ide: DMA_PIO_RETRY -> IDE_DFLAG_DMA_PIO_RETRY
[deliverable/linux.git] / drivers / ide / ide-io.c
1 /*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
52
53 #include <asm/byteorder.h>
54 #include <asm/irq.h>
55 #include <asm/uaccess.h>
56 #include <asm/io.h>
57
58 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59 int uptodate, unsigned int nr_bytes, int dequeue)
60 {
61 int ret = 1;
62 int error = 0;
63
64 if (uptodate <= 0)
65 error = uptodate ? uptodate : -EIO;
66
67 /*
68 * if failfast is set on a request, override number of sectors and
69 * complete the whole request right now
70 */
71 if (blk_noretry_request(rq) && error)
72 nr_bytes = rq->hard_nr_sectors << 9;
73
74 if (!blk_fs_request(rq) && error && !rq->errors)
75 rq->errors = -EIO;
76
77 /*
78 * decide whether to reenable DMA -- 3 is a random magic for now,
79 * if we DMA timeout more than 3 times, just stay in PIO
80 */
81 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82 drive->retry_pio <= 3) {
83 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84 ide_dma_on(drive);
85 }
86
87 if (!__blk_end_request(rq, error, nr_bytes)) {
88 if (dequeue)
89 HWGROUP(drive)->rq = NULL;
90 ret = 0;
91 }
92
93 return ret;
94 }
95
96 /**
97 * ide_end_request - complete an IDE I/O
98 * @drive: IDE device for the I/O
99 * @uptodate:
100 * @nr_sectors: number of sectors completed
101 *
102 * This is our end_request wrapper function. We complete the I/O
103 * update random number input and dequeue the request, which if
104 * it was tagged may be out of order.
105 */
106
107 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108 {
109 unsigned int nr_bytes = nr_sectors << 9;
110 struct request *rq;
111 unsigned long flags;
112 int ret = 1;
113
114 /*
115 * room for locking improvements here, the calls below don't
116 * need the queue lock held at all
117 */
118 spin_lock_irqsave(&ide_lock, flags);
119 rq = HWGROUP(drive)->rq;
120
121 if (!nr_bytes) {
122 if (blk_pc_request(rq))
123 nr_bytes = rq->data_len;
124 else
125 nr_bytes = rq->hard_cur_sectors << 9;
126 }
127
128 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
129
130 spin_unlock_irqrestore(&ide_lock, flags);
131 return ret;
132 }
133 EXPORT_SYMBOL(ide_end_request);
134
135 /*
136 * Power Management state machine. This one is rather trivial for now,
137 * we should probably add more, like switching back to PIO on suspend
138 * to help some BIOSes, re-do the door locking on resume, etc...
139 */
140
141 enum {
142 ide_pm_flush_cache = ide_pm_state_start_suspend,
143 idedisk_pm_standby,
144
145 idedisk_pm_restore_pio = ide_pm_state_start_resume,
146 idedisk_pm_idle,
147 ide_pm_restore_dma,
148 };
149
150 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
151 {
152 struct request_pm_state *pm = rq->data;
153
154 if (drive->media != ide_disk)
155 return;
156
157 switch (pm->pm_step) {
158 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
159 if (pm->pm_state == PM_EVENT_FREEZE)
160 pm->pm_step = ide_pm_state_completed;
161 else
162 pm->pm_step = idedisk_pm_standby;
163 break;
164 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
165 pm->pm_step = ide_pm_state_completed;
166 break;
167 case idedisk_pm_restore_pio: /* Resume step 1 complete */
168 pm->pm_step = idedisk_pm_idle;
169 break;
170 case idedisk_pm_idle: /* Resume step 2 (idle) complete */
171 pm->pm_step = ide_pm_restore_dma;
172 break;
173 }
174 }
175
176 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
177 {
178 struct request_pm_state *pm = rq->data;
179 ide_task_t *args = rq->special;
180
181 memset(args, 0, sizeof(*args));
182
183 switch (pm->pm_step) {
184 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
185 if (drive->media != ide_disk)
186 break;
187 /* Not supported? Switch to next step now. */
188 if (ata_id_flush_enabled(drive->id) == 0 ||
189 (drive->dev_flags & IDE_DFLAG_WCACHE) == 0) {
190 ide_complete_power_step(drive, rq, 0, 0);
191 return ide_stopped;
192 }
193 if (ata_id_flush_ext_enabled(drive->id))
194 args->tf.command = ATA_CMD_FLUSH_EXT;
195 else
196 args->tf.command = ATA_CMD_FLUSH;
197 goto out_do_tf;
198
199 case idedisk_pm_standby: /* Suspend step 2 (standby) */
200 args->tf.command = ATA_CMD_STANDBYNOW1;
201 goto out_do_tf;
202
203 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
204 ide_set_max_pio(drive);
205 /*
206 * skip idedisk_pm_idle for ATAPI devices
207 */
208 if (drive->media != ide_disk)
209 pm->pm_step = ide_pm_restore_dma;
210 else
211 ide_complete_power_step(drive, rq, 0, 0);
212 return ide_stopped;
213
214 case idedisk_pm_idle: /* Resume step 2 (idle) */
215 args->tf.command = ATA_CMD_IDLEIMMEDIATE;
216 goto out_do_tf;
217
218 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
219 /*
220 * Right now, all we do is call ide_set_dma(drive),
221 * we could be smarter and check for current xfer_speed
222 * in struct drive etc...
223 */
224 if (drive->hwif->dma_ops == NULL)
225 break;
226 /*
227 * TODO: respect IDE_DFLAG_USING_DMA
228 */
229 ide_set_dma(drive);
230 break;
231 }
232 pm->pm_step = ide_pm_state_completed;
233 return ide_stopped;
234
235 out_do_tf:
236 args->tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
237 args->data_phase = TASKFILE_NO_DATA;
238 return do_rw_taskfile(drive, args);
239 }
240
241 /**
242 * ide_end_dequeued_request - complete an IDE I/O
243 * @drive: IDE device for the I/O
244 * @uptodate:
245 * @nr_sectors: number of sectors completed
246 *
247 * Complete an I/O that is no longer on the request queue. This
248 * typically occurs when we pull the request and issue a REQUEST_SENSE.
249 * We must still finish the old request but we must not tamper with the
250 * queue in the meantime.
251 *
252 * NOTE: This path does not handle barrier, but barrier is not supported
253 * on ide-cd anyway.
254 */
255
256 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
257 int uptodate, int nr_sectors)
258 {
259 unsigned long flags;
260 int ret;
261
262 spin_lock_irqsave(&ide_lock, flags);
263 BUG_ON(!blk_rq_started(rq));
264 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
265 spin_unlock_irqrestore(&ide_lock, flags);
266
267 return ret;
268 }
269 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
270
271
272 /**
273 * ide_complete_pm_request - end the current Power Management request
274 * @drive: target drive
275 * @rq: request
276 *
277 * This function cleans up the current PM request and stops the queue
278 * if necessary.
279 */
280 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
281 {
282 unsigned long flags;
283
284 #ifdef DEBUG_PM
285 printk("%s: completing PM request, %s\n", drive->name,
286 blk_pm_suspend_request(rq) ? "suspend" : "resume");
287 #endif
288 spin_lock_irqsave(&ide_lock, flags);
289 if (blk_pm_suspend_request(rq)) {
290 blk_stop_queue(drive->queue);
291 } else {
292 drive->dev_flags &= ~IDE_DFLAG_BLOCKED;
293 blk_start_queue(drive->queue);
294 }
295 HWGROUP(drive)->rq = NULL;
296 if (__blk_end_request(rq, 0, 0))
297 BUG();
298 spin_unlock_irqrestore(&ide_lock, flags);
299 }
300
301 /**
302 * ide_end_drive_cmd - end an explicit drive command
303 * @drive: command
304 * @stat: status bits
305 * @err: error bits
306 *
307 * Clean up after success/failure of an explicit drive command.
308 * These get thrown onto the queue so they are synchronized with
309 * real I/O operations on the drive.
310 *
311 * In LBA48 mode we have to read the register set twice to get
312 * all the extra information out.
313 */
314
315 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
316 {
317 unsigned long flags;
318 struct request *rq;
319
320 spin_lock_irqsave(&ide_lock, flags);
321 rq = HWGROUP(drive)->rq;
322 spin_unlock_irqrestore(&ide_lock, flags);
323
324 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
325 ide_task_t *task = (ide_task_t *)rq->special;
326
327 if (rq->errors == 0)
328 rq->errors = !OK_STAT(stat, ATA_DRDY, BAD_STAT);
329
330 if (task) {
331 struct ide_taskfile *tf = &task->tf;
332
333 tf->error = err;
334 tf->status = stat;
335
336 drive->hwif->tp_ops->tf_read(drive, task);
337
338 if (task->tf_flags & IDE_TFLAG_DYN)
339 kfree(task);
340 }
341 } else if (blk_pm_request(rq)) {
342 struct request_pm_state *pm = rq->data;
343 #ifdef DEBUG_PM
344 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
345 drive->name, rq->pm->pm_step, stat, err);
346 #endif
347 ide_complete_power_step(drive, rq, stat, err);
348 if (pm->pm_step == ide_pm_state_completed)
349 ide_complete_pm_request(drive, rq);
350 return;
351 }
352
353 spin_lock_irqsave(&ide_lock, flags);
354 HWGROUP(drive)->rq = NULL;
355 rq->errors = err;
356 if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
357 blk_rq_bytes(rq))))
358 BUG();
359 spin_unlock_irqrestore(&ide_lock, flags);
360 }
361
362 EXPORT_SYMBOL(ide_end_drive_cmd);
363
364 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
365 {
366 if (rq->rq_disk) {
367 ide_driver_t *drv;
368
369 drv = *(ide_driver_t **)rq->rq_disk->private_data;
370 drv->end_request(drive, 0, 0);
371 } else
372 ide_end_request(drive, 0, 0);
373 }
374
375 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
376 {
377 ide_hwif_t *hwif = drive->hwif;
378
379 if ((stat & ATA_BUSY) ||
380 ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
381 /* other bits are useless when BUSY */
382 rq->errors |= ERROR_RESET;
383 } else if (stat & ATA_ERR) {
384 /* err has different meaning on cdrom and tape */
385 if (err == ATA_ABORTED) {
386 if (drive->select.b.lba &&
387 /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
388 hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
389 return ide_stopped;
390 } else if ((err & BAD_CRC) == BAD_CRC) {
391 /* UDMA crc error, just retry the operation */
392 drive->crc_count++;
393 } else if (err & (ATA_BBK | ATA_UNC)) {
394 /* retries won't help these */
395 rq->errors = ERROR_MAX;
396 } else if (err & ATA_TRK0NF) {
397 /* help it find track zero */
398 rq->errors |= ERROR_RECAL;
399 }
400 }
401
402 if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
403 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
404 int nsect = drive->mult_count ? drive->mult_count : 1;
405
406 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
407 }
408
409 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
410 ide_kill_rq(drive, rq);
411 return ide_stopped;
412 }
413
414 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
415 rq->errors |= ERROR_RESET;
416
417 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
418 ++rq->errors;
419 return ide_do_reset(drive);
420 }
421
422 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
423 drive->special.b.recalibrate = 1;
424
425 ++rq->errors;
426
427 return ide_stopped;
428 }
429
430 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
431 {
432 ide_hwif_t *hwif = drive->hwif;
433
434 if ((stat & ATA_BUSY) ||
435 ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
436 /* other bits are useless when BUSY */
437 rq->errors |= ERROR_RESET;
438 } else {
439 /* add decoding error stuff */
440 }
441
442 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
443 /* force an abort */
444 hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
445
446 if (rq->errors >= ERROR_MAX) {
447 ide_kill_rq(drive, rq);
448 } else {
449 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
450 ++rq->errors;
451 return ide_do_reset(drive);
452 }
453 ++rq->errors;
454 }
455
456 return ide_stopped;
457 }
458
459 ide_startstop_t
460 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
461 {
462 if (drive->media == ide_disk)
463 return ide_ata_error(drive, rq, stat, err);
464 return ide_atapi_error(drive, rq, stat, err);
465 }
466
467 EXPORT_SYMBOL_GPL(__ide_error);
468
469 /**
470 * ide_error - handle an error on the IDE
471 * @drive: drive the error occurred on
472 * @msg: message to report
473 * @stat: status bits
474 *
475 * ide_error() takes action based on the error returned by the drive.
476 * For normal I/O that may well include retries. We deal with
477 * both new-style (taskfile) and old style command handling here.
478 * In the case of taskfile command handling there is work left to
479 * do
480 */
481
482 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
483 {
484 struct request *rq;
485 u8 err;
486
487 err = ide_dump_status(drive, msg, stat);
488
489 if ((rq = HWGROUP(drive)->rq) == NULL)
490 return ide_stopped;
491
492 /* retry only "normal" I/O: */
493 if (!blk_fs_request(rq)) {
494 rq->errors = 1;
495 ide_end_drive_cmd(drive, stat, err);
496 return ide_stopped;
497 }
498
499 if (rq->rq_disk) {
500 ide_driver_t *drv;
501
502 drv = *(ide_driver_t **)rq->rq_disk->private_data;
503 return drv->error(drive, rq, stat, err);
504 } else
505 return __ide_error(drive, rq, stat, err);
506 }
507
508 EXPORT_SYMBOL_GPL(ide_error);
509
510 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
511 {
512 tf->nsect = drive->sect;
513 tf->lbal = drive->sect;
514 tf->lbam = drive->cyl;
515 tf->lbah = drive->cyl >> 8;
516 tf->device = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
517 tf->command = ATA_CMD_INIT_DEV_PARAMS;
518 }
519
520 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
521 {
522 tf->nsect = drive->sect;
523 tf->command = ATA_CMD_RESTORE;
524 }
525
526 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
527 {
528 tf->nsect = drive->mult_req;
529 tf->command = ATA_CMD_SET_MULTI;
530 }
531
532 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
533 {
534 special_t *s = &drive->special;
535 ide_task_t args;
536
537 memset(&args, 0, sizeof(ide_task_t));
538 args.data_phase = TASKFILE_NO_DATA;
539
540 if (s->b.set_geometry) {
541 s->b.set_geometry = 0;
542 ide_tf_set_specify_cmd(drive, &args.tf);
543 } else if (s->b.recalibrate) {
544 s->b.recalibrate = 0;
545 ide_tf_set_restore_cmd(drive, &args.tf);
546 } else if (s->b.set_multmode) {
547 s->b.set_multmode = 0;
548 ide_tf_set_setmult_cmd(drive, &args.tf);
549 } else if (s->all) {
550 int special = s->all;
551 s->all = 0;
552 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
553 return ide_stopped;
554 }
555
556 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
557 IDE_TFLAG_CUSTOM_HANDLER;
558
559 do_rw_taskfile(drive, &args);
560
561 return ide_started;
562 }
563
564 /*
565 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
566 */
567 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
568 {
569 switch (req_pio) {
570 case 202:
571 case 201:
572 case 200:
573 case 102:
574 case 101:
575 case 100:
576 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
577 case 9:
578 case 8:
579 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
580 case 7:
581 case 6:
582 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
583 default:
584 return 0;
585 }
586 }
587
588 /**
589 * do_special - issue some special commands
590 * @drive: drive the command is for
591 *
592 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
593 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
594 *
595 * It used to do much more, but has been scaled back.
596 */
597
598 static ide_startstop_t do_special (ide_drive_t *drive)
599 {
600 special_t *s = &drive->special;
601
602 #ifdef DEBUG
603 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
604 #endif
605 if (s->b.set_tune) {
606 ide_hwif_t *hwif = drive->hwif;
607 const struct ide_port_ops *port_ops = hwif->port_ops;
608 u8 req_pio = drive->tune_req;
609
610 s->b.set_tune = 0;
611
612 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
613 /*
614 * take ide_lock for IDE_DFLAG_[NO_]UNMASK/[NO_]IO_32BIT
615 */
616 if (req_pio == 8 || req_pio == 9) {
617 unsigned long flags;
618
619 spin_lock_irqsave(&ide_lock, flags);
620 port_ops->set_pio_mode(drive, req_pio);
621 spin_unlock_irqrestore(&ide_lock, flags);
622 } else
623 port_ops->set_pio_mode(drive, req_pio);
624 } else {
625 int keep_dma =
626 !!(drive->dev_flags & IDE_DFLAG_USING_DMA);
627
628 ide_set_pio(drive, req_pio);
629
630 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
631 if (keep_dma)
632 ide_dma_on(drive);
633 }
634 }
635
636 return ide_stopped;
637 } else {
638 if (drive->media == ide_disk)
639 return ide_disk_special(drive);
640
641 s->all = 0;
642 drive->mult_req = 0;
643 return ide_stopped;
644 }
645 }
646
647 void ide_map_sg(ide_drive_t *drive, struct request *rq)
648 {
649 ide_hwif_t *hwif = drive->hwif;
650 struct scatterlist *sg = hwif->sg_table;
651
652 if (hwif->sg_mapped) /* needed by ide-scsi */
653 return;
654
655 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
656 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
657 } else {
658 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
659 hwif->sg_nents = 1;
660 }
661 }
662
663 EXPORT_SYMBOL_GPL(ide_map_sg);
664
665 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
666 {
667 ide_hwif_t *hwif = drive->hwif;
668
669 hwif->nsect = hwif->nleft = rq->nr_sectors;
670 hwif->cursg_ofs = 0;
671 hwif->cursg = NULL;
672 }
673
674 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
675
676 /**
677 * execute_drive_command - issue special drive command
678 * @drive: the drive to issue the command on
679 * @rq: the request structure holding the command
680 *
681 * execute_drive_cmd() issues a special drive command, usually
682 * initiated by ioctl() from the external hdparm program. The
683 * command can be a drive command, drive task or taskfile
684 * operation. Weirdly you can call it with NULL to wait for
685 * all commands to finish. Don't do this as that is due to change
686 */
687
688 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
689 struct request *rq)
690 {
691 ide_hwif_t *hwif = HWIF(drive);
692 ide_task_t *task = rq->special;
693
694 if (task) {
695 hwif->data_phase = task->data_phase;
696
697 switch (hwif->data_phase) {
698 case TASKFILE_MULTI_OUT:
699 case TASKFILE_OUT:
700 case TASKFILE_MULTI_IN:
701 case TASKFILE_IN:
702 ide_init_sg_cmd(drive, rq);
703 ide_map_sg(drive, rq);
704 default:
705 break;
706 }
707
708 return do_rw_taskfile(drive, task);
709 }
710
711 /*
712 * NULL is actually a valid way of waiting for
713 * all current requests to be flushed from the queue.
714 */
715 #ifdef DEBUG
716 printk("%s: DRIVE_CMD (null)\n", drive->name);
717 #endif
718 ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
719 ide_read_error(drive));
720
721 return ide_stopped;
722 }
723
724 int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
725 int arg)
726 {
727 struct request_queue *q = drive->queue;
728 struct request *rq;
729 int ret = 0;
730
731 if (!(setting->flags & DS_SYNC))
732 return setting->set(drive, arg);
733
734 rq = blk_get_request(q, READ, GFP_KERNEL);
735 if (!rq)
736 return -ENOMEM;
737
738 rq->cmd_type = REQ_TYPE_SPECIAL;
739 rq->cmd_len = 5;
740 rq->cmd[0] = REQ_DEVSET_EXEC;
741 *(int *)&rq->cmd[1] = arg;
742 rq->special = setting->set;
743
744 if (blk_execute_rq(q, NULL, rq, 0))
745 ret = rq->errors;
746 blk_put_request(rq);
747
748 return ret;
749 }
750 EXPORT_SYMBOL_GPL(ide_devset_execute);
751
752 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
753 {
754 switch (rq->cmd[0]) {
755 case REQ_DEVSET_EXEC:
756 {
757 int err, (*setfunc)(ide_drive_t *, int) = rq->special;
758
759 err = setfunc(drive, *(int *)&rq->cmd[1]);
760 if (err)
761 rq->errors = err;
762 else
763 err = 1;
764 ide_end_request(drive, err, 0);
765 return ide_stopped;
766 }
767 case REQ_DRIVE_RESET:
768 return ide_do_reset(drive);
769 default:
770 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
771 ide_end_request(drive, 0, 0);
772 return ide_stopped;
773 }
774 }
775
776 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
777 {
778 struct request_pm_state *pm = rq->data;
779
780 if (blk_pm_suspend_request(rq) &&
781 pm->pm_step == ide_pm_state_start_suspend)
782 /* Mark drive blocked when starting the suspend sequence. */
783 drive->dev_flags |= IDE_DFLAG_BLOCKED;
784 else if (blk_pm_resume_request(rq) &&
785 pm->pm_step == ide_pm_state_start_resume) {
786 /*
787 * The first thing we do on wakeup is to wait for BSY bit to
788 * go away (with a looong timeout) as a drive on this hwif may
789 * just be POSTing itself.
790 * We do that before even selecting as the "other" device on
791 * the bus may be broken enough to walk on our toes at this
792 * point.
793 */
794 ide_hwif_t *hwif = drive->hwif;
795 int rc;
796 #ifdef DEBUG_PM
797 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
798 #endif
799 rc = ide_wait_not_busy(hwif, 35000);
800 if (rc)
801 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
802 SELECT_DRIVE(drive);
803 hwif->tp_ops->set_irq(hwif, 1);
804 rc = ide_wait_not_busy(hwif, 100000);
805 if (rc)
806 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
807 }
808 }
809
810 /**
811 * start_request - start of I/O and command issuing for IDE
812 *
813 * start_request() initiates handling of a new I/O request. It
814 * accepts commands and I/O (read/write) requests.
815 *
816 * FIXME: this function needs a rename
817 */
818
819 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
820 {
821 ide_startstop_t startstop;
822
823 BUG_ON(!blk_rq_started(rq));
824
825 #ifdef DEBUG
826 printk("%s: start_request: current=0x%08lx\n",
827 HWIF(drive)->name, (unsigned long) rq);
828 #endif
829
830 /* bail early if we've exceeded max_failures */
831 if (drive->max_failures && (drive->failures > drive->max_failures)) {
832 rq->cmd_flags |= REQ_FAILED;
833 goto kill_rq;
834 }
835
836 if (blk_pm_request(rq))
837 ide_check_pm_state(drive, rq);
838
839 SELECT_DRIVE(drive);
840 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
841 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
842 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
843 return startstop;
844 }
845 if (!drive->special.all) {
846 ide_driver_t *drv;
847
848 /*
849 * We reset the drive so we need to issue a SETFEATURES.
850 * Do it _after_ do_special() restored device parameters.
851 */
852 if (drive->current_speed == 0xff)
853 ide_config_drive_speed(drive, drive->desired_speed);
854
855 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
856 return execute_drive_cmd(drive, rq);
857 else if (blk_pm_request(rq)) {
858 struct request_pm_state *pm = rq->data;
859 #ifdef DEBUG_PM
860 printk("%s: start_power_step(step: %d)\n",
861 drive->name, rq->pm->pm_step);
862 #endif
863 startstop = ide_start_power_step(drive, rq);
864 if (startstop == ide_stopped &&
865 pm->pm_step == ide_pm_state_completed)
866 ide_complete_pm_request(drive, rq);
867 return startstop;
868 } else if (!rq->rq_disk && blk_special_request(rq))
869 /*
870 * TODO: Once all ULDs have been modified to
871 * check for specific op codes rather than
872 * blindly accepting any special request, the
873 * check for ->rq_disk above may be replaced
874 * by a more suitable mechanism or even
875 * dropped entirely.
876 */
877 return ide_special_rq(drive, rq);
878
879 drv = *(ide_driver_t **)rq->rq_disk->private_data;
880
881 return drv->do_request(drive, rq, rq->sector);
882 }
883 return do_special(drive);
884 kill_rq:
885 ide_kill_rq(drive, rq);
886 return ide_stopped;
887 }
888
889 /**
890 * ide_stall_queue - pause an IDE device
891 * @drive: drive to stall
892 * @timeout: time to stall for (jiffies)
893 *
894 * ide_stall_queue() can be used by a drive to give excess bandwidth back
895 * to the hwgroup by sleeping for timeout jiffies.
896 */
897
898 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
899 {
900 if (timeout > WAIT_WORSTCASE)
901 timeout = WAIT_WORSTCASE;
902 drive->sleep = timeout + jiffies;
903 drive->dev_flags |= IDE_DFLAG_SLEEPING;
904 }
905
906 EXPORT_SYMBOL(ide_stall_queue);
907
908 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
909
910 /**
911 * choose_drive - select a drive to service
912 * @hwgroup: hardware group to select on
913 *
914 * choose_drive() selects the next drive which will be serviced.
915 * This is necessary because the IDE layer can't issue commands
916 * to both drives on the same cable, unlike SCSI.
917 */
918
919 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
920 {
921 ide_drive_t *drive, *best;
922
923 repeat:
924 best = NULL;
925 drive = hwgroup->drive;
926
927 /*
928 * drive is doing pre-flush, ordered write, post-flush sequence. even
929 * though that is 3 requests, it must be seen as a single transaction.
930 * we must not preempt this drive until that is complete
931 */
932 if (blk_queue_flushing(drive->queue)) {
933 /*
934 * small race where queue could get replugged during
935 * the 3-request flush cycle, just yank the plug since
936 * we want it to finish asap
937 */
938 blk_remove_plug(drive->queue);
939 return drive;
940 }
941
942 do {
943 u8 dev_s = !!(drive->dev_flags & IDE_DFLAG_SLEEPING);
944 u8 best_s = (best && !!(best->dev_flags & IDE_DFLAG_SLEEPING));
945
946 if ((dev_s == 0 || time_after_eq(jiffies, drive->sleep)) &&
947 !elv_queue_empty(drive->queue)) {
948 if (best == NULL ||
949 (dev_s && (best_s == 0 || time_before(drive->sleep, best->sleep))) ||
950 (best_s == 0 && time_before(WAKEUP(drive), WAKEUP(best)))) {
951 if (!blk_queue_plugged(drive->queue))
952 best = drive;
953 }
954 }
955 } while ((drive = drive->next) != hwgroup->drive);
956
957 if (best && (best->dev_flags & IDE_DFLAG_NICE1) &&
958 (best->dev_flags & IDE_DFLAG_SLEEPING) == 0 &&
959 best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
960 long t = (signed long)(WAKEUP(best) - jiffies);
961 if (t >= WAIT_MIN_SLEEP) {
962 /*
963 * We *may* have some time to spare, but first let's see if
964 * someone can potentially benefit from our nice mood today..
965 */
966 drive = best->next;
967 do {
968 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) == 0
969 && time_before(jiffies - best->service_time, WAKEUP(drive))
970 && time_before(WAKEUP(drive), jiffies + t))
971 {
972 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
973 goto repeat;
974 }
975 } while ((drive = drive->next) != best);
976 }
977 }
978 return best;
979 }
980
981 /*
982 * Issue a new request to a drive from hwgroup
983 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
984 *
985 * A hwgroup is a serialized group of IDE interfaces. Usually there is
986 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
987 * may have both interfaces in a single hwgroup to "serialize" access.
988 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
989 * together into one hwgroup for serialized access.
990 *
991 * Note also that several hwgroups can end up sharing a single IRQ,
992 * possibly along with many other devices. This is especially common in
993 * PCI-based systems with off-board IDE controller cards.
994 *
995 * The IDE driver uses the single global ide_lock spinlock to protect
996 * access to the request queues, and to protect the hwgroup->busy flag.
997 *
998 * The first thread into the driver for a particular hwgroup sets the
999 * hwgroup->busy flag to indicate that this hwgroup is now active,
1000 * and then initiates processing of the top request from the request queue.
1001 *
1002 * Other threads attempting entry notice the busy setting, and will simply
1003 * queue their new requests and exit immediately. Note that hwgroup->busy
1004 * remains set even when the driver is merely awaiting the next interrupt.
1005 * Thus, the meaning is "this hwgroup is busy processing a request".
1006 *
1007 * When processing of a request completes, the completing thread or IRQ-handler
1008 * will start the next request from the queue. If no more work remains,
1009 * the driver will clear the hwgroup->busy flag and exit.
1010 *
1011 * The ide_lock (spinlock) is used to protect all access to the
1012 * hwgroup->busy flag, but is otherwise not needed for most processing in
1013 * the driver. This makes the driver much more friendlier to shared IRQs
1014 * than previous designs, while remaining 100% (?) SMP safe and capable.
1015 */
1016 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1017 {
1018 ide_drive_t *drive;
1019 ide_hwif_t *hwif;
1020 struct request *rq;
1021 ide_startstop_t startstop;
1022 int loops = 0;
1023
1024 /* for atari only: POSSIBLY BROKEN HERE(?) */
1025 ide_get_lock(ide_intr, hwgroup);
1026
1027 /* caller must own ide_lock */
1028 BUG_ON(!irqs_disabled());
1029
1030 while (!hwgroup->busy) {
1031 hwgroup->busy = 1;
1032 drive = choose_drive(hwgroup);
1033 if (drive == NULL) {
1034 int sleeping = 0;
1035 unsigned long sleep = 0; /* shut up, gcc */
1036 hwgroup->rq = NULL;
1037 drive = hwgroup->drive;
1038 do {
1039 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) &&
1040 (sleeping == 0 ||
1041 time_before(drive->sleep, sleep))) {
1042 sleeping = 1;
1043 sleep = drive->sleep;
1044 }
1045 } while ((drive = drive->next) != hwgroup->drive);
1046 if (sleeping) {
1047 /*
1048 * Take a short snooze, and then wake up this hwgroup again.
1049 * This gives other hwgroups on the same a chance to
1050 * play fairly with us, just in case there are big differences
1051 * in relative throughputs.. don't want to hog the cpu too much.
1052 */
1053 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1054 sleep = jiffies + WAIT_MIN_SLEEP;
1055 #if 1
1056 if (timer_pending(&hwgroup->timer))
1057 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1058 #endif
1059 /* so that ide_timer_expiry knows what to do */
1060 hwgroup->sleeping = 1;
1061 hwgroup->req_gen_timer = hwgroup->req_gen;
1062 mod_timer(&hwgroup->timer, sleep);
1063 /* we purposely leave hwgroup->busy==1
1064 * while sleeping */
1065 } else {
1066 /* Ugly, but how can we sleep for the lock
1067 * otherwise? perhaps from tq_disk?
1068 */
1069
1070 /* for atari only */
1071 ide_release_lock();
1072 hwgroup->busy = 0;
1073 }
1074
1075 /* no more work for this hwgroup (for now) */
1076 return;
1077 }
1078 again:
1079 hwif = HWIF(drive);
1080 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1081 /*
1082 * set nIEN for previous hwif, drives in the
1083 * quirk_list may not like intr setups/cleanups
1084 */
1085 if (drive->quirk_list != 1)
1086 hwif->tp_ops->set_irq(hwif, 0);
1087 }
1088 hwgroup->hwif = hwif;
1089 hwgroup->drive = drive;
1090 drive->dev_flags &= ~IDE_DFLAG_SLEEPING;
1091 drive->service_start = jiffies;
1092
1093 if (blk_queue_plugged(drive->queue)) {
1094 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1095 break;
1096 }
1097
1098 /*
1099 * we know that the queue isn't empty, but this can happen
1100 * if the q->prep_rq_fn() decides to kill a request
1101 */
1102 rq = elv_next_request(drive->queue);
1103 if (!rq) {
1104 hwgroup->busy = 0;
1105 break;
1106 }
1107
1108 /*
1109 * Sanity: don't accept a request that isn't a PM request
1110 * if we are currently power managed. This is very important as
1111 * blk_stop_queue() doesn't prevent the elv_next_request()
1112 * above to return us whatever is in the queue. Since we call
1113 * ide_do_request() ourselves, we end up taking requests while
1114 * the queue is blocked...
1115 *
1116 * We let requests forced at head of queue with ide-preempt
1117 * though. I hope that doesn't happen too much, hopefully not
1118 * unless the subdriver triggers such a thing in its own PM
1119 * state machine.
1120 *
1121 * We count how many times we loop here to make sure we service
1122 * all drives in the hwgroup without looping for ever
1123 */
1124 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
1125 blk_pm_request(rq) == 0 &&
1126 (rq->cmd_flags & REQ_PREEMPT) == 0) {
1127 drive = drive->next ? drive->next : hwgroup->drive;
1128 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1129 goto again;
1130 /* We clear busy, there should be no pending ATA command at this point. */
1131 hwgroup->busy = 0;
1132 break;
1133 }
1134
1135 hwgroup->rq = rq;
1136
1137 /*
1138 * Some systems have trouble with IDE IRQs arriving while
1139 * the driver is still setting things up. So, here we disable
1140 * the IRQ used by this interface while the request is being started.
1141 * This may look bad at first, but pretty much the same thing
1142 * happens anyway when any interrupt comes in, IDE or otherwise
1143 * -- the kernel masks the IRQ while it is being handled.
1144 */
1145 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1146 disable_irq_nosync(hwif->irq);
1147 spin_unlock(&ide_lock);
1148 local_irq_enable_in_hardirq();
1149 /* allow other IRQs while we start this request */
1150 startstop = start_request(drive, rq);
1151 spin_lock_irq(&ide_lock);
1152 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1153 enable_irq(hwif->irq);
1154 if (startstop == ide_stopped)
1155 hwgroup->busy = 0;
1156 }
1157 }
1158
1159 /*
1160 * Passes the stuff to ide_do_request
1161 */
1162 void do_ide_request(struct request_queue *q)
1163 {
1164 ide_drive_t *drive = q->queuedata;
1165
1166 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1167 }
1168
1169 /*
1170 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1171 * retry the current request in pio mode instead of risking tossing it
1172 * all away
1173 */
1174 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1175 {
1176 ide_hwif_t *hwif = HWIF(drive);
1177 struct request *rq;
1178 ide_startstop_t ret = ide_stopped;
1179
1180 /*
1181 * end current dma transaction
1182 */
1183
1184 if (error < 0) {
1185 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1186 (void)hwif->dma_ops->dma_end(drive);
1187 ret = ide_error(drive, "dma timeout error",
1188 hwif->tp_ops->read_status(hwif));
1189 } else {
1190 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1191 hwif->dma_ops->dma_timeout(drive);
1192 }
1193
1194 /*
1195 * disable dma for now, but remember that we did so because of
1196 * a timeout -- we'll reenable after we finish this next request
1197 * (or rather the first chunk of it) in pio.
1198 */
1199 drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
1200 drive->retry_pio++;
1201 ide_dma_off_quietly(drive);
1202
1203 /*
1204 * un-busy drive etc (hwgroup->busy is cleared on return) and
1205 * make sure request is sane
1206 */
1207 rq = HWGROUP(drive)->rq;
1208
1209 if (!rq)
1210 goto out;
1211
1212 HWGROUP(drive)->rq = NULL;
1213
1214 rq->errors = 0;
1215
1216 if (!rq->bio)
1217 goto out;
1218
1219 rq->sector = rq->bio->bi_sector;
1220 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1221 rq->hard_cur_sectors = rq->current_nr_sectors;
1222 rq->buffer = bio_data(rq->bio);
1223 out:
1224 return ret;
1225 }
1226
1227 /**
1228 * ide_timer_expiry - handle lack of an IDE interrupt
1229 * @data: timer callback magic (hwgroup)
1230 *
1231 * An IDE command has timed out before the expected drive return
1232 * occurred. At this point we attempt to clean up the current
1233 * mess. If the current handler includes an expiry handler then
1234 * we invoke the expiry handler, and providing it is happy the
1235 * work is done. If that fails we apply generic recovery rules
1236 * invoking the handler and checking the drive DMA status. We
1237 * have an excessively incestuous relationship with the DMA
1238 * logic that wants cleaning up.
1239 */
1240
1241 void ide_timer_expiry (unsigned long data)
1242 {
1243 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1244 ide_handler_t *handler;
1245 ide_expiry_t *expiry;
1246 unsigned long flags;
1247 unsigned long wait = -1;
1248
1249 spin_lock_irqsave(&ide_lock, flags);
1250
1251 if (((handler = hwgroup->handler) == NULL) ||
1252 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1253 /*
1254 * Either a marginal timeout occurred
1255 * (got the interrupt just as timer expired),
1256 * or we were "sleeping" to give other devices a chance.
1257 * Either way, we don't really want to complain about anything.
1258 */
1259 if (hwgroup->sleeping) {
1260 hwgroup->sleeping = 0;
1261 hwgroup->busy = 0;
1262 }
1263 } else {
1264 ide_drive_t *drive = hwgroup->drive;
1265 if (!drive) {
1266 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1267 hwgroup->handler = NULL;
1268 } else {
1269 ide_hwif_t *hwif;
1270 ide_startstop_t startstop = ide_stopped;
1271 if (!hwgroup->busy) {
1272 hwgroup->busy = 1; /* paranoia */
1273 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1274 }
1275 if ((expiry = hwgroup->expiry) != NULL) {
1276 /* continue */
1277 if ((wait = expiry(drive)) > 0) {
1278 /* reset timer */
1279 hwgroup->timer.expires = jiffies + wait;
1280 hwgroup->req_gen_timer = hwgroup->req_gen;
1281 add_timer(&hwgroup->timer);
1282 spin_unlock_irqrestore(&ide_lock, flags);
1283 return;
1284 }
1285 }
1286 hwgroup->handler = NULL;
1287 /*
1288 * We need to simulate a real interrupt when invoking
1289 * the handler() function, which means we need to
1290 * globally mask the specific IRQ:
1291 */
1292 spin_unlock(&ide_lock);
1293 hwif = HWIF(drive);
1294 /* disable_irq_nosync ?? */
1295 disable_irq(hwif->irq);
1296 /* local CPU only,
1297 * as if we were handling an interrupt */
1298 local_irq_disable();
1299 if (hwgroup->polling) {
1300 startstop = handler(drive);
1301 } else if (drive_is_ready(drive)) {
1302 if (drive->waiting_for_dma)
1303 hwif->dma_ops->dma_lost_irq(drive);
1304 (void)ide_ack_intr(hwif);
1305 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1306 startstop = handler(drive);
1307 } else {
1308 if (drive->waiting_for_dma) {
1309 startstop = ide_dma_timeout_retry(drive, wait);
1310 } else
1311 startstop =
1312 ide_error(drive, "irq timeout",
1313 hwif->tp_ops->read_status(hwif));
1314 }
1315 drive->service_time = jiffies - drive->service_start;
1316 spin_lock_irq(&ide_lock);
1317 enable_irq(hwif->irq);
1318 if (startstop == ide_stopped)
1319 hwgroup->busy = 0;
1320 }
1321 }
1322 ide_do_request(hwgroup, IDE_NO_IRQ);
1323 spin_unlock_irqrestore(&ide_lock, flags);
1324 }
1325
1326 /**
1327 * unexpected_intr - handle an unexpected IDE interrupt
1328 * @irq: interrupt line
1329 * @hwgroup: hwgroup being processed
1330 *
1331 * There's nothing really useful we can do with an unexpected interrupt,
1332 * other than reading the status register (to clear it), and logging it.
1333 * There should be no way that an irq can happen before we're ready for it,
1334 * so we needn't worry much about losing an "important" interrupt here.
1335 *
1336 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1337 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1338 * looks "good", we just ignore the interrupt completely.
1339 *
1340 * This routine assumes __cli() is in effect when called.
1341 *
1342 * If an unexpected interrupt happens on irq15 while we are handling irq14
1343 * and if the two interfaces are "serialized" (CMD640), then it looks like
1344 * we could screw up by interfering with a new request being set up for
1345 * irq15.
1346 *
1347 * In reality, this is a non-issue. The new command is not sent unless
1348 * the drive is ready to accept one, in which case we know the drive is
1349 * not trying to interrupt us. And ide_set_handler() is always invoked
1350 * before completing the issuance of any new drive command, so we will not
1351 * be accidentally invoked as a result of any valid command completion
1352 * interrupt.
1353 *
1354 * Note that we must walk the entire hwgroup here. We know which hwif
1355 * is doing the current command, but we don't know which hwif burped
1356 * mysteriously.
1357 */
1358
1359 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1360 {
1361 u8 stat;
1362 ide_hwif_t *hwif = hwgroup->hwif;
1363
1364 /*
1365 * handle the unexpected interrupt
1366 */
1367 do {
1368 if (hwif->irq == irq) {
1369 stat = hwif->tp_ops->read_status(hwif);
1370
1371 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1372 /* Try to not flood the console with msgs */
1373 static unsigned long last_msgtime, count;
1374 ++count;
1375 if (time_after(jiffies, last_msgtime + HZ)) {
1376 last_msgtime = jiffies;
1377 printk(KERN_ERR "%s%s: unexpected interrupt, "
1378 "status=0x%02x, count=%ld\n",
1379 hwif->name,
1380 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1381 }
1382 }
1383 }
1384 } while ((hwif = hwif->next) != hwgroup->hwif);
1385 }
1386
1387 /**
1388 * ide_intr - default IDE interrupt handler
1389 * @irq: interrupt number
1390 * @dev_id: hwif group
1391 * @regs: unused weirdness from the kernel irq layer
1392 *
1393 * This is the default IRQ handler for the IDE layer. You should
1394 * not need to override it. If you do be aware it is subtle in
1395 * places
1396 *
1397 * hwgroup->hwif is the interface in the group currently performing
1398 * a command. hwgroup->drive is the drive and hwgroup->handler is
1399 * the IRQ handler to call. As we issue a command the handlers
1400 * step through multiple states, reassigning the handler to the
1401 * next step in the process. Unlike a smart SCSI controller IDE
1402 * expects the main processor to sequence the various transfer
1403 * stages. We also manage a poll timer to catch up with most
1404 * timeout situations. There are still a few where the handlers
1405 * don't ever decide to give up.
1406 *
1407 * The handler eventually returns ide_stopped to indicate the
1408 * request completed. At this point we issue the next request
1409 * on the hwgroup and the process begins again.
1410 */
1411
1412 irqreturn_t ide_intr (int irq, void *dev_id)
1413 {
1414 unsigned long flags;
1415 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1416 ide_hwif_t *hwif;
1417 ide_drive_t *drive;
1418 ide_handler_t *handler;
1419 ide_startstop_t startstop;
1420
1421 spin_lock_irqsave(&ide_lock, flags);
1422 hwif = hwgroup->hwif;
1423
1424 if (!ide_ack_intr(hwif)) {
1425 spin_unlock_irqrestore(&ide_lock, flags);
1426 return IRQ_NONE;
1427 }
1428
1429 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1430 /*
1431 * Not expecting an interrupt from this drive.
1432 * That means this could be:
1433 * (1) an interrupt from another PCI device
1434 * sharing the same PCI INT# as us.
1435 * or (2) a drive just entered sleep or standby mode,
1436 * and is interrupting to let us know.
1437 * or (3) a spurious interrupt of unknown origin.
1438 *
1439 * For PCI, we cannot tell the difference,
1440 * so in that case we just ignore it and hope it goes away.
1441 *
1442 * FIXME: unexpected_intr should be hwif-> then we can
1443 * remove all the ifdef PCI crap
1444 */
1445 #ifdef CONFIG_BLK_DEV_IDEPCI
1446 if (hwif->chipset != ide_pci)
1447 #endif /* CONFIG_BLK_DEV_IDEPCI */
1448 {
1449 /*
1450 * Probably not a shared PCI interrupt,
1451 * so we can safely try to do something about it:
1452 */
1453 unexpected_intr(irq, hwgroup);
1454 #ifdef CONFIG_BLK_DEV_IDEPCI
1455 } else {
1456 /*
1457 * Whack the status register, just in case
1458 * we have a leftover pending IRQ.
1459 */
1460 (void)hwif->tp_ops->read_status(hwif);
1461 #endif /* CONFIG_BLK_DEV_IDEPCI */
1462 }
1463 spin_unlock_irqrestore(&ide_lock, flags);
1464 return IRQ_NONE;
1465 }
1466 drive = hwgroup->drive;
1467 if (!drive) {
1468 /*
1469 * This should NEVER happen, and there isn't much
1470 * we could do about it here.
1471 *
1472 * [Note - this can occur if the drive is hot unplugged]
1473 */
1474 spin_unlock_irqrestore(&ide_lock, flags);
1475 return IRQ_HANDLED;
1476 }
1477 if (!drive_is_ready(drive)) {
1478 /*
1479 * This happens regularly when we share a PCI IRQ with
1480 * another device. Unfortunately, it can also happen
1481 * with some buggy drives that trigger the IRQ before
1482 * their status register is up to date. Hopefully we have
1483 * enough advance overhead that the latter isn't a problem.
1484 */
1485 spin_unlock_irqrestore(&ide_lock, flags);
1486 return IRQ_NONE;
1487 }
1488 if (!hwgroup->busy) {
1489 hwgroup->busy = 1; /* paranoia */
1490 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1491 }
1492 hwgroup->handler = NULL;
1493 hwgroup->req_gen++;
1494 del_timer(&hwgroup->timer);
1495 spin_unlock(&ide_lock);
1496
1497 /* Some controllers might set DMA INTR no matter DMA or PIO;
1498 * bmdma status might need to be cleared even for
1499 * PIO interrupts to prevent spurious/lost irq.
1500 */
1501 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1502 /* ide_dma_end() needs bmdma status for error checking.
1503 * So, skip clearing bmdma status here and leave it
1504 * to ide_dma_end() if this is dma interrupt.
1505 */
1506 hwif->ide_dma_clear_irq(drive);
1507
1508 if (drive->dev_flags & IDE_DFLAG_UNMASK)
1509 local_irq_enable_in_hardirq();
1510 /* service this interrupt, may set handler for next interrupt */
1511 startstop = handler(drive);
1512 spin_lock_irq(&ide_lock);
1513
1514 /*
1515 * Note that handler() may have set things up for another
1516 * interrupt to occur soon, but it cannot happen until
1517 * we exit from this routine, because it will be the
1518 * same irq as is currently being serviced here, and Linux
1519 * won't allow another of the same (on any CPU) until we return.
1520 */
1521 drive->service_time = jiffies - drive->service_start;
1522 if (startstop == ide_stopped) {
1523 if (hwgroup->handler == NULL) { /* paranoia */
1524 hwgroup->busy = 0;
1525 ide_do_request(hwgroup, hwif->irq);
1526 } else {
1527 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1528 "on exit\n", drive->name);
1529 }
1530 }
1531 spin_unlock_irqrestore(&ide_lock, flags);
1532 return IRQ_HANDLED;
1533 }
1534
1535 /**
1536 * ide_do_drive_cmd - issue IDE special command
1537 * @drive: device to issue command
1538 * @rq: request to issue
1539 *
1540 * This function issues a special IDE device request
1541 * onto the request queue.
1542 *
1543 * the rq is queued at the head of the request queue, displacing
1544 * the currently-being-processed request and this function
1545 * returns immediately without waiting for the new rq to be
1546 * completed. This is VERY DANGEROUS, and is intended for
1547 * careful use by the ATAPI tape/cdrom driver code.
1548 */
1549
1550 void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1551 {
1552 unsigned long flags;
1553 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1554
1555 spin_lock_irqsave(&ide_lock, flags);
1556 hwgroup->rq = NULL;
1557 __elv_add_request(drive->queue, rq, ELEVATOR_INSERT_FRONT, 1);
1558 __generic_unplug_device(drive->queue);
1559 spin_unlock_irqrestore(&ide_lock, flags);
1560 }
1561
1562 EXPORT_SYMBOL(ide_do_drive_cmd);
1563
1564 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1565 {
1566 ide_hwif_t *hwif = drive->hwif;
1567 ide_task_t task;
1568
1569 memset(&task, 0, sizeof(task));
1570 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1571 IDE_TFLAG_OUT_FEATURE | tf_flags;
1572 task.tf.feature = dma; /* Use PIO/DMA */
1573 task.tf.lbam = bcount & 0xff;
1574 task.tf.lbah = (bcount >> 8) & 0xff;
1575
1576 ide_tf_dump(drive->name, &task.tf);
1577 hwif->tp_ops->set_irq(hwif, 1);
1578 SELECT_MASK(drive, 0);
1579 hwif->tp_ops->tf_load(drive, &task);
1580 }
1581
1582 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1583
1584 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1585 {
1586 ide_hwif_t *hwif = drive->hwif;
1587 u8 buf[4] = { 0 };
1588
1589 while (len > 0) {
1590 if (write)
1591 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1592 else
1593 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1594 len -= 4;
1595 }
1596 }
1597 EXPORT_SYMBOL_GPL(ide_pad_transfer);
This page took 0.099093 seconds and 5 git commands to generate.