Merge branch 'bugzilla-16396' into release
[deliverable/linux.git] / drivers / i2c / i2c-core.c
1 /* i2c-core.c - a device driver for the iic-bus interface */
2 /* ------------------------------------------------------------------------- */
3 /* Copyright (C) 1995-99 Simon G. Vogl
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
18 /* ------------------------------------------------------------------------- */
19
20 /* With some changes from Kyösti Mälkki <kmalkki@cc.hut.fi>.
21 All SMBus-related things are written by Frodo Looijaard <frodol@dds.nl>
22 SMBus 2.0 support by Mark Studebaker <mdsxyz123@yahoo.com> and
23 Jean Delvare <khali@linux-fr.org> */
24
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/slab.h>
29 #include <linux/i2c.h>
30 #include <linux/init.h>
31 #include <linux/idr.h>
32 #include <linux/mutex.h>
33 #include <linux/completion.h>
34 #include <linux/hardirq.h>
35 #include <linux/irqflags.h>
36 #include <linux/rwsem.h>
37 #include <linux/pm_runtime.h>
38 #include <asm/uaccess.h>
39
40 #include "i2c-core.h"
41
42
43 /* core_lock protects i2c_adapter_idr, and guarantees
44 that device detection, deletion of detected devices, and attach_adapter
45 and detach_adapter calls are serialized */
46 static DEFINE_MUTEX(core_lock);
47 static DEFINE_IDR(i2c_adapter_idr);
48
49 static struct device_type i2c_client_type;
50 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver);
51
52 /* ------------------------------------------------------------------------- */
53
54 static const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id,
55 const struct i2c_client *client)
56 {
57 while (id->name[0]) {
58 if (strcmp(client->name, id->name) == 0)
59 return id;
60 id++;
61 }
62 return NULL;
63 }
64
65 static int i2c_device_match(struct device *dev, struct device_driver *drv)
66 {
67 struct i2c_client *client = i2c_verify_client(dev);
68 struct i2c_driver *driver;
69
70 if (!client)
71 return 0;
72
73 driver = to_i2c_driver(drv);
74 /* match on an id table if there is one */
75 if (driver->id_table)
76 return i2c_match_id(driver->id_table, client) != NULL;
77
78 return 0;
79 }
80
81 #ifdef CONFIG_HOTPLUG
82
83 /* uevent helps with hotplug: modprobe -q $(MODALIAS) */
84 static int i2c_device_uevent(struct device *dev, struct kobj_uevent_env *env)
85 {
86 struct i2c_client *client = to_i2c_client(dev);
87
88 if (add_uevent_var(env, "MODALIAS=%s%s",
89 I2C_MODULE_PREFIX, client->name))
90 return -ENOMEM;
91 dev_dbg(dev, "uevent\n");
92 return 0;
93 }
94
95 #else
96 #define i2c_device_uevent NULL
97 #endif /* CONFIG_HOTPLUG */
98
99 static int i2c_device_probe(struct device *dev)
100 {
101 struct i2c_client *client = i2c_verify_client(dev);
102 struct i2c_driver *driver;
103 int status;
104
105 if (!client)
106 return 0;
107
108 driver = to_i2c_driver(dev->driver);
109 if (!driver->probe || !driver->id_table)
110 return -ENODEV;
111 client->driver = driver;
112 if (!device_can_wakeup(&client->dev))
113 device_init_wakeup(&client->dev,
114 client->flags & I2C_CLIENT_WAKE);
115 dev_dbg(dev, "probe\n");
116
117 status = driver->probe(client, i2c_match_id(driver->id_table, client));
118 if (status) {
119 client->driver = NULL;
120 i2c_set_clientdata(client, NULL);
121 }
122 return status;
123 }
124
125 static int i2c_device_remove(struct device *dev)
126 {
127 struct i2c_client *client = i2c_verify_client(dev);
128 struct i2c_driver *driver;
129 int status;
130
131 if (!client || !dev->driver)
132 return 0;
133
134 driver = to_i2c_driver(dev->driver);
135 if (driver->remove) {
136 dev_dbg(dev, "remove\n");
137 status = driver->remove(client);
138 } else {
139 dev->driver = NULL;
140 status = 0;
141 }
142 if (status == 0) {
143 client->driver = NULL;
144 i2c_set_clientdata(client, NULL);
145 }
146 return status;
147 }
148
149 static void i2c_device_shutdown(struct device *dev)
150 {
151 struct i2c_client *client = i2c_verify_client(dev);
152 struct i2c_driver *driver;
153
154 if (!client || !dev->driver)
155 return;
156 driver = to_i2c_driver(dev->driver);
157 if (driver->shutdown)
158 driver->shutdown(client);
159 }
160
161 #ifdef CONFIG_PM_SLEEP
162 static int i2c_legacy_suspend(struct device *dev, pm_message_t mesg)
163 {
164 struct i2c_client *client = i2c_verify_client(dev);
165 struct i2c_driver *driver;
166
167 if (!client || !dev->driver)
168 return 0;
169 driver = to_i2c_driver(dev->driver);
170 if (!driver->suspend)
171 return 0;
172 return driver->suspend(client, mesg);
173 }
174
175 static int i2c_legacy_resume(struct device *dev)
176 {
177 struct i2c_client *client = i2c_verify_client(dev);
178 struct i2c_driver *driver;
179
180 if (!client || !dev->driver)
181 return 0;
182 driver = to_i2c_driver(dev->driver);
183 if (!driver->resume)
184 return 0;
185 return driver->resume(client);
186 }
187
188 static int i2c_device_pm_suspend(struct device *dev)
189 {
190 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
191
192 if (pm_runtime_suspended(dev))
193 return 0;
194
195 if (pm)
196 return pm->suspend ? pm->suspend(dev) : 0;
197
198 return i2c_legacy_suspend(dev, PMSG_SUSPEND);
199 }
200
201 static int i2c_device_pm_resume(struct device *dev)
202 {
203 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
204 int ret;
205
206 if (pm)
207 ret = pm->resume ? pm->resume(dev) : 0;
208 else
209 ret = i2c_legacy_resume(dev);
210
211 if (!ret) {
212 pm_runtime_disable(dev);
213 pm_runtime_set_active(dev);
214 pm_runtime_enable(dev);
215 }
216
217 return ret;
218 }
219
220 static int i2c_device_pm_freeze(struct device *dev)
221 {
222 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
223
224 if (pm_runtime_suspended(dev))
225 return 0;
226
227 if (pm)
228 return pm->freeze ? pm->freeze(dev) : 0;
229
230 return i2c_legacy_suspend(dev, PMSG_FREEZE);
231 }
232
233 static int i2c_device_pm_thaw(struct device *dev)
234 {
235 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
236
237 if (pm_runtime_suspended(dev))
238 return 0;
239
240 if (pm)
241 return pm->thaw ? pm->thaw(dev) : 0;
242
243 return i2c_legacy_resume(dev);
244 }
245
246 static int i2c_device_pm_poweroff(struct device *dev)
247 {
248 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
249
250 if (pm_runtime_suspended(dev))
251 return 0;
252
253 if (pm)
254 return pm->poweroff ? pm->poweroff(dev) : 0;
255
256 return i2c_legacy_suspend(dev, PMSG_HIBERNATE);
257 }
258
259 static int i2c_device_pm_restore(struct device *dev)
260 {
261 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
262 int ret;
263
264 if (pm)
265 ret = pm->restore ? pm->restore(dev) : 0;
266 else
267 ret = i2c_legacy_resume(dev);
268
269 if (!ret) {
270 pm_runtime_disable(dev);
271 pm_runtime_set_active(dev);
272 pm_runtime_enable(dev);
273 }
274
275 return ret;
276 }
277 #else /* !CONFIG_PM_SLEEP */
278 #define i2c_device_pm_suspend NULL
279 #define i2c_device_pm_resume NULL
280 #define i2c_device_pm_freeze NULL
281 #define i2c_device_pm_thaw NULL
282 #define i2c_device_pm_poweroff NULL
283 #define i2c_device_pm_restore NULL
284 #endif /* !CONFIG_PM_SLEEP */
285
286 static void i2c_client_dev_release(struct device *dev)
287 {
288 kfree(to_i2c_client(dev));
289 }
290
291 static ssize_t
292 show_name(struct device *dev, struct device_attribute *attr, char *buf)
293 {
294 return sprintf(buf, "%s\n", dev->type == &i2c_client_type ?
295 to_i2c_client(dev)->name : to_i2c_adapter(dev)->name);
296 }
297
298 static ssize_t
299 show_modalias(struct device *dev, struct device_attribute *attr, char *buf)
300 {
301 struct i2c_client *client = to_i2c_client(dev);
302 return sprintf(buf, "%s%s\n", I2C_MODULE_PREFIX, client->name);
303 }
304
305 static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);
306 static DEVICE_ATTR(modalias, S_IRUGO, show_modalias, NULL);
307
308 static struct attribute *i2c_dev_attrs[] = {
309 &dev_attr_name.attr,
310 /* modalias helps coldplug: modprobe $(cat .../modalias) */
311 &dev_attr_modalias.attr,
312 NULL
313 };
314
315 static struct attribute_group i2c_dev_attr_group = {
316 .attrs = i2c_dev_attrs,
317 };
318
319 static const struct attribute_group *i2c_dev_attr_groups[] = {
320 &i2c_dev_attr_group,
321 NULL
322 };
323
324 static const struct dev_pm_ops i2c_device_pm_ops = {
325 .suspend = i2c_device_pm_suspend,
326 .resume = i2c_device_pm_resume,
327 .freeze = i2c_device_pm_freeze,
328 .thaw = i2c_device_pm_thaw,
329 .poweroff = i2c_device_pm_poweroff,
330 .restore = i2c_device_pm_restore,
331 SET_RUNTIME_PM_OPS(
332 pm_generic_runtime_suspend,
333 pm_generic_runtime_resume,
334 pm_generic_runtime_idle
335 )
336 };
337
338 struct bus_type i2c_bus_type = {
339 .name = "i2c",
340 .match = i2c_device_match,
341 .probe = i2c_device_probe,
342 .remove = i2c_device_remove,
343 .shutdown = i2c_device_shutdown,
344 .pm = &i2c_device_pm_ops,
345 };
346 EXPORT_SYMBOL_GPL(i2c_bus_type);
347
348 static struct device_type i2c_client_type = {
349 .groups = i2c_dev_attr_groups,
350 .uevent = i2c_device_uevent,
351 .release = i2c_client_dev_release,
352 };
353
354
355 /**
356 * i2c_verify_client - return parameter as i2c_client, or NULL
357 * @dev: device, probably from some driver model iterator
358 *
359 * When traversing the driver model tree, perhaps using driver model
360 * iterators like @device_for_each_child(), you can't assume very much
361 * about the nodes you find. Use this function to avoid oopses caused
362 * by wrongly treating some non-I2C device as an i2c_client.
363 */
364 struct i2c_client *i2c_verify_client(struct device *dev)
365 {
366 return (dev->type == &i2c_client_type)
367 ? to_i2c_client(dev)
368 : NULL;
369 }
370 EXPORT_SYMBOL(i2c_verify_client);
371
372
373 /* This is a permissive address validity check, I2C address map constraints
374 * are purposedly not enforced, except for the general call address. */
375 static int i2c_check_client_addr_validity(const struct i2c_client *client)
376 {
377 if (client->flags & I2C_CLIENT_TEN) {
378 /* 10-bit address, all values are valid */
379 if (client->addr > 0x3ff)
380 return -EINVAL;
381 } else {
382 /* 7-bit address, reject the general call address */
383 if (client->addr == 0x00 || client->addr > 0x7f)
384 return -EINVAL;
385 }
386 return 0;
387 }
388
389 /* And this is a strict address validity check, used when probing. If a
390 * device uses a reserved address, then it shouldn't be probed. 7-bit
391 * addressing is assumed, 10-bit address devices are rare and should be
392 * explicitly enumerated. */
393 static int i2c_check_addr_validity(unsigned short addr)
394 {
395 /*
396 * Reserved addresses per I2C specification:
397 * 0x00 General call address / START byte
398 * 0x01 CBUS address
399 * 0x02 Reserved for different bus format
400 * 0x03 Reserved for future purposes
401 * 0x04-0x07 Hs-mode master code
402 * 0x78-0x7b 10-bit slave addressing
403 * 0x7c-0x7f Reserved for future purposes
404 */
405 if (addr < 0x08 || addr > 0x77)
406 return -EINVAL;
407 return 0;
408 }
409
410 static int __i2c_check_addr_busy(struct device *dev, void *addrp)
411 {
412 struct i2c_client *client = i2c_verify_client(dev);
413 int addr = *(int *)addrp;
414
415 if (client && client->addr == addr)
416 return -EBUSY;
417 return 0;
418 }
419
420 static int i2c_check_addr_busy(struct i2c_adapter *adapter, int addr)
421 {
422 return device_for_each_child(&adapter->dev, &addr,
423 __i2c_check_addr_busy);
424 }
425
426 /**
427 * i2c_new_device - instantiate an i2c device
428 * @adap: the adapter managing the device
429 * @info: describes one I2C device; bus_num is ignored
430 * Context: can sleep
431 *
432 * Create an i2c device. Binding is handled through driver model
433 * probe()/remove() methods. A driver may be bound to this device when we
434 * return from this function, or any later moment (e.g. maybe hotplugging will
435 * load the driver module). This call is not appropriate for use by mainboard
436 * initialization logic, which usually runs during an arch_initcall() long
437 * before any i2c_adapter could exist.
438 *
439 * This returns the new i2c client, which may be saved for later use with
440 * i2c_unregister_device(); or NULL to indicate an error.
441 */
442 struct i2c_client *
443 i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info)
444 {
445 struct i2c_client *client;
446 int status;
447
448 client = kzalloc(sizeof *client, GFP_KERNEL);
449 if (!client)
450 return NULL;
451
452 client->adapter = adap;
453
454 client->dev.platform_data = info->platform_data;
455
456 if (info->archdata)
457 client->dev.archdata = *info->archdata;
458
459 client->flags = info->flags;
460 client->addr = info->addr;
461 client->irq = info->irq;
462
463 strlcpy(client->name, info->type, sizeof(client->name));
464
465 /* Check for address validity */
466 status = i2c_check_client_addr_validity(client);
467 if (status) {
468 dev_err(&adap->dev, "Invalid %d-bit I2C address 0x%02hx\n",
469 client->flags & I2C_CLIENT_TEN ? 10 : 7, client->addr);
470 goto out_err_silent;
471 }
472
473 /* Check for address business */
474 status = i2c_check_addr_busy(adap, client->addr);
475 if (status)
476 goto out_err;
477
478 client->dev.parent = &client->adapter->dev;
479 client->dev.bus = &i2c_bus_type;
480 client->dev.type = &i2c_client_type;
481 #ifdef CONFIG_OF
482 client->dev.of_node = info->of_node;
483 #endif
484
485 dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap),
486 client->addr);
487 status = device_register(&client->dev);
488 if (status)
489 goto out_err;
490
491 dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n",
492 client->name, dev_name(&client->dev));
493
494 return client;
495
496 out_err:
497 dev_err(&adap->dev, "Failed to register i2c client %s at 0x%02x "
498 "(%d)\n", client->name, client->addr, status);
499 out_err_silent:
500 kfree(client);
501 return NULL;
502 }
503 EXPORT_SYMBOL_GPL(i2c_new_device);
504
505
506 /**
507 * i2c_unregister_device - reverse effect of i2c_new_device()
508 * @client: value returned from i2c_new_device()
509 * Context: can sleep
510 */
511 void i2c_unregister_device(struct i2c_client *client)
512 {
513 device_unregister(&client->dev);
514 }
515 EXPORT_SYMBOL_GPL(i2c_unregister_device);
516
517
518 static const struct i2c_device_id dummy_id[] = {
519 { "dummy", 0 },
520 { },
521 };
522
523 static int dummy_probe(struct i2c_client *client,
524 const struct i2c_device_id *id)
525 {
526 return 0;
527 }
528
529 static int dummy_remove(struct i2c_client *client)
530 {
531 return 0;
532 }
533
534 static struct i2c_driver dummy_driver = {
535 .driver.name = "dummy",
536 .probe = dummy_probe,
537 .remove = dummy_remove,
538 .id_table = dummy_id,
539 };
540
541 /**
542 * i2c_new_dummy - return a new i2c device bound to a dummy driver
543 * @adapter: the adapter managing the device
544 * @address: seven bit address to be used
545 * Context: can sleep
546 *
547 * This returns an I2C client bound to the "dummy" driver, intended for use
548 * with devices that consume multiple addresses. Examples of such chips
549 * include various EEPROMS (like 24c04 and 24c08 models).
550 *
551 * These dummy devices have two main uses. First, most I2C and SMBus calls
552 * except i2c_transfer() need a client handle; the dummy will be that handle.
553 * And second, this prevents the specified address from being bound to a
554 * different driver.
555 *
556 * This returns the new i2c client, which should be saved for later use with
557 * i2c_unregister_device(); or NULL to indicate an error.
558 */
559 struct i2c_client *i2c_new_dummy(struct i2c_adapter *adapter, u16 address)
560 {
561 struct i2c_board_info info = {
562 I2C_BOARD_INFO("dummy", address),
563 };
564
565 return i2c_new_device(adapter, &info);
566 }
567 EXPORT_SYMBOL_GPL(i2c_new_dummy);
568
569 /* ------------------------------------------------------------------------- */
570
571 /* I2C bus adapters -- one roots each I2C or SMBUS segment */
572
573 static void i2c_adapter_dev_release(struct device *dev)
574 {
575 struct i2c_adapter *adap = to_i2c_adapter(dev);
576 complete(&adap->dev_released);
577 }
578
579 /*
580 * Let users instantiate I2C devices through sysfs. This can be used when
581 * platform initialization code doesn't contain the proper data for
582 * whatever reason. Also useful for drivers that do device detection and
583 * detection fails, either because the device uses an unexpected address,
584 * or this is a compatible device with different ID register values.
585 *
586 * Parameter checking may look overzealous, but we really don't want
587 * the user to provide incorrect parameters.
588 */
589 static ssize_t
590 i2c_sysfs_new_device(struct device *dev, struct device_attribute *attr,
591 const char *buf, size_t count)
592 {
593 struct i2c_adapter *adap = to_i2c_adapter(dev);
594 struct i2c_board_info info;
595 struct i2c_client *client;
596 char *blank, end;
597 int res;
598
599 dev_warn(dev, "The new_device interface is still experimental "
600 "and may change in a near future\n");
601 memset(&info, 0, sizeof(struct i2c_board_info));
602
603 blank = strchr(buf, ' ');
604 if (!blank) {
605 dev_err(dev, "%s: Missing parameters\n", "new_device");
606 return -EINVAL;
607 }
608 if (blank - buf > I2C_NAME_SIZE - 1) {
609 dev_err(dev, "%s: Invalid device name\n", "new_device");
610 return -EINVAL;
611 }
612 memcpy(info.type, buf, blank - buf);
613
614 /* Parse remaining parameters, reject extra parameters */
615 res = sscanf(++blank, "%hi%c", &info.addr, &end);
616 if (res < 1) {
617 dev_err(dev, "%s: Can't parse I2C address\n", "new_device");
618 return -EINVAL;
619 }
620 if (res > 1 && end != '\n') {
621 dev_err(dev, "%s: Extra parameters\n", "new_device");
622 return -EINVAL;
623 }
624
625 client = i2c_new_device(adap, &info);
626 if (!client)
627 return -EINVAL;
628
629 /* Keep track of the added device */
630 i2c_lock_adapter(adap);
631 list_add_tail(&client->detected, &adap->userspace_clients);
632 i2c_unlock_adapter(adap);
633 dev_info(dev, "%s: Instantiated device %s at 0x%02hx\n", "new_device",
634 info.type, info.addr);
635
636 return count;
637 }
638
639 /*
640 * And of course let the users delete the devices they instantiated, if
641 * they got it wrong. This interface can only be used to delete devices
642 * instantiated by i2c_sysfs_new_device above. This guarantees that we
643 * don't delete devices to which some kernel code still has references.
644 *
645 * Parameter checking may look overzealous, but we really don't want
646 * the user to delete the wrong device.
647 */
648 static ssize_t
649 i2c_sysfs_delete_device(struct device *dev, struct device_attribute *attr,
650 const char *buf, size_t count)
651 {
652 struct i2c_adapter *adap = to_i2c_adapter(dev);
653 struct i2c_client *client, *next;
654 unsigned short addr;
655 char end;
656 int res;
657
658 /* Parse parameters, reject extra parameters */
659 res = sscanf(buf, "%hi%c", &addr, &end);
660 if (res < 1) {
661 dev_err(dev, "%s: Can't parse I2C address\n", "delete_device");
662 return -EINVAL;
663 }
664 if (res > 1 && end != '\n') {
665 dev_err(dev, "%s: Extra parameters\n", "delete_device");
666 return -EINVAL;
667 }
668
669 /* Make sure the device was added through sysfs */
670 res = -ENOENT;
671 i2c_lock_adapter(adap);
672 list_for_each_entry_safe(client, next, &adap->userspace_clients,
673 detected) {
674 if (client->addr == addr) {
675 dev_info(dev, "%s: Deleting device %s at 0x%02hx\n",
676 "delete_device", client->name, client->addr);
677
678 list_del(&client->detected);
679 i2c_unregister_device(client);
680 res = count;
681 break;
682 }
683 }
684 i2c_unlock_adapter(adap);
685
686 if (res < 0)
687 dev_err(dev, "%s: Can't find device in list\n",
688 "delete_device");
689 return res;
690 }
691
692 static DEVICE_ATTR(new_device, S_IWUSR, NULL, i2c_sysfs_new_device);
693 static DEVICE_ATTR(delete_device, S_IWUSR, NULL, i2c_sysfs_delete_device);
694
695 static struct attribute *i2c_adapter_attrs[] = {
696 &dev_attr_name.attr,
697 &dev_attr_new_device.attr,
698 &dev_attr_delete_device.attr,
699 NULL
700 };
701
702 static struct attribute_group i2c_adapter_attr_group = {
703 .attrs = i2c_adapter_attrs,
704 };
705
706 static const struct attribute_group *i2c_adapter_attr_groups[] = {
707 &i2c_adapter_attr_group,
708 NULL
709 };
710
711 static struct device_type i2c_adapter_type = {
712 .groups = i2c_adapter_attr_groups,
713 .release = i2c_adapter_dev_release,
714 };
715
716 #ifdef CONFIG_I2C_COMPAT
717 static struct class_compat *i2c_adapter_compat_class;
718 #endif
719
720 static void i2c_scan_static_board_info(struct i2c_adapter *adapter)
721 {
722 struct i2c_devinfo *devinfo;
723
724 down_read(&__i2c_board_lock);
725 list_for_each_entry(devinfo, &__i2c_board_list, list) {
726 if (devinfo->busnum == adapter->nr
727 && !i2c_new_device(adapter,
728 &devinfo->board_info))
729 dev_err(&adapter->dev,
730 "Can't create device at 0x%02x\n",
731 devinfo->board_info.addr);
732 }
733 up_read(&__i2c_board_lock);
734 }
735
736 static int i2c_do_add_adapter(struct i2c_driver *driver,
737 struct i2c_adapter *adap)
738 {
739 /* Detect supported devices on that bus, and instantiate them */
740 i2c_detect(adap, driver);
741
742 /* Let legacy drivers scan this bus for matching devices */
743 if (driver->attach_adapter) {
744 /* We ignore the return code; if it fails, too bad */
745 driver->attach_adapter(adap);
746 }
747 return 0;
748 }
749
750 static int __process_new_adapter(struct device_driver *d, void *data)
751 {
752 return i2c_do_add_adapter(to_i2c_driver(d), data);
753 }
754
755 static int i2c_register_adapter(struct i2c_adapter *adap)
756 {
757 int res = 0, dummy;
758
759 /* Can't register until after driver model init */
760 if (unlikely(WARN_ON(!i2c_bus_type.p))) {
761 res = -EAGAIN;
762 goto out_list;
763 }
764
765 rt_mutex_init(&adap->bus_lock);
766 INIT_LIST_HEAD(&adap->userspace_clients);
767
768 /* Set default timeout to 1 second if not already set */
769 if (adap->timeout == 0)
770 adap->timeout = HZ;
771
772 dev_set_name(&adap->dev, "i2c-%d", adap->nr);
773 adap->dev.bus = &i2c_bus_type;
774 adap->dev.type = &i2c_adapter_type;
775 res = device_register(&adap->dev);
776 if (res)
777 goto out_list;
778
779 dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name);
780
781 #ifdef CONFIG_I2C_COMPAT
782 res = class_compat_create_link(i2c_adapter_compat_class, &adap->dev,
783 adap->dev.parent);
784 if (res)
785 dev_warn(&adap->dev,
786 "Failed to create compatibility class link\n");
787 #endif
788
789 /* create pre-declared device nodes */
790 if (adap->nr < __i2c_first_dynamic_bus_num)
791 i2c_scan_static_board_info(adap);
792
793 /* Notify drivers */
794 mutex_lock(&core_lock);
795 dummy = bus_for_each_drv(&i2c_bus_type, NULL, adap,
796 __process_new_adapter);
797 mutex_unlock(&core_lock);
798
799 return 0;
800
801 out_list:
802 mutex_lock(&core_lock);
803 idr_remove(&i2c_adapter_idr, adap->nr);
804 mutex_unlock(&core_lock);
805 return res;
806 }
807
808 /**
809 * i2c_add_adapter - declare i2c adapter, use dynamic bus number
810 * @adapter: the adapter to add
811 * Context: can sleep
812 *
813 * This routine is used to declare an I2C adapter when its bus number
814 * doesn't matter. Examples: for I2C adapters dynamically added by
815 * USB links or PCI plugin cards.
816 *
817 * When this returns zero, a new bus number was allocated and stored
818 * in adap->nr, and the specified adapter became available for clients.
819 * Otherwise, a negative errno value is returned.
820 */
821 int i2c_add_adapter(struct i2c_adapter *adapter)
822 {
823 int id, res = 0;
824
825 retry:
826 if (idr_pre_get(&i2c_adapter_idr, GFP_KERNEL) == 0)
827 return -ENOMEM;
828
829 mutex_lock(&core_lock);
830 /* "above" here means "above or equal to", sigh */
831 res = idr_get_new_above(&i2c_adapter_idr, adapter,
832 __i2c_first_dynamic_bus_num, &id);
833 mutex_unlock(&core_lock);
834
835 if (res < 0) {
836 if (res == -EAGAIN)
837 goto retry;
838 return res;
839 }
840
841 adapter->nr = id;
842 return i2c_register_adapter(adapter);
843 }
844 EXPORT_SYMBOL(i2c_add_adapter);
845
846 /**
847 * i2c_add_numbered_adapter - declare i2c adapter, use static bus number
848 * @adap: the adapter to register (with adap->nr initialized)
849 * Context: can sleep
850 *
851 * This routine is used to declare an I2C adapter when its bus number
852 * matters. For example, use it for I2C adapters from system-on-chip CPUs,
853 * or otherwise built in to the system's mainboard, and where i2c_board_info
854 * is used to properly configure I2C devices.
855 *
856 * If no devices have pre-been declared for this bus, then be sure to
857 * register the adapter before any dynamically allocated ones. Otherwise
858 * the required bus ID may not be available.
859 *
860 * When this returns zero, the specified adapter became available for
861 * clients using the bus number provided in adap->nr. Also, the table
862 * of I2C devices pre-declared using i2c_register_board_info() is scanned,
863 * and the appropriate driver model device nodes are created. Otherwise, a
864 * negative errno value is returned.
865 */
866 int i2c_add_numbered_adapter(struct i2c_adapter *adap)
867 {
868 int id;
869 int status;
870
871 if (adap->nr & ~MAX_ID_MASK)
872 return -EINVAL;
873
874 retry:
875 if (idr_pre_get(&i2c_adapter_idr, GFP_KERNEL) == 0)
876 return -ENOMEM;
877
878 mutex_lock(&core_lock);
879 /* "above" here means "above or equal to", sigh;
880 * we need the "equal to" result to force the result
881 */
882 status = idr_get_new_above(&i2c_adapter_idr, adap, adap->nr, &id);
883 if (status == 0 && id != adap->nr) {
884 status = -EBUSY;
885 idr_remove(&i2c_adapter_idr, id);
886 }
887 mutex_unlock(&core_lock);
888 if (status == -EAGAIN)
889 goto retry;
890
891 if (status == 0)
892 status = i2c_register_adapter(adap);
893 return status;
894 }
895 EXPORT_SYMBOL_GPL(i2c_add_numbered_adapter);
896
897 static int i2c_do_del_adapter(struct i2c_driver *driver,
898 struct i2c_adapter *adapter)
899 {
900 struct i2c_client *client, *_n;
901 int res;
902
903 /* Remove the devices we created ourselves as the result of hardware
904 * probing (using a driver's detect method) */
905 list_for_each_entry_safe(client, _n, &driver->clients, detected) {
906 if (client->adapter == adapter) {
907 dev_dbg(&adapter->dev, "Removing %s at 0x%x\n",
908 client->name, client->addr);
909 list_del(&client->detected);
910 i2c_unregister_device(client);
911 }
912 }
913
914 if (!driver->detach_adapter)
915 return 0;
916 res = driver->detach_adapter(adapter);
917 if (res)
918 dev_err(&adapter->dev, "detach_adapter failed (%d) "
919 "for driver [%s]\n", res, driver->driver.name);
920 return res;
921 }
922
923 static int __unregister_client(struct device *dev, void *dummy)
924 {
925 struct i2c_client *client = i2c_verify_client(dev);
926 if (client)
927 i2c_unregister_device(client);
928 return 0;
929 }
930
931 static int __process_removed_adapter(struct device_driver *d, void *data)
932 {
933 return i2c_do_del_adapter(to_i2c_driver(d), data);
934 }
935
936 /**
937 * i2c_del_adapter - unregister I2C adapter
938 * @adap: the adapter being unregistered
939 * Context: can sleep
940 *
941 * This unregisters an I2C adapter which was previously registered
942 * by @i2c_add_adapter or @i2c_add_numbered_adapter.
943 */
944 int i2c_del_adapter(struct i2c_adapter *adap)
945 {
946 int res = 0;
947 struct i2c_adapter *found;
948 struct i2c_client *client, *next;
949
950 /* First make sure that this adapter was ever added */
951 mutex_lock(&core_lock);
952 found = idr_find(&i2c_adapter_idr, adap->nr);
953 mutex_unlock(&core_lock);
954 if (found != adap) {
955 pr_debug("i2c-core: attempting to delete unregistered "
956 "adapter [%s]\n", adap->name);
957 return -EINVAL;
958 }
959
960 /* Tell drivers about this removal */
961 mutex_lock(&core_lock);
962 res = bus_for_each_drv(&i2c_bus_type, NULL, adap,
963 __process_removed_adapter);
964 mutex_unlock(&core_lock);
965 if (res)
966 return res;
967
968 /* Remove devices instantiated from sysfs */
969 i2c_lock_adapter(adap);
970 list_for_each_entry_safe(client, next, &adap->userspace_clients,
971 detected) {
972 dev_dbg(&adap->dev, "Removing %s at 0x%x\n", client->name,
973 client->addr);
974 list_del(&client->detected);
975 i2c_unregister_device(client);
976 }
977 i2c_unlock_adapter(adap);
978
979 /* Detach any active clients. This can't fail, thus we do not
980 checking the returned value. */
981 res = device_for_each_child(&adap->dev, NULL, __unregister_client);
982
983 #ifdef CONFIG_I2C_COMPAT
984 class_compat_remove_link(i2c_adapter_compat_class, &adap->dev,
985 adap->dev.parent);
986 #endif
987
988 /* device name is gone after device_unregister */
989 dev_dbg(&adap->dev, "adapter [%s] unregistered\n", adap->name);
990
991 /* clean up the sysfs representation */
992 init_completion(&adap->dev_released);
993 device_unregister(&adap->dev);
994
995 /* wait for sysfs to drop all references */
996 wait_for_completion(&adap->dev_released);
997
998 /* free bus id */
999 mutex_lock(&core_lock);
1000 idr_remove(&i2c_adapter_idr, adap->nr);
1001 mutex_unlock(&core_lock);
1002
1003 /* Clear the device structure in case this adapter is ever going to be
1004 added again */
1005 memset(&adap->dev, 0, sizeof(adap->dev));
1006
1007 return 0;
1008 }
1009 EXPORT_SYMBOL(i2c_del_adapter);
1010
1011
1012 /* ------------------------------------------------------------------------- */
1013
1014 static int __process_new_driver(struct device *dev, void *data)
1015 {
1016 if (dev->type != &i2c_adapter_type)
1017 return 0;
1018 return i2c_do_add_adapter(data, to_i2c_adapter(dev));
1019 }
1020
1021 /*
1022 * An i2c_driver is used with one or more i2c_client (device) nodes to access
1023 * i2c slave chips, on a bus instance associated with some i2c_adapter.
1024 */
1025
1026 int i2c_register_driver(struct module *owner, struct i2c_driver *driver)
1027 {
1028 int res;
1029
1030 /* Can't register until after driver model init */
1031 if (unlikely(WARN_ON(!i2c_bus_type.p)))
1032 return -EAGAIN;
1033
1034 /* add the driver to the list of i2c drivers in the driver core */
1035 driver->driver.owner = owner;
1036 driver->driver.bus = &i2c_bus_type;
1037
1038 /* When registration returns, the driver core
1039 * will have called probe() for all matching-but-unbound devices.
1040 */
1041 res = driver_register(&driver->driver);
1042 if (res)
1043 return res;
1044
1045 pr_debug("i2c-core: driver [%s] registered\n", driver->driver.name);
1046
1047 INIT_LIST_HEAD(&driver->clients);
1048 /* Walk the adapters that are already present */
1049 mutex_lock(&core_lock);
1050 bus_for_each_dev(&i2c_bus_type, NULL, driver, __process_new_driver);
1051 mutex_unlock(&core_lock);
1052
1053 return 0;
1054 }
1055 EXPORT_SYMBOL(i2c_register_driver);
1056
1057 static int __process_removed_driver(struct device *dev, void *data)
1058 {
1059 if (dev->type != &i2c_adapter_type)
1060 return 0;
1061 return i2c_do_del_adapter(data, to_i2c_adapter(dev));
1062 }
1063
1064 /**
1065 * i2c_del_driver - unregister I2C driver
1066 * @driver: the driver being unregistered
1067 * Context: can sleep
1068 */
1069 void i2c_del_driver(struct i2c_driver *driver)
1070 {
1071 mutex_lock(&core_lock);
1072 bus_for_each_dev(&i2c_bus_type, NULL, driver, __process_removed_driver);
1073 mutex_unlock(&core_lock);
1074
1075 driver_unregister(&driver->driver);
1076 pr_debug("i2c-core: driver [%s] unregistered\n", driver->driver.name);
1077 }
1078 EXPORT_SYMBOL(i2c_del_driver);
1079
1080 /* ------------------------------------------------------------------------- */
1081
1082 /**
1083 * i2c_use_client - increments the reference count of the i2c client structure
1084 * @client: the client being referenced
1085 *
1086 * Each live reference to a client should be refcounted. The driver model does
1087 * that automatically as part of driver binding, so that most drivers don't
1088 * need to do this explicitly: they hold a reference until they're unbound
1089 * from the device.
1090 *
1091 * A pointer to the client with the incremented reference counter is returned.
1092 */
1093 struct i2c_client *i2c_use_client(struct i2c_client *client)
1094 {
1095 if (client && get_device(&client->dev))
1096 return client;
1097 return NULL;
1098 }
1099 EXPORT_SYMBOL(i2c_use_client);
1100
1101 /**
1102 * i2c_release_client - release a use of the i2c client structure
1103 * @client: the client being no longer referenced
1104 *
1105 * Must be called when a user of a client is finished with it.
1106 */
1107 void i2c_release_client(struct i2c_client *client)
1108 {
1109 if (client)
1110 put_device(&client->dev);
1111 }
1112 EXPORT_SYMBOL(i2c_release_client);
1113
1114 struct i2c_cmd_arg {
1115 unsigned cmd;
1116 void *arg;
1117 };
1118
1119 static int i2c_cmd(struct device *dev, void *_arg)
1120 {
1121 struct i2c_client *client = i2c_verify_client(dev);
1122 struct i2c_cmd_arg *arg = _arg;
1123
1124 if (client && client->driver && client->driver->command)
1125 client->driver->command(client, arg->cmd, arg->arg);
1126 return 0;
1127 }
1128
1129 void i2c_clients_command(struct i2c_adapter *adap, unsigned int cmd, void *arg)
1130 {
1131 struct i2c_cmd_arg cmd_arg;
1132
1133 cmd_arg.cmd = cmd;
1134 cmd_arg.arg = arg;
1135 device_for_each_child(&adap->dev, &cmd_arg, i2c_cmd);
1136 }
1137 EXPORT_SYMBOL(i2c_clients_command);
1138
1139 static int __init i2c_init(void)
1140 {
1141 int retval;
1142
1143 retval = bus_register(&i2c_bus_type);
1144 if (retval)
1145 return retval;
1146 #ifdef CONFIG_I2C_COMPAT
1147 i2c_adapter_compat_class = class_compat_register("i2c-adapter");
1148 if (!i2c_adapter_compat_class) {
1149 retval = -ENOMEM;
1150 goto bus_err;
1151 }
1152 #endif
1153 retval = i2c_add_driver(&dummy_driver);
1154 if (retval)
1155 goto class_err;
1156 return 0;
1157
1158 class_err:
1159 #ifdef CONFIG_I2C_COMPAT
1160 class_compat_unregister(i2c_adapter_compat_class);
1161 bus_err:
1162 #endif
1163 bus_unregister(&i2c_bus_type);
1164 return retval;
1165 }
1166
1167 static void __exit i2c_exit(void)
1168 {
1169 i2c_del_driver(&dummy_driver);
1170 #ifdef CONFIG_I2C_COMPAT
1171 class_compat_unregister(i2c_adapter_compat_class);
1172 #endif
1173 bus_unregister(&i2c_bus_type);
1174 }
1175
1176 /* We must initialize early, because some subsystems register i2c drivers
1177 * in subsys_initcall() code, but are linked (and initialized) before i2c.
1178 */
1179 postcore_initcall(i2c_init);
1180 module_exit(i2c_exit);
1181
1182 /* ----------------------------------------------------
1183 * the functional interface to the i2c busses.
1184 * ----------------------------------------------------
1185 */
1186
1187 /**
1188 * i2c_transfer - execute a single or combined I2C message
1189 * @adap: Handle to I2C bus
1190 * @msgs: One or more messages to execute before STOP is issued to
1191 * terminate the operation; each message begins with a START.
1192 * @num: Number of messages to be executed.
1193 *
1194 * Returns negative errno, else the number of messages executed.
1195 *
1196 * Note that there is no requirement that each message be sent to
1197 * the same slave address, although that is the most common model.
1198 */
1199 int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
1200 {
1201 unsigned long orig_jiffies;
1202 int ret, try;
1203
1204 /* REVISIT the fault reporting model here is weak:
1205 *
1206 * - When we get an error after receiving N bytes from a slave,
1207 * there is no way to report "N".
1208 *
1209 * - When we get a NAK after transmitting N bytes to a slave,
1210 * there is no way to report "N" ... or to let the master
1211 * continue executing the rest of this combined message, if
1212 * that's the appropriate response.
1213 *
1214 * - When for example "num" is two and we successfully complete
1215 * the first message but get an error part way through the
1216 * second, it's unclear whether that should be reported as
1217 * one (discarding status on the second message) or errno
1218 * (discarding status on the first one).
1219 */
1220
1221 if (adap->algo->master_xfer) {
1222 #ifdef DEBUG
1223 for (ret = 0; ret < num; ret++) {
1224 dev_dbg(&adap->dev, "master_xfer[%d] %c, addr=0x%02x, "
1225 "len=%d%s\n", ret, (msgs[ret].flags & I2C_M_RD)
1226 ? 'R' : 'W', msgs[ret].addr, msgs[ret].len,
1227 (msgs[ret].flags & I2C_M_RECV_LEN) ? "+" : "");
1228 }
1229 #endif
1230
1231 if (in_atomic() || irqs_disabled()) {
1232 ret = rt_mutex_trylock(&adap->bus_lock);
1233 if (!ret)
1234 /* I2C activity is ongoing. */
1235 return -EAGAIN;
1236 } else {
1237 rt_mutex_lock(&adap->bus_lock);
1238 }
1239
1240 /* Retry automatically on arbitration loss */
1241 orig_jiffies = jiffies;
1242 for (ret = 0, try = 0; try <= adap->retries; try++) {
1243 ret = adap->algo->master_xfer(adap, msgs, num);
1244 if (ret != -EAGAIN)
1245 break;
1246 if (time_after(jiffies, orig_jiffies + adap->timeout))
1247 break;
1248 }
1249 rt_mutex_unlock(&adap->bus_lock);
1250
1251 return ret;
1252 } else {
1253 dev_dbg(&adap->dev, "I2C level transfers not supported\n");
1254 return -EOPNOTSUPP;
1255 }
1256 }
1257 EXPORT_SYMBOL(i2c_transfer);
1258
1259 /**
1260 * i2c_master_send - issue a single I2C message in master transmit mode
1261 * @client: Handle to slave device
1262 * @buf: Data that will be written to the slave
1263 * @count: How many bytes to write, must be less than 64k since msg.len is u16
1264 *
1265 * Returns negative errno, or else the number of bytes written.
1266 */
1267 int i2c_master_send(struct i2c_client *client, const char *buf, int count)
1268 {
1269 int ret;
1270 struct i2c_adapter *adap = client->adapter;
1271 struct i2c_msg msg;
1272
1273 msg.addr = client->addr;
1274 msg.flags = client->flags & I2C_M_TEN;
1275 msg.len = count;
1276 msg.buf = (char *)buf;
1277
1278 ret = i2c_transfer(adap, &msg, 1);
1279
1280 /* If everything went ok (i.e. 1 msg transmitted), return #bytes
1281 transmitted, else error code. */
1282 return (ret == 1) ? count : ret;
1283 }
1284 EXPORT_SYMBOL(i2c_master_send);
1285
1286 /**
1287 * i2c_master_recv - issue a single I2C message in master receive mode
1288 * @client: Handle to slave device
1289 * @buf: Where to store data read from slave
1290 * @count: How many bytes to read, must be less than 64k since msg.len is u16
1291 *
1292 * Returns negative errno, or else the number of bytes read.
1293 */
1294 int i2c_master_recv(struct i2c_client *client, char *buf, int count)
1295 {
1296 struct i2c_adapter *adap = client->adapter;
1297 struct i2c_msg msg;
1298 int ret;
1299
1300 msg.addr = client->addr;
1301 msg.flags = client->flags & I2C_M_TEN;
1302 msg.flags |= I2C_M_RD;
1303 msg.len = count;
1304 msg.buf = buf;
1305
1306 ret = i2c_transfer(adap, &msg, 1);
1307
1308 /* If everything went ok (i.e. 1 msg transmitted), return #bytes
1309 transmitted, else error code. */
1310 return (ret == 1) ? count : ret;
1311 }
1312 EXPORT_SYMBOL(i2c_master_recv);
1313
1314 /* ----------------------------------------------------
1315 * the i2c address scanning function
1316 * Will not work for 10-bit addresses!
1317 * ----------------------------------------------------
1318 */
1319
1320 /*
1321 * Legacy default probe function, mostly relevant for SMBus. The default
1322 * probe method is a quick write, but it is known to corrupt the 24RF08
1323 * EEPROMs due to a state machine bug, and could also irreversibly
1324 * write-protect some EEPROMs, so for address ranges 0x30-0x37 and 0x50-0x5f,
1325 * we use a short byte read instead. Also, some bus drivers don't implement
1326 * quick write, so we fallback to a byte read in that case too.
1327 * On x86, there is another special case for FSC hardware monitoring chips,
1328 * which want regular byte reads (address 0x73.) Fortunately, these are the
1329 * only known chips using this I2C address on PC hardware.
1330 * Returns 1 if probe succeeded, 0 if not.
1331 */
1332 static int i2c_default_probe(struct i2c_adapter *adap, unsigned short addr)
1333 {
1334 int err;
1335 union i2c_smbus_data dummy;
1336
1337 #ifdef CONFIG_X86
1338 if (addr == 0x73 && (adap->class & I2C_CLASS_HWMON)
1339 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE_DATA))
1340 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
1341 I2C_SMBUS_BYTE_DATA, &dummy);
1342 else
1343 #endif
1344 if ((addr & ~0x07) == 0x30 || (addr & ~0x0f) == 0x50
1345 || !i2c_check_functionality(adap, I2C_FUNC_SMBUS_QUICK))
1346 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
1347 I2C_SMBUS_BYTE, &dummy);
1348 else
1349 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_WRITE, 0,
1350 I2C_SMBUS_QUICK, NULL);
1351
1352 return err >= 0;
1353 }
1354
1355 static int i2c_detect_address(struct i2c_client *temp_client,
1356 struct i2c_driver *driver)
1357 {
1358 struct i2c_board_info info;
1359 struct i2c_adapter *adapter = temp_client->adapter;
1360 int addr = temp_client->addr;
1361 int err;
1362
1363 /* Make sure the address is valid */
1364 err = i2c_check_addr_validity(addr);
1365 if (err) {
1366 dev_warn(&adapter->dev, "Invalid probe address 0x%02x\n",
1367 addr);
1368 return err;
1369 }
1370
1371 /* Skip if already in use */
1372 if (i2c_check_addr_busy(adapter, addr))
1373 return 0;
1374
1375 /* Make sure there is something at this address */
1376 if (!i2c_default_probe(adapter, addr))
1377 return 0;
1378
1379 /* Finally call the custom detection function */
1380 memset(&info, 0, sizeof(struct i2c_board_info));
1381 info.addr = addr;
1382 err = driver->detect(temp_client, &info);
1383 if (err) {
1384 /* -ENODEV is returned if the detection fails. We catch it
1385 here as this isn't an error. */
1386 return err == -ENODEV ? 0 : err;
1387 }
1388
1389 /* Consistency check */
1390 if (info.type[0] == '\0') {
1391 dev_err(&adapter->dev, "%s detection function provided "
1392 "no name for 0x%x\n", driver->driver.name,
1393 addr);
1394 } else {
1395 struct i2c_client *client;
1396
1397 /* Detection succeeded, instantiate the device */
1398 dev_dbg(&adapter->dev, "Creating %s at 0x%02x\n",
1399 info.type, info.addr);
1400 client = i2c_new_device(adapter, &info);
1401 if (client)
1402 list_add_tail(&client->detected, &driver->clients);
1403 else
1404 dev_err(&adapter->dev, "Failed creating %s at 0x%02x\n",
1405 info.type, info.addr);
1406 }
1407 return 0;
1408 }
1409
1410 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver)
1411 {
1412 const unsigned short *address_list;
1413 struct i2c_client *temp_client;
1414 int i, err = 0;
1415 int adap_id = i2c_adapter_id(adapter);
1416
1417 address_list = driver->address_list;
1418 if (!driver->detect || !address_list)
1419 return 0;
1420
1421 /* Set up a temporary client to help detect callback */
1422 temp_client = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
1423 if (!temp_client)
1424 return -ENOMEM;
1425 temp_client->adapter = adapter;
1426
1427 /* Stop here if the classes do not match */
1428 if (!(adapter->class & driver->class))
1429 goto exit_free;
1430
1431 /* Stop here if the bus doesn't support probing */
1432 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_READ_BYTE)) {
1433 if (address_list[0] == I2C_CLIENT_END)
1434 goto exit_free;
1435
1436 dev_warn(&adapter->dev, "Probing not supported\n");
1437 err = -EOPNOTSUPP;
1438 goto exit_free;
1439 }
1440
1441 for (i = 0; address_list[i] != I2C_CLIENT_END; i += 1) {
1442 dev_dbg(&adapter->dev, "found normal entry for adapter %d, "
1443 "addr 0x%02x\n", adap_id, address_list[i]);
1444 temp_client->addr = address_list[i];
1445 err = i2c_detect_address(temp_client, driver);
1446 if (err)
1447 goto exit_free;
1448 }
1449
1450 exit_free:
1451 kfree(temp_client);
1452 return err;
1453 }
1454
1455 struct i2c_client *
1456 i2c_new_probed_device(struct i2c_adapter *adap,
1457 struct i2c_board_info *info,
1458 unsigned short const *addr_list)
1459 {
1460 int i;
1461
1462 /* Stop here if the bus doesn't support probing */
1463 if (!i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE)) {
1464 dev_err(&adap->dev, "Probing not supported\n");
1465 return NULL;
1466 }
1467
1468 for (i = 0; addr_list[i] != I2C_CLIENT_END; i++) {
1469 /* Check address validity */
1470 if (i2c_check_addr_validity(addr_list[i]) < 0) {
1471 dev_warn(&adap->dev, "Invalid 7-bit address "
1472 "0x%02x\n", addr_list[i]);
1473 continue;
1474 }
1475
1476 /* Check address availability */
1477 if (i2c_check_addr_busy(adap, addr_list[i])) {
1478 dev_dbg(&adap->dev, "Address 0x%02x already in "
1479 "use, not probing\n", addr_list[i]);
1480 continue;
1481 }
1482
1483 /* Test address responsiveness */
1484 if (i2c_default_probe(adap, addr_list[i]))
1485 break;
1486 }
1487
1488 if (addr_list[i] == I2C_CLIENT_END) {
1489 dev_dbg(&adap->dev, "Probing failed, no device found\n");
1490 return NULL;
1491 }
1492
1493 info->addr = addr_list[i];
1494 return i2c_new_device(adap, info);
1495 }
1496 EXPORT_SYMBOL_GPL(i2c_new_probed_device);
1497
1498 struct i2c_adapter *i2c_get_adapter(int id)
1499 {
1500 struct i2c_adapter *adapter;
1501
1502 mutex_lock(&core_lock);
1503 adapter = idr_find(&i2c_adapter_idr, id);
1504 if (adapter && !try_module_get(adapter->owner))
1505 adapter = NULL;
1506
1507 mutex_unlock(&core_lock);
1508 return adapter;
1509 }
1510 EXPORT_SYMBOL(i2c_get_adapter);
1511
1512 void i2c_put_adapter(struct i2c_adapter *adap)
1513 {
1514 module_put(adap->owner);
1515 }
1516 EXPORT_SYMBOL(i2c_put_adapter);
1517
1518 /* The SMBus parts */
1519
1520 #define POLY (0x1070U << 3)
1521 static u8 crc8(u16 data)
1522 {
1523 int i;
1524
1525 for (i = 0; i < 8; i++) {
1526 if (data & 0x8000)
1527 data = data ^ POLY;
1528 data = data << 1;
1529 }
1530 return (u8)(data >> 8);
1531 }
1532
1533 /* Incremental CRC8 over count bytes in the array pointed to by p */
1534 static u8 i2c_smbus_pec(u8 crc, u8 *p, size_t count)
1535 {
1536 int i;
1537
1538 for (i = 0; i < count; i++)
1539 crc = crc8((crc ^ p[i]) << 8);
1540 return crc;
1541 }
1542
1543 /* Assume a 7-bit address, which is reasonable for SMBus */
1544 static u8 i2c_smbus_msg_pec(u8 pec, struct i2c_msg *msg)
1545 {
1546 /* The address will be sent first */
1547 u8 addr = (msg->addr << 1) | !!(msg->flags & I2C_M_RD);
1548 pec = i2c_smbus_pec(pec, &addr, 1);
1549
1550 /* The data buffer follows */
1551 return i2c_smbus_pec(pec, msg->buf, msg->len);
1552 }
1553
1554 /* Used for write only transactions */
1555 static inline void i2c_smbus_add_pec(struct i2c_msg *msg)
1556 {
1557 msg->buf[msg->len] = i2c_smbus_msg_pec(0, msg);
1558 msg->len++;
1559 }
1560
1561 /* Return <0 on CRC error
1562 If there was a write before this read (most cases) we need to take the
1563 partial CRC from the write part into account.
1564 Note that this function does modify the message (we need to decrease the
1565 message length to hide the CRC byte from the caller). */
1566 static int i2c_smbus_check_pec(u8 cpec, struct i2c_msg *msg)
1567 {
1568 u8 rpec = msg->buf[--msg->len];
1569 cpec = i2c_smbus_msg_pec(cpec, msg);
1570
1571 if (rpec != cpec) {
1572 pr_debug("i2c-core: Bad PEC 0x%02x vs. 0x%02x\n",
1573 rpec, cpec);
1574 return -EBADMSG;
1575 }
1576 return 0;
1577 }
1578
1579 /**
1580 * i2c_smbus_read_byte - SMBus "receive byte" protocol
1581 * @client: Handle to slave device
1582 *
1583 * This executes the SMBus "receive byte" protocol, returning negative errno
1584 * else the byte received from the device.
1585 */
1586 s32 i2c_smbus_read_byte(struct i2c_client *client)
1587 {
1588 union i2c_smbus_data data;
1589 int status;
1590
1591 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1592 I2C_SMBUS_READ, 0,
1593 I2C_SMBUS_BYTE, &data);
1594 return (status < 0) ? status : data.byte;
1595 }
1596 EXPORT_SYMBOL(i2c_smbus_read_byte);
1597
1598 /**
1599 * i2c_smbus_write_byte - SMBus "send byte" protocol
1600 * @client: Handle to slave device
1601 * @value: Byte to be sent
1602 *
1603 * This executes the SMBus "send byte" protocol, returning negative errno
1604 * else zero on success.
1605 */
1606 s32 i2c_smbus_write_byte(struct i2c_client *client, u8 value)
1607 {
1608 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1609 I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
1610 }
1611 EXPORT_SYMBOL(i2c_smbus_write_byte);
1612
1613 /**
1614 * i2c_smbus_read_byte_data - SMBus "read byte" protocol
1615 * @client: Handle to slave device
1616 * @command: Byte interpreted by slave
1617 *
1618 * This executes the SMBus "read byte" protocol, returning negative errno
1619 * else a data byte received from the device.
1620 */
1621 s32 i2c_smbus_read_byte_data(struct i2c_client *client, u8 command)
1622 {
1623 union i2c_smbus_data data;
1624 int status;
1625
1626 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1627 I2C_SMBUS_READ, command,
1628 I2C_SMBUS_BYTE_DATA, &data);
1629 return (status < 0) ? status : data.byte;
1630 }
1631 EXPORT_SYMBOL(i2c_smbus_read_byte_data);
1632
1633 /**
1634 * i2c_smbus_write_byte_data - SMBus "write byte" protocol
1635 * @client: Handle to slave device
1636 * @command: Byte interpreted by slave
1637 * @value: Byte being written
1638 *
1639 * This executes the SMBus "write byte" protocol, returning negative errno
1640 * else zero on success.
1641 */
1642 s32 i2c_smbus_write_byte_data(struct i2c_client *client, u8 command, u8 value)
1643 {
1644 union i2c_smbus_data data;
1645 data.byte = value;
1646 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1647 I2C_SMBUS_WRITE, command,
1648 I2C_SMBUS_BYTE_DATA, &data);
1649 }
1650 EXPORT_SYMBOL(i2c_smbus_write_byte_data);
1651
1652 /**
1653 * i2c_smbus_read_word_data - SMBus "read word" protocol
1654 * @client: Handle to slave device
1655 * @command: Byte interpreted by slave
1656 *
1657 * This executes the SMBus "read word" protocol, returning negative errno
1658 * else a 16-bit unsigned "word" received from the device.
1659 */
1660 s32 i2c_smbus_read_word_data(struct i2c_client *client, u8 command)
1661 {
1662 union i2c_smbus_data data;
1663 int status;
1664
1665 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1666 I2C_SMBUS_READ, command,
1667 I2C_SMBUS_WORD_DATA, &data);
1668 return (status < 0) ? status : data.word;
1669 }
1670 EXPORT_SYMBOL(i2c_smbus_read_word_data);
1671
1672 /**
1673 * i2c_smbus_write_word_data - SMBus "write word" protocol
1674 * @client: Handle to slave device
1675 * @command: Byte interpreted by slave
1676 * @value: 16-bit "word" being written
1677 *
1678 * This executes the SMBus "write word" protocol, returning negative errno
1679 * else zero on success.
1680 */
1681 s32 i2c_smbus_write_word_data(struct i2c_client *client, u8 command, u16 value)
1682 {
1683 union i2c_smbus_data data;
1684 data.word = value;
1685 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1686 I2C_SMBUS_WRITE, command,
1687 I2C_SMBUS_WORD_DATA, &data);
1688 }
1689 EXPORT_SYMBOL(i2c_smbus_write_word_data);
1690
1691 /**
1692 * i2c_smbus_process_call - SMBus "process call" protocol
1693 * @client: Handle to slave device
1694 * @command: Byte interpreted by slave
1695 * @value: 16-bit "word" being written
1696 *
1697 * This executes the SMBus "process call" protocol, returning negative errno
1698 * else a 16-bit unsigned "word" received from the device.
1699 */
1700 s32 i2c_smbus_process_call(struct i2c_client *client, u8 command, u16 value)
1701 {
1702 union i2c_smbus_data data;
1703 int status;
1704 data.word = value;
1705
1706 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1707 I2C_SMBUS_WRITE, command,
1708 I2C_SMBUS_PROC_CALL, &data);
1709 return (status < 0) ? status : data.word;
1710 }
1711 EXPORT_SYMBOL(i2c_smbus_process_call);
1712
1713 /**
1714 * i2c_smbus_read_block_data - SMBus "block read" protocol
1715 * @client: Handle to slave device
1716 * @command: Byte interpreted by slave
1717 * @values: Byte array into which data will be read; big enough to hold
1718 * the data returned by the slave. SMBus allows at most 32 bytes.
1719 *
1720 * This executes the SMBus "block read" protocol, returning negative errno
1721 * else the number of data bytes in the slave's response.
1722 *
1723 * Note that using this function requires that the client's adapter support
1724 * the I2C_FUNC_SMBUS_READ_BLOCK_DATA functionality. Not all adapter drivers
1725 * support this; its emulation through I2C messaging relies on a specific
1726 * mechanism (I2C_M_RECV_LEN) which may not be implemented.
1727 */
1728 s32 i2c_smbus_read_block_data(struct i2c_client *client, u8 command,
1729 u8 *values)
1730 {
1731 union i2c_smbus_data data;
1732 int status;
1733
1734 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1735 I2C_SMBUS_READ, command,
1736 I2C_SMBUS_BLOCK_DATA, &data);
1737 if (status)
1738 return status;
1739
1740 memcpy(values, &data.block[1], data.block[0]);
1741 return data.block[0];
1742 }
1743 EXPORT_SYMBOL(i2c_smbus_read_block_data);
1744
1745 /**
1746 * i2c_smbus_write_block_data - SMBus "block write" protocol
1747 * @client: Handle to slave device
1748 * @command: Byte interpreted by slave
1749 * @length: Size of data block; SMBus allows at most 32 bytes
1750 * @values: Byte array which will be written.
1751 *
1752 * This executes the SMBus "block write" protocol, returning negative errno
1753 * else zero on success.
1754 */
1755 s32 i2c_smbus_write_block_data(struct i2c_client *client, u8 command,
1756 u8 length, const u8 *values)
1757 {
1758 union i2c_smbus_data data;
1759
1760 if (length > I2C_SMBUS_BLOCK_MAX)
1761 length = I2C_SMBUS_BLOCK_MAX;
1762 data.block[0] = length;
1763 memcpy(&data.block[1], values, length);
1764 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1765 I2C_SMBUS_WRITE, command,
1766 I2C_SMBUS_BLOCK_DATA, &data);
1767 }
1768 EXPORT_SYMBOL(i2c_smbus_write_block_data);
1769
1770 /* Returns the number of read bytes */
1771 s32 i2c_smbus_read_i2c_block_data(struct i2c_client *client, u8 command,
1772 u8 length, u8 *values)
1773 {
1774 union i2c_smbus_data data;
1775 int status;
1776
1777 if (length > I2C_SMBUS_BLOCK_MAX)
1778 length = I2C_SMBUS_BLOCK_MAX;
1779 data.block[0] = length;
1780 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1781 I2C_SMBUS_READ, command,
1782 I2C_SMBUS_I2C_BLOCK_DATA, &data);
1783 if (status < 0)
1784 return status;
1785
1786 memcpy(values, &data.block[1], data.block[0]);
1787 return data.block[0];
1788 }
1789 EXPORT_SYMBOL(i2c_smbus_read_i2c_block_data);
1790
1791 s32 i2c_smbus_write_i2c_block_data(struct i2c_client *client, u8 command,
1792 u8 length, const u8 *values)
1793 {
1794 union i2c_smbus_data data;
1795
1796 if (length > I2C_SMBUS_BLOCK_MAX)
1797 length = I2C_SMBUS_BLOCK_MAX;
1798 data.block[0] = length;
1799 memcpy(data.block + 1, values, length);
1800 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1801 I2C_SMBUS_WRITE, command,
1802 I2C_SMBUS_I2C_BLOCK_DATA, &data);
1803 }
1804 EXPORT_SYMBOL(i2c_smbus_write_i2c_block_data);
1805
1806 /* Simulate a SMBus command using the i2c protocol
1807 No checking of parameters is done! */
1808 static s32 i2c_smbus_xfer_emulated(struct i2c_adapter *adapter, u16 addr,
1809 unsigned short flags,
1810 char read_write, u8 command, int size,
1811 union i2c_smbus_data *data)
1812 {
1813 /* So we need to generate a series of msgs. In the case of writing, we
1814 need to use only one message; when reading, we need two. We initialize
1815 most things with sane defaults, to keep the code below somewhat
1816 simpler. */
1817 unsigned char msgbuf0[I2C_SMBUS_BLOCK_MAX+3];
1818 unsigned char msgbuf1[I2C_SMBUS_BLOCK_MAX+2];
1819 int num = read_write == I2C_SMBUS_READ ? 2 : 1;
1820 struct i2c_msg msg[2] = { { addr, flags, 1, msgbuf0 },
1821 { addr, flags | I2C_M_RD, 0, msgbuf1 }
1822 };
1823 int i;
1824 u8 partial_pec = 0;
1825 int status;
1826
1827 msgbuf0[0] = command;
1828 switch (size) {
1829 case I2C_SMBUS_QUICK:
1830 msg[0].len = 0;
1831 /* Special case: The read/write field is used as data */
1832 msg[0].flags = flags | (read_write == I2C_SMBUS_READ ?
1833 I2C_M_RD : 0);
1834 num = 1;
1835 break;
1836 case I2C_SMBUS_BYTE:
1837 if (read_write == I2C_SMBUS_READ) {
1838 /* Special case: only a read! */
1839 msg[0].flags = I2C_M_RD | flags;
1840 num = 1;
1841 }
1842 break;
1843 case I2C_SMBUS_BYTE_DATA:
1844 if (read_write == I2C_SMBUS_READ)
1845 msg[1].len = 1;
1846 else {
1847 msg[0].len = 2;
1848 msgbuf0[1] = data->byte;
1849 }
1850 break;
1851 case I2C_SMBUS_WORD_DATA:
1852 if (read_write == I2C_SMBUS_READ)
1853 msg[1].len = 2;
1854 else {
1855 msg[0].len = 3;
1856 msgbuf0[1] = data->word & 0xff;
1857 msgbuf0[2] = data->word >> 8;
1858 }
1859 break;
1860 case I2C_SMBUS_PROC_CALL:
1861 num = 2; /* Special case */
1862 read_write = I2C_SMBUS_READ;
1863 msg[0].len = 3;
1864 msg[1].len = 2;
1865 msgbuf0[1] = data->word & 0xff;
1866 msgbuf0[2] = data->word >> 8;
1867 break;
1868 case I2C_SMBUS_BLOCK_DATA:
1869 if (read_write == I2C_SMBUS_READ) {
1870 msg[1].flags |= I2C_M_RECV_LEN;
1871 msg[1].len = 1; /* block length will be added by
1872 the underlying bus driver */
1873 } else {
1874 msg[0].len = data->block[0] + 2;
1875 if (msg[0].len > I2C_SMBUS_BLOCK_MAX + 2) {
1876 dev_err(&adapter->dev,
1877 "Invalid block write size %d\n",
1878 data->block[0]);
1879 return -EINVAL;
1880 }
1881 for (i = 1; i < msg[0].len; i++)
1882 msgbuf0[i] = data->block[i-1];
1883 }
1884 break;
1885 case I2C_SMBUS_BLOCK_PROC_CALL:
1886 num = 2; /* Another special case */
1887 read_write = I2C_SMBUS_READ;
1888 if (data->block[0] > I2C_SMBUS_BLOCK_MAX) {
1889 dev_err(&adapter->dev,
1890 "Invalid block write size %d\n",
1891 data->block[0]);
1892 return -EINVAL;
1893 }
1894 msg[0].len = data->block[0] + 2;
1895 for (i = 1; i < msg[0].len; i++)
1896 msgbuf0[i] = data->block[i-1];
1897 msg[1].flags |= I2C_M_RECV_LEN;
1898 msg[1].len = 1; /* block length will be added by
1899 the underlying bus driver */
1900 break;
1901 case I2C_SMBUS_I2C_BLOCK_DATA:
1902 if (read_write == I2C_SMBUS_READ) {
1903 msg[1].len = data->block[0];
1904 } else {
1905 msg[0].len = data->block[0] + 1;
1906 if (msg[0].len > I2C_SMBUS_BLOCK_MAX + 1) {
1907 dev_err(&adapter->dev,
1908 "Invalid block write size %d\n",
1909 data->block[0]);
1910 return -EINVAL;
1911 }
1912 for (i = 1; i <= data->block[0]; i++)
1913 msgbuf0[i] = data->block[i];
1914 }
1915 break;
1916 default:
1917 dev_err(&adapter->dev, "Unsupported transaction %d\n", size);
1918 return -EOPNOTSUPP;
1919 }
1920
1921 i = ((flags & I2C_CLIENT_PEC) && size != I2C_SMBUS_QUICK
1922 && size != I2C_SMBUS_I2C_BLOCK_DATA);
1923 if (i) {
1924 /* Compute PEC if first message is a write */
1925 if (!(msg[0].flags & I2C_M_RD)) {
1926 if (num == 1) /* Write only */
1927 i2c_smbus_add_pec(&msg[0]);
1928 else /* Write followed by read */
1929 partial_pec = i2c_smbus_msg_pec(0, &msg[0]);
1930 }
1931 /* Ask for PEC if last message is a read */
1932 if (msg[num-1].flags & I2C_M_RD)
1933 msg[num-1].len++;
1934 }
1935
1936 status = i2c_transfer(adapter, msg, num);
1937 if (status < 0)
1938 return status;
1939
1940 /* Check PEC if last message is a read */
1941 if (i && (msg[num-1].flags & I2C_M_RD)) {
1942 status = i2c_smbus_check_pec(partial_pec, &msg[num-1]);
1943 if (status < 0)
1944 return status;
1945 }
1946
1947 if (read_write == I2C_SMBUS_READ)
1948 switch (size) {
1949 case I2C_SMBUS_BYTE:
1950 data->byte = msgbuf0[0];
1951 break;
1952 case I2C_SMBUS_BYTE_DATA:
1953 data->byte = msgbuf1[0];
1954 break;
1955 case I2C_SMBUS_WORD_DATA:
1956 case I2C_SMBUS_PROC_CALL:
1957 data->word = msgbuf1[0] | (msgbuf1[1] << 8);
1958 break;
1959 case I2C_SMBUS_I2C_BLOCK_DATA:
1960 for (i = 0; i < data->block[0]; i++)
1961 data->block[i+1] = msgbuf1[i];
1962 break;
1963 case I2C_SMBUS_BLOCK_DATA:
1964 case I2C_SMBUS_BLOCK_PROC_CALL:
1965 for (i = 0; i < msgbuf1[0] + 1; i++)
1966 data->block[i] = msgbuf1[i];
1967 break;
1968 }
1969 return 0;
1970 }
1971
1972 /**
1973 * i2c_smbus_xfer - execute SMBus protocol operations
1974 * @adapter: Handle to I2C bus
1975 * @addr: Address of SMBus slave on that bus
1976 * @flags: I2C_CLIENT_* flags (usually zero or I2C_CLIENT_PEC)
1977 * @read_write: I2C_SMBUS_READ or I2C_SMBUS_WRITE
1978 * @command: Byte interpreted by slave, for protocols which use such bytes
1979 * @protocol: SMBus protocol operation to execute, such as I2C_SMBUS_PROC_CALL
1980 * @data: Data to be read or written
1981 *
1982 * This executes an SMBus protocol operation, and returns a negative
1983 * errno code else zero on success.
1984 */
1985 s32 i2c_smbus_xfer(struct i2c_adapter *adapter, u16 addr, unsigned short flags,
1986 char read_write, u8 command, int protocol,
1987 union i2c_smbus_data *data)
1988 {
1989 unsigned long orig_jiffies;
1990 int try;
1991 s32 res;
1992
1993 flags &= I2C_M_TEN | I2C_CLIENT_PEC;
1994
1995 if (adapter->algo->smbus_xfer) {
1996 rt_mutex_lock(&adapter->bus_lock);
1997
1998 /* Retry automatically on arbitration loss */
1999 orig_jiffies = jiffies;
2000 for (res = 0, try = 0; try <= adapter->retries; try++) {
2001 res = adapter->algo->smbus_xfer(adapter, addr, flags,
2002 read_write, command,
2003 protocol, data);
2004 if (res != -EAGAIN)
2005 break;
2006 if (time_after(jiffies,
2007 orig_jiffies + adapter->timeout))
2008 break;
2009 }
2010 rt_mutex_unlock(&adapter->bus_lock);
2011 } else
2012 res = i2c_smbus_xfer_emulated(adapter, addr, flags, read_write,
2013 command, protocol, data);
2014
2015 return res;
2016 }
2017 EXPORT_SYMBOL(i2c_smbus_xfer);
2018
2019 MODULE_AUTHOR("Simon G. Vogl <simon@tk.uni-linz.ac.at>");
2020 MODULE_DESCRIPTION("I2C-Bus main module");
2021 MODULE_LICENSE("GPL");
This page took 0.073913 seconds and 5 git commands to generate.