ide: add ->cur_port to struct ide_host and use it for serialized hosts
[deliverable/linux.git] / drivers / ide / ide-io.c
1 /*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
52
53 #include <asm/byteorder.h>
54 #include <asm/irq.h>
55 #include <asm/uaccess.h>
56 #include <asm/io.h>
57
58 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59 int uptodate, unsigned int nr_bytes, int dequeue)
60 {
61 int ret = 1;
62 int error = 0;
63
64 if (uptodate <= 0)
65 error = uptodate ? uptodate : -EIO;
66
67 /*
68 * if failfast is set on a request, override number of sectors and
69 * complete the whole request right now
70 */
71 if (blk_noretry_request(rq) && error)
72 nr_bytes = rq->hard_nr_sectors << 9;
73
74 if (!blk_fs_request(rq) && error && !rq->errors)
75 rq->errors = -EIO;
76
77 /*
78 * decide whether to reenable DMA -- 3 is a random magic for now,
79 * if we DMA timeout more than 3 times, just stay in PIO
80 */
81 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82 drive->retry_pio <= 3) {
83 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84 ide_dma_on(drive);
85 }
86
87 if (!blk_end_request(rq, error, nr_bytes))
88 ret = 0;
89
90 if (ret == 0 && dequeue)
91 drive->hwif->hwgroup->rq = NULL;
92
93 return ret;
94 }
95
96 /**
97 * ide_end_request - complete an IDE I/O
98 * @drive: IDE device for the I/O
99 * @uptodate:
100 * @nr_sectors: number of sectors completed
101 *
102 * This is our end_request wrapper function. We complete the I/O
103 * update random number input and dequeue the request, which if
104 * it was tagged may be out of order.
105 */
106
107 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108 {
109 unsigned int nr_bytes = nr_sectors << 9;
110 struct request *rq = drive->hwif->hwgroup->rq;
111
112 if (!nr_bytes) {
113 if (blk_pc_request(rq))
114 nr_bytes = rq->data_len;
115 else
116 nr_bytes = rq->hard_cur_sectors << 9;
117 }
118
119 return __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
120 }
121 EXPORT_SYMBOL(ide_end_request);
122
123 /**
124 * ide_end_dequeued_request - complete an IDE I/O
125 * @drive: IDE device for the I/O
126 * @uptodate:
127 * @nr_sectors: number of sectors completed
128 *
129 * Complete an I/O that is no longer on the request queue. This
130 * typically occurs when we pull the request and issue a REQUEST_SENSE.
131 * We must still finish the old request but we must not tamper with the
132 * queue in the meantime.
133 *
134 * NOTE: This path does not handle barrier, but barrier is not supported
135 * on ide-cd anyway.
136 */
137
138 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
139 int uptodate, int nr_sectors)
140 {
141 BUG_ON(!blk_rq_started(rq));
142
143 return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
144 }
145 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
146
147 /**
148 * ide_end_drive_cmd - end an explicit drive command
149 * @drive: command
150 * @stat: status bits
151 * @err: error bits
152 *
153 * Clean up after success/failure of an explicit drive command.
154 * These get thrown onto the queue so they are synchronized with
155 * real I/O operations on the drive.
156 *
157 * In LBA48 mode we have to read the register set twice to get
158 * all the extra information out.
159 */
160
161 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
162 {
163 ide_hwgroup_t *hwgroup = drive->hwif->hwgroup;
164 struct request *rq = hwgroup->rq;
165
166 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
167 ide_task_t *task = (ide_task_t *)rq->special;
168
169 if (task) {
170 struct ide_taskfile *tf = &task->tf;
171
172 tf->error = err;
173 tf->status = stat;
174
175 drive->hwif->tp_ops->tf_read(drive, task);
176
177 if (task->tf_flags & IDE_TFLAG_DYN)
178 kfree(task);
179 }
180 } else if (blk_pm_request(rq)) {
181 struct request_pm_state *pm = rq->data;
182
183 ide_complete_power_step(drive, rq);
184 if (pm->pm_step == IDE_PM_COMPLETED)
185 ide_complete_pm_request(drive, rq);
186 return;
187 }
188
189 hwgroup->rq = NULL;
190
191 rq->errors = err;
192
193 if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0),
194 blk_rq_bytes(rq))))
195 BUG();
196 }
197 EXPORT_SYMBOL(ide_end_drive_cmd);
198
199 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
200 {
201 if (rq->rq_disk) {
202 ide_driver_t *drv;
203
204 drv = *(ide_driver_t **)rq->rq_disk->private_data;
205 drv->end_request(drive, 0, 0);
206 } else
207 ide_end_request(drive, 0, 0);
208 }
209
210 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
211 {
212 ide_hwif_t *hwif = drive->hwif;
213
214 if ((stat & ATA_BUSY) ||
215 ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
216 /* other bits are useless when BUSY */
217 rq->errors |= ERROR_RESET;
218 } else if (stat & ATA_ERR) {
219 /* err has different meaning on cdrom and tape */
220 if (err == ATA_ABORTED) {
221 if ((drive->dev_flags & IDE_DFLAG_LBA) &&
222 /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
223 hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
224 return ide_stopped;
225 } else if ((err & BAD_CRC) == BAD_CRC) {
226 /* UDMA crc error, just retry the operation */
227 drive->crc_count++;
228 } else if (err & (ATA_BBK | ATA_UNC)) {
229 /* retries won't help these */
230 rq->errors = ERROR_MAX;
231 } else if (err & ATA_TRK0NF) {
232 /* help it find track zero */
233 rq->errors |= ERROR_RECAL;
234 }
235 }
236
237 if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
238 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
239 int nsect = drive->mult_count ? drive->mult_count : 1;
240
241 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
242 }
243
244 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
245 ide_kill_rq(drive, rq);
246 return ide_stopped;
247 }
248
249 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
250 rq->errors |= ERROR_RESET;
251
252 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
253 ++rq->errors;
254 return ide_do_reset(drive);
255 }
256
257 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
258 drive->special.b.recalibrate = 1;
259
260 ++rq->errors;
261
262 return ide_stopped;
263 }
264
265 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
266 {
267 ide_hwif_t *hwif = drive->hwif;
268
269 if ((stat & ATA_BUSY) ||
270 ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
271 /* other bits are useless when BUSY */
272 rq->errors |= ERROR_RESET;
273 } else {
274 /* add decoding error stuff */
275 }
276
277 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
278 /* force an abort */
279 hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
280
281 if (rq->errors >= ERROR_MAX) {
282 ide_kill_rq(drive, rq);
283 } else {
284 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
285 ++rq->errors;
286 return ide_do_reset(drive);
287 }
288 ++rq->errors;
289 }
290
291 return ide_stopped;
292 }
293
294 ide_startstop_t
295 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
296 {
297 if (drive->media == ide_disk)
298 return ide_ata_error(drive, rq, stat, err);
299 return ide_atapi_error(drive, rq, stat, err);
300 }
301
302 EXPORT_SYMBOL_GPL(__ide_error);
303
304 /**
305 * ide_error - handle an error on the IDE
306 * @drive: drive the error occurred on
307 * @msg: message to report
308 * @stat: status bits
309 *
310 * ide_error() takes action based on the error returned by the drive.
311 * For normal I/O that may well include retries. We deal with
312 * both new-style (taskfile) and old style command handling here.
313 * In the case of taskfile command handling there is work left to
314 * do
315 */
316
317 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
318 {
319 struct request *rq;
320 u8 err;
321
322 err = ide_dump_status(drive, msg, stat);
323
324 if ((rq = HWGROUP(drive)->rq) == NULL)
325 return ide_stopped;
326
327 /* retry only "normal" I/O: */
328 if (!blk_fs_request(rq)) {
329 rq->errors = 1;
330 ide_end_drive_cmd(drive, stat, err);
331 return ide_stopped;
332 }
333
334 if (rq->rq_disk) {
335 ide_driver_t *drv;
336
337 drv = *(ide_driver_t **)rq->rq_disk->private_data;
338 return drv->error(drive, rq, stat, err);
339 } else
340 return __ide_error(drive, rq, stat, err);
341 }
342
343 EXPORT_SYMBOL_GPL(ide_error);
344
345 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
346 {
347 tf->nsect = drive->sect;
348 tf->lbal = drive->sect;
349 tf->lbam = drive->cyl;
350 tf->lbah = drive->cyl >> 8;
351 tf->device = (drive->head - 1) | drive->select;
352 tf->command = ATA_CMD_INIT_DEV_PARAMS;
353 }
354
355 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
356 {
357 tf->nsect = drive->sect;
358 tf->command = ATA_CMD_RESTORE;
359 }
360
361 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
362 {
363 tf->nsect = drive->mult_req;
364 tf->command = ATA_CMD_SET_MULTI;
365 }
366
367 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
368 {
369 special_t *s = &drive->special;
370 ide_task_t args;
371
372 memset(&args, 0, sizeof(ide_task_t));
373 args.data_phase = TASKFILE_NO_DATA;
374
375 if (s->b.set_geometry) {
376 s->b.set_geometry = 0;
377 ide_tf_set_specify_cmd(drive, &args.tf);
378 } else if (s->b.recalibrate) {
379 s->b.recalibrate = 0;
380 ide_tf_set_restore_cmd(drive, &args.tf);
381 } else if (s->b.set_multmode) {
382 s->b.set_multmode = 0;
383 ide_tf_set_setmult_cmd(drive, &args.tf);
384 } else if (s->all) {
385 int special = s->all;
386 s->all = 0;
387 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
388 return ide_stopped;
389 }
390
391 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
392 IDE_TFLAG_CUSTOM_HANDLER;
393
394 do_rw_taskfile(drive, &args);
395
396 return ide_started;
397 }
398
399 /**
400 * do_special - issue some special commands
401 * @drive: drive the command is for
402 *
403 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
404 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
405 *
406 * It used to do much more, but has been scaled back.
407 */
408
409 static ide_startstop_t do_special (ide_drive_t *drive)
410 {
411 special_t *s = &drive->special;
412
413 #ifdef DEBUG
414 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
415 #endif
416 if (drive->media == ide_disk)
417 return ide_disk_special(drive);
418
419 s->all = 0;
420 drive->mult_req = 0;
421 return ide_stopped;
422 }
423
424 void ide_map_sg(ide_drive_t *drive, struct request *rq)
425 {
426 ide_hwif_t *hwif = drive->hwif;
427 struct scatterlist *sg = hwif->sg_table;
428
429 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
430 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
431 } else {
432 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
433 hwif->sg_nents = 1;
434 }
435 }
436
437 EXPORT_SYMBOL_GPL(ide_map_sg);
438
439 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
440 {
441 ide_hwif_t *hwif = drive->hwif;
442
443 hwif->nsect = hwif->nleft = rq->nr_sectors;
444 hwif->cursg_ofs = 0;
445 hwif->cursg = NULL;
446 }
447
448 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
449
450 /**
451 * execute_drive_command - issue special drive command
452 * @drive: the drive to issue the command on
453 * @rq: the request structure holding the command
454 *
455 * execute_drive_cmd() issues a special drive command, usually
456 * initiated by ioctl() from the external hdparm program. The
457 * command can be a drive command, drive task or taskfile
458 * operation. Weirdly you can call it with NULL to wait for
459 * all commands to finish. Don't do this as that is due to change
460 */
461
462 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
463 struct request *rq)
464 {
465 ide_hwif_t *hwif = HWIF(drive);
466 ide_task_t *task = rq->special;
467
468 if (task) {
469 hwif->data_phase = task->data_phase;
470
471 switch (hwif->data_phase) {
472 case TASKFILE_MULTI_OUT:
473 case TASKFILE_OUT:
474 case TASKFILE_MULTI_IN:
475 case TASKFILE_IN:
476 ide_init_sg_cmd(drive, rq);
477 ide_map_sg(drive, rq);
478 default:
479 break;
480 }
481
482 return do_rw_taskfile(drive, task);
483 }
484
485 /*
486 * NULL is actually a valid way of waiting for
487 * all current requests to be flushed from the queue.
488 */
489 #ifdef DEBUG
490 printk("%s: DRIVE_CMD (null)\n", drive->name);
491 #endif
492 ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
493 ide_read_error(drive));
494
495 return ide_stopped;
496 }
497
498 int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
499 int arg)
500 {
501 struct request_queue *q = drive->queue;
502 struct request *rq;
503 int ret = 0;
504
505 if (!(setting->flags & DS_SYNC))
506 return setting->set(drive, arg);
507
508 rq = blk_get_request(q, READ, __GFP_WAIT);
509 rq->cmd_type = REQ_TYPE_SPECIAL;
510 rq->cmd_len = 5;
511 rq->cmd[0] = REQ_DEVSET_EXEC;
512 *(int *)&rq->cmd[1] = arg;
513 rq->special = setting->set;
514
515 if (blk_execute_rq(q, NULL, rq, 0))
516 ret = rq->errors;
517 blk_put_request(rq);
518
519 return ret;
520 }
521 EXPORT_SYMBOL_GPL(ide_devset_execute);
522
523 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
524 {
525 u8 cmd = rq->cmd[0];
526
527 if (cmd == REQ_PARK_HEADS || cmd == REQ_UNPARK_HEADS) {
528 ide_task_t task;
529 struct ide_taskfile *tf = &task.tf;
530
531 memset(&task, 0, sizeof(task));
532 if (cmd == REQ_PARK_HEADS) {
533 drive->sleep = *(unsigned long *)rq->special;
534 drive->dev_flags |= IDE_DFLAG_SLEEPING;
535 tf->command = ATA_CMD_IDLEIMMEDIATE;
536 tf->feature = 0x44;
537 tf->lbal = 0x4c;
538 tf->lbam = 0x4e;
539 tf->lbah = 0x55;
540 task.tf_flags |= IDE_TFLAG_CUSTOM_HANDLER;
541 } else /* cmd == REQ_UNPARK_HEADS */
542 tf->command = ATA_CMD_CHK_POWER;
543
544 task.tf_flags |= IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
545 task.rq = rq;
546 drive->hwif->data_phase = task.data_phase = TASKFILE_NO_DATA;
547 return do_rw_taskfile(drive, &task);
548 }
549
550 switch (cmd) {
551 case REQ_DEVSET_EXEC:
552 {
553 int err, (*setfunc)(ide_drive_t *, int) = rq->special;
554
555 err = setfunc(drive, *(int *)&rq->cmd[1]);
556 if (err)
557 rq->errors = err;
558 else
559 err = 1;
560 ide_end_request(drive, err, 0);
561 return ide_stopped;
562 }
563 case REQ_DRIVE_RESET:
564 return ide_do_reset(drive);
565 default:
566 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
567 ide_end_request(drive, 0, 0);
568 return ide_stopped;
569 }
570 }
571
572 /**
573 * start_request - start of I/O and command issuing for IDE
574 *
575 * start_request() initiates handling of a new I/O request. It
576 * accepts commands and I/O (read/write) requests.
577 *
578 * FIXME: this function needs a rename
579 */
580
581 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
582 {
583 ide_startstop_t startstop;
584
585 BUG_ON(!blk_rq_started(rq));
586
587 #ifdef DEBUG
588 printk("%s: start_request: current=0x%08lx\n",
589 HWIF(drive)->name, (unsigned long) rq);
590 #endif
591
592 /* bail early if we've exceeded max_failures */
593 if (drive->max_failures && (drive->failures > drive->max_failures)) {
594 rq->cmd_flags |= REQ_FAILED;
595 goto kill_rq;
596 }
597
598 if (blk_pm_request(rq))
599 ide_check_pm_state(drive, rq);
600
601 SELECT_DRIVE(drive);
602 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
603 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
604 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
605 return startstop;
606 }
607 if (!drive->special.all) {
608 ide_driver_t *drv;
609
610 /*
611 * We reset the drive so we need to issue a SETFEATURES.
612 * Do it _after_ do_special() restored device parameters.
613 */
614 if (drive->current_speed == 0xff)
615 ide_config_drive_speed(drive, drive->desired_speed);
616
617 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
618 return execute_drive_cmd(drive, rq);
619 else if (blk_pm_request(rq)) {
620 struct request_pm_state *pm = rq->data;
621 #ifdef DEBUG_PM
622 printk("%s: start_power_step(step: %d)\n",
623 drive->name, pm->pm_step);
624 #endif
625 startstop = ide_start_power_step(drive, rq);
626 if (startstop == ide_stopped &&
627 pm->pm_step == IDE_PM_COMPLETED)
628 ide_complete_pm_request(drive, rq);
629 return startstop;
630 } else if (!rq->rq_disk && blk_special_request(rq))
631 /*
632 * TODO: Once all ULDs have been modified to
633 * check for specific op codes rather than
634 * blindly accepting any special request, the
635 * check for ->rq_disk above may be replaced
636 * by a more suitable mechanism or even
637 * dropped entirely.
638 */
639 return ide_special_rq(drive, rq);
640
641 drv = *(ide_driver_t **)rq->rq_disk->private_data;
642
643 return drv->do_request(drive, rq, rq->sector);
644 }
645 return do_special(drive);
646 kill_rq:
647 ide_kill_rq(drive, rq);
648 return ide_stopped;
649 }
650
651 /**
652 * ide_stall_queue - pause an IDE device
653 * @drive: drive to stall
654 * @timeout: time to stall for (jiffies)
655 *
656 * ide_stall_queue() can be used by a drive to give excess bandwidth back
657 * to the hwgroup by sleeping for timeout jiffies.
658 */
659
660 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
661 {
662 if (timeout > WAIT_WORSTCASE)
663 timeout = WAIT_WORSTCASE;
664 drive->sleep = timeout + jiffies;
665 drive->dev_flags |= IDE_DFLAG_SLEEPING;
666 }
667 EXPORT_SYMBOL(ide_stall_queue);
668
669 /*
670 * Issue a new request to a drive from hwgroup
671 *
672 * A hwgroup is a serialized group of IDE interfaces. Usually there is
673 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
674 * may have both interfaces in a single hwgroup to "serialize" access.
675 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
676 * together into one hwgroup for serialized access.
677 *
678 * Note also that several hwgroups can end up sharing a single IRQ,
679 * possibly along with many other devices. This is especially common in
680 * PCI-based systems with off-board IDE controller cards.
681 *
682 * The IDE driver uses a per-hwgroup lock to protect the hwgroup->busy flag.
683 *
684 * The first thread into the driver for a particular hwgroup sets the
685 * hwgroup->busy flag to indicate that this hwgroup is now active,
686 * and then initiates processing of the top request from the request queue.
687 *
688 * Other threads attempting entry notice the busy setting, and will simply
689 * queue their new requests and exit immediately. Note that hwgroup->busy
690 * remains set even when the driver is merely awaiting the next interrupt.
691 * Thus, the meaning is "this hwgroup is busy processing a request".
692 *
693 * When processing of a request completes, the completing thread or IRQ-handler
694 * will start the next request from the queue. If no more work remains,
695 * the driver will clear the hwgroup->busy flag and exit.
696 *
697 * The per-hwgroup spinlock is used to protect all access to the
698 * hwgroup->busy flag, but is otherwise not needed for most processing in
699 * the driver. This makes the driver much more friendlier to shared IRQs
700 * than previous designs, while remaining 100% (?) SMP safe and capable.
701 */
702 void do_ide_request(struct request_queue *q)
703 {
704 ide_drive_t *drive = q->queuedata;
705 ide_hwif_t *hwif = drive->hwif;
706 ide_hwgroup_t *hwgroup = hwif->hwgroup;
707 struct request *rq;
708 ide_startstop_t startstop;
709
710 /*
711 * drive is doing pre-flush, ordered write, post-flush sequence. even
712 * though that is 3 requests, it must be seen as a single transaction.
713 * we must not preempt this drive until that is complete
714 */
715 if (blk_queue_flushing(q))
716 /*
717 * small race where queue could get replugged during
718 * the 3-request flush cycle, just yank the plug since
719 * we want it to finish asap
720 */
721 blk_remove_plug(q);
722
723 spin_unlock_irq(q->queue_lock);
724 spin_lock_irq(&hwgroup->lock);
725
726 if (!ide_lock_hwgroup(hwgroup)) {
727 ide_hwif_t *prev_port;
728 repeat:
729 prev_port = hwif->host->cur_port;
730 hwgroup->rq = NULL;
731
732 if (drive->dev_flags & IDE_DFLAG_SLEEPING) {
733 if (time_before(drive->sleep, jiffies)) {
734 ide_unlock_hwgroup(hwgroup);
735 goto plug_device;
736 }
737 }
738
739 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
740 hwif != prev_port) {
741 /*
742 * set nIEN for previous port, drives in the
743 * quirk_list may not like intr setups/cleanups
744 */
745 if (prev_port && hwgroup->drive->quirk_list == 0)
746 prev_port->tp_ops->set_irq(prev_port, 0);
747
748 hwif->host->cur_port = hwif;
749 }
750 hwgroup->drive = drive;
751 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
752
753 spin_unlock_irq(&hwgroup->lock);
754 spin_lock_irq(q->queue_lock);
755 /*
756 * we know that the queue isn't empty, but this can happen
757 * if the q->prep_rq_fn() decides to kill a request
758 */
759 rq = elv_next_request(drive->queue);
760 spin_unlock_irq(q->queue_lock);
761 spin_lock_irq(&hwgroup->lock);
762
763 if (!rq) {
764 ide_unlock_hwgroup(hwgroup);
765 goto out;
766 }
767
768 /*
769 * Sanity: don't accept a request that isn't a PM request
770 * if we are currently power managed. This is very important as
771 * blk_stop_queue() doesn't prevent the elv_next_request()
772 * above to return us whatever is in the queue. Since we call
773 * ide_do_request() ourselves, we end up taking requests while
774 * the queue is blocked...
775 *
776 * We let requests forced at head of queue with ide-preempt
777 * though. I hope that doesn't happen too much, hopefully not
778 * unless the subdriver triggers such a thing in its own PM
779 * state machine.
780 */
781 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
782 blk_pm_request(rq) == 0 &&
783 (rq->cmd_flags & REQ_PREEMPT) == 0) {
784 /* there should be no pending command at this point */
785 ide_unlock_hwgroup(hwgroup);
786 goto plug_device;
787 }
788
789 hwgroup->rq = rq;
790
791 spin_unlock_irq(&hwgroup->lock);
792 startstop = start_request(drive, rq);
793 spin_lock_irq(&hwgroup->lock);
794
795 if (startstop == ide_stopped)
796 goto repeat;
797 } else
798 goto plug_device;
799 out:
800 spin_unlock_irq(&hwgroup->lock);
801 spin_lock_irq(q->queue_lock);
802 return;
803
804 plug_device:
805 spin_unlock_irq(&hwgroup->lock);
806 spin_lock_irq(q->queue_lock);
807
808 if (!elv_queue_empty(q))
809 blk_plug_device(q);
810 }
811
812 /*
813 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
814 * retry the current request in pio mode instead of risking tossing it
815 * all away
816 */
817 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
818 {
819 ide_hwif_t *hwif = HWIF(drive);
820 struct request *rq;
821 ide_startstop_t ret = ide_stopped;
822
823 /*
824 * end current dma transaction
825 */
826
827 if (error < 0) {
828 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
829 (void)hwif->dma_ops->dma_end(drive);
830 ret = ide_error(drive, "dma timeout error",
831 hwif->tp_ops->read_status(hwif));
832 } else {
833 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
834 hwif->dma_ops->dma_timeout(drive);
835 }
836
837 /*
838 * disable dma for now, but remember that we did so because of
839 * a timeout -- we'll reenable after we finish this next request
840 * (or rather the first chunk of it) in pio.
841 */
842 drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
843 drive->retry_pio++;
844 ide_dma_off_quietly(drive);
845
846 /*
847 * un-busy drive etc (hwgroup->busy is cleared on return) and
848 * make sure request is sane
849 */
850 rq = HWGROUP(drive)->rq;
851
852 if (!rq)
853 goto out;
854
855 HWGROUP(drive)->rq = NULL;
856
857 rq->errors = 0;
858
859 if (!rq->bio)
860 goto out;
861
862 rq->sector = rq->bio->bi_sector;
863 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
864 rq->hard_cur_sectors = rq->current_nr_sectors;
865 rq->buffer = bio_data(rq->bio);
866 out:
867 return ret;
868 }
869
870 static void ide_plug_device(ide_drive_t *drive)
871 {
872 struct request_queue *q = drive->queue;
873 unsigned long flags;
874
875 spin_lock_irqsave(q->queue_lock, flags);
876 if (!elv_queue_empty(q))
877 blk_plug_device(q);
878 spin_unlock_irqrestore(q->queue_lock, flags);
879 }
880
881 /**
882 * ide_timer_expiry - handle lack of an IDE interrupt
883 * @data: timer callback magic (hwgroup)
884 *
885 * An IDE command has timed out before the expected drive return
886 * occurred. At this point we attempt to clean up the current
887 * mess. If the current handler includes an expiry handler then
888 * we invoke the expiry handler, and providing it is happy the
889 * work is done. If that fails we apply generic recovery rules
890 * invoking the handler and checking the drive DMA status. We
891 * have an excessively incestuous relationship with the DMA
892 * logic that wants cleaning up.
893 */
894
895 void ide_timer_expiry (unsigned long data)
896 {
897 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
898 ide_drive_t *uninitialized_var(drive);
899 ide_handler_t *handler;
900 ide_expiry_t *expiry;
901 unsigned long flags;
902 unsigned long wait = -1;
903 int plug_device = 0;
904
905 spin_lock_irqsave(&hwgroup->lock, flags);
906
907 if (((handler = hwgroup->handler) == NULL) ||
908 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
909 /*
910 * Either a marginal timeout occurred
911 * (got the interrupt just as timer expired),
912 * or we were "sleeping" to give other devices a chance.
913 * Either way, we don't really want to complain about anything.
914 */
915 } else {
916 drive = hwgroup->drive;
917 if (!drive) {
918 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
919 hwgroup->handler = NULL;
920 } else {
921 ide_hwif_t *hwif;
922 ide_startstop_t startstop = ide_stopped;
923
924 if ((expiry = hwgroup->expiry) != NULL) {
925 /* continue */
926 if ((wait = expiry(drive)) > 0) {
927 /* reset timer */
928 hwgroup->timer.expires = jiffies + wait;
929 hwgroup->req_gen_timer = hwgroup->req_gen;
930 add_timer(&hwgroup->timer);
931 spin_unlock_irqrestore(&hwgroup->lock, flags);
932 return;
933 }
934 }
935 hwgroup->handler = NULL;
936 /*
937 * We need to simulate a real interrupt when invoking
938 * the handler() function, which means we need to
939 * globally mask the specific IRQ:
940 */
941 spin_unlock(&hwgroup->lock);
942 hwif = HWIF(drive);
943 /* disable_irq_nosync ?? */
944 disable_irq(hwif->irq);
945 /* local CPU only,
946 * as if we were handling an interrupt */
947 local_irq_disable();
948 if (hwgroup->polling) {
949 startstop = handler(drive);
950 } else if (drive_is_ready(drive)) {
951 if (drive->waiting_for_dma)
952 hwif->dma_ops->dma_lost_irq(drive);
953 (void)ide_ack_intr(hwif);
954 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
955 startstop = handler(drive);
956 } else {
957 if (drive->waiting_for_dma) {
958 startstop = ide_dma_timeout_retry(drive, wait);
959 } else
960 startstop =
961 ide_error(drive, "irq timeout",
962 hwif->tp_ops->read_status(hwif));
963 }
964 spin_lock_irq(&hwgroup->lock);
965 enable_irq(hwif->irq);
966 if (startstop == ide_stopped) {
967 ide_unlock_hwgroup(hwgroup);
968 plug_device = 1;
969 }
970 }
971 }
972 spin_unlock_irqrestore(&hwgroup->lock, flags);
973
974 if (plug_device)
975 ide_plug_device(drive);
976 }
977
978 /**
979 * unexpected_intr - handle an unexpected IDE interrupt
980 * @irq: interrupt line
981 * @hwif: port being processed
982 *
983 * There's nothing really useful we can do with an unexpected interrupt,
984 * other than reading the status register (to clear it), and logging it.
985 * There should be no way that an irq can happen before we're ready for it,
986 * so we needn't worry much about losing an "important" interrupt here.
987 *
988 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
989 * the drive enters "idle", "standby", or "sleep" mode, so if the status
990 * looks "good", we just ignore the interrupt completely.
991 *
992 * This routine assumes __cli() is in effect when called.
993 *
994 * If an unexpected interrupt happens on irq15 while we are handling irq14
995 * and if the two interfaces are "serialized" (CMD640), then it looks like
996 * we could screw up by interfering with a new request being set up for
997 * irq15.
998 *
999 * In reality, this is a non-issue. The new command is not sent unless
1000 * the drive is ready to accept one, in which case we know the drive is
1001 * not trying to interrupt us. And ide_set_handler() is always invoked
1002 * before completing the issuance of any new drive command, so we will not
1003 * be accidentally invoked as a result of any valid command completion
1004 * interrupt.
1005 *
1006 * Note that we must walk the entire hwgroup here. We know which hwif
1007 * is doing the current command, but we don't know which hwif burped
1008 * mysteriously.
1009 */
1010
1011 static void unexpected_intr(int irq, ide_hwif_t *hwif)
1012 {
1013 ide_hwgroup_t *hwgroup = hwif->hwgroup;
1014 u8 stat;
1015
1016 /*
1017 * handle the unexpected interrupt
1018 */
1019 do {
1020 if (hwif->irq == irq) {
1021 stat = hwif->tp_ops->read_status(hwif);
1022
1023 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1024 /* Try to not flood the console with msgs */
1025 static unsigned long last_msgtime, count;
1026 ++count;
1027 if (time_after(jiffies, last_msgtime + HZ)) {
1028 last_msgtime = jiffies;
1029 printk(KERN_ERR "%s%s: unexpected interrupt, "
1030 "status=0x%02x, count=%ld\n",
1031 hwif->name,
1032 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1033 }
1034 }
1035 }
1036 } while ((hwif = hwif->next) != hwgroup->hwif);
1037 }
1038
1039 /**
1040 * ide_intr - default IDE interrupt handler
1041 * @irq: interrupt number
1042 * @dev_id: hwif group
1043 * @regs: unused weirdness from the kernel irq layer
1044 *
1045 * This is the default IRQ handler for the IDE layer. You should
1046 * not need to override it. If you do be aware it is subtle in
1047 * places
1048 *
1049 * hwif is the interface in the group currently performing
1050 * a command. hwgroup->drive is the drive and hwgroup->handler is
1051 * the IRQ handler to call. As we issue a command the handlers
1052 * step through multiple states, reassigning the handler to the
1053 * next step in the process. Unlike a smart SCSI controller IDE
1054 * expects the main processor to sequence the various transfer
1055 * stages. We also manage a poll timer to catch up with most
1056 * timeout situations. There are still a few where the handlers
1057 * don't ever decide to give up.
1058 *
1059 * The handler eventually returns ide_stopped to indicate the
1060 * request completed. At this point we issue the next request
1061 * on the hwgroup and the process begins again.
1062 */
1063
1064 irqreturn_t ide_intr (int irq, void *dev_id)
1065 {
1066 unsigned long flags;
1067 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1068 ide_hwif_t *hwif = hwgroup->hwif;
1069 ide_drive_t *uninitialized_var(drive);
1070 ide_handler_t *handler;
1071 ide_startstop_t startstop;
1072 irqreturn_t irq_ret = IRQ_NONE;
1073 int plug_device = 0;
1074
1075 if (hwif->host->host_flags & IDE_HFLAG_SERIALIZE)
1076 hwif = hwif->host->cur_port;
1077
1078 spin_lock_irqsave(&hwgroup->lock, flags);
1079
1080 if (!ide_ack_intr(hwif))
1081 goto out;
1082
1083 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1084 /*
1085 * Not expecting an interrupt from this drive.
1086 * That means this could be:
1087 * (1) an interrupt from another PCI device
1088 * sharing the same PCI INT# as us.
1089 * or (2) a drive just entered sleep or standby mode,
1090 * and is interrupting to let us know.
1091 * or (3) a spurious interrupt of unknown origin.
1092 *
1093 * For PCI, we cannot tell the difference,
1094 * so in that case we just ignore it and hope it goes away.
1095 *
1096 * FIXME: unexpected_intr should be hwif-> then we can
1097 * remove all the ifdef PCI crap
1098 */
1099 #ifdef CONFIG_BLK_DEV_IDEPCI
1100 if (hwif->chipset != ide_pci)
1101 #endif /* CONFIG_BLK_DEV_IDEPCI */
1102 {
1103 /*
1104 * Probably not a shared PCI interrupt,
1105 * so we can safely try to do something about it:
1106 */
1107 unexpected_intr(irq, hwif);
1108 #ifdef CONFIG_BLK_DEV_IDEPCI
1109 } else {
1110 /*
1111 * Whack the status register, just in case
1112 * we have a leftover pending IRQ.
1113 */
1114 (void)hwif->tp_ops->read_status(hwif);
1115 #endif /* CONFIG_BLK_DEV_IDEPCI */
1116 }
1117 goto out;
1118 }
1119
1120 drive = hwgroup->drive;
1121 if (!drive) {
1122 /*
1123 * This should NEVER happen, and there isn't much
1124 * we could do about it here.
1125 *
1126 * [Note - this can occur if the drive is hot unplugged]
1127 */
1128 goto out_handled;
1129 }
1130
1131 if (!drive_is_ready(drive))
1132 /*
1133 * This happens regularly when we share a PCI IRQ with
1134 * another device. Unfortunately, it can also happen
1135 * with some buggy drives that trigger the IRQ before
1136 * their status register is up to date. Hopefully we have
1137 * enough advance overhead that the latter isn't a problem.
1138 */
1139 goto out;
1140
1141 hwgroup->handler = NULL;
1142 hwgroup->req_gen++;
1143 del_timer(&hwgroup->timer);
1144 spin_unlock(&hwgroup->lock);
1145
1146 if (hwif->port_ops && hwif->port_ops->clear_irq)
1147 hwif->port_ops->clear_irq(drive);
1148
1149 if (drive->dev_flags & IDE_DFLAG_UNMASK)
1150 local_irq_enable_in_hardirq();
1151
1152 /* service this interrupt, may set handler for next interrupt */
1153 startstop = handler(drive);
1154
1155 spin_lock_irq(&hwgroup->lock);
1156 /*
1157 * Note that handler() may have set things up for another
1158 * interrupt to occur soon, but it cannot happen until
1159 * we exit from this routine, because it will be the
1160 * same irq as is currently being serviced here, and Linux
1161 * won't allow another of the same (on any CPU) until we return.
1162 */
1163 if (startstop == ide_stopped) {
1164 if (hwgroup->handler == NULL) { /* paranoia */
1165 ide_unlock_hwgroup(hwgroup);
1166 plug_device = 1;
1167 } else
1168 printk(KERN_ERR "%s: %s: huh? expected NULL handler "
1169 "on exit\n", __func__, drive->name);
1170 }
1171 out_handled:
1172 irq_ret = IRQ_HANDLED;
1173 out:
1174 spin_unlock_irqrestore(&hwgroup->lock, flags);
1175
1176 if (plug_device)
1177 ide_plug_device(drive);
1178
1179 return irq_ret;
1180 }
1181
1182 /**
1183 * ide_do_drive_cmd - issue IDE special command
1184 * @drive: device to issue command
1185 * @rq: request to issue
1186 *
1187 * This function issues a special IDE device request
1188 * onto the request queue.
1189 *
1190 * the rq is queued at the head of the request queue, displacing
1191 * the currently-being-processed request and this function
1192 * returns immediately without waiting for the new rq to be
1193 * completed. This is VERY DANGEROUS, and is intended for
1194 * careful use by the ATAPI tape/cdrom driver code.
1195 */
1196
1197 void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1198 {
1199 ide_hwgroup_t *hwgroup = drive->hwif->hwgroup;
1200 struct request_queue *q = drive->queue;
1201 unsigned long flags;
1202
1203 hwgroup->rq = NULL;
1204
1205 spin_lock_irqsave(q->queue_lock, flags);
1206 __elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
1207 spin_unlock_irqrestore(q->queue_lock, flags);
1208 }
1209 EXPORT_SYMBOL(ide_do_drive_cmd);
1210
1211 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1212 {
1213 ide_hwif_t *hwif = drive->hwif;
1214 ide_task_t task;
1215
1216 memset(&task, 0, sizeof(task));
1217 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1218 IDE_TFLAG_OUT_FEATURE | tf_flags;
1219 task.tf.feature = dma; /* Use PIO/DMA */
1220 task.tf.lbam = bcount & 0xff;
1221 task.tf.lbah = (bcount >> 8) & 0xff;
1222
1223 ide_tf_dump(drive->name, &task.tf);
1224 hwif->tp_ops->set_irq(hwif, 1);
1225 SELECT_MASK(drive, 0);
1226 hwif->tp_ops->tf_load(drive, &task);
1227 }
1228
1229 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1230
1231 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1232 {
1233 ide_hwif_t *hwif = drive->hwif;
1234 u8 buf[4] = { 0 };
1235
1236 while (len > 0) {
1237 if (write)
1238 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1239 else
1240 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1241 len -= 4;
1242 }
1243 }
1244 EXPORT_SYMBOL_GPL(ide_pad_transfer);
This page took 0.056327 seconds and 6 git commands to generate.