Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[deliverable/linux.git] / drivers / i2c / i2c-core.c
1 /* i2c-core.c - a device driver for the iic-bus interface */
2 /* ------------------------------------------------------------------------- */
3 /* Copyright (C) 1995-99 Simon G. Vogl
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
18 /* ------------------------------------------------------------------------- */
19
20 /* With some changes from Kyösti Mälkki <kmalkki@cc.hut.fi>.
21 All SMBus-related things are written by Frodo Looijaard <frodol@dds.nl>
22 SMBus 2.0 support by Mark Studebaker <mdsxyz123@yahoo.com> and
23 Jean Delvare <khali@linux-fr.org>
24 Mux support by Rodolfo Giometti <giometti@enneenne.com> and
25 Michael Lawnick <michael.lawnick.ext@nsn.com> */
26
27 #include <linux/module.h>
28 #include <linux/kernel.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/i2c.h>
32 #include <linux/init.h>
33 #include <linux/idr.h>
34 #include <linux/mutex.h>
35 #include <linux/of_device.h>
36 #include <linux/completion.h>
37 #include <linux/hardirq.h>
38 #include <linux/irqflags.h>
39 #include <linux/rwsem.h>
40 #include <linux/pm_runtime.h>
41 #include <asm/uaccess.h>
42
43 #include "i2c-core.h"
44
45
46 /* core_lock protects i2c_adapter_idr, and guarantees
47 that device detection, deletion of detected devices, and attach_adapter
48 and detach_adapter calls are serialized */
49 static DEFINE_MUTEX(core_lock);
50 static DEFINE_IDR(i2c_adapter_idr);
51
52 static struct device_type i2c_client_type;
53 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver);
54
55 /* ------------------------------------------------------------------------- */
56
57 static const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id,
58 const struct i2c_client *client)
59 {
60 while (id->name[0]) {
61 if (strcmp(client->name, id->name) == 0)
62 return id;
63 id++;
64 }
65 return NULL;
66 }
67
68 static int i2c_device_match(struct device *dev, struct device_driver *drv)
69 {
70 struct i2c_client *client = i2c_verify_client(dev);
71 struct i2c_driver *driver;
72
73 if (!client)
74 return 0;
75
76 /* Attempt an OF style match */
77 if (of_driver_match_device(dev, drv))
78 return 1;
79
80 driver = to_i2c_driver(drv);
81 /* match on an id table if there is one */
82 if (driver->id_table)
83 return i2c_match_id(driver->id_table, client) != NULL;
84
85 return 0;
86 }
87
88 #ifdef CONFIG_HOTPLUG
89
90 /* uevent helps with hotplug: modprobe -q $(MODALIAS) */
91 static int i2c_device_uevent(struct device *dev, struct kobj_uevent_env *env)
92 {
93 struct i2c_client *client = to_i2c_client(dev);
94
95 if (add_uevent_var(env, "MODALIAS=%s%s",
96 I2C_MODULE_PREFIX, client->name))
97 return -ENOMEM;
98 dev_dbg(dev, "uevent\n");
99 return 0;
100 }
101
102 #else
103 #define i2c_device_uevent NULL
104 #endif /* CONFIG_HOTPLUG */
105
106 static int i2c_device_probe(struct device *dev)
107 {
108 struct i2c_client *client = i2c_verify_client(dev);
109 struct i2c_driver *driver;
110 int status;
111
112 if (!client)
113 return 0;
114
115 driver = to_i2c_driver(dev->driver);
116 if (!driver->probe || !driver->id_table)
117 return -ENODEV;
118 client->driver = driver;
119 if (!device_can_wakeup(&client->dev))
120 device_init_wakeup(&client->dev,
121 client->flags & I2C_CLIENT_WAKE);
122 dev_dbg(dev, "probe\n");
123
124 status = driver->probe(client, i2c_match_id(driver->id_table, client));
125 if (status) {
126 client->driver = NULL;
127 i2c_set_clientdata(client, NULL);
128 }
129 return status;
130 }
131
132 static int i2c_device_remove(struct device *dev)
133 {
134 struct i2c_client *client = i2c_verify_client(dev);
135 struct i2c_driver *driver;
136 int status;
137
138 if (!client || !dev->driver)
139 return 0;
140
141 driver = to_i2c_driver(dev->driver);
142 if (driver->remove) {
143 dev_dbg(dev, "remove\n");
144 status = driver->remove(client);
145 } else {
146 dev->driver = NULL;
147 status = 0;
148 }
149 if (status == 0) {
150 client->driver = NULL;
151 i2c_set_clientdata(client, NULL);
152 }
153 return status;
154 }
155
156 static void i2c_device_shutdown(struct device *dev)
157 {
158 struct i2c_client *client = i2c_verify_client(dev);
159 struct i2c_driver *driver;
160
161 if (!client || !dev->driver)
162 return;
163 driver = to_i2c_driver(dev->driver);
164 if (driver->shutdown)
165 driver->shutdown(client);
166 }
167
168 #ifdef CONFIG_PM_SLEEP
169 static int i2c_legacy_suspend(struct device *dev, pm_message_t mesg)
170 {
171 struct i2c_client *client = i2c_verify_client(dev);
172 struct i2c_driver *driver;
173
174 if (!client || !dev->driver)
175 return 0;
176 driver = to_i2c_driver(dev->driver);
177 if (!driver->suspend)
178 return 0;
179 return driver->suspend(client, mesg);
180 }
181
182 static int i2c_legacy_resume(struct device *dev)
183 {
184 struct i2c_client *client = i2c_verify_client(dev);
185 struct i2c_driver *driver;
186
187 if (!client || !dev->driver)
188 return 0;
189 driver = to_i2c_driver(dev->driver);
190 if (!driver->resume)
191 return 0;
192 return driver->resume(client);
193 }
194
195 static int i2c_device_pm_suspend(struct device *dev)
196 {
197 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
198
199 if (pm)
200 return pm_generic_suspend(dev);
201 else
202 return i2c_legacy_suspend(dev, PMSG_SUSPEND);
203 }
204
205 static int i2c_device_pm_resume(struct device *dev)
206 {
207 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
208
209 if (pm)
210 return pm_generic_resume(dev);
211 else
212 return i2c_legacy_resume(dev);
213 }
214
215 static int i2c_device_pm_freeze(struct device *dev)
216 {
217 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
218
219 if (pm)
220 return pm_generic_freeze(dev);
221 else
222 return i2c_legacy_suspend(dev, PMSG_FREEZE);
223 }
224
225 static int i2c_device_pm_thaw(struct device *dev)
226 {
227 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
228
229 if (pm)
230 return pm_generic_thaw(dev);
231 else
232 return i2c_legacy_resume(dev);
233 }
234
235 static int i2c_device_pm_poweroff(struct device *dev)
236 {
237 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
238
239 if (pm)
240 return pm_generic_poweroff(dev);
241 else
242 return i2c_legacy_suspend(dev, PMSG_HIBERNATE);
243 }
244
245 static int i2c_device_pm_restore(struct device *dev)
246 {
247 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
248
249 if (pm)
250 return pm_generic_restore(dev);
251 else
252 return i2c_legacy_resume(dev);
253 }
254 #else /* !CONFIG_PM_SLEEP */
255 #define i2c_device_pm_suspend NULL
256 #define i2c_device_pm_resume NULL
257 #define i2c_device_pm_freeze NULL
258 #define i2c_device_pm_thaw NULL
259 #define i2c_device_pm_poweroff NULL
260 #define i2c_device_pm_restore NULL
261 #endif /* !CONFIG_PM_SLEEP */
262
263 static void i2c_client_dev_release(struct device *dev)
264 {
265 kfree(to_i2c_client(dev));
266 }
267
268 static ssize_t
269 show_name(struct device *dev, struct device_attribute *attr, char *buf)
270 {
271 return sprintf(buf, "%s\n", dev->type == &i2c_client_type ?
272 to_i2c_client(dev)->name : to_i2c_adapter(dev)->name);
273 }
274
275 static ssize_t
276 show_modalias(struct device *dev, struct device_attribute *attr, char *buf)
277 {
278 struct i2c_client *client = to_i2c_client(dev);
279 return sprintf(buf, "%s%s\n", I2C_MODULE_PREFIX, client->name);
280 }
281
282 static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);
283 static DEVICE_ATTR(modalias, S_IRUGO, show_modalias, NULL);
284
285 static struct attribute *i2c_dev_attrs[] = {
286 &dev_attr_name.attr,
287 /* modalias helps coldplug: modprobe $(cat .../modalias) */
288 &dev_attr_modalias.attr,
289 NULL
290 };
291
292 static struct attribute_group i2c_dev_attr_group = {
293 .attrs = i2c_dev_attrs,
294 };
295
296 static const struct attribute_group *i2c_dev_attr_groups[] = {
297 &i2c_dev_attr_group,
298 NULL
299 };
300
301 static const struct dev_pm_ops i2c_device_pm_ops = {
302 .suspend = i2c_device_pm_suspend,
303 .resume = i2c_device_pm_resume,
304 .freeze = i2c_device_pm_freeze,
305 .thaw = i2c_device_pm_thaw,
306 .poweroff = i2c_device_pm_poweroff,
307 .restore = i2c_device_pm_restore,
308 SET_RUNTIME_PM_OPS(
309 pm_generic_runtime_suspend,
310 pm_generic_runtime_resume,
311 pm_generic_runtime_idle
312 )
313 };
314
315 struct bus_type i2c_bus_type = {
316 .name = "i2c",
317 .match = i2c_device_match,
318 .probe = i2c_device_probe,
319 .remove = i2c_device_remove,
320 .shutdown = i2c_device_shutdown,
321 .pm = &i2c_device_pm_ops,
322 };
323 EXPORT_SYMBOL_GPL(i2c_bus_type);
324
325 static struct device_type i2c_client_type = {
326 .groups = i2c_dev_attr_groups,
327 .uevent = i2c_device_uevent,
328 .release = i2c_client_dev_release,
329 };
330
331
332 /**
333 * i2c_verify_client - return parameter as i2c_client, or NULL
334 * @dev: device, probably from some driver model iterator
335 *
336 * When traversing the driver model tree, perhaps using driver model
337 * iterators like @device_for_each_child(), you can't assume very much
338 * about the nodes you find. Use this function to avoid oopses caused
339 * by wrongly treating some non-I2C device as an i2c_client.
340 */
341 struct i2c_client *i2c_verify_client(struct device *dev)
342 {
343 return (dev->type == &i2c_client_type)
344 ? to_i2c_client(dev)
345 : NULL;
346 }
347 EXPORT_SYMBOL(i2c_verify_client);
348
349
350 /* This is a permissive address validity check, I2C address map constraints
351 * are purposely not enforced, except for the general call address. */
352 static int i2c_check_client_addr_validity(const struct i2c_client *client)
353 {
354 if (client->flags & I2C_CLIENT_TEN) {
355 /* 10-bit address, all values are valid */
356 if (client->addr > 0x3ff)
357 return -EINVAL;
358 } else {
359 /* 7-bit address, reject the general call address */
360 if (client->addr == 0x00 || client->addr > 0x7f)
361 return -EINVAL;
362 }
363 return 0;
364 }
365
366 /* And this is a strict address validity check, used when probing. If a
367 * device uses a reserved address, then it shouldn't be probed. 7-bit
368 * addressing is assumed, 10-bit address devices are rare and should be
369 * explicitly enumerated. */
370 static int i2c_check_addr_validity(unsigned short addr)
371 {
372 /*
373 * Reserved addresses per I2C specification:
374 * 0x00 General call address / START byte
375 * 0x01 CBUS address
376 * 0x02 Reserved for different bus format
377 * 0x03 Reserved for future purposes
378 * 0x04-0x07 Hs-mode master code
379 * 0x78-0x7b 10-bit slave addressing
380 * 0x7c-0x7f Reserved for future purposes
381 */
382 if (addr < 0x08 || addr > 0x77)
383 return -EINVAL;
384 return 0;
385 }
386
387 static int __i2c_check_addr_busy(struct device *dev, void *addrp)
388 {
389 struct i2c_client *client = i2c_verify_client(dev);
390 int addr = *(int *)addrp;
391
392 if (client && client->addr == addr)
393 return -EBUSY;
394 return 0;
395 }
396
397 /* walk up mux tree */
398 static int i2c_check_mux_parents(struct i2c_adapter *adapter, int addr)
399 {
400 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
401 int result;
402
403 result = device_for_each_child(&adapter->dev, &addr,
404 __i2c_check_addr_busy);
405
406 if (!result && parent)
407 result = i2c_check_mux_parents(parent, addr);
408
409 return result;
410 }
411
412 /* recurse down mux tree */
413 static int i2c_check_mux_children(struct device *dev, void *addrp)
414 {
415 int result;
416
417 if (dev->type == &i2c_adapter_type)
418 result = device_for_each_child(dev, addrp,
419 i2c_check_mux_children);
420 else
421 result = __i2c_check_addr_busy(dev, addrp);
422
423 return result;
424 }
425
426 static int i2c_check_addr_busy(struct i2c_adapter *adapter, int addr)
427 {
428 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
429 int result = 0;
430
431 if (parent)
432 result = i2c_check_mux_parents(parent, addr);
433
434 if (!result)
435 result = device_for_each_child(&adapter->dev, &addr,
436 i2c_check_mux_children);
437
438 return result;
439 }
440
441 /**
442 * i2c_lock_adapter - Get exclusive access to an I2C bus segment
443 * @adapter: Target I2C bus segment
444 */
445 void i2c_lock_adapter(struct i2c_adapter *adapter)
446 {
447 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
448
449 if (parent)
450 i2c_lock_adapter(parent);
451 else
452 rt_mutex_lock(&adapter->bus_lock);
453 }
454 EXPORT_SYMBOL_GPL(i2c_lock_adapter);
455
456 /**
457 * i2c_trylock_adapter - Try to get exclusive access to an I2C bus segment
458 * @adapter: Target I2C bus segment
459 */
460 static int i2c_trylock_adapter(struct i2c_adapter *adapter)
461 {
462 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
463
464 if (parent)
465 return i2c_trylock_adapter(parent);
466 else
467 return rt_mutex_trylock(&adapter->bus_lock);
468 }
469
470 /**
471 * i2c_unlock_adapter - Release exclusive access to an I2C bus segment
472 * @adapter: Target I2C bus segment
473 */
474 void i2c_unlock_adapter(struct i2c_adapter *adapter)
475 {
476 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
477
478 if (parent)
479 i2c_unlock_adapter(parent);
480 else
481 rt_mutex_unlock(&adapter->bus_lock);
482 }
483 EXPORT_SYMBOL_GPL(i2c_unlock_adapter);
484
485 /**
486 * i2c_new_device - instantiate an i2c device
487 * @adap: the adapter managing the device
488 * @info: describes one I2C device; bus_num is ignored
489 * Context: can sleep
490 *
491 * Create an i2c device. Binding is handled through driver model
492 * probe()/remove() methods. A driver may be bound to this device when we
493 * return from this function, or any later moment (e.g. maybe hotplugging will
494 * load the driver module). This call is not appropriate for use by mainboard
495 * initialization logic, which usually runs during an arch_initcall() long
496 * before any i2c_adapter could exist.
497 *
498 * This returns the new i2c client, which may be saved for later use with
499 * i2c_unregister_device(); or NULL to indicate an error.
500 */
501 struct i2c_client *
502 i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info)
503 {
504 struct i2c_client *client;
505 int status;
506
507 client = kzalloc(sizeof *client, GFP_KERNEL);
508 if (!client)
509 return NULL;
510
511 client->adapter = adap;
512
513 client->dev.platform_data = info->platform_data;
514
515 if (info->archdata)
516 client->dev.archdata = *info->archdata;
517
518 client->flags = info->flags;
519 client->addr = info->addr;
520 client->irq = info->irq;
521
522 strlcpy(client->name, info->type, sizeof(client->name));
523
524 /* Check for address validity */
525 status = i2c_check_client_addr_validity(client);
526 if (status) {
527 dev_err(&adap->dev, "Invalid %d-bit I2C address 0x%02hx\n",
528 client->flags & I2C_CLIENT_TEN ? 10 : 7, client->addr);
529 goto out_err_silent;
530 }
531
532 /* Check for address business */
533 status = i2c_check_addr_busy(adap, client->addr);
534 if (status)
535 goto out_err;
536
537 client->dev.parent = &client->adapter->dev;
538 client->dev.bus = &i2c_bus_type;
539 client->dev.type = &i2c_client_type;
540 client->dev.of_node = info->of_node;
541
542 dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap),
543 client->addr);
544 status = device_register(&client->dev);
545 if (status)
546 goto out_err;
547
548 dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n",
549 client->name, dev_name(&client->dev));
550
551 return client;
552
553 out_err:
554 dev_err(&adap->dev, "Failed to register i2c client %s at 0x%02x "
555 "(%d)\n", client->name, client->addr, status);
556 out_err_silent:
557 kfree(client);
558 return NULL;
559 }
560 EXPORT_SYMBOL_GPL(i2c_new_device);
561
562
563 /**
564 * i2c_unregister_device - reverse effect of i2c_new_device()
565 * @client: value returned from i2c_new_device()
566 * Context: can sleep
567 */
568 void i2c_unregister_device(struct i2c_client *client)
569 {
570 device_unregister(&client->dev);
571 }
572 EXPORT_SYMBOL_GPL(i2c_unregister_device);
573
574
575 static const struct i2c_device_id dummy_id[] = {
576 { "dummy", 0 },
577 { },
578 };
579
580 static int dummy_probe(struct i2c_client *client,
581 const struct i2c_device_id *id)
582 {
583 return 0;
584 }
585
586 static int dummy_remove(struct i2c_client *client)
587 {
588 return 0;
589 }
590
591 static struct i2c_driver dummy_driver = {
592 .driver.name = "dummy",
593 .probe = dummy_probe,
594 .remove = dummy_remove,
595 .id_table = dummy_id,
596 };
597
598 /**
599 * i2c_new_dummy - return a new i2c device bound to a dummy driver
600 * @adapter: the adapter managing the device
601 * @address: seven bit address to be used
602 * Context: can sleep
603 *
604 * This returns an I2C client bound to the "dummy" driver, intended for use
605 * with devices that consume multiple addresses. Examples of such chips
606 * include various EEPROMS (like 24c04 and 24c08 models).
607 *
608 * These dummy devices have two main uses. First, most I2C and SMBus calls
609 * except i2c_transfer() need a client handle; the dummy will be that handle.
610 * And second, this prevents the specified address from being bound to a
611 * different driver.
612 *
613 * This returns the new i2c client, which should be saved for later use with
614 * i2c_unregister_device(); or NULL to indicate an error.
615 */
616 struct i2c_client *i2c_new_dummy(struct i2c_adapter *adapter, u16 address)
617 {
618 struct i2c_board_info info = {
619 I2C_BOARD_INFO("dummy", address),
620 };
621
622 return i2c_new_device(adapter, &info);
623 }
624 EXPORT_SYMBOL_GPL(i2c_new_dummy);
625
626 /* ------------------------------------------------------------------------- */
627
628 /* I2C bus adapters -- one roots each I2C or SMBUS segment */
629
630 static void i2c_adapter_dev_release(struct device *dev)
631 {
632 struct i2c_adapter *adap = to_i2c_adapter(dev);
633 complete(&adap->dev_released);
634 }
635
636 /*
637 * Let users instantiate I2C devices through sysfs. This can be used when
638 * platform initialization code doesn't contain the proper data for
639 * whatever reason. Also useful for drivers that do device detection and
640 * detection fails, either because the device uses an unexpected address,
641 * or this is a compatible device with different ID register values.
642 *
643 * Parameter checking may look overzealous, but we really don't want
644 * the user to provide incorrect parameters.
645 */
646 static ssize_t
647 i2c_sysfs_new_device(struct device *dev, struct device_attribute *attr,
648 const char *buf, size_t count)
649 {
650 struct i2c_adapter *adap = to_i2c_adapter(dev);
651 struct i2c_board_info info;
652 struct i2c_client *client;
653 char *blank, end;
654 int res;
655
656 memset(&info, 0, sizeof(struct i2c_board_info));
657
658 blank = strchr(buf, ' ');
659 if (!blank) {
660 dev_err(dev, "%s: Missing parameters\n", "new_device");
661 return -EINVAL;
662 }
663 if (blank - buf > I2C_NAME_SIZE - 1) {
664 dev_err(dev, "%s: Invalid device name\n", "new_device");
665 return -EINVAL;
666 }
667 memcpy(info.type, buf, blank - buf);
668
669 /* Parse remaining parameters, reject extra parameters */
670 res = sscanf(++blank, "%hi%c", &info.addr, &end);
671 if (res < 1) {
672 dev_err(dev, "%s: Can't parse I2C address\n", "new_device");
673 return -EINVAL;
674 }
675 if (res > 1 && end != '\n') {
676 dev_err(dev, "%s: Extra parameters\n", "new_device");
677 return -EINVAL;
678 }
679
680 client = i2c_new_device(adap, &info);
681 if (!client)
682 return -EINVAL;
683
684 /* Keep track of the added device */
685 mutex_lock(&adap->userspace_clients_lock);
686 list_add_tail(&client->detected, &adap->userspace_clients);
687 mutex_unlock(&adap->userspace_clients_lock);
688 dev_info(dev, "%s: Instantiated device %s at 0x%02hx\n", "new_device",
689 info.type, info.addr);
690
691 return count;
692 }
693
694 /*
695 * And of course let the users delete the devices they instantiated, if
696 * they got it wrong. This interface can only be used to delete devices
697 * instantiated by i2c_sysfs_new_device above. This guarantees that we
698 * don't delete devices to which some kernel code still has references.
699 *
700 * Parameter checking may look overzealous, but we really don't want
701 * the user to delete the wrong device.
702 */
703 static ssize_t
704 i2c_sysfs_delete_device(struct device *dev, struct device_attribute *attr,
705 const char *buf, size_t count)
706 {
707 struct i2c_adapter *adap = to_i2c_adapter(dev);
708 struct i2c_client *client, *next;
709 unsigned short addr;
710 char end;
711 int res;
712
713 /* Parse parameters, reject extra parameters */
714 res = sscanf(buf, "%hi%c", &addr, &end);
715 if (res < 1) {
716 dev_err(dev, "%s: Can't parse I2C address\n", "delete_device");
717 return -EINVAL;
718 }
719 if (res > 1 && end != '\n') {
720 dev_err(dev, "%s: Extra parameters\n", "delete_device");
721 return -EINVAL;
722 }
723
724 /* Make sure the device was added through sysfs */
725 res = -ENOENT;
726 mutex_lock(&adap->userspace_clients_lock);
727 list_for_each_entry_safe(client, next, &adap->userspace_clients,
728 detected) {
729 if (client->addr == addr) {
730 dev_info(dev, "%s: Deleting device %s at 0x%02hx\n",
731 "delete_device", client->name, client->addr);
732
733 list_del(&client->detected);
734 i2c_unregister_device(client);
735 res = count;
736 break;
737 }
738 }
739 mutex_unlock(&adap->userspace_clients_lock);
740
741 if (res < 0)
742 dev_err(dev, "%s: Can't find device in list\n",
743 "delete_device");
744 return res;
745 }
746
747 static DEVICE_ATTR(new_device, S_IWUSR, NULL, i2c_sysfs_new_device);
748 static DEVICE_ATTR(delete_device, S_IWUSR, NULL, i2c_sysfs_delete_device);
749
750 static struct attribute *i2c_adapter_attrs[] = {
751 &dev_attr_name.attr,
752 &dev_attr_new_device.attr,
753 &dev_attr_delete_device.attr,
754 NULL
755 };
756
757 static struct attribute_group i2c_adapter_attr_group = {
758 .attrs = i2c_adapter_attrs,
759 };
760
761 static const struct attribute_group *i2c_adapter_attr_groups[] = {
762 &i2c_adapter_attr_group,
763 NULL
764 };
765
766 struct device_type i2c_adapter_type = {
767 .groups = i2c_adapter_attr_groups,
768 .release = i2c_adapter_dev_release,
769 };
770 EXPORT_SYMBOL_GPL(i2c_adapter_type);
771
772 #ifdef CONFIG_I2C_COMPAT
773 static struct class_compat *i2c_adapter_compat_class;
774 #endif
775
776 static void i2c_scan_static_board_info(struct i2c_adapter *adapter)
777 {
778 struct i2c_devinfo *devinfo;
779
780 down_read(&__i2c_board_lock);
781 list_for_each_entry(devinfo, &__i2c_board_list, list) {
782 if (devinfo->busnum == adapter->nr
783 && !i2c_new_device(adapter,
784 &devinfo->board_info))
785 dev_err(&adapter->dev,
786 "Can't create device at 0x%02x\n",
787 devinfo->board_info.addr);
788 }
789 up_read(&__i2c_board_lock);
790 }
791
792 static int i2c_do_add_adapter(struct i2c_driver *driver,
793 struct i2c_adapter *adap)
794 {
795 /* Detect supported devices on that bus, and instantiate them */
796 i2c_detect(adap, driver);
797
798 /* Let legacy drivers scan this bus for matching devices */
799 if (driver->attach_adapter) {
800 dev_warn(&adap->dev, "%s: attach_adapter method is deprecated\n",
801 driver->driver.name);
802 dev_warn(&adap->dev, "Please use another way to instantiate "
803 "your i2c_client\n");
804 /* We ignore the return code; if it fails, too bad */
805 driver->attach_adapter(adap);
806 }
807 return 0;
808 }
809
810 static int __process_new_adapter(struct device_driver *d, void *data)
811 {
812 return i2c_do_add_adapter(to_i2c_driver(d), data);
813 }
814
815 static int i2c_register_adapter(struct i2c_adapter *adap)
816 {
817 int res = 0;
818
819 /* Can't register until after driver model init */
820 if (unlikely(WARN_ON(!i2c_bus_type.p))) {
821 res = -EAGAIN;
822 goto out_list;
823 }
824
825 /* Sanity checks */
826 if (unlikely(adap->name[0] == '\0')) {
827 pr_err("i2c-core: Attempt to register an adapter with "
828 "no name!\n");
829 return -EINVAL;
830 }
831 if (unlikely(!adap->algo)) {
832 pr_err("i2c-core: Attempt to register adapter '%s' with "
833 "no algo!\n", adap->name);
834 return -EINVAL;
835 }
836
837 rt_mutex_init(&adap->bus_lock);
838 mutex_init(&adap->userspace_clients_lock);
839 INIT_LIST_HEAD(&adap->userspace_clients);
840
841 /* Set default timeout to 1 second if not already set */
842 if (adap->timeout == 0)
843 adap->timeout = HZ;
844
845 dev_set_name(&adap->dev, "i2c-%d", adap->nr);
846 adap->dev.bus = &i2c_bus_type;
847 adap->dev.type = &i2c_adapter_type;
848 res = device_register(&adap->dev);
849 if (res)
850 goto out_list;
851
852 dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name);
853
854 #ifdef CONFIG_I2C_COMPAT
855 res = class_compat_create_link(i2c_adapter_compat_class, &adap->dev,
856 adap->dev.parent);
857 if (res)
858 dev_warn(&adap->dev,
859 "Failed to create compatibility class link\n");
860 #endif
861
862 /* create pre-declared device nodes */
863 if (adap->nr < __i2c_first_dynamic_bus_num)
864 i2c_scan_static_board_info(adap);
865
866 /* Notify drivers */
867 mutex_lock(&core_lock);
868 bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter);
869 mutex_unlock(&core_lock);
870
871 return 0;
872
873 out_list:
874 mutex_lock(&core_lock);
875 idr_remove(&i2c_adapter_idr, adap->nr);
876 mutex_unlock(&core_lock);
877 return res;
878 }
879
880 /**
881 * i2c_add_adapter - declare i2c adapter, use dynamic bus number
882 * @adapter: the adapter to add
883 * Context: can sleep
884 *
885 * This routine is used to declare an I2C adapter when its bus number
886 * doesn't matter. Examples: for I2C adapters dynamically added by
887 * USB links or PCI plugin cards.
888 *
889 * When this returns zero, a new bus number was allocated and stored
890 * in adap->nr, and the specified adapter became available for clients.
891 * Otherwise, a negative errno value is returned.
892 */
893 int i2c_add_adapter(struct i2c_adapter *adapter)
894 {
895 int id, res = 0;
896
897 retry:
898 if (idr_pre_get(&i2c_adapter_idr, GFP_KERNEL) == 0)
899 return -ENOMEM;
900
901 mutex_lock(&core_lock);
902 /* "above" here means "above or equal to", sigh */
903 res = idr_get_new_above(&i2c_adapter_idr, adapter,
904 __i2c_first_dynamic_bus_num, &id);
905 mutex_unlock(&core_lock);
906
907 if (res < 0) {
908 if (res == -EAGAIN)
909 goto retry;
910 return res;
911 }
912
913 adapter->nr = id;
914 return i2c_register_adapter(adapter);
915 }
916 EXPORT_SYMBOL(i2c_add_adapter);
917
918 /**
919 * i2c_add_numbered_adapter - declare i2c adapter, use static bus number
920 * @adap: the adapter to register (with adap->nr initialized)
921 * Context: can sleep
922 *
923 * This routine is used to declare an I2C adapter when its bus number
924 * matters. For example, use it for I2C adapters from system-on-chip CPUs,
925 * or otherwise built in to the system's mainboard, and where i2c_board_info
926 * is used to properly configure I2C devices.
927 *
928 * If no devices have pre-been declared for this bus, then be sure to
929 * register the adapter before any dynamically allocated ones. Otherwise
930 * the required bus ID may not be available.
931 *
932 * When this returns zero, the specified adapter became available for
933 * clients using the bus number provided in adap->nr. Also, the table
934 * of I2C devices pre-declared using i2c_register_board_info() is scanned,
935 * and the appropriate driver model device nodes are created. Otherwise, a
936 * negative errno value is returned.
937 */
938 int i2c_add_numbered_adapter(struct i2c_adapter *adap)
939 {
940 int id;
941 int status;
942
943 if (adap->nr & ~MAX_ID_MASK)
944 return -EINVAL;
945
946 retry:
947 if (idr_pre_get(&i2c_adapter_idr, GFP_KERNEL) == 0)
948 return -ENOMEM;
949
950 mutex_lock(&core_lock);
951 /* "above" here means "above or equal to", sigh;
952 * we need the "equal to" result to force the result
953 */
954 status = idr_get_new_above(&i2c_adapter_idr, adap, adap->nr, &id);
955 if (status == 0 && id != adap->nr) {
956 status = -EBUSY;
957 idr_remove(&i2c_adapter_idr, id);
958 }
959 mutex_unlock(&core_lock);
960 if (status == -EAGAIN)
961 goto retry;
962
963 if (status == 0)
964 status = i2c_register_adapter(adap);
965 return status;
966 }
967 EXPORT_SYMBOL_GPL(i2c_add_numbered_adapter);
968
969 static int i2c_do_del_adapter(struct i2c_driver *driver,
970 struct i2c_adapter *adapter)
971 {
972 struct i2c_client *client, *_n;
973 int res;
974
975 /* Remove the devices we created ourselves as the result of hardware
976 * probing (using a driver's detect method) */
977 list_for_each_entry_safe(client, _n, &driver->clients, detected) {
978 if (client->adapter == adapter) {
979 dev_dbg(&adapter->dev, "Removing %s at 0x%x\n",
980 client->name, client->addr);
981 list_del(&client->detected);
982 i2c_unregister_device(client);
983 }
984 }
985
986 if (!driver->detach_adapter)
987 return 0;
988 dev_warn(&adapter->dev, "%s: detach_adapter method is deprecated\n",
989 driver->driver.name);
990 res = driver->detach_adapter(adapter);
991 if (res)
992 dev_err(&adapter->dev, "detach_adapter failed (%d) "
993 "for driver [%s]\n", res, driver->driver.name);
994 return res;
995 }
996
997 static int __unregister_client(struct device *dev, void *dummy)
998 {
999 struct i2c_client *client = i2c_verify_client(dev);
1000 if (client && strcmp(client->name, "dummy"))
1001 i2c_unregister_device(client);
1002 return 0;
1003 }
1004
1005 static int __unregister_dummy(struct device *dev, void *dummy)
1006 {
1007 struct i2c_client *client = i2c_verify_client(dev);
1008 if (client)
1009 i2c_unregister_device(client);
1010 return 0;
1011 }
1012
1013 static int __process_removed_adapter(struct device_driver *d, void *data)
1014 {
1015 return i2c_do_del_adapter(to_i2c_driver(d), data);
1016 }
1017
1018 /**
1019 * i2c_del_adapter - unregister I2C adapter
1020 * @adap: the adapter being unregistered
1021 * Context: can sleep
1022 *
1023 * This unregisters an I2C adapter which was previously registered
1024 * by @i2c_add_adapter or @i2c_add_numbered_adapter.
1025 */
1026 int i2c_del_adapter(struct i2c_adapter *adap)
1027 {
1028 int res = 0;
1029 struct i2c_adapter *found;
1030 struct i2c_client *client, *next;
1031
1032 /* First make sure that this adapter was ever added */
1033 mutex_lock(&core_lock);
1034 found = idr_find(&i2c_adapter_idr, adap->nr);
1035 mutex_unlock(&core_lock);
1036 if (found != adap) {
1037 pr_debug("i2c-core: attempting to delete unregistered "
1038 "adapter [%s]\n", adap->name);
1039 return -EINVAL;
1040 }
1041
1042 /* Tell drivers about this removal */
1043 mutex_lock(&core_lock);
1044 res = bus_for_each_drv(&i2c_bus_type, NULL, adap,
1045 __process_removed_adapter);
1046 mutex_unlock(&core_lock);
1047 if (res)
1048 return res;
1049
1050 /* Remove devices instantiated from sysfs */
1051 mutex_lock(&adap->userspace_clients_lock);
1052 list_for_each_entry_safe(client, next, &adap->userspace_clients,
1053 detected) {
1054 dev_dbg(&adap->dev, "Removing %s at 0x%x\n", client->name,
1055 client->addr);
1056 list_del(&client->detected);
1057 i2c_unregister_device(client);
1058 }
1059 mutex_unlock(&adap->userspace_clients_lock);
1060
1061 /* Detach any active clients. This can't fail, thus we do not
1062 * check the returned value. This is a two-pass process, because
1063 * we can't remove the dummy devices during the first pass: they
1064 * could have been instantiated by real devices wishing to clean
1065 * them up properly, so we give them a chance to do that first. */
1066 res = device_for_each_child(&adap->dev, NULL, __unregister_client);
1067 res = device_for_each_child(&adap->dev, NULL, __unregister_dummy);
1068
1069 #ifdef CONFIG_I2C_COMPAT
1070 class_compat_remove_link(i2c_adapter_compat_class, &adap->dev,
1071 adap->dev.parent);
1072 #endif
1073
1074 /* device name is gone after device_unregister */
1075 dev_dbg(&adap->dev, "adapter [%s] unregistered\n", adap->name);
1076
1077 /* clean up the sysfs representation */
1078 init_completion(&adap->dev_released);
1079 device_unregister(&adap->dev);
1080
1081 /* wait for sysfs to drop all references */
1082 wait_for_completion(&adap->dev_released);
1083
1084 /* free bus id */
1085 mutex_lock(&core_lock);
1086 idr_remove(&i2c_adapter_idr, adap->nr);
1087 mutex_unlock(&core_lock);
1088
1089 /* Clear the device structure in case this adapter is ever going to be
1090 added again */
1091 memset(&adap->dev, 0, sizeof(adap->dev));
1092
1093 return 0;
1094 }
1095 EXPORT_SYMBOL(i2c_del_adapter);
1096
1097
1098 /* ------------------------------------------------------------------------- */
1099
1100 int i2c_for_each_dev(void *data, int (*fn)(struct device *, void *))
1101 {
1102 int res;
1103
1104 mutex_lock(&core_lock);
1105 res = bus_for_each_dev(&i2c_bus_type, NULL, data, fn);
1106 mutex_unlock(&core_lock);
1107
1108 return res;
1109 }
1110 EXPORT_SYMBOL_GPL(i2c_for_each_dev);
1111
1112 static int __process_new_driver(struct device *dev, void *data)
1113 {
1114 if (dev->type != &i2c_adapter_type)
1115 return 0;
1116 return i2c_do_add_adapter(data, to_i2c_adapter(dev));
1117 }
1118
1119 /*
1120 * An i2c_driver is used with one or more i2c_client (device) nodes to access
1121 * i2c slave chips, on a bus instance associated with some i2c_adapter.
1122 */
1123
1124 int i2c_register_driver(struct module *owner, struct i2c_driver *driver)
1125 {
1126 int res;
1127
1128 /* Can't register until after driver model init */
1129 if (unlikely(WARN_ON(!i2c_bus_type.p)))
1130 return -EAGAIN;
1131
1132 /* add the driver to the list of i2c drivers in the driver core */
1133 driver->driver.owner = owner;
1134 driver->driver.bus = &i2c_bus_type;
1135
1136 /* When registration returns, the driver core
1137 * will have called probe() for all matching-but-unbound devices.
1138 */
1139 res = driver_register(&driver->driver);
1140 if (res)
1141 return res;
1142
1143 /* Drivers should switch to dev_pm_ops instead. */
1144 if (driver->suspend)
1145 pr_warn("i2c-core: driver [%s] using legacy suspend method\n",
1146 driver->driver.name);
1147 if (driver->resume)
1148 pr_warn("i2c-core: driver [%s] using legacy resume method\n",
1149 driver->driver.name);
1150
1151 pr_debug("i2c-core: driver [%s] registered\n", driver->driver.name);
1152
1153 INIT_LIST_HEAD(&driver->clients);
1154 /* Walk the adapters that are already present */
1155 i2c_for_each_dev(driver, __process_new_driver);
1156
1157 return 0;
1158 }
1159 EXPORT_SYMBOL(i2c_register_driver);
1160
1161 static int __process_removed_driver(struct device *dev, void *data)
1162 {
1163 if (dev->type != &i2c_adapter_type)
1164 return 0;
1165 return i2c_do_del_adapter(data, to_i2c_adapter(dev));
1166 }
1167
1168 /**
1169 * i2c_del_driver - unregister I2C driver
1170 * @driver: the driver being unregistered
1171 * Context: can sleep
1172 */
1173 void i2c_del_driver(struct i2c_driver *driver)
1174 {
1175 i2c_for_each_dev(driver, __process_removed_driver);
1176
1177 driver_unregister(&driver->driver);
1178 pr_debug("i2c-core: driver [%s] unregistered\n", driver->driver.name);
1179 }
1180 EXPORT_SYMBOL(i2c_del_driver);
1181
1182 /* ------------------------------------------------------------------------- */
1183
1184 /**
1185 * i2c_use_client - increments the reference count of the i2c client structure
1186 * @client: the client being referenced
1187 *
1188 * Each live reference to a client should be refcounted. The driver model does
1189 * that automatically as part of driver binding, so that most drivers don't
1190 * need to do this explicitly: they hold a reference until they're unbound
1191 * from the device.
1192 *
1193 * A pointer to the client with the incremented reference counter is returned.
1194 */
1195 struct i2c_client *i2c_use_client(struct i2c_client *client)
1196 {
1197 if (client && get_device(&client->dev))
1198 return client;
1199 return NULL;
1200 }
1201 EXPORT_SYMBOL(i2c_use_client);
1202
1203 /**
1204 * i2c_release_client - release a use of the i2c client structure
1205 * @client: the client being no longer referenced
1206 *
1207 * Must be called when a user of a client is finished with it.
1208 */
1209 void i2c_release_client(struct i2c_client *client)
1210 {
1211 if (client)
1212 put_device(&client->dev);
1213 }
1214 EXPORT_SYMBOL(i2c_release_client);
1215
1216 struct i2c_cmd_arg {
1217 unsigned cmd;
1218 void *arg;
1219 };
1220
1221 static int i2c_cmd(struct device *dev, void *_arg)
1222 {
1223 struct i2c_client *client = i2c_verify_client(dev);
1224 struct i2c_cmd_arg *arg = _arg;
1225
1226 if (client && client->driver && client->driver->command)
1227 client->driver->command(client, arg->cmd, arg->arg);
1228 return 0;
1229 }
1230
1231 void i2c_clients_command(struct i2c_adapter *adap, unsigned int cmd, void *arg)
1232 {
1233 struct i2c_cmd_arg cmd_arg;
1234
1235 cmd_arg.cmd = cmd;
1236 cmd_arg.arg = arg;
1237 device_for_each_child(&adap->dev, &cmd_arg, i2c_cmd);
1238 }
1239 EXPORT_SYMBOL(i2c_clients_command);
1240
1241 static int __init i2c_init(void)
1242 {
1243 int retval;
1244
1245 retval = bus_register(&i2c_bus_type);
1246 if (retval)
1247 return retval;
1248 #ifdef CONFIG_I2C_COMPAT
1249 i2c_adapter_compat_class = class_compat_register("i2c-adapter");
1250 if (!i2c_adapter_compat_class) {
1251 retval = -ENOMEM;
1252 goto bus_err;
1253 }
1254 #endif
1255 retval = i2c_add_driver(&dummy_driver);
1256 if (retval)
1257 goto class_err;
1258 return 0;
1259
1260 class_err:
1261 #ifdef CONFIG_I2C_COMPAT
1262 class_compat_unregister(i2c_adapter_compat_class);
1263 bus_err:
1264 #endif
1265 bus_unregister(&i2c_bus_type);
1266 return retval;
1267 }
1268
1269 static void __exit i2c_exit(void)
1270 {
1271 i2c_del_driver(&dummy_driver);
1272 #ifdef CONFIG_I2C_COMPAT
1273 class_compat_unregister(i2c_adapter_compat_class);
1274 #endif
1275 bus_unregister(&i2c_bus_type);
1276 }
1277
1278 /* We must initialize early, because some subsystems register i2c drivers
1279 * in subsys_initcall() code, but are linked (and initialized) before i2c.
1280 */
1281 postcore_initcall(i2c_init);
1282 module_exit(i2c_exit);
1283
1284 /* ----------------------------------------------------
1285 * the functional interface to the i2c busses.
1286 * ----------------------------------------------------
1287 */
1288
1289 /**
1290 * i2c_transfer - execute a single or combined I2C message
1291 * @adap: Handle to I2C bus
1292 * @msgs: One or more messages to execute before STOP is issued to
1293 * terminate the operation; each message begins with a START.
1294 * @num: Number of messages to be executed.
1295 *
1296 * Returns negative errno, else the number of messages executed.
1297 *
1298 * Note that there is no requirement that each message be sent to
1299 * the same slave address, although that is the most common model.
1300 */
1301 int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
1302 {
1303 unsigned long orig_jiffies;
1304 int ret, try;
1305
1306 /* REVISIT the fault reporting model here is weak:
1307 *
1308 * - When we get an error after receiving N bytes from a slave,
1309 * there is no way to report "N".
1310 *
1311 * - When we get a NAK after transmitting N bytes to a slave,
1312 * there is no way to report "N" ... or to let the master
1313 * continue executing the rest of this combined message, if
1314 * that's the appropriate response.
1315 *
1316 * - When for example "num" is two and we successfully complete
1317 * the first message but get an error part way through the
1318 * second, it's unclear whether that should be reported as
1319 * one (discarding status on the second message) or errno
1320 * (discarding status on the first one).
1321 */
1322
1323 if (adap->algo->master_xfer) {
1324 #ifdef DEBUG
1325 for (ret = 0; ret < num; ret++) {
1326 dev_dbg(&adap->dev, "master_xfer[%d] %c, addr=0x%02x, "
1327 "len=%d%s\n", ret, (msgs[ret].flags & I2C_M_RD)
1328 ? 'R' : 'W', msgs[ret].addr, msgs[ret].len,
1329 (msgs[ret].flags & I2C_M_RECV_LEN) ? "+" : "");
1330 }
1331 #endif
1332
1333 if (in_atomic() || irqs_disabled()) {
1334 ret = i2c_trylock_adapter(adap);
1335 if (!ret)
1336 /* I2C activity is ongoing. */
1337 return -EAGAIN;
1338 } else {
1339 i2c_lock_adapter(adap);
1340 }
1341
1342 /* Retry automatically on arbitration loss */
1343 orig_jiffies = jiffies;
1344 for (ret = 0, try = 0; try <= adap->retries; try++) {
1345 ret = adap->algo->master_xfer(adap, msgs, num);
1346 if (ret != -EAGAIN)
1347 break;
1348 if (time_after(jiffies, orig_jiffies + adap->timeout))
1349 break;
1350 }
1351 i2c_unlock_adapter(adap);
1352
1353 return ret;
1354 } else {
1355 dev_dbg(&adap->dev, "I2C level transfers not supported\n");
1356 return -EOPNOTSUPP;
1357 }
1358 }
1359 EXPORT_SYMBOL(i2c_transfer);
1360
1361 /**
1362 * i2c_master_send - issue a single I2C message in master transmit mode
1363 * @client: Handle to slave device
1364 * @buf: Data that will be written to the slave
1365 * @count: How many bytes to write, must be less than 64k since msg.len is u16
1366 *
1367 * Returns negative errno, or else the number of bytes written.
1368 */
1369 int i2c_master_send(const struct i2c_client *client, const char *buf, int count)
1370 {
1371 int ret;
1372 struct i2c_adapter *adap = client->adapter;
1373 struct i2c_msg msg;
1374
1375 msg.addr = client->addr;
1376 msg.flags = client->flags & I2C_M_TEN;
1377 msg.len = count;
1378 msg.buf = (char *)buf;
1379
1380 ret = i2c_transfer(adap, &msg, 1);
1381
1382 /* If everything went ok (i.e. 1 msg transmitted), return #bytes
1383 transmitted, else error code. */
1384 return (ret == 1) ? count : ret;
1385 }
1386 EXPORT_SYMBOL(i2c_master_send);
1387
1388 /**
1389 * i2c_master_recv - issue a single I2C message in master receive mode
1390 * @client: Handle to slave device
1391 * @buf: Where to store data read from slave
1392 * @count: How many bytes to read, must be less than 64k since msg.len is u16
1393 *
1394 * Returns negative errno, or else the number of bytes read.
1395 */
1396 int i2c_master_recv(const struct i2c_client *client, char *buf, int count)
1397 {
1398 struct i2c_adapter *adap = client->adapter;
1399 struct i2c_msg msg;
1400 int ret;
1401
1402 msg.addr = client->addr;
1403 msg.flags = client->flags & I2C_M_TEN;
1404 msg.flags |= I2C_M_RD;
1405 msg.len = count;
1406 msg.buf = buf;
1407
1408 ret = i2c_transfer(adap, &msg, 1);
1409
1410 /* If everything went ok (i.e. 1 msg transmitted), return #bytes
1411 transmitted, else error code. */
1412 return (ret == 1) ? count : ret;
1413 }
1414 EXPORT_SYMBOL(i2c_master_recv);
1415
1416 /* ----------------------------------------------------
1417 * the i2c address scanning function
1418 * Will not work for 10-bit addresses!
1419 * ----------------------------------------------------
1420 */
1421
1422 /*
1423 * Legacy default probe function, mostly relevant for SMBus. The default
1424 * probe method is a quick write, but it is known to corrupt the 24RF08
1425 * EEPROMs due to a state machine bug, and could also irreversibly
1426 * write-protect some EEPROMs, so for address ranges 0x30-0x37 and 0x50-0x5f,
1427 * we use a short byte read instead. Also, some bus drivers don't implement
1428 * quick write, so we fallback to a byte read in that case too.
1429 * On x86, there is another special case for FSC hardware monitoring chips,
1430 * which want regular byte reads (address 0x73.) Fortunately, these are the
1431 * only known chips using this I2C address on PC hardware.
1432 * Returns 1 if probe succeeded, 0 if not.
1433 */
1434 static int i2c_default_probe(struct i2c_adapter *adap, unsigned short addr)
1435 {
1436 int err;
1437 union i2c_smbus_data dummy;
1438
1439 #ifdef CONFIG_X86
1440 if (addr == 0x73 && (adap->class & I2C_CLASS_HWMON)
1441 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE_DATA))
1442 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
1443 I2C_SMBUS_BYTE_DATA, &dummy);
1444 else
1445 #endif
1446 if (!((addr & ~0x07) == 0x30 || (addr & ~0x0f) == 0x50)
1447 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_QUICK))
1448 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_WRITE, 0,
1449 I2C_SMBUS_QUICK, NULL);
1450 else if (i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE))
1451 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
1452 I2C_SMBUS_BYTE, &dummy);
1453 else {
1454 dev_warn(&adap->dev, "No suitable probing method supported\n");
1455 err = -EOPNOTSUPP;
1456 }
1457
1458 return err >= 0;
1459 }
1460
1461 static int i2c_detect_address(struct i2c_client *temp_client,
1462 struct i2c_driver *driver)
1463 {
1464 struct i2c_board_info info;
1465 struct i2c_adapter *adapter = temp_client->adapter;
1466 int addr = temp_client->addr;
1467 int err;
1468
1469 /* Make sure the address is valid */
1470 err = i2c_check_addr_validity(addr);
1471 if (err) {
1472 dev_warn(&adapter->dev, "Invalid probe address 0x%02x\n",
1473 addr);
1474 return err;
1475 }
1476
1477 /* Skip if already in use */
1478 if (i2c_check_addr_busy(adapter, addr))
1479 return 0;
1480
1481 /* Make sure there is something at this address */
1482 if (!i2c_default_probe(adapter, addr))
1483 return 0;
1484
1485 /* Finally call the custom detection function */
1486 memset(&info, 0, sizeof(struct i2c_board_info));
1487 info.addr = addr;
1488 err = driver->detect(temp_client, &info);
1489 if (err) {
1490 /* -ENODEV is returned if the detection fails. We catch it
1491 here as this isn't an error. */
1492 return err == -ENODEV ? 0 : err;
1493 }
1494
1495 /* Consistency check */
1496 if (info.type[0] == '\0') {
1497 dev_err(&adapter->dev, "%s detection function provided "
1498 "no name for 0x%x\n", driver->driver.name,
1499 addr);
1500 } else {
1501 struct i2c_client *client;
1502
1503 /* Detection succeeded, instantiate the device */
1504 dev_dbg(&adapter->dev, "Creating %s at 0x%02x\n",
1505 info.type, info.addr);
1506 client = i2c_new_device(adapter, &info);
1507 if (client)
1508 list_add_tail(&client->detected, &driver->clients);
1509 else
1510 dev_err(&adapter->dev, "Failed creating %s at 0x%02x\n",
1511 info.type, info.addr);
1512 }
1513 return 0;
1514 }
1515
1516 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver)
1517 {
1518 const unsigned short *address_list;
1519 struct i2c_client *temp_client;
1520 int i, err = 0;
1521 int adap_id = i2c_adapter_id(adapter);
1522
1523 address_list = driver->address_list;
1524 if (!driver->detect || !address_list)
1525 return 0;
1526
1527 /* Stop here if the classes do not match */
1528 if (!(adapter->class & driver->class))
1529 return 0;
1530
1531 /* Set up a temporary client to help detect callback */
1532 temp_client = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
1533 if (!temp_client)
1534 return -ENOMEM;
1535 temp_client->adapter = adapter;
1536
1537 for (i = 0; address_list[i] != I2C_CLIENT_END; i += 1) {
1538 dev_dbg(&adapter->dev, "found normal entry for adapter %d, "
1539 "addr 0x%02x\n", adap_id, address_list[i]);
1540 temp_client->addr = address_list[i];
1541 err = i2c_detect_address(temp_client, driver);
1542 if (unlikely(err))
1543 break;
1544 }
1545
1546 kfree(temp_client);
1547 return err;
1548 }
1549
1550 int i2c_probe_func_quick_read(struct i2c_adapter *adap, unsigned short addr)
1551 {
1552 return i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
1553 I2C_SMBUS_QUICK, NULL) >= 0;
1554 }
1555 EXPORT_SYMBOL_GPL(i2c_probe_func_quick_read);
1556
1557 struct i2c_client *
1558 i2c_new_probed_device(struct i2c_adapter *adap,
1559 struct i2c_board_info *info,
1560 unsigned short const *addr_list,
1561 int (*probe)(struct i2c_adapter *, unsigned short addr))
1562 {
1563 int i;
1564
1565 if (!probe)
1566 probe = i2c_default_probe;
1567
1568 for (i = 0; addr_list[i] != I2C_CLIENT_END; i++) {
1569 /* Check address validity */
1570 if (i2c_check_addr_validity(addr_list[i]) < 0) {
1571 dev_warn(&adap->dev, "Invalid 7-bit address "
1572 "0x%02x\n", addr_list[i]);
1573 continue;
1574 }
1575
1576 /* Check address availability */
1577 if (i2c_check_addr_busy(adap, addr_list[i])) {
1578 dev_dbg(&adap->dev, "Address 0x%02x already in "
1579 "use, not probing\n", addr_list[i]);
1580 continue;
1581 }
1582
1583 /* Test address responsiveness */
1584 if (probe(adap, addr_list[i]))
1585 break;
1586 }
1587
1588 if (addr_list[i] == I2C_CLIENT_END) {
1589 dev_dbg(&adap->dev, "Probing failed, no device found\n");
1590 return NULL;
1591 }
1592
1593 info->addr = addr_list[i];
1594 return i2c_new_device(adap, info);
1595 }
1596 EXPORT_SYMBOL_GPL(i2c_new_probed_device);
1597
1598 struct i2c_adapter *i2c_get_adapter(int nr)
1599 {
1600 struct i2c_adapter *adapter;
1601
1602 mutex_lock(&core_lock);
1603 adapter = idr_find(&i2c_adapter_idr, nr);
1604 if (adapter && !try_module_get(adapter->owner))
1605 adapter = NULL;
1606
1607 mutex_unlock(&core_lock);
1608 return adapter;
1609 }
1610 EXPORT_SYMBOL(i2c_get_adapter);
1611
1612 void i2c_put_adapter(struct i2c_adapter *adap)
1613 {
1614 module_put(adap->owner);
1615 }
1616 EXPORT_SYMBOL(i2c_put_adapter);
1617
1618 /* The SMBus parts */
1619
1620 #define POLY (0x1070U << 3)
1621 static u8 crc8(u16 data)
1622 {
1623 int i;
1624
1625 for (i = 0; i < 8; i++) {
1626 if (data & 0x8000)
1627 data = data ^ POLY;
1628 data = data << 1;
1629 }
1630 return (u8)(data >> 8);
1631 }
1632
1633 /* Incremental CRC8 over count bytes in the array pointed to by p */
1634 static u8 i2c_smbus_pec(u8 crc, u8 *p, size_t count)
1635 {
1636 int i;
1637
1638 for (i = 0; i < count; i++)
1639 crc = crc8((crc ^ p[i]) << 8);
1640 return crc;
1641 }
1642
1643 /* Assume a 7-bit address, which is reasonable for SMBus */
1644 static u8 i2c_smbus_msg_pec(u8 pec, struct i2c_msg *msg)
1645 {
1646 /* The address will be sent first */
1647 u8 addr = (msg->addr << 1) | !!(msg->flags & I2C_M_RD);
1648 pec = i2c_smbus_pec(pec, &addr, 1);
1649
1650 /* The data buffer follows */
1651 return i2c_smbus_pec(pec, msg->buf, msg->len);
1652 }
1653
1654 /* Used for write only transactions */
1655 static inline void i2c_smbus_add_pec(struct i2c_msg *msg)
1656 {
1657 msg->buf[msg->len] = i2c_smbus_msg_pec(0, msg);
1658 msg->len++;
1659 }
1660
1661 /* Return <0 on CRC error
1662 If there was a write before this read (most cases) we need to take the
1663 partial CRC from the write part into account.
1664 Note that this function does modify the message (we need to decrease the
1665 message length to hide the CRC byte from the caller). */
1666 static int i2c_smbus_check_pec(u8 cpec, struct i2c_msg *msg)
1667 {
1668 u8 rpec = msg->buf[--msg->len];
1669 cpec = i2c_smbus_msg_pec(cpec, msg);
1670
1671 if (rpec != cpec) {
1672 pr_debug("i2c-core: Bad PEC 0x%02x vs. 0x%02x\n",
1673 rpec, cpec);
1674 return -EBADMSG;
1675 }
1676 return 0;
1677 }
1678
1679 /**
1680 * i2c_smbus_read_byte - SMBus "receive byte" protocol
1681 * @client: Handle to slave device
1682 *
1683 * This executes the SMBus "receive byte" protocol, returning negative errno
1684 * else the byte received from the device.
1685 */
1686 s32 i2c_smbus_read_byte(const struct i2c_client *client)
1687 {
1688 union i2c_smbus_data data;
1689 int status;
1690
1691 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1692 I2C_SMBUS_READ, 0,
1693 I2C_SMBUS_BYTE, &data);
1694 return (status < 0) ? status : data.byte;
1695 }
1696 EXPORT_SYMBOL(i2c_smbus_read_byte);
1697
1698 /**
1699 * i2c_smbus_write_byte - SMBus "send byte" protocol
1700 * @client: Handle to slave device
1701 * @value: Byte to be sent
1702 *
1703 * This executes the SMBus "send byte" protocol, returning negative errno
1704 * else zero on success.
1705 */
1706 s32 i2c_smbus_write_byte(const struct i2c_client *client, u8 value)
1707 {
1708 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1709 I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
1710 }
1711 EXPORT_SYMBOL(i2c_smbus_write_byte);
1712
1713 /**
1714 * i2c_smbus_read_byte_data - SMBus "read byte" protocol
1715 * @client: Handle to slave device
1716 * @command: Byte interpreted by slave
1717 *
1718 * This executes the SMBus "read byte" protocol, returning negative errno
1719 * else a data byte received from the device.
1720 */
1721 s32 i2c_smbus_read_byte_data(const struct i2c_client *client, u8 command)
1722 {
1723 union i2c_smbus_data data;
1724 int status;
1725
1726 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1727 I2C_SMBUS_READ, command,
1728 I2C_SMBUS_BYTE_DATA, &data);
1729 return (status < 0) ? status : data.byte;
1730 }
1731 EXPORT_SYMBOL(i2c_smbus_read_byte_data);
1732
1733 /**
1734 * i2c_smbus_write_byte_data - SMBus "write byte" protocol
1735 * @client: Handle to slave device
1736 * @command: Byte interpreted by slave
1737 * @value: Byte being written
1738 *
1739 * This executes the SMBus "write byte" protocol, returning negative errno
1740 * else zero on success.
1741 */
1742 s32 i2c_smbus_write_byte_data(const struct i2c_client *client, u8 command,
1743 u8 value)
1744 {
1745 union i2c_smbus_data data;
1746 data.byte = value;
1747 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1748 I2C_SMBUS_WRITE, command,
1749 I2C_SMBUS_BYTE_DATA, &data);
1750 }
1751 EXPORT_SYMBOL(i2c_smbus_write_byte_data);
1752
1753 /**
1754 * i2c_smbus_read_word_data - SMBus "read word" protocol
1755 * @client: Handle to slave device
1756 * @command: Byte interpreted by slave
1757 *
1758 * This executes the SMBus "read word" protocol, returning negative errno
1759 * else a 16-bit unsigned "word" received from the device.
1760 */
1761 s32 i2c_smbus_read_word_data(const struct i2c_client *client, u8 command)
1762 {
1763 union i2c_smbus_data data;
1764 int status;
1765
1766 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1767 I2C_SMBUS_READ, command,
1768 I2C_SMBUS_WORD_DATA, &data);
1769 return (status < 0) ? status : data.word;
1770 }
1771 EXPORT_SYMBOL(i2c_smbus_read_word_data);
1772
1773 /**
1774 * i2c_smbus_write_word_data - SMBus "write word" protocol
1775 * @client: Handle to slave device
1776 * @command: Byte interpreted by slave
1777 * @value: 16-bit "word" being written
1778 *
1779 * This executes the SMBus "write word" protocol, returning negative errno
1780 * else zero on success.
1781 */
1782 s32 i2c_smbus_write_word_data(const struct i2c_client *client, u8 command,
1783 u16 value)
1784 {
1785 union i2c_smbus_data data;
1786 data.word = value;
1787 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1788 I2C_SMBUS_WRITE, command,
1789 I2C_SMBUS_WORD_DATA, &data);
1790 }
1791 EXPORT_SYMBOL(i2c_smbus_write_word_data);
1792
1793 /**
1794 * i2c_smbus_process_call - SMBus "process call" protocol
1795 * @client: Handle to slave device
1796 * @command: Byte interpreted by slave
1797 * @value: 16-bit "word" being written
1798 *
1799 * This executes the SMBus "process call" protocol, returning negative errno
1800 * else a 16-bit unsigned "word" received from the device.
1801 */
1802 s32 i2c_smbus_process_call(const struct i2c_client *client, u8 command,
1803 u16 value)
1804 {
1805 union i2c_smbus_data data;
1806 int status;
1807 data.word = value;
1808
1809 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1810 I2C_SMBUS_WRITE, command,
1811 I2C_SMBUS_PROC_CALL, &data);
1812 return (status < 0) ? status : data.word;
1813 }
1814 EXPORT_SYMBOL(i2c_smbus_process_call);
1815
1816 /**
1817 * i2c_smbus_read_block_data - SMBus "block read" protocol
1818 * @client: Handle to slave device
1819 * @command: Byte interpreted by slave
1820 * @values: Byte array into which data will be read; big enough to hold
1821 * the data returned by the slave. SMBus allows at most 32 bytes.
1822 *
1823 * This executes the SMBus "block read" protocol, returning negative errno
1824 * else the number of data bytes in the slave's response.
1825 *
1826 * Note that using this function requires that the client's adapter support
1827 * the I2C_FUNC_SMBUS_READ_BLOCK_DATA functionality. Not all adapter drivers
1828 * support this; its emulation through I2C messaging relies on a specific
1829 * mechanism (I2C_M_RECV_LEN) which may not be implemented.
1830 */
1831 s32 i2c_smbus_read_block_data(const struct i2c_client *client, u8 command,
1832 u8 *values)
1833 {
1834 union i2c_smbus_data data;
1835 int status;
1836
1837 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1838 I2C_SMBUS_READ, command,
1839 I2C_SMBUS_BLOCK_DATA, &data);
1840 if (status)
1841 return status;
1842
1843 memcpy(values, &data.block[1], data.block[0]);
1844 return data.block[0];
1845 }
1846 EXPORT_SYMBOL(i2c_smbus_read_block_data);
1847
1848 /**
1849 * i2c_smbus_write_block_data - SMBus "block write" protocol
1850 * @client: Handle to slave device
1851 * @command: Byte interpreted by slave
1852 * @length: Size of data block; SMBus allows at most 32 bytes
1853 * @values: Byte array which will be written.
1854 *
1855 * This executes the SMBus "block write" protocol, returning negative errno
1856 * else zero on success.
1857 */
1858 s32 i2c_smbus_write_block_data(const struct i2c_client *client, u8 command,
1859 u8 length, const u8 *values)
1860 {
1861 union i2c_smbus_data data;
1862
1863 if (length > I2C_SMBUS_BLOCK_MAX)
1864 length = I2C_SMBUS_BLOCK_MAX;
1865 data.block[0] = length;
1866 memcpy(&data.block[1], values, length);
1867 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1868 I2C_SMBUS_WRITE, command,
1869 I2C_SMBUS_BLOCK_DATA, &data);
1870 }
1871 EXPORT_SYMBOL(i2c_smbus_write_block_data);
1872
1873 /* Returns the number of read bytes */
1874 s32 i2c_smbus_read_i2c_block_data(const struct i2c_client *client, u8 command,
1875 u8 length, u8 *values)
1876 {
1877 union i2c_smbus_data data;
1878 int status;
1879
1880 if (length > I2C_SMBUS_BLOCK_MAX)
1881 length = I2C_SMBUS_BLOCK_MAX;
1882 data.block[0] = length;
1883 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1884 I2C_SMBUS_READ, command,
1885 I2C_SMBUS_I2C_BLOCK_DATA, &data);
1886 if (status < 0)
1887 return status;
1888
1889 memcpy(values, &data.block[1], data.block[0]);
1890 return data.block[0];
1891 }
1892 EXPORT_SYMBOL(i2c_smbus_read_i2c_block_data);
1893
1894 s32 i2c_smbus_write_i2c_block_data(const struct i2c_client *client, u8 command,
1895 u8 length, const u8 *values)
1896 {
1897 union i2c_smbus_data data;
1898
1899 if (length > I2C_SMBUS_BLOCK_MAX)
1900 length = I2C_SMBUS_BLOCK_MAX;
1901 data.block[0] = length;
1902 memcpy(data.block + 1, values, length);
1903 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1904 I2C_SMBUS_WRITE, command,
1905 I2C_SMBUS_I2C_BLOCK_DATA, &data);
1906 }
1907 EXPORT_SYMBOL(i2c_smbus_write_i2c_block_data);
1908
1909 /* Simulate a SMBus command using the i2c protocol
1910 No checking of parameters is done! */
1911 static s32 i2c_smbus_xfer_emulated(struct i2c_adapter *adapter, u16 addr,
1912 unsigned short flags,
1913 char read_write, u8 command, int size,
1914 union i2c_smbus_data *data)
1915 {
1916 /* So we need to generate a series of msgs. In the case of writing, we
1917 need to use only one message; when reading, we need two. We initialize
1918 most things with sane defaults, to keep the code below somewhat
1919 simpler. */
1920 unsigned char msgbuf0[I2C_SMBUS_BLOCK_MAX+3];
1921 unsigned char msgbuf1[I2C_SMBUS_BLOCK_MAX+2];
1922 int num = read_write == I2C_SMBUS_READ ? 2 : 1;
1923 struct i2c_msg msg[2] = { { addr, flags, 1, msgbuf0 },
1924 { addr, flags | I2C_M_RD, 0, msgbuf1 }
1925 };
1926 int i;
1927 u8 partial_pec = 0;
1928 int status;
1929
1930 msgbuf0[0] = command;
1931 switch (size) {
1932 case I2C_SMBUS_QUICK:
1933 msg[0].len = 0;
1934 /* Special case: The read/write field is used as data */
1935 msg[0].flags = flags | (read_write == I2C_SMBUS_READ ?
1936 I2C_M_RD : 0);
1937 num = 1;
1938 break;
1939 case I2C_SMBUS_BYTE:
1940 if (read_write == I2C_SMBUS_READ) {
1941 /* Special case: only a read! */
1942 msg[0].flags = I2C_M_RD | flags;
1943 num = 1;
1944 }
1945 break;
1946 case I2C_SMBUS_BYTE_DATA:
1947 if (read_write == I2C_SMBUS_READ)
1948 msg[1].len = 1;
1949 else {
1950 msg[0].len = 2;
1951 msgbuf0[1] = data->byte;
1952 }
1953 break;
1954 case I2C_SMBUS_WORD_DATA:
1955 if (read_write == I2C_SMBUS_READ)
1956 msg[1].len = 2;
1957 else {
1958 msg[0].len = 3;
1959 msgbuf0[1] = data->word & 0xff;
1960 msgbuf0[2] = data->word >> 8;
1961 }
1962 break;
1963 case I2C_SMBUS_PROC_CALL:
1964 num = 2; /* Special case */
1965 read_write = I2C_SMBUS_READ;
1966 msg[0].len = 3;
1967 msg[1].len = 2;
1968 msgbuf0[1] = data->word & 0xff;
1969 msgbuf0[2] = data->word >> 8;
1970 break;
1971 case I2C_SMBUS_BLOCK_DATA:
1972 if (read_write == I2C_SMBUS_READ) {
1973 msg[1].flags |= I2C_M_RECV_LEN;
1974 msg[1].len = 1; /* block length will be added by
1975 the underlying bus driver */
1976 } else {
1977 msg[0].len = data->block[0] + 2;
1978 if (msg[0].len > I2C_SMBUS_BLOCK_MAX + 2) {
1979 dev_err(&adapter->dev,
1980 "Invalid block write size %d\n",
1981 data->block[0]);
1982 return -EINVAL;
1983 }
1984 for (i = 1; i < msg[0].len; i++)
1985 msgbuf0[i] = data->block[i-1];
1986 }
1987 break;
1988 case I2C_SMBUS_BLOCK_PROC_CALL:
1989 num = 2; /* Another special case */
1990 read_write = I2C_SMBUS_READ;
1991 if (data->block[0] > I2C_SMBUS_BLOCK_MAX) {
1992 dev_err(&adapter->dev,
1993 "Invalid block write size %d\n",
1994 data->block[0]);
1995 return -EINVAL;
1996 }
1997 msg[0].len = data->block[0] + 2;
1998 for (i = 1; i < msg[0].len; i++)
1999 msgbuf0[i] = data->block[i-1];
2000 msg[1].flags |= I2C_M_RECV_LEN;
2001 msg[1].len = 1; /* block length will be added by
2002 the underlying bus driver */
2003 break;
2004 case I2C_SMBUS_I2C_BLOCK_DATA:
2005 if (read_write == I2C_SMBUS_READ) {
2006 msg[1].len = data->block[0];
2007 } else {
2008 msg[0].len = data->block[0] + 1;
2009 if (msg[0].len > I2C_SMBUS_BLOCK_MAX + 1) {
2010 dev_err(&adapter->dev,
2011 "Invalid block write size %d\n",
2012 data->block[0]);
2013 return -EINVAL;
2014 }
2015 for (i = 1; i <= data->block[0]; i++)
2016 msgbuf0[i] = data->block[i];
2017 }
2018 break;
2019 default:
2020 dev_err(&adapter->dev, "Unsupported transaction %d\n", size);
2021 return -EOPNOTSUPP;
2022 }
2023
2024 i = ((flags & I2C_CLIENT_PEC) && size != I2C_SMBUS_QUICK
2025 && size != I2C_SMBUS_I2C_BLOCK_DATA);
2026 if (i) {
2027 /* Compute PEC if first message is a write */
2028 if (!(msg[0].flags & I2C_M_RD)) {
2029 if (num == 1) /* Write only */
2030 i2c_smbus_add_pec(&msg[0]);
2031 else /* Write followed by read */
2032 partial_pec = i2c_smbus_msg_pec(0, &msg[0]);
2033 }
2034 /* Ask for PEC if last message is a read */
2035 if (msg[num-1].flags & I2C_M_RD)
2036 msg[num-1].len++;
2037 }
2038
2039 status = i2c_transfer(adapter, msg, num);
2040 if (status < 0)
2041 return status;
2042
2043 /* Check PEC if last message is a read */
2044 if (i && (msg[num-1].flags & I2C_M_RD)) {
2045 status = i2c_smbus_check_pec(partial_pec, &msg[num-1]);
2046 if (status < 0)
2047 return status;
2048 }
2049
2050 if (read_write == I2C_SMBUS_READ)
2051 switch (size) {
2052 case I2C_SMBUS_BYTE:
2053 data->byte = msgbuf0[0];
2054 break;
2055 case I2C_SMBUS_BYTE_DATA:
2056 data->byte = msgbuf1[0];
2057 break;
2058 case I2C_SMBUS_WORD_DATA:
2059 case I2C_SMBUS_PROC_CALL:
2060 data->word = msgbuf1[0] | (msgbuf1[1] << 8);
2061 break;
2062 case I2C_SMBUS_I2C_BLOCK_DATA:
2063 for (i = 0; i < data->block[0]; i++)
2064 data->block[i+1] = msgbuf1[i];
2065 break;
2066 case I2C_SMBUS_BLOCK_DATA:
2067 case I2C_SMBUS_BLOCK_PROC_CALL:
2068 for (i = 0; i < msgbuf1[0] + 1; i++)
2069 data->block[i] = msgbuf1[i];
2070 break;
2071 }
2072 return 0;
2073 }
2074
2075 /**
2076 * i2c_smbus_xfer - execute SMBus protocol operations
2077 * @adapter: Handle to I2C bus
2078 * @addr: Address of SMBus slave on that bus
2079 * @flags: I2C_CLIENT_* flags (usually zero or I2C_CLIENT_PEC)
2080 * @read_write: I2C_SMBUS_READ or I2C_SMBUS_WRITE
2081 * @command: Byte interpreted by slave, for protocols which use such bytes
2082 * @protocol: SMBus protocol operation to execute, such as I2C_SMBUS_PROC_CALL
2083 * @data: Data to be read or written
2084 *
2085 * This executes an SMBus protocol operation, and returns a negative
2086 * errno code else zero on success.
2087 */
2088 s32 i2c_smbus_xfer(struct i2c_adapter *adapter, u16 addr, unsigned short flags,
2089 char read_write, u8 command, int protocol,
2090 union i2c_smbus_data *data)
2091 {
2092 unsigned long orig_jiffies;
2093 int try;
2094 s32 res;
2095
2096 flags &= I2C_M_TEN | I2C_CLIENT_PEC;
2097
2098 if (adapter->algo->smbus_xfer) {
2099 i2c_lock_adapter(adapter);
2100
2101 /* Retry automatically on arbitration loss */
2102 orig_jiffies = jiffies;
2103 for (res = 0, try = 0; try <= adapter->retries; try++) {
2104 res = adapter->algo->smbus_xfer(adapter, addr, flags,
2105 read_write, command,
2106 protocol, data);
2107 if (res != -EAGAIN)
2108 break;
2109 if (time_after(jiffies,
2110 orig_jiffies + adapter->timeout))
2111 break;
2112 }
2113 i2c_unlock_adapter(adapter);
2114 } else
2115 res = i2c_smbus_xfer_emulated(adapter, addr, flags, read_write,
2116 command, protocol, data);
2117
2118 return res;
2119 }
2120 EXPORT_SYMBOL(i2c_smbus_xfer);
2121
2122 MODULE_AUTHOR("Simon G. Vogl <simon@tk.uni-linz.ac.at>");
2123 MODULE_DESCRIPTION("I2C-Bus main module");
2124 MODULE_LICENSE("GPL");
This page took 0.268603 seconds and 5 git commands to generate.