ide: remove BUG() from ide_complete_rq()
[deliverable/linux.git] / drivers / ide / ide-io.c
1 /*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 int ide_end_rq(ide_drive_t *drive, struct request *rq, int error,
58 unsigned int nr_bytes)
59 {
60 /*
61 * decide whether to reenable DMA -- 3 is a random magic for now,
62 * if we DMA timeout more than 3 times, just stay in PIO
63 */
64 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
65 drive->retry_pio <= 3) {
66 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
67 ide_dma_on(drive);
68 }
69
70 return blk_end_request(rq, error, nr_bytes);
71 }
72 EXPORT_SYMBOL_GPL(ide_end_rq);
73
74 /**
75 * ide_end_request - complete an IDE I/O
76 * @drive: IDE device for the I/O
77 * @uptodate:
78 * @nr_sectors: number of sectors completed
79 *
80 * This is our end_request wrapper function. We complete the I/O
81 * update random number input and dequeue the request, which if
82 * it was tagged may be out of order.
83 */
84
85 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
86 {
87 unsigned int nr_bytes = nr_sectors << 9;
88 struct request *rq = drive->hwif->rq;
89 int rc, error = 0;
90
91 if (!nr_bytes) {
92 if (blk_pc_request(rq))
93 nr_bytes = rq->data_len;
94 else
95 nr_bytes = rq->hard_cur_sectors << 9;
96 }
97
98 /*
99 * if failfast is set on a request, override number of sectors
100 * and complete the whole request right now
101 */
102 if (blk_noretry_request(rq) && uptodate <= 0)
103 nr_bytes = rq->hard_nr_sectors << 9;
104
105 if (uptodate <= 0)
106 error = uptodate ? uptodate : -EIO;
107
108 rc = ide_end_rq(drive, rq, error, nr_bytes);
109 if (rc == 0)
110 drive->hwif->rq = NULL;
111
112 return rc;
113 }
114 EXPORT_SYMBOL(ide_end_request);
115
116 void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
117 {
118 struct ide_taskfile *tf = &cmd->tf;
119 struct request *rq = cmd->rq;
120 u8 tf_cmd = tf->command;
121
122 tf->error = err;
123 tf->status = stat;
124
125 drive->hwif->tp_ops->tf_read(drive, cmd);
126
127 if ((cmd->tf_flags & IDE_TFLAG_CUSTOM_HANDLER) &&
128 tf_cmd == ATA_CMD_IDLEIMMEDIATE) {
129 if (tf->lbal != 0xc4) {
130 printk(KERN_ERR "%s: head unload failed!\n",
131 drive->name);
132 ide_tf_dump(drive->name, tf);
133 } else
134 drive->dev_flags |= IDE_DFLAG_PARKED;
135 }
136
137 if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
138 memcpy(rq->special, cmd, sizeof(*cmd));
139
140 if (cmd->tf_flags & IDE_TFLAG_DYN)
141 kfree(cmd);
142 }
143
144 int ide_complete_rq(ide_drive_t *drive, int error)
145 {
146 ide_hwif_t *hwif = drive->hwif;
147 struct request *rq = hwif->rq;
148 int rc;
149
150 rc = blk_end_request(rq, error, blk_rq_bytes(rq));
151 if (rc == 0)
152 hwif->rq = NULL;
153
154 return rc;
155 }
156 EXPORT_SYMBOL(ide_complete_rq);
157
158 void ide_kill_rq(ide_drive_t *drive, struct request *rq)
159 {
160 u8 drv_req = blk_special_request(rq) && rq->rq_disk;
161 u8 media = drive->media;
162
163 drive->failed_pc = NULL;
164
165 if ((media == ide_floppy || media == ide_tape) && drv_req) {
166 rq->errors = 0;
167 ide_complete_rq(drive, 0);
168 } else {
169 if (media == ide_tape)
170 rq->errors = IDE_DRV_ERROR_GENERAL;
171 else if (blk_fs_request(rq) == 0 && rq->errors == 0)
172 rq->errors = -EIO;
173 ide_end_request(drive, 0, 0);
174 }
175 }
176
177 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
178 {
179 tf->nsect = drive->sect;
180 tf->lbal = drive->sect;
181 tf->lbam = drive->cyl;
182 tf->lbah = drive->cyl >> 8;
183 tf->device = (drive->head - 1) | drive->select;
184 tf->command = ATA_CMD_INIT_DEV_PARAMS;
185 }
186
187 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
188 {
189 tf->nsect = drive->sect;
190 tf->command = ATA_CMD_RESTORE;
191 }
192
193 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
194 {
195 tf->nsect = drive->mult_req;
196 tf->command = ATA_CMD_SET_MULTI;
197 }
198
199 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
200 {
201 special_t *s = &drive->special;
202 struct ide_cmd cmd;
203
204 memset(&cmd, 0, sizeof(cmd));
205 cmd.protocol = ATA_PROT_NODATA;
206
207 if (s->b.set_geometry) {
208 s->b.set_geometry = 0;
209 ide_tf_set_specify_cmd(drive, &cmd.tf);
210 } else if (s->b.recalibrate) {
211 s->b.recalibrate = 0;
212 ide_tf_set_restore_cmd(drive, &cmd.tf);
213 } else if (s->b.set_multmode) {
214 s->b.set_multmode = 0;
215 ide_tf_set_setmult_cmd(drive, &cmd.tf);
216 } else if (s->all) {
217 int special = s->all;
218 s->all = 0;
219 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
220 return ide_stopped;
221 }
222
223 cmd.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
224 IDE_TFLAG_CUSTOM_HANDLER;
225
226 do_rw_taskfile(drive, &cmd);
227
228 return ide_started;
229 }
230
231 /**
232 * do_special - issue some special commands
233 * @drive: drive the command is for
234 *
235 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
236 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
237 *
238 * It used to do much more, but has been scaled back.
239 */
240
241 static ide_startstop_t do_special (ide_drive_t *drive)
242 {
243 special_t *s = &drive->special;
244
245 #ifdef DEBUG
246 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
247 #endif
248 if (drive->media == ide_disk)
249 return ide_disk_special(drive);
250
251 s->all = 0;
252 drive->mult_req = 0;
253 return ide_stopped;
254 }
255
256 void ide_map_sg(ide_drive_t *drive, struct request *rq)
257 {
258 ide_hwif_t *hwif = drive->hwif;
259 struct ide_cmd *cmd = &hwif->cmd;
260 struct scatterlist *sg = hwif->sg_table;
261
262 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
263 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
264 cmd->sg_nents = 1;
265 } else if (!rq->bio) {
266 sg_init_one(sg, rq->data, rq->data_len);
267 cmd->sg_nents = 1;
268 } else
269 cmd->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
270 }
271 EXPORT_SYMBOL_GPL(ide_map_sg);
272
273 void ide_init_sg_cmd(struct ide_cmd *cmd, int nsect)
274 {
275 cmd->nsect = cmd->nleft = nsect;
276 cmd->cursg_ofs = 0;
277 cmd->cursg = NULL;
278 }
279 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
280
281 /**
282 * execute_drive_command - issue special drive command
283 * @drive: the drive to issue the command on
284 * @rq: the request structure holding the command
285 *
286 * execute_drive_cmd() issues a special drive command, usually
287 * initiated by ioctl() from the external hdparm program. The
288 * command can be a drive command, drive task or taskfile
289 * operation. Weirdly you can call it with NULL to wait for
290 * all commands to finish. Don't do this as that is due to change
291 */
292
293 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
294 struct request *rq)
295 {
296 struct ide_cmd *cmd = rq->special;
297
298 if (cmd) {
299 if (cmd->protocol == ATA_PROT_PIO) {
300 ide_init_sg_cmd(cmd, rq->nr_sectors);
301 ide_map_sg(drive, rq);
302 }
303
304 return do_rw_taskfile(drive, cmd);
305 }
306
307 /*
308 * NULL is actually a valid way of waiting for
309 * all current requests to be flushed from the queue.
310 */
311 #ifdef DEBUG
312 printk("%s: DRIVE_CMD (null)\n", drive->name);
313 #endif
314 rq->errors = 0;
315 ide_complete_rq(drive, 0);
316
317 return ide_stopped;
318 }
319
320 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
321 {
322 u8 cmd = rq->cmd[0];
323
324 switch (cmd) {
325 case REQ_PARK_HEADS:
326 case REQ_UNPARK_HEADS:
327 return ide_do_park_unpark(drive, rq);
328 case REQ_DEVSET_EXEC:
329 return ide_do_devset(drive, rq);
330 case REQ_DRIVE_RESET:
331 return ide_do_reset(drive);
332 default:
333 BUG();
334 }
335 }
336
337 /**
338 * start_request - start of I/O and command issuing for IDE
339 *
340 * start_request() initiates handling of a new I/O request. It
341 * accepts commands and I/O (read/write) requests.
342 *
343 * FIXME: this function needs a rename
344 */
345
346 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
347 {
348 ide_startstop_t startstop;
349
350 BUG_ON(!blk_rq_started(rq));
351
352 #ifdef DEBUG
353 printk("%s: start_request: current=0x%08lx\n",
354 drive->hwif->name, (unsigned long) rq);
355 #endif
356
357 /* bail early if we've exceeded max_failures */
358 if (drive->max_failures && (drive->failures > drive->max_failures)) {
359 rq->cmd_flags |= REQ_FAILED;
360 goto kill_rq;
361 }
362
363 if (blk_pm_request(rq))
364 ide_check_pm_state(drive, rq);
365
366 SELECT_DRIVE(drive);
367 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
368 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
369 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
370 return startstop;
371 }
372 if (!drive->special.all) {
373 struct ide_driver *drv;
374
375 /*
376 * We reset the drive so we need to issue a SETFEATURES.
377 * Do it _after_ do_special() restored device parameters.
378 */
379 if (drive->current_speed == 0xff)
380 ide_config_drive_speed(drive, drive->desired_speed);
381
382 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
383 return execute_drive_cmd(drive, rq);
384 else if (blk_pm_request(rq)) {
385 struct request_pm_state *pm = rq->data;
386 #ifdef DEBUG_PM
387 printk("%s: start_power_step(step: %d)\n",
388 drive->name, pm->pm_step);
389 #endif
390 startstop = ide_start_power_step(drive, rq);
391 if (startstop == ide_stopped &&
392 pm->pm_step == IDE_PM_COMPLETED)
393 ide_complete_pm_rq(drive, rq);
394 return startstop;
395 } else if (!rq->rq_disk && blk_special_request(rq))
396 /*
397 * TODO: Once all ULDs have been modified to
398 * check for specific op codes rather than
399 * blindly accepting any special request, the
400 * check for ->rq_disk above may be replaced
401 * by a more suitable mechanism or even
402 * dropped entirely.
403 */
404 return ide_special_rq(drive, rq);
405
406 drv = *(struct ide_driver **)rq->rq_disk->private_data;
407
408 return drv->do_request(drive, rq, rq->sector);
409 }
410 return do_special(drive);
411 kill_rq:
412 ide_kill_rq(drive, rq);
413 return ide_stopped;
414 }
415
416 /**
417 * ide_stall_queue - pause an IDE device
418 * @drive: drive to stall
419 * @timeout: time to stall for (jiffies)
420 *
421 * ide_stall_queue() can be used by a drive to give excess bandwidth back
422 * to the port by sleeping for timeout jiffies.
423 */
424
425 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
426 {
427 if (timeout > WAIT_WORSTCASE)
428 timeout = WAIT_WORSTCASE;
429 drive->sleep = timeout + jiffies;
430 drive->dev_flags |= IDE_DFLAG_SLEEPING;
431 }
432 EXPORT_SYMBOL(ide_stall_queue);
433
434 static inline int ide_lock_port(ide_hwif_t *hwif)
435 {
436 if (hwif->busy)
437 return 1;
438
439 hwif->busy = 1;
440
441 return 0;
442 }
443
444 static inline void ide_unlock_port(ide_hwif_t *hwif)
445 {
446 hwif->busy = 0;
447 }
448
449 static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
450 {
451 int rc = 0;
452
453 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
454 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
455 if (rc == 0) {
456 if (host->get_lock)
457 host->get_lock(ide_intr, hwif);
458 }
459 }
460 return rc;
461 }
462
463 static inline void ide_unlock_host(struct ide_host *host)
464 {
465 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
466 if (host->release_lock)
467 host->release_lock();
468 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
469 }
470 }
471
472 /*
473 * Issue a new request to a device.
474 */
475 void do_ide_request(struct request_queue *q)
476 {
477 ide_drive_t *drive = q->queuedata;
478 ide_hwif_t *hwif = drive->hwif;
479 struct ide_host *host = hwif->host;
480 struct request *rq = NULL;
481 ide_startstop_t startstop;
482
483 /*
484 * drive is doing pre-flush, ordered write, post-flush sequence. even
485 * though that is 3 requests, it must be seen as a single transaction.
486 * we must not preempt this drive until that is complete
487 */
488 if (blk_queue_flushing(q))
489 /*
490 * small race where queue could get replugged during
491 * the 3-request flush cycle, just yank the plug since
492 * we want it to finish asap
493 */
494 blk_remove_plug(q);
495
496 spin_unlock_irq(q->queue_lock);
497
498 if (ide_lock_host(host, hwif))
499 goto plug_device_2;
500
501 spin_lock_irq(&hwif->lock);
502
503 if (!ide_lock_port(hwif)) {
504 ide_hwif_t *prev_port;
505 repeat:
506 prev_port = hwif->host->cur_port;
507 hwif->rq = NULL;
508
509 if (drive->dev_flags & IDE_DFLAG_SLEEPING) {
510 if (time_before(drive->sleep, jiffies)) {
511 ide_unlock_port(hwif);
512 goto plug_device;
513 }
514 }
515
516 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
517 hwif != prev_port) {
518 /*
519 * set nIEN for previous port, drives in the
520 * quirk_list may not like intr setups/cleanups
521 */
522 if (prev_port && prev_port->cur_dev->quirk_list == 0)
523 prev_port->tp_ops->set_irq(prev_port, 0);
524
525 hwif->host->cur_port = hwif;
526 }
527 hwif->cur_dev = drive;
528 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
529
530 spin_unlock_irq(&hwif->lock);
531 spin_lock_irq(q->queue_lock);
532 /*
533 * we know that the queue isn't empty, but this can happen
534 * if the q->prep_rq_fn() decides to kill a request
535 */
536 rq = elv_next_request(drive->queue);
537 spin_unlock_irq(q->queue_lock);
538 spin_lock_irq(&hwif->lock);
539
540 if (!rq) {
541 ide_unlock_port(hwif);
542 goto out;
543 }
544
545 /*
546 * Sanity: don't accept a request that isn't a PM request
547 * if we are currently power managed. This is very important as
548 * blk_stop_queue() doesn't prevent the elv_next_request()
549 * above to return us whatever is in the queue. Since we call
550 * ide_do_request() ourselves, we end up taking requests while
551 * the queue is blocked...
552 *
553 * We let requests forced at head of queue with ide-preempt
554 * though. I hope that doesn't happen too much, hopefully not
555 * unless the subdriver triggers such a thing in its own PM
556 * state machine.
557 */
558 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
559 blk_pm_request(rq) == 0 &&
560 (rq->cmd_flags & REQ_PREEMPT) == 0) {
561 /* there should be no pending command at this point */
562 ide_unlock_port(hwif);
563 goto plug_device;
564 }
565
566 hwif->rq = rq;
567
568 spin_unlock_irq(&hwif->lock);
569 startstop = start_request(drive, rq);
570 spin_lock_irq(&hwif->lock);
571
572 if (startstop == ide_stopped)
573 goto repeat;
574 } else
575 goto plug_device;
576 out:
577 spin_unlock_irq(&hwif->lock);
578 if (rq == NULL)
579 ide_unlock_host(host);
580 spin_lock_irq(q->queue_lock);
581 return;
582
583 plug_device:
584 spin_unlock_irq(&hwif->lock);
585 ide_unlock_host(host);
586 plug_device_2:
587 spin_lock_irq(q->queue_lock);
588
589 if (!elv_queue_empty(q))
590 blk_plug_device(q);
591 }
592
593 static void ide_plug_device(ide_drive_t *drive)
594 {
595 struct request_queue *q = drive->queue;
596 unsigned long flags;
597
598 spin_lock_irqsave(q->queue_lock, flags);
599 if (!elv_queue_empty(q))
600 blk_plug_device(q);
601 spin_unlock_irqrestore(q->queue_lock, flags);
602 }
603
604 static int drive_is_ready(ide_drive_t *drive)
605 {
606 ide_hwif_t *hwif = drive->hwif;
607 u8 stat = 0;
608
609 if (drive->waiting_for_dma)
610 return hwif->dma_ops->dma_test_irq(drive);
611
612 if (hwif->io_ports.ctl_addr &&
613 (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
614 stat = hwif->tp_ops->read_altstatus(hwif);
615 else
616 /* Note: this may clear a pending IRQ!! */
617 stat = hwif->tp_ops->read_status(hwif);
618
619 if (stat & ATA_BUSY)
620 /* drive busy: definitely not interrupting */
621 return 0;
622
623 /* drive ready: *might* be interrupting */
624 return 1;
625 }
626
627 /**
628 * ide_timer_expiry - handle lack of an IDE interrupt
629 * @data: timer callback magic (hwif)
630 *
631 * An IDE command has timed out before the expected drive return
632 * occurred. At this point we attempt to clean up the current
633 * mess. If the current handler includes an expiry handler then
634 * we invoke the expiry handler, and providing it is happy the
635 * work is done. If that fails we apply generic recovery rules
636 * invoking the handler and checking the drive DMA status. We
637 * have an excessively incestuous relationship with the DMA
638 * logic that wants cleaning up.
639 */
640
641 void ide_timer_expiry (unsigned long data)
642 {
643 ide_hwif_t *hwif = (ide_hwif_t *)data;
644 ide_drive_t *uninitialized_var(drive);
645 ide_handler_t *handler;
646 unsigned long flags;
647 int wait = -1;
648 int plug_device = 0;
649
650 spin_lock_irqsave(&hwif->lock, flags);
651
652 handler = hwif->handler;
653
654 if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
655 /*
656 * Either a marginal timeout occurred
657 * (got the interrupt just as timer expired),
658 * or we were "sleeping" to give other devices a chance.
659 * Either way, we don't really want to complain about anything.
660 */
661 } else {
662 ide_expiry_t *expiry = hwif->expiry;
663 ide_startstop_t startstop = ide_stopped;
664
665 drive = hwif->cur_dev;
666
667 if (expiry) {
668 wait = expiry(drive);
669 if (wait > 0) { /* continue */
670 /* reset timer */
671 hwif->timer.expires = jiffies + wait;
672 hwif->req_gen_timer = hwif->req_gen;
673 add_timer(&hwif->timer);
674 spin_unlock_irqrestore(&hwif->lock, flags);
675 return;
676 }
677 }
678 hwif->handler = NULL;
679 /*
680 * We need to simulate a real interrupt when invoking
681 * the handler() function, which means we need to
682 * globally mask the specific IRQ:
683 */
684 spin_unlock(&hwif->lock);
685 /* disable_irq_nosync ?? */
686 disable_irq(hwif->irq);
687 /* local CPU only, as if we were handling an interrupt */
688 local_irq_disable();
689 if (hwif->polling) {
690 startstop = handler(drive);
691 } else if (drive_is_ready(drive)) {
692 if (drive->waiting_for_dma)
693 hwif->dma_ops->dma_lost_irq(drive);
694 if (hwif->ack_intr)
695 hwif->ack_intr(hwif);
696 printk(KERN_WARNING "%s: lost interrupt\n",
697 drive->name);
698 startstop = handler(drive);
699 } else {
700 if (drive->waiting_for_dma)
701 startstop = ide_dma_timeout_retry(drive, wait);
702 else
703 startstop = ide_error(drive, "irq timeout",
704 hwif->tp_ops->read_status(hwif));
705 }
706 spin_lock_irq(&hwif->lock);
707 enable_irq(hwif->irq);
708 if (startstop == ide_stopped) {
709 ide_unlock_port(hwif);
710 plug_device = 1;
711 }
712 }
713 spin_unlock_irqrestore(&hwif->lock, flags);
714
715 if (plug_device) {
716 ide_unlock_host(hwif->host);
717 ide_plug_device(drive);
718 }
719 }
720
721 /**
722 * unexpected_intr - handle an unexpected IDE interrupt
723 * @irq: interrupt line
724 * @hwif: port being processed
725 *
726 * There's nothing really useful we can do with an unexpected interrupt,
727 * other than reading the status register (to clear it), and logging it.
728 * There should be no way that an irq can happen before we're ready for it,
729 * so we needn't worry much about losing an "important" interrupt here.
730 *
731 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
732 * the drive enters "idle", "standby", or "sleep" mode, so if the status
733 * looks "good", we just ignore the interrupt completely.
734 *
735 * This routine assumes __cli() is in effect when called.
736 *
737 * If an unexpected interrupt happens on irq15 while we are handling irq14
738 * and if the two interfaces are "serialized" (CMD640), then it looks like
739 * we could screw up by interfering with a new request being set up for
740 * irq15.
741 *
742 * In reality, this is a non-issue. The new command is not sent unless
743 * the drive is ready to accept one, in which case we know the drive is
744 * not trying to interrupt us. And ide_set_handler() is always invoked
745 * before completing the issuance of any new drive command, so we will not
746 * be accidentally invoked as a result of any valid command completion
747 * interrupt.
748 */
749
750 static void unexpected_intr(int irq, ide_hwif_t *hwif)
751 {
752 u8 stat = hwif->tp_ops->read_status(hwif);
753
754 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
755 /* Try to not flood the console with msgs */
756 static unsigned long last_msgtime, count;
757 ++count;
758
759 if (time_after(jiffies, last_msgtime + HZ)) {
760 last_msgtime = jiffies;
761 printk(KERN_ERR "%s: unexpected interrupt, "
762 "status=0x%02x, count=%ld\n",
763 hwif->name, stat, count);
764 }
765 }
766 }
767
768 /**
769 * ide_intr - default IDE interrupt handler
770 * @irq: interrupt number
771 * @dev_id: hwif
772 * @regs: unused weirdness from the kernel irq layer
773 *
774 * This is the default IRQ handler for the IDE layer. You should
775 * not need to override it. If you do be aware it is subtle in
776 * places
777 *
778 * hwif is the interface in the group currently performing
779 * a command. hwif->cur_dev is the drive and hwif->handler is
780 * the IRQ handler to call. As we issue a command the handlers
781 * step through multiple states, reassigning the handler to the
782 * next step in the process. Unlike a smart SCSI controller IDE
783 * expects the main processor to sequence the various transfer
784 * stages. We also manage a poll timer to catch up with most
785 * timeout situations. There are still a few where the handlers
786 * don't ever decide to give up.
787 *
788 * The handler eventually returns ide_stopped to indicate the
789 * request completed. At this point we issue the next request
790 * on the port and the process begins again.
791 */
792
793 irqreturn_t ide_intr (int irq, void *dev_id)
794 {
795 ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
796 struct ide_host *host = hwif->host;
797 ide_drive_t *uninitialized_var(drive);
798 ide_handler_t *handler;
799 unsigned long flags;
800 ide_startstop_t startstop;
801 irqreturn_t irq_ret = IRQ_NONE;
802 int plug_device = 0;
803
804 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
805 if (hwif != host->cur_port)
806 goto out_early;
807 }
808
809 spin_lock_irqsave(&hwif->lock, flags);
810
811 if (hwif->ack_intr && hwif->ack_intr(hwif) == 0)
812 goto out;
813
814 handler = hwif->handler;
815
816 if (handler == NULL || hwif->polling) {
817 /*
818 * Not expecting an interrupt from this drive.
819 * That means this could be:
820 * (1) an interrupt from another PCI device
821 * sharing the same PCI INT# as us.
822 * or (2) a drive just entered sleep or standby mode,
823 * and is interrupting to let us know.
824 * or (3) a spurious interrupt of unknown origin.
825 *
826 * For PCI, we cannot tell the difference,
827 * so in that case we just ignore it and hope it goes away.
828 */
829 if ((host->irq_flags & IRQF_SHARED) == 0) {
830 /*
831 * Probably not a shared PCI interrupt,
832 * so we can safely try to do something about it:
833 */
834 unexpected_intr(irq, hwif);
835 } else {
836 /*
837 * Whack the status register, just in case
838 * we have a leftover pending IRQ.
839 */
840 (void)hwif->tp_ops->read_status(hwif);
841 }
842 goto out;
843 }
844
845 drive = hwif->cur_dev;
846
847 if (!drive_is_ready(drive))
848 /*
849 * This happens regularly when we share a PCI IRQ with
850 * another device. Unfortunately, it can also happen
851 * with some buggy drives that trigger the IRQ before
852 * their status register is up to date. Hopefully we have
853 * enough advance overhead that the latter isn't a problem.
854 */
855 goto out;
856
857 hwif->handler = NULL;
858 hwif->req_gen++;
859 del_timer(&hwif->timer);
860 spin_unlock(&hwif->lock);
861
862 if (hwif->port_ops && hwif->port_ops->clear_irq)
863 hwif->port_ops->clear_irq(drive);
864
865 if (drive->dev_flags & IDE_DFLAG_UNMASK)
866 local_irq_enable_in_hardirq();
867
868 /* service this interrupt, may set handler for next interrupt */
869 startstop = handler(drive);
870
871 spin_lock_irq(&hwif->lock);
872 /*
873 * Note that handler() may have set things up for another
874 * interrupt to occur soon, but it cannot happen until
875 * we exit from this routine, because it will be the
876 * same irq as is currently being serviced here, and Linux
877 * won't allow another of the same (on any CPU) until we return.
878 */
879 if (startstop == ide_stopped) {
880 BUG_ON(hwif->handler);
881 ide_unlock_port(hwif);
882 plug_device = 1;
883 }
884 irq_ret = IRQ_HANDLED;
885 out:
886 spin_unlock_irqrestore(&hwif->lock, flags);
887 out_early:
888 if (plug_device) {
889 ide_unlock_host(hwif->host);
890 ide_plug_device(drive);
891 }
892
893 return irq_ret;
894 }
895 EXPORT_SYMBOL_GPL(ide_intr);
896
897 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
898 {
899 ide_hwif_t *hwif = drive->hwif;
900 u8 buf[4] = { 0 };
901
902 while (len > 0) {
903 if (write)
904 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
905 else
906 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
907 len -= 4;
908 }
909 }
910 EXPORT_SYMBOL_GPL(ide_pad_transfer);
This page took 0.071838 seconds and 6 git commands to generate.