_data *data = w83791d_update_device(dev);
880 int nr = sensor_attr->index;
881 return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_tolerance[nr]));
882 }
883
884 static ssize_t store_temp_tolerance(struct device *dev,
885 struct device_attribute *attr, const char *buf, size_t count)
886 {
887 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
888 struct i2c_client *client = to_i2c_client(dev);
889 struct w83791d_data *data = i2c_get_clientdata(client);
890 int nr = sensor_attr->index;
891 unsigned long val;
892 u8 target_mask;
893 u8 reg_idx = 0;
894 u8 val_shift = 0;
895 u8 keep_mask = 0;
896
897 if (kstrtoul(buf, 10, &val))
898 return -EINVAL;
899
900 switch (nr) {
901 case 0:
902 reg_idx = 0;
903 val_shift = 0;
904 keep_mask = 0xf0;
905 break;
906 case 1:
907 reg_idx = 0;
908 val_shift = 4;
909 keep_mask = 0x0f;
910 break;
911 case 2:
912 reg_idx = 1;
913 val_shift = 0;
914 keep_mask = 0xf0;
915 break;
916 }
917
918 mutex_lock(&data->update_lock);
919 data->temp_tolerance[nr] = TOL_TEMP_TO_REG(val);
920 target_mask = w83791d_read(client,
921 W83791D_REG_TEMP_TOL[reg_idx]) & keep_mask;
922 w83791d_write(client, W83791D_REG_TEMP_TOL[reg_idx],
923 (data->temp_tolerance[nr] << val_shift) | target_mask);
924 mutex_unlock(&data->update_lock);
925 return count;
926 }
927
928 static struct sensor_device_attribute sda_temp_tolerance[] = {
929 SENSOR_ATTR(temp1_tolerance, S_IWUSR | S_IRUGO,
930 show_temp_tolerance, store_temp_tolerance, 0),
931 SENSOR_ATTR(temp2_tolerance, S_IWUSR | S_IRUGO,
932 show_temp_tolerance, store_temp_tolerance, 1),
933 SENSOR_ATTR(temp3_tolerance, S_IWUSR | S_IRUGO,
934 show_temp_tolerance, store_temp_tolerance, 2),
935 };
936
937 /* read/write the temperature1, includes measured value and limits */
938 static ssize_t show_temp1(struct device *dev, struct device_attribute *devattr,
939 char *buf)
940 {
941 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
942 struct w83791d_data *data = w83791d_update_device(dev);
943 return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp1[attr->index]));
944 }
945
946 static ssize_t store_temp1(struct device *dev, struct device_attribute *devattr,
947 const char *buf, size_t count)
948 {
949 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
950 struct i2c_client *client = to_i2c_client(dev);
951 struct w83791d_data *data = i2c_get_clientdata(client);
952 int nr = attr->index;
953 long val;
954 int err;
955
956 err = kstrtol(buf, 10, &val);
957 if (err)
958 return err;
959
960 mutex_lock(&data->update_lock);
961 data->temp1[nr] = TEMP1_TO_REG(val);
962 w83791d_write(client, W83791D_REG_TEMP1[nr], data->temp1[nr]);
963 mutex_unlock(&data->update_lock);
964 return count;
965 }
966
967 /* read/write temperature2-3, includes measured value and limits */
968 static ssize_t show_temp23(struct device *dev, struct device_attribute *devattr,
969 char *buf)
970 {
971 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
972 struct w83791d_data *data = w83791d_update_device(dev);
973 int nr = attr->nr;
974 int index = attr->index;
975 return sprintf(buf, "%d\n", TEMP23_FROM_REG(data->temp_add[nr][index]));
976 }
977
978 static ssize_t store_temp23(struct device *dev,
979 struct device_attribute *devattr,
980 const char *buf, size_t count)
981 {
982 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
983 struct i2c_client *client = to_i2c_client(dev);
984 struct w83791d_data *data = i2c_get_clientdata(client);
985 long val;
986 int err;
987 int nr = attr->nr;
988 int index = attr->index;
989
990 err = kstrtol(buf, 10, &val);
991 if (err)
992 return err;
993
994 mutex_lock(&data->update_lock);
995 data->temp_add[nr][index] = TEMP23_TO_REG(val);
996 w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2],
997 data->temp_add[nr][index] >> 8);
998 w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2 + 1],
999 data->temp_add[nr][index] & 0x80);
1000 mutex_unlock(&data->update_lock);
1001
1002 return count;
1003 }
1004
1005 static struct sensor_device_attribute_2 sda_temp_input[] = {
1006 SENSOR_ATTR_2(temp1_input, S_IRUGO, show_temp1, NULL, 0, 0),
1007 SENSOR_ATTR_2(temp2_input, S_IRUGO, show_temp23, NULL, 0, 0),
1008 SENSOR_ATTR_2(temp3_input, S_IRUGO, show_temp23, NULL, 1, 0),
1009 };
1010
1011 static struct sensor_device_attribute_2 sda_temp_max[] = {
1012 SENSOR_ATTR_2(temp1_max, S_IRUGO | S_IWUSR,
1013 show_temp1, store_temp1, 0, 1),
1014 SENSOR_ATTR_2(temp2_max, S_IRUGO | S_IWUSR,
1015 show_temp23, store_temp23, 0, 1),
1016 SENSOR_ATTR_2(temp3_max, S_IRUGO | S_IWUSR,
1017 show_temp23, store_temp23, 1, 1),
1018 };
1019
1020 static struct sensor_device_attribute_2 sda_temp_max_hyst[] = {
1021 SENSOR_ATTR_2(temp1_max_hyst, S_IRUGO | S_IWUSR,
1022 show_temp1, store_temp1, 0, 2),
1023 SENSOR_ATTR_2(temp2_max_hyst, S_IRUGO | S_IWUSR,
1024 show_temp23, store_temp23, 0, 2),
1025 SENSOR_ATTR_2(temp3_max_hyst, S_IRUGO | S_IWUSR,
1026 show_temp23, store_temp23, 1, 2),
1027 };
1028
1029 /*
1030 * Note: The bitmask for the beep enable/disable is different than
1031 * the bitmask for the alarm.
1032 */
1033 static struct sensor_device_attribute sda_temp_beep[] = {
1034 SENSOR_ATTR(temp1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 4),
1035 SENSOR_ATTR(temp2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 5),
1036 SENSOR_ATTR(temp3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 1),
1037 };
1038
1039 static struct sensor_device_attribute sda_temp_alarm[] = {
1040 SENSOR_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4),
1041 SENSOR_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5),
1042 SENSOR_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13),
1043 };
1044
1045 /* get reatime status of all sensors items: voltage, temp, fan */
1046 static ssize_t show_alarms_reg(struct device *dev,
1047 struct device_attribute *attr, char *buf)
1048 {
1049 struct w83791d_data *data = w83791d_update_device(dev);
1050 return sprintf(buf, "%u\n", data->alarms);
1051 }
1052
1053 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
1054
1055 /* Beep control */
1056
1057 #define GLOBAL_BEEP_ENABLE_SHIFT 15
1058 #define GLOBAL_BEEP_ENABLE_MASK (1 << GLOBAL_BEEP_ENABLE_SHIFT)
1059
1060 static ssize_t show_beep_enable(struct device *dev,
1061 struct device_attribute *attr, char *buf)
1062 {
1063 struct w83791d_data *data = w83791d_update_device(dev);
1064 return sprintf(buf, "%d\n", data->beep_enable);
1065 }
1066
1067 static ssize_t show_beep_mask(struct device *dev,
1068 struct device_attribute *attr, char *buf)
1069 {
1070 struct w83791d_data *data = w83791d_update_device(dev);
1071 return sprintf(buf, "%d\n", BEEP_MASK_FROM_REG(data->beep_mask));
1072 }
1073
1074
1075 static ssize_t store_beep_mask(struct device *dev,
1076 struct device_attribute *attr,
1077 const char *buf, size_t count)
1078 {
1079 struct i2c_client *client = to_i2c_client(dev);
1080 struct w83791d_data *data = i2c_get_clientdata(client);
1081 int i;
1082 long val;
1083 int err;
1084
1085 err = kstrtol(buf, 10, &val);
1086 if (err)
1087 return err;
1088
1089 mutex_lock(&data->update_lock);
1090
1091 /*
1092 * The beep_enable state overrides any enabling request from
1093 * the masks
1094 */
1095 data->beep_mask = BEEP_MASK_TO_REG(val) & ~GLOBAL_BEEP_ENABLE_MASK;
1096 data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT);
1097
1098 val = data->beep_mask;
1099
1100 for (i = 0; i < 3; i++) {
1101 w83791d_write(client, W83791D_REG_BEEP_CTRL[i], (val & 0xff));
1102 val >>= 8;
1103 }
1104
1105 mutex_unlock(&data->update_lock);
1106
1107 return count;
1108 }
1109
1110 static ssize_t store_beep_enable(struct device *dev,
1111 struct device_attribute *attr,
1112 const char *buf, size_t count)
1113 {
1114 struct i2c_client *client = to_i2c_client(dev);
1115 struct w83791d_data *data = i2c_get_clientdata(client);
1116 long val;
1117 int err;
1118
1119 err = kstrtol(buf, 10, &val);
1120 if (err)
1121 return err;
1122
1123 mutex_lock(&data->update_lock);
1124
1125 data->beep_enable = val ? 1 : 0;
1126
1127 /* Keep the full mask value in sync with the current enable */
1128 data->beep_mask &= ~GLOBAL_BEEP_ENABLE_MASK;
1129 data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT);
1130
1131 /*
1132 * The global control is in the second beep control register
1133 * so only need to update that register
1134 */
1135 val = (data->beep_mask >> 8) & 0xff;
1136
1137 w83791d_write(client, W83791D_REG_BEEP_CTRL[1], val);
1138
1139 mutex_unlock(&data->update_lock);
1140
1141 return count;
1142 }
1143
1144 static struct sensor_device_attribute sda_beep_ctrl[] = {
1145 SENSOR_ATTR(beep_enable, S_IRUGO | S_IWUSR,
1146 show_beep_enable, store_beep_enable, 0),
1147 SENSOR_ATTR(beep_mask, S_IRUGO | S_IWUSR,
1148 show_beep_mask, store_beep_mask, 1)
1149 };
1150
1151 /* cpu voltage regulation information */
1152 static ssize_t show_vid_reg(struct device *dev,
1153 struct device_attribute *attr, char *buf)
1154 {
1155 struct w83791d_data *data = w83791d_update_device(dev);
1156 return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
1157 }
1158
1159 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
1160
1161 static ssize_t show_vrm_reg(struct device *dev,
1162 struct device_attribute *attr, char *buf)
1163 {
1164 struct w83791d_data *data = dev_get_drvdata(dev);
1165 return sprintf(buf, "%d\n", data->vrm);
1166 }
1167
1168 static ssize_t store_vrm_reg(struct device *dev,
1169 struct device_attribute *attr,
1170 const char *buf, size_t count)
1171 {
1172 struct w83791d_data *data = dev_get_drvdata(dev);
1173 unsigned long val;
1174 int err;
1175
1176 /*
1177 * No lock needed as vrm is internal to the driver
1178 * (not read from a chip register) and so is not
1179 * updated in w83791d_update_device()
1180 */
1181
1182 err = kstrtoul(buf, 10, &val);
1183 if (err)
1184 return err;
1185
1186 data->vrm = val;
1187 return count;
1188 }
1189
1190 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
1191
1192 #define IN_UNIT_ATTRS(X) \
1193 &sda_in_input[X].dev_attr.attr, \
1194 &sda_in_min[X].dev_attr.attr, \
1195 &sda_in_max[X].dev_attr.attr, \
1196 &sda_in_beep[X].dev_attr.attr, \
1197 &sda_in_alarm[X].dev_attr.attr
1198
1199 #define FAN_UNIT_ATTRS(X) \
1200 &sda_fan_input[X].dev_attr.attr, \
1201 &sda_fan_min[X].dev_attr.attr, \
1202 &sda_fan_div[X].dev_attr.attr, \
1203 &sda_fan_beep[X].dev_attr.attr, \
1204 &sda_fan_alarm[X].dev_attr.attr
1205
1206 #define TEMP_UNIT_ATTRS(X) \
1207 &sda_temp_input[X].dev_attr.attr, \
1208 &sda_temp_max[X].dev_attr.attr, \
1209 &sda_temp_max_hyst[X].dev_attr.attr, \
1210 &sda_temp_beep[X].dev_attr.attr, \
1211 &sda_temp_alarm[X].dev_attr.attr
1212
1213 static struct attribute *w83791d_attributes[] = {
1214 IN_UNIT_ATTRS(0),
1215 IN_UNIT_ATTRS(1),
1216 IN_UNIT_ATTRS(2),
1217 IN_UNIT_ATTRS(3),
1218 IN_UNIT_ATTRS(4),
1219 IN_UNIT_ATTRS(5),
1220 IN_UNIT_ATTRS(6),
1221 IN_UNIT_ATTRS(7),
1222 IN_UNIT_ATTRS(8),
1223 IN_UNIT_ATTRS(9),
1224 FAN_UNIT_ATTRS(0),
1225 FAN_UNIT_ATTRS(1),
1226 FAN_UNIT_ATTRS(2),
1227 TEMP_UNIT_ATTRS(0),
1228 TEMP_UNIT_ATTRS(1),
1229 TEMP_UNIT_ATTRS(2),
1230 &dev_attr_alarms.attr,
1231 &sda_beep_ctrl[0].dev_attr.attr,
1232 &sda_beep_ctrl[1].dev_attr.attr,
1233 &dev_attr_cpu0_vid.attr,
1234 &dev_attr_vrm.attr,
1235 &sda_pwm[0].dev_attr.attr,
1236 &sda_pwm[1].dev_attr.attr,
1237 &sda_pwm[2].dev_attr.attr,
1238 &sda_pwmenable[0].dev_attr.attr,
1239 &sda_pwmenable[1].dev_attr.attr,
1240 &sda_pwmenable[2].dev_attr.attr,
1241 &sda_temp_target[0].dev_attr.attr,
1242 &sda_temp_target[1].dev_attr.attr,
1243 &sda_temp_target[2].dev_attr.attr,
1244 &sda_temp_tolerance[0].dev_attr.attr,
1245 &sda_temp_tolerance[1].dev_attr.attr,
1246 &sda_temp_tolerance[2].dev_attr.attr,
1247 NULL
1248 };
1249
1250 static const struct attribute_group w83791d_group = {
1251 .attrs = w83791d_attributes,
1252 };
1253
1254 /*
1255 * Separate group of attributes for fan/pwm 4-5. Their pins can also be
1256 * in use for GPIO in which case their sysfs-interface should not be made
1257 * available
1258 */
1259 static struct attribute *w83791d_attributes_fanpwm45[] = {
1260 FAN_UNIT_ATTRS(3),
1261 FAN_UNIT_ATTRS(4),
1262 &sda_pwm[3].dev_attr.attr,
1263 &sda_pwm[4].dev_attr.attr,
1264 NULL
1265 };
1266
1267 static const struct attribute_group w83791d_group_fanpwm45 = {
1268 .attrs = w83791d_attributes_fanpwm45,
1269 };
1270
1271 static int w83791d_detect_subclients(struct i2c_client *client)
1272 {
1273 struct i2c_adapter *adapter = client->adapter;
1274 struct w83791d_data *data = i2c_get_clientdata(client);
1275 int address = client->addr;
1276 int i, id, err;
1277 u8 val;
1278
1279 id = i2c_adapter_id(adapter);
1280 if (force_subclients[0] == id && force_subclients[1] == address) {
1281 for (i = 2; i <= 3; i++) {
1282 if (force_subclients[i] < 0x48 ||
1283 force_subclients[i] > 0x4f) {
1284 dev_err(&client->dev,
1285 "invalid subclient "
1286 "address %d; must be 0x48-0x4f\n",
1287 force_subclients[i]);
1288 err = -ENODEV;
1289 goto error_sc_0;
1290 }
1291 }
1292 w83791d_write(client, W83791D_REG_I2C_SUBADDR,
1293 (force_subclients[2] & 0x07) |
1294 ((force_subclients[3] & 0x07) << 4));
1295 }
1296
1297 val = w83791d_read(client, W83791D_REG_I2C_SUBADDR);
1298 if (!(val & 0x08))
1299 data->lm75[0] = i2c_new_dummy(adapter, 0x48 + (val & 0x7));
1300 if (!(val & 0x80)) {
1301 if ((data->lm75[0] != NULL) &&
1302 ((val & 0x7) == ((val >> 4) & 0x7))) {
1303 dev_err(&client->dev,
1304 "duplicate addresses 0x%x, "
1305 "use force_subclient\n",
1306 data->lm75[0]->addr);
1307 err = -ENODEV;
1308 goto error_sc_1;
1309 }
1310 data->lm75[1] = i2c_new_dummy(adapter,
1311 0x48 + ((val >> 4) & 0x7));
1312 }
1313
1314 return 0;
1315
1316 /* Undo inits in case of errors */
1317
1318 error_sc_1:
1319 if (data->lm75[0] != NULL)
1320 i2c_unregister_device(data->lm75[0]);
1321 error_sc_0:
1322 return err;
1323 }
1324
1325
1326 /* Return 0 if detection is successful, -ENODEV otherwise */
1327 static int w83791d_detect(struct i2c_client *client,
1328 struct i2c_board_info *info)
1329 {
1330 struct i2c_adapter *adapter = client->adapter;
1331 int val1, val2;
1332 unsigned short address = client->addr;
1333
1334 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1335 return -ENODEV;
1336
1337 if (w83791d_read(client, W83791D_REG_CONFIG) & 0x80)
1338 return -ENODEV;
1339
1340 val1 = w83791d_read(client, W83791D_REG_BANK);
1341 val2 = w83791d_read(client, W83791D_REG_CHIPMAN);
1342 /* Check for Winbond ID if in bank 0 */
1343 if (!(val1 & 0x07)) {
1344 if ((!(val1 & 0x80) && val2 != 0xa3) ||
1345 ((val1 & 0x80) && val2 != 0x5c)) {
1346 return -ENODEV;
1347 }
1348 }
1349 /*
1350 * If Winbond chip, address of chip and W83791D_REG_I2C_ADDR
1351 * should match
1352 */
1353 if (w83791d_read(client, W83791D_REG_I2C_ADDR) != address)
1354 return -ENODEV;
1355
1356 /* We want bank 0 and Vendor ID high byte */
1357 val1 = w83791d_read(client, W83791D_REG_BANK) & 0x78;
1358 w83791d_write(client, W83791D_REG_BANK, val1 | 0x80);
1359
1360 /* Verify it is a Winbond w83791d */
1361 val1 = w83791d_read(client, W83791D_REG_WCHIPID);
1362 val2 = w83791d_read(client, W83791D_REG_CHIPMAN);
1363 if (val1 != 0x71 || val2 != 0x5c)
1364 return -ENODEV;
1365
1366 strlcpy(info->type, "w83791d", I2C_NAME_SIZE);
1367
1368 return 0;
1369 }
1370
1371 static int w83791d_probe(struct i2c_client *client,
1372 const struct i2c_device_id *id)
1373 {
1374 struct w83791d_data *data;
1375 struct device *dev = &client->dev;
1376 int i, err;
1377 u8 has_fanpwm45;
1378
1379 #ifdef DEBUG
1380 int val1;
1381 val1 = w83791d_read(client, W83791D_REG_DID_VID4);
1382 dev_dbg(dev, "Device ID version: %d.%d (0x%02x)\n",
1383 (val1 >> 5) & 0x07, (val1 >> 1) & 0x0f, val1);
1384 #endif
1385
1386 data = devm_kzalloc(&client->dev, sizeof(struct w83791d_data),
1387 GFP_KERNEL);
1388 if (!data)
1389 return -ENOMEM;
1390
1391 i2c_set_clientdata(client, data);
1392 mutex_init(&data->update_lock);
1393
1394 err = w83791d_detect_subclients(client);
1395 if (err)
1396 return err;
1397
1398 /* Initialize the chip */
1399 w83791d_init_client(client);
1400
1401 /*
1402 * If the fan_div is changed, make sure there is a rational
1403 * fan_min in place
1404 */
1405 for (i = 0; i < NUMBER_OF_FANIN; i++)
1406 data->fan_min[i] = w83791d_read(client, W83791D_REG_FAN_MIN[i]);
1407
1408 /* Register sysfs hooks */
1409 err = sysfs_create_group(&client->dev.kobj, &w83791d_group);
1410 if (err)
1411 goto error3;
1412
1413 /* Check if pins of fan/pwm 4-5 are in use as GPIO */
1414 has_fanpwm45 = w83791d_read(client, W83791D_REG_GPIO) & 0x10;
1415 if (has_fanpwm45) {
1416 err = sysfs_create_group(&client->dev.kobj,
1417 &w83791d_group_fanpwm45);
1418 if (err)
1419 goto error4;
1420 }
1421
1422 /* Everything is ready, now register the working device */
1423 data->hwmon_dev = hwmon_device_register(dev);
1424 if (IS_ERR(data->hwmon_dev)) {
1425 err = PTR_ERR(data->hwmon_dev);
1426 goto error5;
1427 }
1428
1429 return 0;
1430
1431 error5:
1432 if (has_fanpwm45)
1433 sysfs_remove_group(&client->dev.kobj, &w83791d_group_fanpwm45);
1434 error4:
1435 sysfs_remove_group(&client->dev.kobj, &w83791d_group);
1436 error3:
1437 if (data->lm75[0] != NULL)
1438 i2c_unregister_device(data->lm75[0]);
1439 if (data->lm75[1] != NULL)
1440 i2c_unregister_device(data->lm75[1]);
1441 return err;
1442 }
1443
1444 static int w83791d_remove(struct i2c_client *client)
1445 {
1446 struct w83791d_data *data = i2c_get_clientdata(client);
1447
1448 hwmon_device_unregister(data->hwmon_dev);
1449 sysfs_remove_group(&client->dev.kobj, &w83791d_group);
1450
1451 if (data->lm75[0] != NULL)
1452 i2c_unregister_device(data->lm75[0]);
1453 if (data->lm75[1] != NULL)
1454 i2c_unregister_device(data->lm75[1]);
1455
1456 return 0;
1457 }
1458
1459 static void w83791d_init_client(struct i2c_client *client)
1460 {
1461 struct w83791d_data *data = i2c_get_clientdata(client);
1462 u8 tmp;
1463 u8 old_beep;
1464
1465 /*
1466 * The difference between reset and init is that reset
1467 * does a hard reset of the chip via index 0x40, bit 7,
1468 * but init simply forces certain registers to have "sane"
1469 * values. The hope is that the BIOS has done the right
1470 * thing (which is why the default is reset=0, init=0),
1471 * but if not, reset is the hard hammer and init
1472 * is the soft mallet both of which are trying to whack
1473 * things into place...
1474 * NOTE: The data sheet makes a distinction between
1475 * "power on defaults" and "reset by MR". As far as I can tell,
1476 * the hard reset puts everything into a power-on state so I'm
1477 * not sure what "reset by MR" means or how it can happen.
1478 */
1479 if (reset || init) {
1480 /* keep some BIOS settings when we... */
1481 old_beep = w83791d_read(client, W83791D_REG_BEEP_CONFIG);
1482
1483 if (reset) {
1484 /* ... reset the chip and ... */
1485 w83791d_write(client, W83791D_REG_CONFIG, 0x80);
1486 }
1487
1488 /* ... disable power-on abnormal beep */
1489 w83791d_write(client, W83791D_REG_BEEP_CONFIG, old_beep | 0x80);
1490
1491 /* disable the global beep (not done by hard reset) */
1492 tmp = w83791d_read(client, W83791D_REG_BEEP_CTRL[1]);
1493 w83791d_write(client, W83791D_REG_BEEP_CTRL[1], tmp & 0xef);
1494
1495 if (init) {
1496 /* Make sure monitoring is turned on for add-ons */
1497 tmp = w83791d_read(client, W83791D_REG_TEMP2_CONFIG);
1498 if (tmp & 1) {
1499 w83791d_write(client, W83791D_REG_TEMP2_CONFIG,
1500 tmp & 0xfe);
1501 }
1502
1503 tmp = w83791d_read(client, W83791D_REG_TEMP3_CONFIG);
1504 if (tmp & 1) {
1505 w83791d_write(client, W83791D_REG_TEMP3_CONFIG,
1506 tmp & 0xfe);
1507 }
1508
1509 /* Start monitoring */
1510 tmp = w83791d_read(client, W83791D_REG_CONFIG) & 0xf7;
1511 w83791d_write(client, W83791D_REG_CONFIG, tmp | 0x01);
1512 }
1513 }
1514
1515 data->vrm = vid_which_vrm();
1516 }
1517
1518 static struct w83791d_data *w83791d_update_device(struct device *dev)
1519 {
1520 struct i2c_client *client = to_i2c_client(dev);
1521 struct w83791d_data *data = i2c_get_clientdata(client);
1522 int i, j;
1523 u8 reg_array_tmp[3];
1524 u8 vbat_reg;
1525
1526 mutex_lock(&data->update_lock);
1527
1528 if (time_after(jiffies, data->last_updated + (HZ * 3))
1529 || !data->valid) {
1530 dev_dbg(dev, "Starting w83791d device update\n");
1531
1532 /* Update the voltages measured value and limits */
1533 for (i = 0; i < NUMBER_OF_VIN; i++) {
1534 data->in[i] = w83791d_read(client,
1535 W83791D_REG_IN[i]);
1536 data->in_max[i] = w83791d_read(client,
1537 W83791D_REG_IN_MAX[i]);
1538 data->in_min[i] = w83791d_read(client,
1539 W83791D_REG_IN_MIN[i]);
1540 }
1541
1542 /* Update the fan counts and limits */
1543 for (i = 0; i < NUMBER_OF_FANIN; i++) {
1544 /* Update the Fan measured value and limits */
1545 data->fan[i] = w83791d_read(client,
1546 W83791D_REG_FAN[i]);
1547 data->fan_min[i] = w83791d_read(client,
1548 W83791D_REG_FAN_MIN[i]);
1549 }
1550
1551 /* Update the fan divisor */
1552 for (i = 0; i < 3; i++) {
1553 reg_array_tmp[i] = w83791d_read(client,
1554 W83791D_REG_FAN_DIV[i]);
1555 }
1556 data->fan_div[0] = (reg_array_tmp[0] >> 4) & 0x03;
1557 data->fan_div[1] = (reg_array_tmp[0] >> 6) & 0x03;
1558 data->fan_div[2] = (reg_array_tmp[1] >> 6) & 0x03;
1559 data->fan_div[3] = reg_array_tmp[2] & 0x07;
1560 data->fan_div[4] = (reg_array_tmp[2] >> 4) & 0x07;
1561
1562 /*
1563 * The fan divisor for fans 0-2 get bit 2 from
1564 * bits 5-7 respectively of vbat register
1565 */
1566 vbat_reg = w83791d_read(client, W83791D_REG_VBAT);
1567 for (i = 0; i < 3; i++)
1568 data->fan_div[i] |= (vbat_reg >> (3 + i)) & 0x04;
1569
1570 /* Update PWM duty cycle */
1571 for (i = 0; i < NUMBER_OF_PWM; i++) {
1572 data->pwm[i] = w83791d_read(client,
1573 W83791D_REG_PWM[i]);
1574 }
1575
1576 /* Update PWM enable status */
1577 for (i = 0; i < 2; i++) {
1578 reg_array_tmp[i] = w83791d_read(client,
1579 W83791D_REG_FAN_CFG[i]);
1580 }
1581 data->pwm_enable[0] = (reg_array_tmp[0] >> 2) & 0x03;
1582 data->pwm_enable[1] = (reg_array_tmp[0] >> 4) & 0x03;
1583 data->pwm_enable[2] = (reg_array_tmp[1] >> 2) & 0x03;
1584
1585 /* Update PWM target temperature */
1586 for (i = 0; i < 3; i++) {
1587 data->temp_target[i] = w83791d_read(client,
1588 W83791D_REG_TEMP_TARGET[i]) & 0x7f;
1589 }
1590
1591 /* Update PWM temperature tolerance */
1592 for (i = 0; i < 2; i++) {
1593 reg_array_tmp[i] = w83791d_read(client,
1594 W83791D_REG_TEMP_TOL[i]);
1595 }
1596 data->temp_tolerance[0] = reg_array_tmp[0] & 0x0f;
1597 data->temp_tolerance[1] = (reg_array_tmp[0] >> 4) & 0x0f;
1598 data->temp_tolerance[2] = reg_array_tmp[1] & 0x0f;
1599
1600 /* Update the first temperature sensor */
1601 for (i = 0; i < 3; i++) {
1602 data->temp1[i] = w83791d_read(client,
1603 W83791D_REG_TEMP1[i]);
1604 }
1605
1606 /* Update the rest of the temperature sensors */
1607 for (i = 0; i < 2; i++) {
1608 for (j = 0; j < 3; j++) {
1609 data->temp_add[i][j] =
1610 (w83791d_read(client,
1611 W83791D_REG_TEMP_ADD[i][j * 2]) << 8) |
1612 w83791d_read(client,
1613 W83791D_REG_TEMP_ADD[i][j * 2 + 1]);
1614 }
1615 }
1616
1617 /* Update the realtime status */
1618 data->alarms =
1619 w83791d_read(client, W83791D_REG_ALARM1) +
1620 (w83791d_read(client, W83791D_REG_ALARM2) << 8) +
1621 (w83791d_read(client, W83791D_REG_ALARM3) << 16);
1622
1623 /* Update the beep configuration information */
1624 data->beep_mask =
1625 w83791d_read(client, W83791D_REG_BEEP_CTRL[0]) +
1626 (w83791d_read(client, W83791D_REG_BEEP_CTRL[1]) << 8) +
1627 (w83791d_read(client, W83791D_REG_BEEP_CTRL[2]) << 16);
1628
1629 /* Extract global beep enable flag */
1630 data->beep_enable =
1631 (data->beep_mask >> GLOBAL_BEEP_ENABLE_SHIFT) & 0x01;
1632
1633 /* Update the cpu voltage information */
1634 i = w83791d_read(client, W83791D_REG_VID_FANDIV);
1635 data->vid = i & 0x0f;
1636 data->vid |= (w83791d_read(client, W83791D_REG_DID_VID4) & 0x01)
1637 << 4;
1638
1639 data->last_updated = jiffies;
1640 data->valid = 1;
1641 }
1642
1643 mutex_unlock(&data->update_lock);
1644
1645 #ifdef DEBUG
1646 w83791d_print_debug(data, dev);
1647 #endif
1648
1649 return data;
1650 }
1651
1652 #ifdef DEBUG
1653 static void w83791d_print_debug(struct w83791d_data *data, struct device *dev)
1654 {
1655 int i = 0, j = 0;
1656
1657 dev_dbg(dev, "======Start of w83791d debug values======\n");
1658 dev_dbg(dev, "%d set of Voltages: ===>\n", NUMBER_OF_VIN);
1659 for (i = 0; i < NUMBER_OF_VIN; i++) {
1660 dev_dbg(dev, "vin[%d] is: 0x%02x\n", i, data->in[i]);
1661 dev_dbg(dev, "vin[%d] min is: 0x%02x\n", i, data->in_min[i]);
1662 dev_dbg(dev, "vin[%d] max is: 0x%02x\n", i, data->in_max[i]);
1663 }
1664 dev_dbg(dev, "%d set of Fan Counts/Divisors: ===>\n", NUMBER_OF_FANIN);
1665 for (i = 0; i < NUMBER_OF_FANIN; i++) {
1666 dev_dbg(dev, "fan[%d] is: 0x%02x\n", i, data->fan[i]);
1667 dev_dbg(dev, "fan[%d] min is: 0x%02x\n", i, data->fan_min[i]);
1668 dev_dbg(dev, "fan_div[%d] is: 0x%02x\n", i, data->fan_div[i]);
1669 }
1670
1671 /*
1672 * temperature math is signed, but only print out the
1673 * bits that matter
1674 */
1675 dev_dbg(dev, "%d set of Temperatures: ===>\n", NUMBER_OF_TEMPIN);
1676 for (i = 0; i < 3; i++)
1677 dev_dbg(dev, "temp1[%d] is: 0x%02x\n", i, (u8) data->temp1[i]);
1678 for (i = 0; i < 2; i++) {
1679 for (j = 0; j < 3; j++) {
1680 dev_dbg(dev, "temp_add[%d][%d] is: 0x%04x\n", i, j,
1681 (u16) data->temp_add[i][j]);
1682 }
1683 }
1684
1685 dev_dbg(dev, "Misc Information: ===>\n");
1686 dev_dbg(dev, "alarm is: 0x%08x\n", data->alarms);
1687 dev_dbg(dev, "beep_mask is: 0x%08x\n", data->beep_mask);
1688 dev_dbg(dev, "beep_enable is: %d\n", data->beep_enable);
1689 dev_dbg(dev, "vid is: 0x%02x\n", data->vid);
1690 dev_dbg(dev, "vrm is: 0x%02x\n", data->vrm);
1691 dev_dbg(dev, "=======End of w83791d debug values========\n");
1692 dev_dbg(dev, "\n");
1693 }
1694 #endif
1695
1696 module_i2c_driver(w83791d_driver);
1697
1698 MODULE_AUTHOR("Charles Spirakis <bezaur@gmail.com>");
1699 MODULE_DESCRIPTION("W83791D driver");
1700 MODULE_LICENSE("GPL");
This page took 0.095743 seconds and 5 git commands to generate.