Merge branch 'oprofile-for-tip' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / ide / ide-io.c
1 /*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
52
53 #include <asm/byteorder.h>
54 #include <asm/irq.h>
55 #include <asm/uaccess.h>
56 #include <asm/io.h>
57
58 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59 int uptodate, unsigned int nr_bytes, int dequeue)
60 {
61 int ret = 1;
62 int error = 0;
63
64 if (uptodate <= 0)
65 error = uptodate ? uptodate : -EIO;
66
67 /*
68 * if failfast is set on a request, override number of sectors and
69 * complete the whole request right now
70 */
71 if (blk_noretry_request(rq) && error)
72 nr_bytes = rq->hard_nr_sectors << 9;
73
74 if (!blk_fs_request(rq) && error && !rq->errors)
75 rq->errors = -EIO;
76
77 /*
78 * decide whether to reenable DMA -- 3 is a random magic for now,
79 * if we DMA timeout more than 3 times, just stay in PIO
80 */
81 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82 drive->retry_pio <= 3) {
83 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84 ide_dma_on(drive);
85 }
86
87 if (!__blk_end_request(rq, error, nr_bytes)) {
88 if (dequeue)
89 HWGROUP(drive)->rq = NULL;
90 ret = 0;
91 }
92
93 return ret;
94 }
95
96 /**
97 * ide_end_request - complete an IDE I/O
98 * @drive: IDE device for the I/O
99 * @uptodate:
100 * @nr_sectors: number of sectors completed
101 *
102 * This is our end_request wrapper function. We complete the I/O
103 * update random number input and dequeue the request, which if
104 * it was tagged may be out of order.
105 */
106
107 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108 {
109 unsigned int nr_bytes = nr_sectors << 9;
110 struct request *rq;
111 unsigned long flags;
112 int ret = 1;
113
114 /*
115 * room for locking improvements here, the calls below don't
116 * need the queue lock held at all
117 */
118 spin_lock_irqsave(&ide_lock, flags);
119 rq = HWGROUP(drive)->rq;
120
121 if (!nr_bytes) {
122 if (blk_pc_request(rq))
123 nr_bytes = rq->data_len;
124 else
125 nr_bytes = rq->hard_cur_sectors << 9;
126 }
127
128 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
129
130 spin_unlock_irqrestore(&ide_lock, flags);
131 return ret;
132 }
133 EXPORT_SYMBOL(ide_end_request);
134
135 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
136 {
137 struct request_pm_state *pm = rq->data;
138
139 if (drive->media != ide_disk)
140 return;
141
142 switch (pm->pm_step) {
143 case IDE_PM_FLUSH_CACHE: /* Suspend step 1 (flush cache) */
144 if (pm->pm_state == PM_EVENT_FREEZE)
145 pm->pm_step = IDE_PM_COMPLETED;
146 else
147 pm->pm_step = IDE_PM_STANDBY;
148 break;
149 case IDE_PM_STANDBY: /* Suspend step 2 (standby) */
150 pm->pm_step = IDE_PM_COMPLETED;
151 break;
152 case IDE_PM_RESTORE_PIO: /* Resume step 1 (restore PIO) */
153 pm->pm_step = IDE_PM_IDLE;
154 break;
155 case IDE_PM_IDLE: /* Resume step 2 (idle)*/
156 pm->pm_step = IDE_PM_RESTORE_DMA;
157 break;
158 }
159 }
160
161 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
162 {
163 struct request_pm_state *pm = rq->data;
164 ide_task_t *args = rq->special;
165
166 memset(args, 0, sizeof(*args));
167
168 switch (pm->pm_step) {
169 case IDE_PM_FLUSH_CACHE: /* Suspend step 1 (flush cache) */
170 if (drive->media != ide_disk)
171 break;
172 /* Not supported? Switch to next step now. */
173 if (ata_id_flush_enabled(drive->id) == 0 ||
174 (drive->dev_flags & IDE_DFLAG_WCACHE) == 0) {
175 ide_complete_power_step(drive, rq, 0, 0);
176 return ide_stopped;
177 }
178 if (ata_id_flush_ext_enabled(drive->id))
179 args->tf.command = ATA_CMD_FLUSH_EXT;
180 else
181 args->tf.command = ATA_CMD_FLUSH;
182 goto out_do_tf;
183 case IDE_PM_STANDBY: /* Suspend step 2 (standby) */
184 args->tf.command = ATA_CMD_STANDBYNOW1;
185 goto out_do_tf;
186 case IDE_PM_RESTORE_PIO: /* Resume step 1 (restore PIO) */
187 ide_set_max_pio(drive);
188 /*
189 * skip IDE_PM_IDLE for ATAPI devices
190 */
191 if (drive->media != ide_disk)
192 pm->pm_step = IDE_PM_RESTORE_DMA;
193 else
194 ide_complete_power_step(drive, rq, 0, 0);
195 return ide_stopped;
196 case IDE_PM_IDLE: /* Resume step 2 (idle) */
197 args->tf.command = ATA_CMD_IDLEIMMEDIATE;
198 goto out_do_tf;
199 case IDE_PM_RESTORE_DMA: /* Resume step 3 (restore DMA) */
200 /*
201 * Right now, all we do is call ide_set_dma(drive),
202 * we could be smarter and check for current xfer_speed
203 * in struct drive etc...
204 */
205 if (drive->hwif->dma_ops == NULL)
206 break;
207 /*
208 * TODO: respect IDE_DFLAG_USING_DMA
209 */
210 ide_set_dma(drive);
211 break;
212 }
213
214 pm->pm_step = IDE_PM_COMPLETED;
215 return ide_stopped;
216
217 out_do_tf:
218 args->tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
219 args->data_phase = TASKFILE_NO_DATA;
220 return do_rw_taskfile(drive, args);
221 }
222
223 /**
224 * ide_end_dequeued_request - complete an IDE I/O
225 * @drive: IDE device for the I/O
226 * @uptodate:
227 * @nr_sectors: number of sectors completed
228 *
229 * Complete an I/O that is no longer on the request queue. This
230 * typically occurs when we pull the request and issue a REQUEST_SENSE.
231 * We must still finish the old request but we must not tamper with the
232 * queue in the meantime.
233 *
234 * NOTE: This path does not handle barrier, but barrier is not supported
235 * on ide-cd anyway.
236 */
237
238 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
239 int uptodate, int nr_sectors)
240 {
241 unsigned long flags;
242 int ret;
243
244 spin_lock_irqsave(&ide_lock, flags);
245 BUG_ON(!blk_rq_started(rq));
246 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
247 spin_unlock_irqrestore(&ide_lock, flags);
248
249 return ret;
250 }
251 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
252
253
254 /**
255 * ide_complete_pm_request - end the current Power Management request
256 * @drive: target drive
257 * @rq: request
258 *
259 * This function cleans up the current PM request and stops the queue
260 * if necessary.
261 */
262 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
263 {
264 unsigned long flags;
265
266 #ifdef DEBUG_PM
267 printk("%s: completing PM request, %s\n", drive->name,
268 blk_pm_suspend_request(rq) ? "suspend" : "resume");
269 #endif
270 spin_lock_irqsave(&ide_lock, flags);
271 if (blk_pm_suspend_request(rq)) {
272 blk_stop_queue(drive->queue);
273 } else {
274 drive->dev_flags &= ~IDE_DFLAG_BLOCKED;
275 blk_start_queue(drive->queue);
276 }
277 HWGROUP(drive)->rq = NULL;
278 if (__blk_end_request(rq, 0, 0))
279 BUG();
280 spin_unlock_irqrestore(&ide_lock, flags);
281 }
282
283 /**
284 * ide_end_drive_cmd - end an explicit drive command
285 * @drive: command
286 * @stat: status bits
287 * @err: error bits
288 *
289 * Clean up after success/failure of an explicit drive command.
290 * These get thrown onto the queue so they are synchronized with
291 * real I/O operations on the drive.
292 *
293 * In LBA48 mode we have to read the register set twice to get
294 * all the extra information out.
295 */
296
297 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
298 {
299 unsigned long flags;
300 struct request *rq;
301
302 spin_lock_irqsave(&ide_lock, flags);
303 rq = HWGROUP(drive)->rq;
304 spin_unlock_irqrestore(&ide_lock, flags);
305
306 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
307 ide_task_t *task = (ide_task_t *)rq->special;
308
309 if (rq->errors == 0)
310 rq->errors = !OK_STAT(stat, ATA_DRDY, BAD_STAT);
311
312 if (task) {
313 struct ide_taskfile *tf = &task->tf;
314
315 tf->error = err;
316 tf->status = stat;
317
318 drive->hwif->tp_ops->tf_read(drive, task);
319
320 if (task->tf_flags & IDE_TFLAG_DYN)
321 kfree(task);
322 }
323 } else if (blk_pm_request(rq)) {
324 struct request_pm_state *pm = rq->data;
325 #ifdef DEBUG_PM
326 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
327 drive->name, rq->pm->pm_step, stat, err);
328 #endif
329 ide_complete_power_step(drive, rq, stat, err);
330 if (pm->pm_step == IDE_PM_COMPLETED)
331 ide_complete_pm_request(drive, rq);
332 return;
333 }
334
335 spin_lock_irqsave(&ide_lock, flags);
336 HWGROUP(drive)->rq = NULL;
337 rq->errors = err;
338 if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
339 blk_rq_bytes(rq))))
340 BUG();
341 spin_unlock_irqrestore(&ide_lock, flags);
342 }
343
344 EXPORT_SYMBOL(ide_end_drive_cmd);
345
346 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
347 {
348 if (rq->rq_disk) {
349 ide_driver_t *drv;
350
351 drv = *(ide_driver_t **)rq->rq_disk->private_data;
352 drv->end_request(drive, 0, 0);
353 } else
354 ide_end_request(drive, 0, 0);
355 }
356
357 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
358 {
359 ide_hwif_t *hwif = drive->hwif;
360
361 if ((stat & ATA_BUSY) ||
362 ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
363 /* other bits are useless when BUSY */
364 rq->errors |= ERROR_RESET;
365 } else if (stat & ATA_ERR) {
366 /* err has different meaning on cdrom and tape */
367 if (err == ATA_ABORTED) {
368 if ((drive->dev_flags & IDE_DFLAG_LBA) &&
369 /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
370 hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
371 return ide_stopped;
372 } else if ((err & BAD_CRC) == BAD_CRC) {
373 /* UDMA crc error, just retry the operation */
374 drive->crc_count++;
375 } else if (err & (ATA_BBK | ATA_UNC)) {
376 /* retries won't help these */
377 rq->errors = ERROR_MAX;
378 } else if (err & ATA_TRK0NF) {
379 /* help it find track zero */
380 rq->errors |= ERROR_RECAL;
381 }
382 }
383
384 if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
385 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
386 int nsect = drive->mult_count ? drive->mult_count : 1;
387
388 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
389 }
390
391 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
392 ide_kill_rq(drive, rq);
393 return ide_stopped;
394 }
395
396 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
397 rq->errors |= ERROR_RESET;
398
399 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
400 ++rq->errors;
401 return ide_do_reset(drive);
402 }
403
404 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
405 drive->special.b.recalibrate = 1;
406
407 ++rq->errors;
408
409 return ide_stopped;
410 }
411
412 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
413 {
414 ide_hwif_t *hwif = drive->hwif;
415
416 if ((stat & ATA_BUSY) ||
417 ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
418 /* other bits are useless when BUSY */
419 rq->errors |= ERROR_RESET;
420 } else {
421 /* add decoding error stuff */
422 }
423
424 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
425 /* force an abort */
426 hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
427
428 if (rq->errors >= ERROR_MAX) {
429 ide_kill_rq(drive, rq);
430 } else {
431 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
432 ++rq->errors;
433 return ide_do_reset(drive);
434 }
435 ++rq->errors;
436 }
437
438 return ide_stopped;
439 }
440
441 ide_startstop_t
442 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
443 {
444 if (drive->media == ide_disk)
445 return ide_ata_error(drive, rq, stat, err);
446 return ide_atapi_error(drive, rq, stat, err);
447 }
448
449 EXPORT_SYMBOL_GPL(__ide_error);
450
451 /**
452 * ide_error - handle an error on the IDE
453 * @drive: drive the error occurred on
454 * @msg: message to report
455 * @stat: status bits
456 *
457 * ide_error() takes action based on the error returned by the drive.
458 * For normal I/O that may well include retries. We deal with
459 * both new-style (taskfile) and old style command handling here.
460 * In the case of taskfile command handling there is work left to
461 * do
462 */
463
464 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
465 {
466 struct request *rq;
467 u8 err;
468
469 err = ide_dump_status(drive, msg, stat);
470
471 if ((rq = HWGROUP(drive)->rq) == NULL)
472 return ide_stopped;
473
474 /* retry only "normal" I/O: */
475 if (!blk_fs_request(rq)) {
476 rq->errors = 1;
477 ide_end_drive_cmd(drive, stat, err);
478 return ide_stopped;
479 }
480
481 if (rq->rq_disk) {
482 ide_driver_t *drv;
483
484 drv = *(ide_driver_t **)rq->rq_disk->private_data;
485 return drv->error(drive, rq, stat, err);
486 } else
487 return __ide_error(drive, rq, stat, err);
488 }
489
490 EXPORT_SYMBOL_GPL(ide_error);
491
492 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
493 {
494 tf->nsect = drive->sect;
495 tf->lbal = drive->sect;
496 tf->lbam = drive->cyl;
497 tf->lbah = drive->cyl >> 8;
498 tf->device = (drive->head - 1) | drive->select;
499 tf->command = ATA_CMD_INIT_DEV_PARAMS;
500 }
501
502 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
503 {
504 tf->nsect = drive->sect;
505 tf->command = ATA_CMD_RESTORE;
506 }
507
508 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
509 {
510 tf->nsect = drive->mult_req;
511 tf->command = ATA_CMD_SET_MULTI;
512 }
513
514 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
515 {
516 special_t *s = &drive->special;
517 ide_task_t args;
518
519 memset(&args, 0, sizeof(ide_task_t));
520 args.data_phase = TASKFILE_NO_DATA;
521
522 if (s->b.set_geometry) {
523 s->b.set_geometry = 0;
524 ide_tf_set_specify_cmd(drive, &args.tf);
525 } else if (s->b.recalibrate) {
526 s->b.recalibrate = 0;
527 ide_tf_set_restore_cmd(drive, &args.tf);
528 } else if (s->b.set_multmode) {
529 s->b.set_multmode = 0;
530 ide_tf_set_setmult_cmd(drive, &args.tf);
531 } else if (s->all) {
532 int special = s->all;
533 s->all = 0;
534 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
535 return ide_stopped;
536 }
537
538 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
539 IDE_TFLAG_CUSTOM_HANDLER;
540
541 do_rw_taskfile(drive, &args);
542
543 return ide_started;
544 }
545
546 /**
547 * do_special - issue some special commands
548 * @drive: drive the command is for
549 *
550 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
551 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
552 *
553 * It used to do much more, but has been scaled back.
554 */
555
556 static ide_startstop_t do_special (ide_drive_t *drive)
557 {
558 special_t *s = &drive->special;
559
560 #ifdef DEBUG
561 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
562 #endif
563 if (drive->media == ide_disk)
564 return ide_disk_special(drive);
565
566 s->all = 0;
567 drive->mult_req = 0;
568 return ide_stopped;
569 }
570
571 void ide_map_sg(ide_drive_t *drive, struct request *rq)
572 {
573 ide_hwif_t *hwif = drive->hwif;
574 struct scatterlist *sg = hwif->sg_table;
575
576 if (hwif->sg_mapped) /* needed by ide-scsi */
577 return;
578
579 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
580 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
581 } else {
582 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
583 hwif->sg_nents = 1;
584 }
585 }
586
587 EXPORT_SYMBOL_GPL(ide_map_sg);
588
589 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
590 {
591 ide_hwif_t *hwif = drive->hwif;
592
593 hwif->nsect = hwif->nleft = rq->nr_sectors;
594 hwif->cursg_ofs = 0;
595 hwif->cursg = NULL;
596 }
597
598 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
599
600 /**
601 * execute_drive_command - issue special drive command
602 * @drive: the drive to issue the command on
603 * @rq: the request structure holding the command
604 *
605 * execute_drive_cmd() issues a special drive command, usually
606 * initiated by ioctl() from the external hdparm program. The
607 * command can be a drive command, drive task or taskfile
608 * operation. Weirdly you can call it with NULL to wait for
609 * all commands to finish. Don't do this as that is due to change
610 */
611
612 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
613 struct request *rq)
614 {
615 ide_hwif_t *hwif = HWIF(drive);
616 ide_task_t *task = rq->special;
617
618 if (task) {
619 hwif->data_phase = task->data_phase;
620
621 switch (hwif->data_phase) {
622 case TASKFILE_MULTI_OUT:
623 case TASKFILE_OUT:
624 case TASKFILE_MULTI_IN:
625 case TASKFILE_IN:
626 ide_init_sg_cmd(drive, rq);
627 ide_map_sg(drive, rq);
628 default:
629 break;
630 }
631
632 return do_rw_taskfile(drive, task);
633 }
634
635 /*
636 * NULL is actually a valid way of waiting for
637 * all current requests to be flushed from the queue.
638 */
639 #ifdef DEBUG
640 printk("%s: DRIVE_CMD (null)\n", drive->name);
641 #endif
642 ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
643 ide_read_error(drive));
644
645 return ide_stopped;
646 }
647
648 int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
649 int arg)
650 {
651 struct request_queue *q = drive->queue;
652 struct request *rq;
653 int ret = 0;
654
655 if (!(setting->flags & DS_SYNC))
656 return setting->set(drive, arg);
657
658 rq = blk_get_request(q, READ, __GFP_WAIT);
659 rq->cmd_type = REQ_TYPE_SPECIAL;
660 rq->cmd_len = 5;
661 rq->cmd[0] = REQ_DEVSET_EXEC;
662 *(int *)&rq->cmd[1] = arg;
663 rq->special = setting->set;
664
665 if (blk_execute_rq(q, NULL, rq, 0))
666 ret = rq->errors;
667 blk_put_request(rq);
668
669 return ret;
670 }
671 EXPORT_SYMBOL_GPL(ide_devset_execute);
672
673 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
674 {
675 u8 cmd = rq->cmd[0];
676
677 if (cmd == REQ_PARK_HEADS || cmd == REQ_UNPARK_HEADS) {
678 ide_task_t task;
679 struct ide_taskfile *tf = &task.tf;
680
681 memset(&task, 0, sizeof(task));
682 if (cmd == REQ_PARK_HEADS) {
683 drive->sleep = *(unsigned long *)rq->special;
684 drive->dev_flags |= IDE_DFLAG_SLEEPING;
685 tf->command = ATA_CMD_IDLEIMMEDIATE;
686 tf->feature = 0x44;
687 tf->lbal = 0x4c;
688 tf->lbam = 0x4e;
689 tf->lbah = 0x55;
690 task.tf_flags |= IDE_TFLAG_CUSTOM_HANDLER;
691 } else /* cmd == REQ_UNPARK_HEADS */
692 tf->command = ATA_CMD_CHK_POWER;
693
694 task.tf_flags |= IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
695 task.rq = rq;
696 drive->hwif->data_phase = task.data_phase = TASKFILE_NO_DATA;
697 return do_rw_taskfile(drive, &task);
698 }
699
700 switch (cmd) {
701 case REQ_DEVSET_EXEC:
702 {
703 int err, (*setfunc)(ide_drive_t *, int) = rq->special;
704
705 err = setfunc(drive, *(int *)&rq->cmd[1]);
706 if (err)
707 rq->errors = err;
708 else
709 err = 1;
710 ide_end_request(drive, err, 0);
711 return ide_stopped;
712 }
713 case REQ_DRIVE_RESET:
714 return ide_do_reset(drive);
715 default:
716 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
717 ide_end_request(drive, 0, 0);
718 return ide_stopped;
719 }
720 }
721
722 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
723 {
724 struct request_pm_state *pm = rq->data;
725
726 if (blk_pm_suspend_request(rq) &&
727 pm->pm_step == IDE_PM_START_SUSPEND)
728 /* Mark drive blocked when starting the suspend sequence. */
729 drive->dev_flags |= IDE_DFLAG_BLOCKED;
730 else if (blk_pm_resume_request(rq) &&
731 pm->pm_step == IDE_PM_START_RESUME) {
732 /*
733 * The first thing we do on wakeup is to wait for BSY bit to
734 * go away (with a looong timeout) as a drive on this hwif may
735 * just be POSTing itself.
736 * We do that before even selecting as the "other" device on
737 * the bus may be broken enough to walk on our toes at this
738 * point.
739 */
740 ide_hwif_t *hwif = drive->hwif;
741 int rc;
742 #ifdef DEBUG_PM
743 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
744 #endif
745 rc = ide_wait_not_busy(hwif, 35000);
746 if (rc)
747 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
748 SELECT_DRIVE(drive);
749 hwif->tp_ops->set_irq(hwif, 1);
750 rc = ide_wait_not_busy(hwif, 100000);
751 if (rc)
752 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
753 }
754 }
755
756 /**
757 * start_request - start of I/O and command issuing for IDE
758 *
759 * start_request() initiates handling of a new I/O request. It
760 * accepts commands and I/O (read/write) requests.
761 *
762 * FIXME: this function needs a rename
763 */
764
765 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
766 {
767 ide_startstop_t startstop;
768
769 BUG_ON(!blk_rq_started(rq));
770
771 #ifdef DEBUG
772 printk("%s: start_request: current=0x%08lx\n",
773 HWIF(drive)->name, (unsigned long) rq);
774 #endif
775
776 /* bail early if we've exceeded max_failures */
777 if (drive->max_failures && (drive->failures > drive->max_failures)) {
778 rq->cmd_flags |= REQ_FAILED;
779 goto kill_rq;
780 }
781
782 if (blk_pm_request(rq))
783 ide_check_pm_state(drive, rq);
784
785 SELECT_DRIVE(drive);
786 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
787 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
788 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
789 return startstop;
790 }
791 if (!drive->special.all) {
792 ide_driver_t *drv;
793
794 /*
795 * We reset the drive so we need to issue a SETFEATURES.
796 * Do it _after_ do_special() restored device parameters.
797 */
798 if (drive->current_speed == 0xff)
799 ide_config_drive_speed(drive, drive->desired_speed);
800
801 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
802 return execute_drive_cmd(drive, rq);
803 else if (blk_pm_request(rq)) {
804 struct request_pm_state *pm = rq->data;
805 #ifdef DEBUG_PM
806 printk("%s: start_power_step(step: %d)\n",
807 drive->name, rq->pm->pm_step);
808 #endif
809 startstop = ide_start_power_step(drive, rq);
810 if (startstop == ide_stopped &&
811 pm->pm_step == IDE_PM_COMPLETED)
812 ide_complete_pm_request(drive, rq);
813 return startstop;
814 } else if (!rq->rq_disk && blk_special_request(rq))
815 /*
816 * TODO: Once all ULDs have been modified to
817 * check for specific op codes rather than
818 * blindly accepting any special request, the
819 * check for ->rq_disk above may be replaced
820 * by a more suitable mechanism or even
821 * dropped entirely.
822 */
823 return ide_special_rq(drive, rq);
824
825 drv = *(ide_driver_t **)rq->rq_disk->private_data;
826
827 return drv->do_request(drive, rq, rq->sector);
828 }
829 return do_special(drive);
830 kill_rq:
831 ide_kill_rq(drive, rq);
832 return ide_stopped;
833 }
834
835 /**
836 * ide_stall_queue - pause an IDE device
837 * @drive: drive to stall
838 * @timeout: time to stall for (jiffies)
839 *
840 * ide_stall_queue() can be used by a drive to give excess bandwidth back
841 * to the hwgroup by sleeping for timeout jiffies.
842 */
843
844 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
845 {
846 if (timeout > WAIT_WORSTCASE)
847 timeout = WAIT_WORSTCASE;
848 drive->sleep = timeout + jiffies;
849 drive->dev_flags |= IDE_DFLAG_SLEEPING;
850 }
851
852 EXPORT_SYMBOL(ide_stall_queue);
853
854 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
855
856 /**
857 * choose_drive - select a drive to service
858 * @hwgroup: hardware group to select on
859 *
860 * choose_drive() selects the next drive which will be serviced.
861 * This is necessary because the IDE layer can't issue commands
862 * to both drives on the same cable, unlike SCSI.
863 */
864
865 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
866 {
867 ide_drive_t *drive, *best;
868
869 repeat:
870 best = NULL;
871 drive = hwgroup->drive;
872
873 /*
874 * drive is doing pre-flush, ordered write, post-flush sequence. even
875 * though that is 3 requests, it must be seen as a single transaction.
876 * we must not preempt this drive until that is complete
877 */
878 if (blk_queue_flushing(drive->queue)) {
879 /*
880 * small race where queue could get replugged during
881 * the 3-request flush cycle, just yank the plug since
882 * we want it to finish asap
883 */
884 blk_remove_plug(drive->queue);
885 return drive;
886 }
887
888 do {
889 u8 dev_s = !!(drive->dev_flags & IDE_DFLAG_SLEEPING);
890 u8 best_s = (best && !!(best->dev_flags & IDE_DFLAG_SLEEPING));
891
892 if ((dev_s == 0 || time_after_eq(jiffies, drive->sleep)) &&
893 !elv_queue_empty(drive->queue)) {
894 if (best == NULL ||
895 (dev_s && (best_s == 0 || time_before(drive->sleep, best->sleep))) ||
896 (best_s == 0 && time_before(WAKEUP(drive), WAKEUP(best)))) {
897 if (!blk_queue_plugged(drive->queue))
898 best = drive;
899 }
900 }
901 } while ((drive = drive->next) != hwgroup->drive);
902
903 if (best && (best->dev_flags & IDE_DFLAG_NICE1) &&
904 (best->dev_flags & IDE_DFLAG_SLEEPING) == 0 &&
905 best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
906 long t = (signed long)(WAKEUP(best) - jiffies);
907 if (t >= WAIT_MIN_SLEEP) {
908 /*
909 * We *may* have some time to spare, but first let's see if
910 * someone can potentially benefit from our nice mood today..
911 */
912 drive = best->next;
913 do {
914 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) == 0
915 && time_before(jiffies - best->service_time, WAKEUP(drive))
916 && time_before(WAKEUP(drive), jiffies + t))
917 {
918 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
919 goto repeat;
920 }
921 } while ((drive = drive->next) != best);
922 }
923 }
924 return best;
925 }
926
927 /*
928 * Issue a new request to a drive from hwgroup
929 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
930 *
931 * A hwgroup is a serialized group of IDE interfaces. Usually there is
932 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
933 * may have both interfaces in a single hwgroup to "serialize" access.
934 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
935 * together into one hwgroup for serialized access.
936 *
937 * Note also that several hwgroups can end up sharing a single IRQ,
938 * possibly along with many other devices. This is especially common in
939 * PCI-based systems with off-board IDE controller cards.
940 *
941 * The IDE driver uses the single global ide_lock spinlock to protect
942 * access to the request queues, and to protect the hwgroup->busy flag.
943 *
944 * The first thread into the driver for a particular hwgroup sets the
945 * hwgroup->busy flag to indicate that this hwgroup is now active,
946 * and then initiates processing of the top request from the request queue.
947 *
948 * Other threads attempting entry notice the busy setting, and will simply
949 * queue their new requests and exit immediately. Note that hwgroup->busy
950 * remains set even when the driver is merely awaiting the next interrupt.
951 * Thus, the meaning is "this hwgroup is busy processing a request".
952 *
953 * When processing of a request completes, the completing thread or IRQ-handler
954 * will start the next request from the queue. If no more work remains,
955 * the driver will clear the hwgroup->busy flag and exit.
956 *
957 * The ide_lock (spinlock) is used to protect all access to the
958 * hwgroup->busy flag, but is otherwise not needed for most processing in
959 * the driver. This makes the driver much more friendlier to shared IRQs
960 * than previous designs, while remaining 100% (?) SMP safe and capable.
961 */
962 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
963 {
964 ide_drive_t *drive;
965 ide_hwif_t *hwif;
966 struct request *rq;
967 ide_startstop_t startstop;
968 int loops = 0;
969
970 /* for atari only: POSSIBLY BROKEN HERE(?) */
971 ide_get_lock(ide_intr, hwgroup);
972
973 /* caller must own ide_lock */
974 BUG_ON(!irqs_disabled());
975
976 while (!hwgroup->busy) {
977 hwgroup->busy = 1;
978 drive = choose_drive(hwgroup);
979 if (drive == NULL) {
980 int sleeping = 0;
981 unsigned long sleep = 0; /* shut up, gcc */
982 hwgroup->rq = NULL;
983 drive = hwgroup->drive;
984 do {
985 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) &&
986 (sleeping == 0 ||
987 time_before(drive->sleep, sleep))) {
988 sleeping = 1;
989 sleep = drive->sleep;
990 }
991 } while ((drive = drive->next) != hwgroup->drive);
992 if (sleeping) {
993 /*
994 * Take a short snooze, and then wake up this hwgroup again.
995 * This gives other hwgroups on the same a chance to
996 * play fairly with us, just in case there are big differences
997 * in relative throughputs.. don't want to hog the cpu too much.
998 */
999 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1000 sleep = jiffies + WAIT_MIN_SLEEP;
1001 #if 1
1002 if (timer_pending(&hwgroup->timer))
1003 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1004 #endif
1005 /* so that ide_timer_expiry knows what to do */
1006 hwgroup->sleeping = 1;
1007 hwgroup->req_gen_timer = hwgroup->req_gen;
1008 mod_timer(&hwgroup->timer, sleep);
1009 /* we purposely leave hwgroup->busy==1
1010 * while sleeping */
1011 } else {
1012 /* Ugly, but how can we sleep for the lock
1013 * otherwise? perhaps from tq_disk?
1014 */
1015
1016 /* for atari only */
1017 ide_release_lock();
1018 hwgroup->busy = 0;
1019 }
1020
1021 /* no more work for this hwgroup (for now) */
1022 return;
1023 }
1024 again:
1025 hwif = HWIF(drive);
1026 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1027 /*
1028 * set nIEN for previous hwif, drives in the
1029 * quirk_list may not like intr setups/cleanups
1030 */
1031 if (drive->quirk_list != 1)
1032 hwif->tp_ops->set_irq(hwif, 0);
1033 }
1034 hwgroup->hwif = hwif;
1035 hwgroup->drive = drive;
1036 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
1037 drive->service_start = jiffies;
1038
1039 if (blk_queue_plugged(drive->queue)) {
1040 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1041 break;
1042 }
1043
1044 /*
1045 * we know that the queue isn't empty, but this can happen
1046 * if the q->prep_rq_fn() decides to kill a request
1047 */
1048 rq = elv_next_request(drive->queue);
1049 if (!rq) {
1050 hwgroup->busy = 0;
1051 break;
1052 }
1053
1054 /*
1055 * Sanity: don't accept a request that isn't a PM request
1056 * if we are currently power managed. This is very important as
1057 * blk_stop_queue() doesn't prevent the elv_next_request()
1058 * above to return us whatever is in the queue. Since we call
1059 * ide_do_request() ourselves, we end up taking requests while
1060 * the queue is blocked...
1061 *
1062 * We let requests forced at head of queue with ide-preempt
1063 * though. I hope that doesn't happen too much, hopefully not
1064 * unless the subdriver triggers such a thing in its own PM
1065 * state machine.
1066 *
1067 * We count how many times we loop here to make sure we service
1068 * all drives in the hwgroup without looping for ever
1069 */
1070 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
1071 blk_pm_request(rq) == 0 &&
1072 (rq->cmd_flags & REQ_PREEMPT) == 0) {
1073 drive = drive->next ? drive->next : hwgroup->drive;
1074 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1075 goto again;
1076 /* We clear busy, there should be no pending ATA command at this point. */
1077 hwgroup->busy = 0;
1078 break;
1079 }
1080
1081 hwgroup->rq = rq;
1082
1083 /*
1084 * Some systems have trouble with IDE IRQs arriving while
1085 * the driver is still setting things up. So, here we disable
1086 * the IRQ used by this interface while the request is being started.
1087 * This may look bad at first, but pretty much the same thing
1088 * happens anyway when any interrupt comes in, IDE or otherwise
1089 * -- the kernel masks the IRQ while it is being handled.
1090 */
1091 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1092 disable_irq_nosync(hwif->irq);
1093 spin_unlock(&ide_lock);
1094 local_irq_enable_in_hardirq();
1095 /* allow other IRQs while we start this request */
1096 startstop = start_request(drive, rq);
1097 spin_lock_irq(&ide_lock);
1098 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1099 enable_irq(hwif->irq);
1100 if (startstop == ide_stopped)
1101 hwgroup->busy = 0;
1102 }
1103 }
1104
1105 /*
1106 * Passes the stuff to ide_do_request
1107 */
1108 void do_ide_request(struct request_queue *q)
1109 {
1110 ide_drive_t *drive = q->queuedata;
1111
1112 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1113 }
1114
1115 /*
1116 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1117 * retry the current request in pio mode instead of risking tossing it
1118 * all away
1119 */
1120 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1121 {
1122 ide_hwif_t *hwif = HWIF(drive);
1123 struct request *rq;
1124 ide_startstop_t ret = ide_stopped;
1125
1126 /*
1127 * end current dma transaction
1128 */
1129
1130 if (error < 0) {
1131 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1132 (void)hwif->dma_ops->dma_end(drive);
1133 ret = ide_error(drive, "dma timeout error",
1134 hwif->tp_ops->read_status(hwif));
1135 } else {
1136 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1137 hwif->dma_ops->dma_timeout(drive);
1138 }
1139
1140 /*
1141 * disable dma for now, but remember that we did so because of
1142 * a timeout -- we'll reenable after we finish this next request
1143 * (or rather the first chunk of it) in pio.
1144 */
1145 drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
1146 drive->retry_pio++;
1147 ide_dma_off_quietly(drive);
1148
1149 /*
1150 * un-busy drive etc (hwgroup->busy is cleared on return) and
1151 * make sure request is sane
1152 */
1153 rq = HWGROUP(drive)->rq;
1154
1155 if (!rq)
1156 goto out;
1157
1158 HWGROUP(drive)->rq = NULL;
1159
1160 rq->errors = 0;
1161
1162 if (!rq->bio)
1163 goto out;
1164
1165 rq->sector = rq->bio->bi_sector;
1166 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1167 rq->hard_cur_sectors = rq->current_nr_sectors;
1168 rq->buffer = bio_data(rq->bio);
1169 out:
1170 return ret;
1171 }
1172
1173 /**
1174 * ide_timer_expiry - handle lack of an IDE interrupt
1175 * @data: timer callback magic (hwgroup)
1176 *
1177 * An IDE command has timed out before the expected drive return
1178 * occurred. At this point we attempt to clean up the current
1179 * mess. If the current handler includes an expiry handler then
1180 * we invoke the expiry handler, and providing it is happy the
1181 * work is done. If that fails we apply generic recovery rules
1182 * invoking the handler and checking the drive DMA status. We
1183 * have an excessively incestuous relationship with the DMA
1184 * logic that wants cleaning up.
1185 */
1186
1187 void ide_timer_expiry (unsigned long data)
1188 {
1189 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1190 ide_handler_t *handler;
1191 ide_expiry_t *expiry;
1192 unsigned long flags;
1193 unsigned long wait = -1;
1194
1195 spin_lock_irqsave(&ide_lock, flags);
1196
1197 if (((handler = hwgroup->handler) == NULL) ||
1198 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1199 /*
1200 * Either a marginal timeout occurred
1201 * (got the interrupt just as timer expired),
1202 * or we were "sleeping" to give other devices a chance.
1203 * Either way, we don't really want to complain about anything.
1204 */
1205 if (hwgroup->sleeping) {
1206 hwgroup->sleeping = 0;
1207 hwgroup->busy = 0;
1208 }
1209 } else {
1210 ide_drive_t *drive = hwgroup->drive;
1211 if (!drive) {
1212 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1213 hwgroup->handler = NULL;
1214 } else {
1215 ide_hwif_t *hwif;
1216 ide_startstop_t startstop = ide_stopped;
1217 if (!hwgroup->busy) {
1218 hwgroup->busy = 1; /* paranoia */
1219 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1220 }
1221 if ((expiry = hwgroup->expiry) != NULL) {
1222 /* continue */
1223 if ((wait = expiry(drive)) > 0) {
1224 /* reset timer */
1225 hwgroup->timer.expires = jiffies + wait;
1226 hwgroup->req_gen_timer = hwgroup->req_gen;
1227 add_timer(&hwgroup->timer);
1228 spin_unlock_irqrestore(&ide_lock, flags);
1229 return;
1230 }
1231 }
1232 hwgroup->handler = NULL;
1233 /*
1234 * We need to simulate a real interrupt when invoking
1235 * the handler() function, which means we need to
1236 * globally mask the specific IRQ:
1237 */
1238 spin_unlock(&ide_lock);
1239 hwif = HWIF(drive);
1240 /* disable_irq_nosync ?? */
1241 disable_irq(hwif->irq);
1242 /* local CPU only,
1243 * as if we were handling an interrupt */
1244 local_irq_disable();
1245 if (hwgroup->polling) {
1246 startstop = handler(drive);
1247 } else if (drive_is_ready(drive)) {
1248 if (drive->waiting_for_dma)
1249 hwif->dma_ops->dma_lost_irq(drive);
1250 (void)ide_ack_intr(hwif);
1251 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1252 startstop = handler(drive);
1253 } else {
1254 if (drive->waiting_for_dma) {
1255 startstop = ide_dma_timeout_retry(drive, wait);
1256 } else
1257 startstop =
1258 ide_error(drive, "irq timeout",
1259 hwif->tp_ops->read_status(hwif));
1260 }
1261 drive->service_time = jiffies - drive->service_start;
1262 spin_lock_irq(&ide_lock);
1263 enable_irq(hwif->irq);
1264 if (startstop == ide_stopped)
1265 hwgroup->busy = 0;
1266 }
1267 }
1268 ide_do_request(hwgroup, IDE_NO_IRQ);
1269 spin_unlock_irqrestore(&ide_lock, flags);
1270 }
1271
1272 /**
1273 * unexpected_intr - handle an unexpected IDE interrupt
1274 * @irq: interrupt line
1275 * @hwgroup: hwgroup being processed
1276 *
1277 * There's nothing really useful we can do with an unexpected interrupt,
1278 * other than reading the status register (to clear it), and logging it.
1279 * There should be no way that an irq can happen before we're ready for it,
1280 * so we needn't worry much about losing an "important" interrupt here.
1281 *
1282 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1283 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1284 * looks "good", we just ignore the interrupt completely.
1285 *
1286 * This routine assumes __cli() is in effect when called.
1287 *
1288 * If an unexpected interrupt happens on irq15 while we are handling irq14
1289 * and if the two interfaces are "serialized" (CMD640), then it looks like
1290 * we could screw up by interfering with a new request being set up for
1291 * irq15.
1292 *
1293 * In reality, this is a non-issue. The new command is not sent unless
1294 * the drive is ready to accept one, in which case we know the drive is
1295 * not trying to interrupt us. And ide_set_handler() is always invoked
1296 * before completing the issuance of any new drive command, so we will not
1297 * be accidentally invoked as a result of any valid command completion
1298 * interrupt.
1299 *
1300 * Note that we must walk the entire hwgroup here. We know which hwif
1301 * is doing the current command, but we don't know which hwif burped
1302 * mysteriously.
1303 */
1304
1305 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1306 {
1307 u8 stat;
1308 ide_hwif_t *hwif = hwgroup->hwif;
1309
1310 /*
1311 * handle the unexpected interrupt
1312 */
1313 do {
1314 if (hwif->irq == irq) {
1315 stat = hwif->tp_ops->read_status(hwif);
1316
1317 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1318 /* Try to not flood the console with msgs */
1319 static unsigned long last_msgtime, count;
1320 ++count;
1321 if (time_after(jiffies, last_msgtime + HZ)) {
1322 last_msgtime = jiffies;
1323 printk(KERN_ERR "%s%s: unexpected interrupt, "
1324 "status=0x%02x, count=%ld\n",
1325 hwif->name,
1326 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1327 }
1328 }
1329 }
1330 } while ((hwif = hwif->next) != hwgroup->hwif);
1331 }
1332
1333 /**
1334 * ide_intr - default IDE interrupt handler
1335 * @irq: interrupt number
1336 * @dev_id: hwif group
1337 * @regs: unused weirdness from the kernel irq layer
1338 *
1339 * This is the default IRQ handler for the IDE layer. You should
1340 * not need to override it. If you do be aware it is subtle in
1341 * places
1342 *
1343 * hwgroup->hwif is the interface in the group currently performing
1344 * a command. hwgroup->drive is the drive and hwgroup->handler is
1345 * the IRQ handler to call. As we issue a command the handlers
1346 * step through multiple states, reassigning the handler to the
1347 * next step in the process. Unlike a smart SCSI controller IDE
1348 * expects the main processor to sequence the various transfer
1349 * stages. We also manage a poll timer to catch up with most
1350 * timeout situations. There are still a few where the handlers
1351 * don't ever decide to give up.
1352 *
1353 * The handler eventually returns ide_stopped to indicate the
1354 * request completed. At this point we issue the next request
1355 * on the hwgroup and the process begins again.
1356 */
1357
1358 irqreturn_t ide_intr (int irq, void *dev_id)
1359 {
1360 unsigned long flags;
1361 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1362 ide_hwif_t *hwif;
1363 ide_drive_t *drive;
1364 ide_handler_t *handler;
1365 ide_startstop_t startstop;
1366
1367 spin_lock_irqsave(&ide_lock, flags);
1368 hwif = hwgroup->hwif;
1369
1370 if (!ide_ack_intr(hwif)) {
1371 spin_unlock_irqrestore(&ide_lock, flags);
1372 return IRQ_NONE;
1373 }
1374
1375 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1376 /*
1377 * Not expecting an interrupt from this drive.
1378 * That means this could be:
1379 * (1) an interrupt from another PCI device
1380 * sharing the same PCI INT# as us.
1381 * or (2) a drive just entered sleep or standby mode,
1382 * and is interrupting to let us know.
1383 * or (3) a spurious interrupt of unknown origin.
1384 *
1385 * For PCI, we cannot tell the difference,
1386 * so in that case we just ignore it and hope it goes away.
1387 *
1388 * FIXME: unexpected_intr should be hwif-> then we can
1389 * remove all the ifdef PCI crap
1390 */
1391 #ifdef CONFIG_BLK_DEV_IDEPCI
1392 if (hwif->chipset != ide_pci)
1393 #endif /* CONFIG_BLK_DEV_IDEPCI */
1394 {
1395 /*
1396 * Probably not a shared PCI interrupt,
1397 * so we can safely try to do something about it:
1398 */
1399 unexpected_intr(irq, hwgroup);
1400 #ifdef CONFIG_BLK_DEV_IDEPCI
1401 } else {
1402 /*
1403 * Whack the status register, just in case
1404 * we have a leftover pending IRQ.
1405 */
1406 (void)hwif->tp_ops->read_status(hwif);
1407 #endif /* CONFIG_BLK_DEV_IDEPCI */
1408 }
1409 spin_unlock_irqrestore(&ide_lock, flags);
1410 return IRQ_NONE;
1411 }
1412 drive = hwgroup->drive;
1413 if (!drive) {
1414 /*
1415 * This should NEVER happen, and there isn't much
1416 * we could do about it here.
1417 *
1418 * [Note - this can occur if the drive is hot unplugged]
1419 */
1420 spin_unlock_irqrestore(&ide_lock, flags);
1421 return IRQ_HANDLED;
1422 }
1423 if (!drive_is_ready(drive)) {
1424 /*
1425 * This happens regularly when we share a PCI IRQ with
1426 * another device. Unfortunately, it can also happen
1427 * with some buggy drives that trigger the IRQ before
1428 * their status register is up to date. Hopefully we have
1429 * enough advance overhead that the latter isn't a problem.
1430 */
1431 spin_unlock_irqrestore(&ide_lock, flags);
1432 return IRQ_NONE;
1433 }
1434 if (!hwgroup->busy) {
1435 hwgroup->busy = 1; /* paranoia */
1436 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1437 }
1438 hwgroup->handler = NULL;
1439 hwgroup->req_gen++;
1440 del_timer(&hwgroup->timer);
1441 spin_unlock(&ide_lock);
1442
1443 if (hwif->port_ops && hwif->port_ops->clear_irq)
1444 hwif->port_ops->clear_irq(drive);
1445
1446 if (drive->dev_flags & IDE_DFLAG_UNMASK)
1447 local_irq_enable_in_hardirq();
1448
1449 /* service this interrupt, may set handler for next interrupt */
1450 startstop = handler(drive);
1451
1452 spin_lock_irq(&ide_lock);
1453 /*
1454 * Note that handler() may have set things up for another
1455 * interrupt to occur soon, but it cannot happen until
1456 * we exit from this routine, because it will be the
1457 * same irq as is currently being serviced here, and Linux
1458 * won't allow another of the same (on any CPU) until we return.
1459 */
1460 drive->service_time = jiffies - drive->service_start;
1461 if (startstop == ide_stopped) {
1462 if (hwgroup->handler == NULL) { /* paranoia */
1463 hwgroup->busy = 0;
1464 ide_do_request(hwgroup, hwif->irq);
1465 } else {
1466 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1467 "on exit\n", drive->name);
1468 }
1469 }
1470 spin_unlock_irqrestore(&ide_lock, flags);
1471 return IRQ_HANDLED;
1472 }
1473
1474 /**
1475 * ide_do_drive_cmd - issue IDE special command
1476 * @drive: device to issue command
1477 * @rq: request to issue
1478 *
1479 * This function issues a special IDE device request
1480 * onto the request queue.
1481 *
1482 * the rq is queued at the head of the request queue, displacing
1483 * the currently-being-processed request and this function
1484 * returns immediately without waiting for the new rq to be
1485 * completed. This is VERY DANGEROUS, and is intended for
1486 * careful use by the ATAPI tape/cdrom driver code.
1487 */
1488
1489 void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1490 {
1491 unsigned long flags;
1492 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1493
1494 spin_lock_irqsave(&ide_lock, flags);
1495 hwgroup->rq = NULL;
1496 __elv_add_request(drive->queue, rq, ELEVATOR_INSERT_FRONT, 0);
1497 blk_start_queueing(drive->queue);
1498 spin_unlock_irqrestore(&ide_lock, flags);
1499 }
1500
1501 EXPORT_SYMBOL(ide_do_drive_cmd);
1502
1503 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1504 {
1505 ide_hwif_t *hwif = drive->hwif;
1506 ide_task_t task;
1507
1508 memset(&task, 0, sizeof(task));
1509 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1510 IDE_TFLAG_OUT_FEATURE | tf_flags;
1511 task.tf.feature = dma; /* Use PIO/DMA */
1512 task.tf.lbam = bcount & 0xff;
1513 task.tf.lbah = (bcount >> 8) & 0xff;
1514
1515 ide_tf_dump(drive->name, &task.tf);
1516 hwif->tp_ops->set_irq(hwif, 1);
1517 SELECT_MASK(drive, 0);
1518 hwif->tp_ops->tf_load(drive, &task);
1519 }
1520
1521 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1522
1523 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1524 {
1525 ide_hwif_t *hwif = drive->hwif;
1526 u8 buf[4] = { 0 };
1527
1528 while (len > 0) {
1529 if (write)
1530 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1531 else
1532 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1533 len -= 4;
1534 }
1535 }
1536 EXPORT_SYMBOL_GPL(ide_pad_transfer);
This page took 0.068313 seconds and 5 git commands to generate.