ide: remove ->data_phase field from ide_hwif_t
[deliverable/linux.git] / drivers / ide / ide-io.c
1 /*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
52
53 #include <asm/byteorder.h>
54 #include <asm/irq.h>
55 #include <asm/uaccess.h>
56 #include <asm/io.h>
57
58 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59 int uptodate, unsigned int nr_bytes, int dequeue)
60 {
61 int ret = 1;
62 int error = 0;
63
64 if (uptodate <= 0)
65 error = uptodate ? uptodate : -EIO;
66
67 /*
68 * if failfast is set on a request, override number of sectors and
69 * complete the whole request right now
70 */
71 if (blk_noretry_request(rq) && error)
72 nr_bytes = rq->hard_nr_sectors << 9;
73
74 if (!blk_fs_request(rq) && error && !rq->errors)
75 rq->errors = -EIO;
76
77 /*
78 * decide whether to reenable DMA -- 3 is a random magic for now,
79 * if we DMA timeout more than 3 times, just stay in PIO
80 */
81 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82 drive->retry_pio <= 3) {
83 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84 ide_dma_on(drive);
85 }
86
87 if (!blk_end_request(rq, error, nr_bytes))
88 ret = 0;
89
90 if (ret == 0 && dequeue)
91 drive->hwif->rq = NULL;
92
93 return ret;
94 }
95
96 /**
97 * ide_end_request - complete an IDE I/O
98 * @drive: IDE device for the I/O
99 * @uptodate:
100 * @nr_sectors: number of sectors completed
101 *
102 * This is our end_request wrapper function. We complete the I/O
103 * update random number input and dequeue the request, which if
104 * it was tagged may be out of order.
105 */
106
107 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108 {
109 unsigned int nr_bytes = nr_sectors << 9;
110 struct request *rq = drive->hwif->rq;
111
112 if (!nr_bytes) {
113 if (blk_pc_request(rq))
114 nr_bytes = rq->data_len;
115 else
116 nr_bytes = rq->hard_cur_sectors << 9;
117 }
118
119 return __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
120 }
121 EXPORT_SYMBOL(ide_end_request);
122
123 /**
124 * ide_end_dequeued_request - complete an IDE I/O
125 * @drive: IDE device for the I/O
126 * @uptodate:
127 * @nr_sectors: number of sectors completed
128 *
129 * Complete an I/O that is no longer on the request queue. This
130 * typically occurs when we pull the request and issue a REQUEST_SENSE.
131 * We must still finish the old request but we must not tamper with the
132 * queue in the meantime.
133 *
134 * NOTE: This path does not handle barrier, but barrier is not supported
135 * on ide-cd anyway.
136 */
137
138 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
139 int uptodate, int nr_sectors)
140 {
141 BUG_ON(!blk_rq_started(rq));
142
143 return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
144 }
145 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
146
147 void ide_complete_task(ide_drive_t *drive, ide_task_t *task, u8 stat, u8 err)
148 {
149 struct ide_taskfile *tf = &task->tf;
150 struct request *rq = task->rq;
151
152 tf->error = err;
153 tf->status = stat;
154
155 drive->hwif->tp_ops->tf_read(drive, task);
156
157 if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
158 memcpy(rq->special, task, sizeof(*task));
159
160 if (task->tf_flags & IDE_TFLAG_DYN)
161 kfree(task);
162 }
163
164 void ide_complete_rq(ide_drive_t *drive, u8 err)
165 {
166 ide_hwif_t *hwif = drive->hwif;
167 struct request *rq = hwif->rq;
168
169 hwif->rq = NULL;
170
171 rq->errors = err;
172
173 if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0),
174 blk_rq_bytes(rq))))
175 BUG();
176 }
177 EXPORT_SYMBOL(ide_complete_rq);
178
179 void ide_kill_rq(ide_drive_t *drive, struct request *rq)
180 {
181 if (rq->rq_disk) {
182 struct ide_driver *drv;
183
184 drv = *(struct ide_driver **)rq->rq_disk->private_data;
185 drv->end_request(drive, 0, 0);
186 } else
187 ide_end_request(drive, 0, 0);
188 }
189
190 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
191 {
192 tf->nsect = drive->sect;
193 tf->lbal = drive->sect;
194 tf->lbam = drive->cyl;
195 tf->lbah = drive->cyl >> 8;
196 tf->device = (drive->head - 1) | drive->select;
197 tf->command = ATA_CMD_INIT_DEV_PARAMS;
198 }
199
200 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
201 {
202 tf->nsect = drive->sect;
203 tf->command = ATA_CMD_RESTORE;
204 }
205
206 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
207 {
208 tf->nsect = drive->mult_req;
209 tf->command = ATA_CMD_SET_MULTI;
210 }
211
212 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
213 {
214 special_t *s = &drive->special;
215 ide_task_t args;
216
217 memset(&args, 0, sizeof(ide_task_t));
218 args.data_phase = TASKFILE_NO_DATA;
219
220 if (s->b.set_geometry) {
221 s->b.set_geometry = 0;
222 ide_tf_set_specify_cmd(drive, &args.tf);
223 } else if (s->b.recalibrate) {
224 s->b.recalibrate = 0;
225 ide_tf_set_restore_cmd(drive, &args.tf);
226 } else if (s->b.set_multmode) {
227 s->b.set_multmode = 0;
228 ide_tf_set_setmult_cmd(drive, &args.tf);
229 } else if (s->all) {
230 int special = s->all;
231 s->all = 0;
232 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
233 return ide_stopped;
234 }
235
236 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
237 IDE_TFLAG_CUSTOM_HANDLER;
238
239 do_rw_taskfile(drive, &args);
240
241 return ide_started;
242 }
243
244 /**
245 * do_special - issue some special commands
246 * @drive: drive the command is for
247 *
248 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
249 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
250 *
251 * It used to do much more, but has been scaled back.
252 */
253
254 static ide_startstop_t do_special (ide_drive_t *drive)
255 {
256 special_t *s = &drive->special;
257
258 #ifdef DEBUG
259 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
260 #endif
261 if (drive->media == ide_disk)
262 return ide_disk_special(drive);
263
264 s->all = 0;
265 drive->mult_req = 0;
266 return ide_stopped;
267 }
268
269 void ide_map_sg(ide_drive_t *drive, struct request *rq)
270 {
271 ide_hwif_t *hwif = drive->hwif;
272 struct scatterlist *sg = hwif->sg_table;
273
274 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
275 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
276 hwif->sg_nents = 1;
277 } else if (!rq->bio) {
278 sg_init_one(sg, rq->data, rq->data_len);
279 hwif->sg_nents = 1;
280 } else {
281 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
282 }
283 }
284
285 EXPORT_SYMBOL_GPL(ide_map_sg);
286
287 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
288 {
289 ide_hwif_t *hwif = drive->hwif;
290
291 hwif->nsect = hwif->nleft = rq->nr_sectors;
292 hwif->cursg_ofs = 0;
293 hwif->cursg = NULL;
294 }
295
296 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
297
298 /**
299 * execute_drive_command - issue special drive command
300 * @drive: the drive to issue the command on
301 * @rq: the request structure holding the command
302 *
303 * execute_drive_cmd() issues a special drive command, usually
304 * initiated by ioctl() from the external hdparm program. The
305 * command can be a drive command, drive task or taskfile
306 * operation. Weirdly you can call it with NULL to wait for
307 * all commands to finish. Don't do this as that is due to change
308 */
309
310 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
311 struct request *rq)
312 {
313 ide_task_t *task = rq->special;
314
315 if (task) {
316 switch (task->data_phase) {
317 case TASKFILE_MULTI_OUT:
318 case TASKFILE_OUT:
319 case TASKFILE_MULTI_IN:
320 case TASKFILE_IN:
321 ide_init_sg_cmd(drive, rq);
322 ide_map_sg(drive, rq);
323 default:
324 break;
325 }
326
327 return do_rw_taskfile(drive, task);
328 }
329
330 /*
331 * NULL is actually a valid way of waiting for
332 * all current requests to be flushed from the queue.
333 */
334 #ifdef DEBUG
335 printk("%s: DRIVE_CMD (null)\n", drive->name);
336 #endif
337 ide_complete_rq(drive, 0);
338
339 return ide_stopped;
340 }
341
342 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
343 {
344 u8 cmd = rq->cmd[0];
345
346 switch (cmd) {
347 case REQ_PARK_HEADS:
348 case REQ_UNPARK_HEADS:
349 return ide_do_park_unpark(drive, rq);
350 case REQ_DEVSET_EXEC:
351 return ide_do_devset(drive, rq);
352 case REQ_DRIVE_RESET:
353 return ide_do_reset(drive);
354 default:
355 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
356 ide_end_request(drive, 0, 0);
357 return ide_stopped;
358 }
359 }
360
361 /**
362 * start_request - start of I/O and command issuing for IDE
363 *
364 * start_request() initiates handling of a new I/O request. It
365 * accepts commands and I/O (read/write) requests.
366 *
367 * FIXME: this function needs a rename
368 */
369
370 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
371 {
372 ide_startstop_t startstop;
373
374 BUG_ON(!blk_rq_started(rq));
375
376 #ifdef DEBUG
377 printk("%s: start_request: current=0x%08lx\n",
378 drive->hwif->name, (unsigned long) rq);
379 #endif
380
381 /* bail early if we've exceeded max_failures */
382 if (drive->max_failures && (drive->failures > drive->max_failures)) {
383 rq->cmd_flags |= REQ_FAILED;
384 goto kill_rq;
385 }
386
387 if (blk_pm_request(rq))
388 ide_check_pm_state(drive, rq);
389
390 SELECT_DRIVE(drive);
391 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
392 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
393 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
394 return startstop;
395 }
396 if (!drive->special.all) {
397 struct ide_driver *drv;
398
399 /*
400 * We reset the drive so we need to issue a SETFEATURES.
401 * Do it _after_ do_special() restored device parameters.
402 */
403 if (drive->current_speed == 0xff)
404 ide_config_drive_speed(drive, drive->desired_speed);
405
406 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
407 return execute_drive_cmd(drive, rq);
408 else if (blk_pm_request(rq)) {
409 struct request_pm_state *pm = rq->data;
410 #ifdef DEBUG_PM
411 printk("%s: start_power_step(step: %d)\n",
412 drive->name, pm->pm_step);
413 #endif
414 startstop = ide_start_power_step(drive, rq);
415 if (startstop == ide_stopped &&
416 pm->pm_step == IDE_PM_COMPLETED)
417 ide_complete_pm_rq(drive, rq);
418 return startstop;
419 } else if (!rq->rq_disk && blk_special_request(rq))
420 /*
421 * TODO: Once all ULDs have been modified to
422 * check for specific op codes rather than
423 * blindly accepting any special request, the
424 * check for ->rq_disk above may be replaced
425 * by a more suitable mechanism or even
426 * dropped entirely.
427 */
428 return ide_special_rq(drive, rq);
429
430 drv = *(struct ide_driver **)rq->rq_disk->private_data;
431
432 return drv->do_request(drive, rq, rq->sector);
433 }
434 return do_special(drive);
435 kill_rq:
436 ide_kill_rq(drive, rq);
437 return ide_stopped;
438 }
439
440 /**
441 * ide_stall_queue - pause an IDE device
442 * @drive: drive to stall
443 * @timeout: time to stall for (jiffies)
444 *
445 * ide_stall_queue() can be used by a drive to give excess bandwidth back
446 * to the port by sleeping for timeout jiffies.
447 */
448
449 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
450 {
451 if (timeout > WAIT_WORSTCASE)
452 timeout = WAIT_WORSTCASE;
453 drive->sleep = timeout + jiffies;
454 drive->dev_flags |= IDE_DFLAG_SLEEPING;
455 }
456 EXPORT_SYMBOL(ide_stall_queue);
457
458 static inline int ide_lock_port(ide_hwif_t *hwif)
459 {
460 if (hwif->busy)
461 return 1;
462
463 hwif->busy = 1;
464
465 return 0;
466 }
467
468 static inline void ide_unlock_port(ide_hwif_t *hwif)
469 {
470 hwif->busy = 0;
471 }
472
473 static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
474 {
475 int rc = 0;
476
477 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
478 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
479 if (rc == 0) {
480 if (host->get_lock)
481 host->get_lock(ide_intr, hwif);
482 }
483 }
484 return rc;
485 }
486
487 static inline void ide_unlock_host(struct ide_host *host)
488 {
489 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
490 if (host->release_lock)
491 host->release_lock();
492 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
493 }
494 }
495
496 /*
497 * Issue a new request to a device.
498 */
499 void do_ide_request(struct request_queue *q)
500 {
501 ide_drive_t *drive = q->queuedata;
502 ide_hwif_t *hwif = drive->hwif;
503 struct ide_host *host = hwif->host;
504 struct request *rq = NULL;
505 ide_startstop_t startstop;
506
507 /*
508 * drive is doing pre-flush, ordered write, post-flush sequence. even
509 * though that is 3 requests, it must be seen as a single transaction.
510 * we must not preempt this drive until that is complete
511 */
512 if (blk_queue_flushing(q))
513 /*
514 * small race where queue could get replugged during
515 * the 3-request flush cycle, just yank the plug since
516 * we want it to finish asap
517 */
518 blk_remove_plug(q);
519
520 spin_unlock_irq(q->queue_lock);
521
522 if (ide_lock_host(host, hwif))
523 goto plug_device_2;
524
525 spin_lock_irq(&hwif->lock);
526
527 if (!ide_lock_port(hwif)) {
528 ide_hwif_t *prev_port;
529 repeat:
530 prev_port = hwif->host->cur_port;
531 hwif->rq = NULL;
532
533 if (drive->dev_flags & IDE_DFLAG_SLEEPING) {
534 if (time_before(drive->sleep, jiffies)) {
535 ide_unlock_port(hwif);
536 goto plug_device;
537 }
538 }
539
540 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
541 hwif != prev_port) {
542 /*
543 * set nIEN for previous port, drives in the
544 * quirk_list may not like intr setups/cleanups
545 */
546 if (prev_port && prev_port->cur_dev->quirk_list == 0)
547 prev_port->tp_ops->set_irq(prev_port, 0);
548
549 hwif->host->cur_port = hwif;
550 }
551 hwif->cur_dev = drive;
552 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
553
554 spin_unlock_irq(&hwif->lock);
555 spin_lock_irq(q->queue_lock);
556 /*
557 * we know that the queue isn't empty, but this can happen
558 * if the q->prep_rq_fn() decides to kill a request
559 */
560 rq = elv_next_request(drive->queue);
561 spin_unlock_irq(q->queue_lock);
562 spin_lock_irq(&hwif->lock);
563
564 if (!rq) {
565 ide_unlock_port(hwif);
566 goto out;
567 }
568
569 /*
570 * Sanity: don't accept a request that isn't a PM request
571 * if we are currently power managed. This is very important as
572 * blk_stop_queue() doesn't prevent the elv_next_request()
573 * above to return us whatever is in the queue. Since we call
574 * ide_do_request() ourselves, we end up taking requests while
575 * the queue is blocked...
576 *
577 * We let requests forced at head of queue with ide-preempt
578 * though. I hope that doesn't happen too much, hopefully not
579 * unless the subdriver triggers such a thing in its own PM
580 * state machine.
581 */
582 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
583 blk_pm_request(rq) == 0 &&
584 (rq->cmd_flags & REQ_PREEMPT) == 0) {
585 /* there should be no pending command at this point */
586 ide_unlock_port(hwif);
587 goto plug_device;
588 }
589
590 hwif->rq = rq;
591
592 spin_unlock_irq(&hwif->lock);
593 startstop = start_request(drive, rq);
594 spin_lock_irq(&hwif->lock);
595
596 if (startstop == ide_stopped)
597 goto repeat;
598 } else
599 goto plug_device;
600 out:
601 spin_unlock_irq(&hwif->lock);
602 if (rq == NULL)
603 ide_unlock_host(host);
604 spin_lock_irq(q->queue_lock);
605 return;
606
607 plug_device:
608 spin_unlock_irq(&hwif->lock);
609 ide_unlock_host(host);
610 plug_device_2:
611 spin_lock_irq(q->queue_lock);
612
613 if (!elv_queue_empty(q))
614 blk_plug_device(q);
615 }
616
617 static void ide_plug_device(ide_drive_t *drive)
618 {
619 struct request_queue *q = drive->queue;
620 unsigned long flags;
621
622 spin_lock_irqsave(q->queue_lock, flags);
623 if (!elv_queue_empty(q))
624 blk_plug_device(q);
625 spin_unlock_irqrestore(q->queue_lock, flags);
626 }
627
628 static int drive_is_ready(ide_drive_t *drive)
629 {
630 ide_hwif_t *hwif = drive->hwif;
631 u8 stat = 0;
632
633 if (drive->waiting_for_dma)
634 return hwif->dma_ops->dma_test_irq(drive);
635
636 if (hwif->io_ports.ctl_addr &&
637 (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
638 stat = hwif->tp_ops->read_altstatus(hwif);
639 else
640 /* Note: this may clear a pending IRQ!! */
641 stat = hwif->tp_ops->read_status(hwif);
642
643 if (stat & ATA_BUSY)
644 /* drive busy: definitely not interrupting */
645 return 0;
646
647 /* drive ready: *might* be interrupting */
648 return 1;
649 }
650
651 /**
652 * ide_timer_expiry - handle lack of an IDE interrupt
653 * @data: timer callback magic (hwif)
654 *
655 * An IDE command has timed out before the expected drive return
656 * occurred. At this point we attempt to clean up the current
657 * mess. If the current handler includes an expiry handler then
658 * we invoke the expiry handler, and providing it is happy the
659 * work is done. If that fails we apply generic recovery rules
660 * invoking the handler and checking the drive DMA status. We
661 * have an excessively incestuous relationship with the DMA
662 * logic that wants cleaning up.
663 */
664
665 void ide_timer_expiry (unsigned long data)
666 {
667 ide_hwif_t *hwif = (ide_hwif_t *)data;
668 ide_drive_t *uninitialized_var(drive);
669 ide_handler_t *handler;
670 unsigned long flags;
671 int wait = -1;
672 int plug_device = 0;
673
674 spin_lock_irqsave(&hwif->lock, flags);
675
676 handler = hwif->handler;
677
678 if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
679 /*
680 * Either a marginal timeout occurred
681 * (got the interrupt just as timer expired),
682 * or we were "sleeping" to give other devices a chance.
683 * Either way, we don't really want to complain about anything.
684 */
685 } else {
686 ide_expiry_t *expiry = hwif->expiry;
687 ide_startstop_t startstop = ide_stopped;
688
689 drive = hwif->cur_dev;
690
691 if (expiry) {
692 wait = expiry(drive);
693 if (wait > 0) { /* continue */
694 /* reset timer */
695 hwif->timer.expires = jiffies + wait;
696 hwif->req_gen_timer = hwif->req_gen;
697 add_timer(&hwif->timer);
698 spin_unlock_irqrestore(&hwif->lock, flags);
699 return;
700 }
701 }
702 hwif->handler = NULL;
703 /*
704 * We need to simulate a real interrupt when invoking
705 * the handler() function, which means we need to
706 * globally mask the specific IRQ:
707 */
708 spin_unlock(&hwif->lock);
709 /* disable_irq_nosync ?? */
710 disable_irq(hwif->irq);
711 /* local CPU only, as if we were handling an interrupt */
712 local_irq_disable();
713 if (hwif->polling) {
714 startstop = handler(drive);
715 } else if (drive_is_ready(drive)) {
716 if (drive->waiting_for_dma)
717 hwif->dma_ops->dma_lost_irq(drive);
718 if (hwif->ack_intr)
719 hwif->ack_intr(hwif);
720 printk(KERN_WARNING "%s: lost interrupt\n",
721 drive->name);
722 startstop = handler(drive);
723 } else {
724 if (drive->waiting_for_dma)
725 startstop = ide_dma_timeout_retry(drive, wait);
726 else
727 startstop = ide_error(drive, "irq timeout",
728 hwif->tp_ops->read_status(hwif));
729 }
730 spin_lock_irq(&hwif->lock);
731 enable_irq(hwif->irq);
732 if (startstop == ide_stopped) {
733 ide_unlock_port(hwif);
734 plug_device = 1;
735 }
736 }
737 spin_unlock_irqrestore(&hwif->lock, flags);
738
739 if (plug_device) {
740 ide_unlock_host(hwif->host);
741 ide_plug_device(drive);
742 }
743 }
744
745 /**
746 * unexpected_intr - handle an unexpected IDE interrupt
747 * @irq: interrupt line
748 * @hwif: port being processed
749 *
750 * There's nothing really useful we can do with an unexpected interrupt,
751 * other than reading the status register (to clear it), and logging it.
752 * There should be no way that an irq can happen before we're ready for it,
753 * so we needn't worry much about losing an "important" interrupt here.
754 *
755 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
756 * the drive enters "idle", "standby", or "sleep" mode, so if the status
757 * looks "good", we just ignore the interrupt completely.
758 *
759 * This routine assumes __cli() is in effect when called.
760 *
761 * If an unexpected interrupt happens on irq15 while we are handling irq14
762 * and if the two interfaces are "serialized" (CMD640), then it looks like
763 * we could screw up by interfering with a new request being set up for
764 * irq15.
765 *
766 * In reality, this is a non-issue. The new command is not sent unless
767 * the drive is ready to accept one, in which case we know the drive is
768 * not trying to interrupt us. And ide_set_handler() is always invoked
769 * before completing the issuance of any new drive command, so we will not
770 * be accidentally invoked as a result of any valid command completion
771 * interrupt.
772 */
773
774 static void unexpected_intr(int irq, ide_hwif_t *hwif)
775 {
776 u8 stat = hwif->tp_ops->read_status(hwif);
777
778 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
779 /* Try to not flood the console with msgs */
780 static unsigned long last_msgtime, count;
781 ++count;
782
783 if (time_after(jiffies, last_msgtime + HZ)) {
784 last_msgtime = jiffies;
785 printk(KERN_ERR "%s: unexpected interrupt, "
786 "status=0x%02x, count=%ld\n",
787 hwif->name, stat, count);
788 }
789 }
790 }
791
792 /**
793 * ide_intr - default IDE interrupt handler
794 * @irq: interrupt number
795 * @dev_id: hwif
796 * @regs: unused weirdness from the kernel irq layer
797 *
798 * This is the default IRQ handler for the IDE layer. You should
799 * not need to override it. If you do be aware it is subtle in
800 * places
801 *
802 * hwif is the interface in the group currently performing
803 * a command. hwif->cur_dev is the drive and hwif->handler is
804 * the IRQ handler to call. As we issue a command the handlers
805 * step through multiple states, reassigning the handler to the
806 * next step in the process. Unlike a smart SCSI controller IDE
807 * expects the main processor to sequence the various transfer
808 * stages. We also manage a poll timer to catch up with most
809 * timeout situations. There are still a few where the handlers
810 * don't ever decide to give up.
811 *
812 * The handler eventually returns ide_stopped to indicate the
813 * request completed. At this point we issue the next request
814 * on the port and the process begins again.
815 */
816
817 irqreturn_t ide_intr (int irq, void *dev_id)
818 {
819 ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
820 struct ide_host *host = hwif->host;
821 ide_drive_t *uninitialized_var(drive);
822 ide_handler_t *handler;
823 unsigned long flags;
824 ide_startstop_t startstop;
825 irqreturn_t irq_ret = IRQ_NONE;
826 int plug_device = 0;
827
828 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
829 if (hwif != host->cur_port)
830 goto out_early;
831 }
832
833 spin_lock_irqsave(&hwif->lock, flags);
834
835 if (hwif->ack_intr && hwif->ack_intr(hwif) == 0)
836 goto out;
837
838 handler = hwif->handler;
839
840 if (handler == NULL || hwif->polling) {
841 /*
842 * Not expecting an interrupt from this drive.
843 * That means this could be:
844 * (1) an interrupt from another PCI device
845 * sharing the same PCI INT# as us.
846 * or (2) a drive just entered sleep or standby mode,
847 * and is interrupting to let us know.
848 * or (3) a spurious interrupt of unknown origin.
849 *
850 * For PCI, we cannot tell the difference,
851 * so in that case we just ignore it and hope it goes away.
852 */
853 if ((host->irq_flags & IRQF_SHARED) == 0) {
854 /*
855 * Probably not a shared PCI interrupt,
856 * so we can safely try to do something about it:
857 */
858 unexpected_intr(irq, hwif);
859 } else {
860 /*
861 * Whack the status register, just in case
862 * we have a leftover pending IRQ.
863 */
864 (void)hwif->tp_ops->read_status(hwif);
865 }
866 goto out;
867 }
868
869 drive = hwif->cur_dev;
870
871 if (!drive_is_ready(drive))
872 /*
873 * This happens regularly when we share a PCI IRQ with
874 * another device. Unfortunately, it can also happen
875 * with some buggy drives that trigger the IRQ before
876 * their status register is up to date. Hopefully we have
877 * enough advance overhead that the latter isn't a problem.
878 */
879 goto out;
880
881 hwif->handler = NULL;
882 hwif->req_gen++;
883 del_timer(&hwif->timer);
884 spin_unlock(&hwif->lock);
885
886 if (hwif->port_ops && hwif->port_ops->clear_irq)
887 hwif->port_ops->clear_irq(drive);
888
889 if (drive->dev_flags & IDE_DFLAG_UNMASK)
890 local_irq_enable_in_hardirq();
891
892 /* service this interrupt, may set handler for next interrupt */
893 startstop = handler(drive);
894
895 spin_lock_irq(&hwif->lock);
896 /*
897 * Note that handler() may have set things up for another
898 * interrupt to occur soon, but it cannot happen until
899 * we exit from this routine, because it will be the
900 * same irq as is currently being serviced here, and Linux
901 * won't allow another of the same (on any CPU) until we return.
902 */
903 if (startstop == ide_stopped) {
904 BUG_ON(hwif->handler);
905 ide_unlock_port(hwif);
906 plug_device = 1;
907 }
908 irq_ret = IRQ_HANDLED;
909 out:
910 spin_unlock_irqrestore(&hwif->lock, flags);
911 out_early:
912 if (plug_device) {
913 ide_unlock_host(hwif->host);
914 ide_plug_device(drive);
915 }
916
917 return irq_ret;
918 }
919 EXPORT_SYMBOL_GPL(ide_intr);
920
921 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
922 {
923 ide_hwif_t *hwif = drive->hwif;
924 u8 buf[4] = { 0 };
925
926 while (len > 0) {
927 if (write)
928 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
929 else
930 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
931 len -= 4;
932 }
933 }
934 EXPORT_SYMBOL_GPL(ide_pad_transfer);
This page took 0.06221 seconds and 6 git commands to generate.