Merge remote-tracking branch 'asoc/topic/topology' into asoc-next
[deliverable/linux.git] / drivers / ide / pmac.c
1 /*
2 * Support for IDE interfaces on PowerMacs.
3 *
4 * These IDE interfaces are memory-mapped and have a DBDMA channel
5 * for doing DMA.
6 *
7 * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
8 * Copyright (C) 2007-2008 Bartlomiej Zolnierkiewicz
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 *
15 * Some code taken from drivers/ide/ide-dma.c:
16 *
17 * Copyright (c) 1995-1998 Mark Lord
18 *
19 * TODO: - Use pre-calculated (kauai) timing tables all the time and
20 * get rid of the "rounded" tables used previously, so we have the
21 * same table format for all controllers and can then just have one
22 * big table
23 *
24 */
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/ide.h>
30 #include <linux/notifier.h>
31 #include <linux/module.h>
32 #include <linux/reboot.h>
33 #include <linux/pci.h>
34 #include <linux/adb.h>
35 #include <linux/pmu.h>
36 #include <linux/scatterlist.h>
37 #include <linux/slab.h>
38
39 #include <asm/prom.h>
40 #include <asm/io.h>
41 #include <asm/dbdma.h>
42 #include <asm/ide.h>
43 #include <asm/machdep.h>
44 #include <asm/pmac_feature.h>
45 #include <asm/sections.h>
46 #include <asm/irq.h>
47 #include <asm/mediabay.h>
48
49 #define DRV_NAME "ide-pmac"
50
51 #undef IDE_PMAC_DEBUG
52
53 #define DMA_WAIT_TIMEOUT 50
54
55 typedef struct pmac_ide_hwif {
56 unsigned long regbase;
57 int irq;
58 int kind;
59 int aapl_bus_id;
60 unsigned broken_dma : 1;
61 unsigned broken_dma_warn : 1;
62 struct device_node* node;
63 struct macio_dev *mdev;
64 u32 timings[4];
65 volatile u32 __iomem * *kauai_fcr;
66 ide_hwif_t *hwif;
67
68 /* Those fields are duplicating what is in hwif. We currently
69 * can't use the hwif ones because of some assumptions that are
70 * beeing done by the generic code about the kind of dma controller
71 * and format of the dma table. This will have to be fixed though.
72 */
73 volatile struct dbdma_regs __iomem * dma_regs;
74 struct dbdma_cmd* dma_table_cpu;
75 } pmac_ide_hwif_t;
76
77 enum {
78 controller_ohare, /* OHare based */
79 controller_heathrow, /* Heathrow/Paddington */
80 controller_kl_ata3, /* KeyLargo ATA-3 */
81 controller_kl_ata4, /* KeyLargo ATA-4 */
82 controller_un_ata6, /* UniNorth2 ATA-6 */
83 controller_k2_ata6, /* K2 ATA-6 */
84 controller_sh_ata6, /* Shasta ATA-6 */
85 };
86
87 static const char* model_name[] = {
88 "OHare ATA", /* OHare based */
89 "Heathrow ATA", /* Heathrow/Paddington */
90 "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
91 "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
92 "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
93 "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
94 "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
95 };
96
97 /*
98 * Extra registers, both 32-bit little-endian
99 */
100 #define IDE_TIMING_CONFIG 0x200
101 #define IDE_INTERRUPT 0x300
102
103 /* Kauai (U2) ATA has different register setup */
104 #define IDE_KAUAI_PIO_CONFIG 0x200
105 #define IDE_KAUAI_ULTRA_CONFIG 0x210
106 #define IDE_KAUAI_POLL_CONFIG 0x220
107
108 /*
109 * Timing configuration register definitions
110 */
111
112 /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
113 #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
114 #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
115 #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
116 #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
117
118 /* 133Mhz cell, found in shasta.
119 * See comments about 100 Mhz Uninorth 2...
120 * Note that PIO_MASK and MDMA_MASK seem to overlap
121 */
122 #define TR_133_PIOREG_PIO_MASK 0xff000fff
123 #define TR_133_PIOREG_MDMA_MASK 0x00fff800
124 #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
125 #define TR_133_UDMAREG_UDMA_EN 0x00000001
126
127 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
128 * this one yet, it appears as a pci device (106b/0033) on uninorth
129 * internal PCI bus and it's clock is controlled like gem or fw. It
130 * appears to be an evolution of keylargo ATA4 with a timing register
131 * extended to 2 32bits registers and a similar DBDMA channel. Other
132 * registers seem to exist but I can't tell much about them.
133 *
134 * So far, I'm using pre-calculated tables for this extracted from
135 * the values used by the MacOS X driver.
136 *
137 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
138 * register controls the UDMA timings. At least, it seems bit 0
139 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
140 * cycle time in units of 10ns. Bits 8..15 are used by I don't
141 * know their meaning yet
142 */
143 #define TR_100_PIOREG_PIO_MASK 0xff000fff
144 #define TR_100_PIOREG_MDMA_MASK 0x00fff000
145 #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
146 #define TR_100_UDMAREG_UDMA_EN 0x00000001
147
148
149 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
150 * 40 connector cable and to 4 on 80 connector one.
151 * Clock unit is 15ns (66Mhz)
152 *
153 * 3 Values can be programmed:
154 * - Write data setup, which appears to match the cycle time. They
155 * also call it DIOW setup.
156 * - Ready to pause time (from spec)
157 * - Address setup. That one is weird. I don't see where exactly
158 * it fits in UDMA cycles, I got it's name from an obscure piece
159 * of commented out code in Darwin. They leave it to 0, we do as
160 * well, despite a comment that would lead to think it has a
161 * min value of 45ns.
162 * Apple also add 60ns to the write data setup (or cycle time ?) on
163 * reads.
164 */
165 #define TR_66_UDMA_MASK 0xfff00000
166 #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
167 #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
168 #define TR_66_UDMA_ADDRSETUP_SHIFT 29
169 #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
170 #define TR_66_UDMA_RDY2PAUS_SHIFT 25
171 #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
172 #define TR_66_UDMA_WRDATASETUP_SHIFT 21
173 #define TR_66_MDMA_MASK 0x000ffc00
174 #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
175 #define TR_66_MDMA_RECOVERY_SHIFT 15
176 #define TR_66_MDMA_ACCESS_MASK 0x00007c00
177 #define TR_66_MDMA_ACCESS_SHIFT 10
178 #define TR_66_PIO_MASK 0x000003ff
179 #define TR_66_PIO_RECOVERY_MASK 0x000003e0
180 #define TR_66_PIO_RECOVERY_SHIFT 5
181 #define TR_66_PIO_ACCESS_MASK 0x0000001f
182 #define TR_66_PIO_ACCESS_SHIFT 0
183
184 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
185 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
186 *
187 * The access time and recovery time can be programmed. Some older
188 * Darwin code base limit OHare to 150ns cycle time. I decided to do
189 * the same here fore safety against broken old hardware ;)
190 * The HalfTick bit, when set, adds half a clock (15ns) to the access
191 * time and removes one from recovery. It's not supported on KeyLargo
192 * implementation afaik. The E bit appears to be set for PIO mode 0 and
193 * is used to reach long timings used in this mode.
194 */
195 #define TR_33_MDMA_MASK 0x003ff800
196 #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
197 #define TR_33_MDMA_RECOVERY_SHIFT 16
198 #define TR_33_MDMA_ACCESS_MASK 0x0000f800
199 #define TR_33_MDMA_ACCESS_SHIFT 11
200 #define TR_33_MDMA_HALFTICK 0x00200000
201 #define TR_33_PIO_MASK 0x000007ff
202 #define TR_33_PIO_E 0x00000400
203 #define TR_33_PIO_RECOVERY_MASK 0x000003e0
204 #define TR_33_PIO_RECOVERY_SHIFT 5
205 #define TR_33_PIO_ACCESS_MASK 0x0000001f
206 #define TR_33_PIO_ACCESS_SHIFT 0
207
208 /*
209 * Interrupt register definitions
210 */
211 #define IDE_INTR_DMA 0x80000000
212 #define IDE_INTR_DEVICE 0x40000000
213
214 /*
215 * FCR Register on Kauai. Not sure what bit 0x4 is ...
216 */
217 #define KAUAI_FCR_UATA_MAGIC 0x00000004
218 #define KAUAI_FCR_UATA_RESET_N 0x00000002
219 #define KAUAI_FCR_UATA_ENABLE 0x00000001
220
221 /* Rounded Multiword DMA timings
222 *
223 * I gave up finding a generic formula for all controller
224 * types and instead, built tables based on timing values
225 * used by Apple in Darwin's implementation.
226 */
227 struct mdma_timings_t {
228 int accessTime;
229 int recoveryTime;
230 int cycleTime;
231 };
232
233 struct mdma_timings_t mdma_timings_33[] =
234 {
235 { 240, 240, 480 },
236 { 180, 180, 360 },
237 { 135, 135, 270 },
238 { 120, 120, 240 },
239 { 105, 105, 210 },
240 { 90, 90, 180 },
241 { 75, 75, 150 },
242 { 75, 45, 120 },
243 { 0, 0, 0 }
244 };
245
246 struct mdma_timings_t mdma_timings_33k[] =
247 {
248 { 240, 240, 480 },
249 { 180, 180, 360 },
250 { 150, 150, 300 },
251 { 120, 120, 240 },
252 { 90, 120, 210 },
253 { 90, 90, 180 },
254 { 90, 60, 150 },
255 { 90, 30, 120 },
256 { 0, 0, 0 }
257 };
258
259 struct mdma_timings_t mdma_timings_66[] =
260 {
261 { 240, 240, 480 },
262 { 180, 180, 360 },
263 { 135, 135, 270 },
264 { 120, 120, 240 },
265 { 105, 105, 210 },
266 { 90, 90, 180 },
267 { 90, 75, 165 },
268 { 75, 45, 120 },
269 { 0, 0, 0 }
270 };
271
272 /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
273 struct {
274 int addrSetup; /* ??? */
275 int rdy2pause;
276 int wrDataSetup;
277 } kl66_udma_timings[] =
278 {
279 { 0, 180, 120 }, /* Mode 0 */
280 { 0, 150, 90 }, /* 1 */
281 { 0, 120, 60 }, /* 2 */
282 { 0, 90, 45 }, /* 3 */
283 { 0, 90, 30 } /* 4 */
284 };
285
286 /* UniNorth 2 ATA/100 timings */
287 struct kauai_timing {
288 int cycle_time;
289 u32 timing_reg;
290 };
291
292 static struct kauai_timing kauai_pio_timings[] =
293 {
294 { 930 , 0x08000fff },
295 { 600 , 0x08000a92 },
296 { 383 , 0x0800060f },
297 { 360 , 0x08000492 },
298 { 330 , 0x0800048f },
299 { 300 , 0x080003cf },
300 { 270 , 0x080003cc },
301 { 240 , 0x0800038b },
302 { 239 , 0x0800030c },
303 { 180 , 0x05000249 },
304 { 120 , 0x04000148 },
305 { 0 , 0 },
306 };
307
308 static struct kauai_timing kauai_mdma_timings[] =
309 {
310 { 1260 , 0x00fff000 },
311 { 480 , 0x00618000 },
312 { 360 , 0x00492000 },
313 { 270 , 0x0038e000 },
314 { 240 , 0x0030c000 },
315 { 210 , 0x002cb000 },
316 { 180 , 0x00249000 },
317 { 150 , 0x00209000 },
318 { 120 , 0x00148000 },
319 { 0 , 0 },
320 };
321
322 static struct kauai_timing kauai_udma_timings[] =
323 {
324 { 120 , 0x000070c0 },
325 { 90 , 0x00005d80 },
326 { 60 , 0x00004a60 },
327 { 45 , 0x00003a50 },
328 { 30 , 0x00002a30 },
329 { 20 , 0x00002921 },
330 { 0 , 0 },
331 };
332
333 static struct kauai_timing shasta_pio_timings[] =
334 {
335 { 930 , 0x08000fff },
336 { 600 , 0x0A000c97 },
337 { 383 , 0x07000712 },
338 { 360 , 0x040003cd },
339 { 330 , 0x040003cd },
340 { 300 , 0x040003cd },
341 { 270 , 0x040003cd },
342 { 240 , 0x040003cd },
343 { 239 , 0x040003cd },
344 { 180 , 0x0400028b },
345 { 120 , 0x0400010a },
346 { 0 , 0 },
347 };
348
349 static struct kauai_timing shasta_mdma_timings[] =
350 {
351 { 1260 , 0x00fff000 },
352 { 480 , 0x00820800 },
353 { 360 , 0x00820800 },
354 { 270 , 0x00820800 },
355 { 240 , 0x00820800 },
356 { 210 , 0x00820800 },
357 { 180 , 0x00820800 },
358 { 150 , 0x0028b000 },
359 { 120 , 0x001ca000 },
360 { 0 , 0 },
361 };
362
363 static struct kauai_timing shasta_udma133_timings[] =
364 {
365 { 120 , 0x00035901, },
366 { 90 , 0x000348b1, },
367 { 60 , 0x00033881, },
368 { 45 , 0x00033861, },
369 { 30 , 0x00033841, },
370 { 20 , 0x00033031, },
371 { 15 , 0x00033021, },
372 { 0 , 0 },
373 };
374
375
376 static inline u32
377 kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
378 {
379 int i;
380
381 for (i=0; table[i].cycle_time; i++)
382 if (cycle_time > table[i+1].cycle_time)
383 return table[i].timing_reg;
384 BUG();
385 return 0;
386 }
387
388 /* allow up to 256 DBDMA commands per xfer */
389 #define MAX_DCMDS 256
390
391 /*
392 * Wait 1s for disk to answer on IDE bus after a hard reset
393 * of the device (via GPIO/FCR).
394 *
395 * Some devices seem to "pollute" the bus even after dropping
396 * the BSY bit (typically some combo drives slave on the UDMA
397 * bus) after a hard reset. Since we hard reset all drives on
398 * KeyLargo ATA66, we have to keep that delay around. I may end
399 * up not hard resetting anymore on these and keep the delay only
400 * for older interfaces instead (we have to reset when coming
401 * from MacOS...) --BenH.
402 */
403 #define IDE_WAKEUP_DELAY (1*HZ)
404
405 static int pmac_ide_init_dma(ide_hwif_t *, const struct ide_port_info *);
406
407 #define PMAC_IDE_REG(x) \
408 ((void __iomem *)((drive)->hwif->io_ports.data_addr + (x)))
409
410 /*
411 * Apply the timings of the proper unit (master/slave) to the shared
412 * timing register when selecting that unit. This version is for
413 * ASICs with a single timing register
414 */
415 static void pmac_ide_apply_timings(ide_drive_t *drive)
416 {
417 ide_hwif_t *hwif = drive->hwif;
418 pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
419
420 if (drive->dn & 1)
421 writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
422 else
423 writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
424 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
425 }
426
427 /*
428 * Apply the timings of the proper unit (master/slave) to the shared
429 * timing register when selecting that unit. This version is for
430 * ASICs with a dual timing register (Kauai)
431 */
432 static void pmac_ide_kauai_apply_timings(ide_drive_t *drive)
433 {
434 ide_hwif_t *hwif = drive->hwif;
435 pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
436
437 if (drive->dn & 1) {
438 writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
439 writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
440 } else {
441 writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
442 writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
443 }
444 (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
445 }
446
447 /*
448 * Force an update of controller timing values for a given drive
449 */
450 static void
451 pmac_ide_do_update_timings(ide_drive_t *drive)
452 {
453 ide_hwif_t *hwif = drive->hwif;
454 pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
455
456 if (pmif->kind == controller_sh_ata6 ||
457 pmif->kind == controller_un_ata6 ||
458 pmif->kind == controller_k2_ata6)
459 pmac_ide_kauai_apply_timings(drive);
460 else
461 pmac_ide_apply_timings(drive);
462 }
463
464 static void pmac_dev_select(ide_drive_t *drive)
465 {
466 pmac_ide_apply_timings(drive);
467
468 writeb(drive->select | ATA_DEVICE_OBS,
469 (void __iomem *)drive->hwif->io_ports.device_addr);
470 }
471
472 static void pmac_kauai_dev_select(ide_drive_t *drive)
473 {
474 pmac_ide_kauai_apply_timings(drive);
475
476 writeb(drive->select | ATA_DEVICE_OBS,
477 (void __iomem *)drive->hwif->io_ports.device_addr);
478 }
479
480 static void pmac_exec_command(ide_hwif_t *hwif, u8 cmd)
481 {
482 writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
483 (void)readl((void __iomem *)(hwif->io_ports.data_addr
484 + IDE_TIMING_CONFIG));
485 }
486
487 static void pmac_write_devctl(ide_hwif_t *hwif, u8 ctl)
488 {
489 writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
490 (void)readl((void __iomem *)(hwif->io_ports.data_addr
491 + IDE_TIMING_CONFIG));
492 }
493
494 /*
495 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
496 */
497 static void pmac_ide_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive)
498 {
499 pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
500 const u8 pio = drive->pio_mode - XFER_PIO_0;
501 struct ide_timing *tim = ide_timing_find_mode(XFER_PIO_0 + pio);
502 u32 *timings, t;
503 unsigned accessTicks, recTicks;
504 unsigned accessTime, recTime;
505 unsigned int cycle_time;
506
507 /* which drive is it ? */
508 timings = &pmif->timings[drive->dn & 1];
509 t = *timings;
510
511 cycle_time = ide_pio_cycle_time(drive, pio);
512
513 switch (pmif->kind) {
514 case controller_sh_ata6: {
515 /* 133Mhz cell */
516 u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
517 t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
518 break;
519 }
520 case controller_un_ata6:
521 case controller_k2_ata6: {
522 /* 100Mhz cell */
523 u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
524 t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
525 break;
526 }
527 case controller_kl_ata4:
528 /* 66Mhz cell */
529 recTime = cycle_time - tim->active - tim->setup;
530 recTime = max(recTime, 150U);
531 accessTime = tim->active;
532 accessTime = max(accessTime, 150U);
533 accessTicks = SYSCLK_TICKS_66(accessTime);
534 accessTicks = min(accessTicks, 0x1fU);
535 recTicks = SYSCLK_TICKS_66(recTime);
536 recTicks = min(recTicks, 0x1fU);
537 t = (t & ~TR_66_PIO_MASK) |
538 (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
539 (recTicks << TR_66_PIO_RECOVERY_SHIFT);
540 break;
541 default: {
542 /* 33Mhz cell */
543 int ebit = 0;
544 recTime = cycle_time - tim->active - tim->setup;
545 recTime = max(recTime, 150U);
546 accessTime = tim->active;
547 accessTime = max(accessTime, 150U);
548 accessTicks = SYSCLK_TICKS(accessTime);
549 accessTicks = min(accessTicks, 0x1fU);
550 accessTicks = max(accessTicks, 4U);
551 recTicks = SYSCLK_TICKS(recTime);
552 recTicks = min(recTicks, 0x1fU);
553 recTicks = max(recTicks, 5U) - 4;
554 if (recTicks > 9) {
555 recTicks--; /* guess, but it's only for PIO0, so... */
556 ebit = 1;
557 }
558 t = (t & ~TR_33_PIO_MASK) |
559 (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
560 (recTicks << TR_33_PIO_RECOVERY_SHIFT);
561 if (ebit)
562 t |= TR_33_PIO_E;
563 break;
564 }
565 }
566
567 #ifdef IDE_PMAC_DEBUG
568 printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
569 drive->name, pio, *timings);
570 #endif
571
572 *timings = t;
573 pmac_ide_do_update_timings(drive);
574 }
575
576 /*
577 * Calculate KeyLargo ATA/66 UDMA timings
578 */
579 static int
580 set_timings_udma_ata4(u32 *timings, u8 speed)
581 {
582 unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
583
584 if (speed > XFER_UDMA_4)
585 return 1;
586
587 rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
588 wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
589 addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
590
591 *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
592 (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
593 (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
594 (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
595 TR_66_UDMA_EN;
596 #ifdef IDE_PMAC_DEBUG
597 printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
598 speed & 0xf, *timings);
599 #endif
600
601 return 0;
602 }
603
604 /*
605 * Calculate Kauai ATA/100 UDMA timings
606 */
607 static int
608 set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
609 {
610 struct ide_timing *t = ide_timing_find_mode(speed);
611 u32 tr;
612
613 if (speed > XFER_UDMA_5 || t == NULL)
614 return 1;
615 tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
616 *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
617 *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
618
619 return 0;
620 }
621
622 /*
623 * Calculate Shasta ATA/133 UDMA timings
624 */
625 static int
626 set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
627 {
628 struct ide_timing *t = ide_timing_find_mode(speed);
629 u32 tr;
630
631 if (speed > XFER_UDMA_6 || t == NULL)
632 return 1;
633 tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
634 *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
635 *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
636
637 return 0;
638 }
639
640 /*
641 * Calculate MDMA timings for all cells
642 */
643 static void
644 set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
645 u8 speed)
646 {
647 u16 *id = drive->id;
648 int cycleTime, accessTime = 0, recTime = 0;
649 unsigned accessTicks, recTicks;
650 struct mdma_timings_t* tm = NULL;
651 int i;
652
653 /* Get default cycle time for mode */
654 switch(speed & 0xf) {
655 case 0: cycleTime = 480; break;
656 case 1: cycleTime = 150; break;
657 case 2: cycleTime = 120; break;
658 default:
659 BUG();
660 break;
661 }
662
663 /* Check if drive provides explicit DMA cycle time */
664 if ((id[ATA_ID_FIELD_VALID] & 2) && id[ATA_ID_EIDE_DMA_TIME])
665 cycleTime = max_t(int, id[ATA_ID_EIDE_DMA_TIME], cycleTime);
666
667 /* OHare limits according to some old Apple sources */
668 if ((intf_type == controller_ohare) && (cycleTime < 150))
669 cycleTime = 150;
670 /* Get the proper timing array for this controller */
671 switch(intf_type) {
672 case controller_sh_ata6:
673 case controller_un_ata6:
674 case controller_k2_ata6:
675 break;
676 case controller_kl_ata4:
677 tm = mdma_timings_66;
678 break;
679 case controller_kl_ata3:
680 tm = mdma_timings_33k;
681 break;
682 default:
683 tm = mdma_timings_33;
684 break;
685 }
686 if (tm != NULL) {
687 /* Lookup matching access & recovery times */
688 i = -1;
689 for (;;) {
690 if (tm[i+1].cycleTime < cycleTime)
691 break;
692 i++;
693 }
694 cycleTime = tm[i].cycleTime;
695 accessTime = tm[i].accessTime;
696 recTime = tm[i].recoveryTime;
697
698 #ifdef IDE_PMAC_DEBUG
699 printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
700 drive->name, cycleTime, accessTime, recTime);
701 #endif
702 }
703 switch(intf_type) {
704 case controller_sh_ata6: {
705 /* 133Mhz cell */
706 u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
707 *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
708 *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
709 }
710 case controller_un_ata6:
711 case controller_k2_ata6: {
712 /* 100Mhz cell */
713 u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
714 *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
715 *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
716 }
717 break;
718 case controller_kl_ata4:
719 /* 66Mhz cell */
720 accessTicks = SYSCLK_TICKS_66(accessTime);
721 accessTicks = min(accessTicks, 0x1fU);
722 accessTicks = max(accessTicks, 0x1U);
723 recTicks = SYSCLK_TICKS_66(recTime);
724 recTicks = min(recTicks, 0x1fU);
725 recTicks = max(recTicks, 0x3U);
726 /* Clear out mdma bits and disable udma */
727 *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
728 (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
729 (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
730 break;
731 case controller_kl_ata3:
732 /* 33Mhz cell on KeyLargo */
733 accessTicks = SYSCLK_TICKS(accessTime);
734 accessTicks = max(accessTicks, 1U);
735 accessTicks = min(accessTicks, 0x1fU);
736 accessTime = accessTicks * IDE_SYSCLK_NS;
737 recTicks = SYSCLK_TICKS(recTime);
738 recTicks = max(recTicks, 1U);
739 recTicks = min(recTicks, 0x1fU);
740 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
741 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
742 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
743 break;
744 default: {
745 /* 33Mhz cell on others */
746 int halfTick = 0;
747 int origAccessTime = accessTime;
748 int origRecTime = recTime;
749
750 accessTicks = SYSCLK_TICKS(accessTime);
751 accessTicks = max(accessTicks, 1U);
752 accessTicks = min(accessTicks, 0x1fU);
753 accessTime = accessTicks * IDE_SYSCLK_NS;
754 recTicks = SYSCLK_TICKS(recTime);
755 recTicks = max(recTicks, 2U) - 1;
756 recTicks = min(recTicks, 0x1fU);
757 recTime = (recTicks + 1) * IDE_SYSCLK_NS;
758 if ((accessTicks > 1) &&
759 ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
760 ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
761 halfTick = 1;
762 accessTicks--;
763 }
764 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
765 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
766 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
767 if (halfTick)
768 *timings |= TR_33_MDMA_HALFTICK;
769 }
770 }
771 #ifdef IDE_PMAC_DEBUG
772 printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
773 drive->name, speed & 0xf, *timings);
774 #endif
775 }
776
777 static void pmac_ide_set_dma_mode(ide_hwif_t *hwif, ide_drive_t *drive)
778 {
779 pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
780 int ret = 0;
781 u32 *timings, *timings2, tl[2];
782 u8 unit = drive->dn & 1;
783 const u8 speed = drive->dma_mode;
784
785 timings = &pmif->timings[unit];
786 timings2 = &pmif->timings[unit+2];
787
788 /* Copy timings to local image */
789 tl[0] = *timings;
790 tl[1] = *timings2;
791
792 if (speed >= XFER_UDMA_0) {
793 if (pmif->kind == controller_kl_ata4)
794 ret = set_timings_udma_ata4(&tl[0], speed);
795 else if (pmif->kind == controller_un_ata6
796 || pmif->kind == controller_k2_ata6)
797 ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
798 else if (pmif->kind == controller_sh_ata6)
799 ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
800 else
801 ret = -1;
802 } else
803 set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
804
805 if (ret)
806 return;
807
808 /* Apply timings to controller */
809 *timings = tl[0];
810 *timings2 = tl[1];
811
812 pmac_ide_do_update_timings(drive);
813 }
814
815 /*
816 * Blast some well known "safe" values to the timing registers at init or
817 * wakeup from sleep time, before we do real calculation
818 */
819 static void
820 sanitize_timings(pmac_ide_hwif_t *pmif)
821 {
822 unsigned int value, value2 = 0;
823
824 switch(pmif->kind) {
825 case controller_sh_ata6:
826 value = 0x0a820c97;
827 value2 = 0x00033031;
828 break;
829 case controller_un_ata6:
830 case controller_k2_ata6:
831 value = 0x08618a92;
832 value2 = 0x00002921;
833 break;
834 case controller_kl_ata4:
835 value = 0x0008438c;
836 break;
837 case controller_kl_ata3:
838 value = 0x00084526;
839 break;
840 case controller_heathrow:
841 case controller_ohare:
842 default:
843 value = 0x00074526;
844 break;
845 }
846 pmif->timings[0] = pmif->timings[1] = value;
847 pmif->timings[2] = pmif->timings[3] = value2;
848 }
849
850 static int on_media_bay(pmac_ide_hwif_t *pmif)
851 {
852 return pmif->mdev && pmif->mdev->media_bay != NULL;
853 }
854
855 /* Suspend call back, should be called after the child devices
856 * have actually been suspended
857 */
858 static int pmac_ide_do_suspend(pmac_ide_hwif_t *pmif)
859 {
860 /* We clear the timings */
861 pmif->timings[0] = 0;
862 pmif->timings[1] = 0;
863
864 disable_irq(pmif->irq);
865
866 /* The media bay will handle itself just fine */
867 if (on_media_bay(pmif))
868 return 0;
869
870 /* Kauai has bus control FCRs directly here */
871 if (pmif->kauai_fcr) {
872 u32 fcr = readl(pmif->kauai_fcr);
873 fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
874 writel(fcr, pmif->kauai_fcr);
875 }
876
877 /* Disable the bus on older machines and the cell on kauai */
878 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
879 0);
880
881 return 0;
882 }
883
884 /* Resume call back, should be called before the child devices
885 * are resumed
886 */
887 static int pmac_ide_do_resume(pmac_ide_hwif_t *pmif)
888 {
889 /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
890 if (!on_media_bay(pmif)) {
891 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
892 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
893 msleep(10);
894 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
895
896 /* Kauai has it different */
897 if (pmif->kauai_fcr) {
898 u32 fcr = readl(pmif->kauai_fcr);
899 fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
900 writel(fcr, pmif->kauai_fcr);
901 }
902
903 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
904 }
905
906 /* Sanitize drive timings */
907 sanitize_timings(pmif);
908
909 enable_irq(pmif->irq);
910
911 return 0;
912 }
913
914 static u8 pmac_ide_cable_detect(ide_hwif_t *hwif)
915 {
916 pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
917 struct device_node *np = pmif->node;
918 const char *cable = of_get_property(np, "cable-type", NULL);
919 struct device_node *root = of_find_node_by_path("/");
920 const char *model = of_get_property(root, "model", NULL);
921
922 /* Get cable type from device-tree. */
923 if (cable && !strncmp(cable, "80-", 3)) {
924 /* Some drives fail to detect 80c cable in PowerBook */
925 /* These machine use proprietary short IDE cable anyway */
926 if (!strncmp(model, "PowerBook", 9))
927 return ATA_CBL_PATA40_SHORT;
928 else
929 return ATA_CBL_PATA80;
930 }
931
932 /*
933 * G5's seem to have incorrect cable type in device-tree.
934 * Let's assume they have a 80 conductor cable, this seem
935 * to be always the case unless the user mucked around.
936 */
937 if (of_device_is_compatible(np, "K2-UATA") ||
938 of_device_is_compatible(np, "shasta-ata"))
939 return ATA_CBL_PATA80;
940
941 return ATA_CBL_PATA40;
942 }
943
944 static void pmac_ide_init_dev(ide_drive_t *drive)
945 {
946 ide_hwif_t *hwif = drive->hwif;
947 pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
948
949 if (on_media_bay(pmif)) {
950 if (check_media_bay(pmif->mdev->media_bay) == MB_CD) {
951 drive->dev_flags &= ~IDE_DFLAG_NOPROBE;
952 return;
953 }
954 drive->dev_flags |= IDE_DFLAG_NOPROBE;
955 }
956 }
957
958 static const struct ide_tp_ops pmac_tp_ops = {
959 .exec_command = pmac_exec_command,
960 .read_status = ide_read_status,
961 .read_altstatus = ide_read_altstatus,
962 .write_devctl = pmac_write_devctl,
963
964 .dev_select = pmac_dev_select,
965 .tf_load = ide_tf_load,
966 .tf_read = ide_tf_read,
967
968 .input_data = ide_input_data,
969 .output_data = ide_output_data,
970 };
971
972 static const struct ide_tp_ops pmac_ata6_tp_ops = {
973 .exec_command = pmac_exec_command,
974 .read_status = ide_read_status,
975 .read_altstatus = ide_read_altstatus,
976 .write_devctl = pmac_write_devctl,
977
978 .dev_select = pmac_kauai_dev_select,
979 .tf_load = ide_tf_load,
980 .tf_read = ide_tf_read,
981
982 .input_data = ide_input_data,
983 .output_data = ide_output_data,
984 };
985
986 static const struct ide_port_ops pmac_ide_ata4_port_ops = {
987 .init_dev = pmac_ide_init_dev,
988 .set_pio_mode = pmac_ide_set_pio_mode,
989 .set_dma_mode = pmac_ide_set_dma_mode,
990 .cable_detect = pmac_ide_cable_detect,
991 };
992
993 static const struct ide_port_ops pmac_ide_port_ops = {
994 .init_dev = pmac_ide_init_dev,
995 .set_pio_mode = pmac_ide_set_pio_mode,
996 .set_dma_mode = pmac_ide_set_dma_mode,
997 };
998
999 static const struct ide_dma_ops pmac_dma_ops;
1000
1001 static const struct ide_port_info pmac_port_info = {
1002 .name = DRV_NAME,
1003 .init_dma = pmac_ide_init_dma,
1004 .chipset = ide_pmac,
1005 .tp_ops = &pmac_tp_ops,
1006 .port_ops = &pmac_ide_port_ops,
1007 .dma_ops = &pmac_dma_ops,
1008 .host_flags = IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
1009 IDE_HFLAG_POST_SET_MODE |
1010 IDE_HFLAG_MMIO |
1011 IDE_HFLAG_UNMASK_IRQS,
1012 .pio_mask = ATA_PIO4,
1013 .mwdma_mask = ATA_MWDMA2,
1014 };
1015
1016 /*
1017 * Setup, register & probe an IDE channel driven by this driver, this is
1018 * called by one of the 2 probe functions (macio or PCI).
1019 */
1020 static int pmac_ide_setup_device(pmac_ide_hwif_t *pmif, struct ide_hw *hw)
1021 {
1022 struct device_node *np = pmif->node;
1023 const int *bidp;
1024 struct ide_host *host;
1025 ide_hwif_t *hwif;
1026 struct ide_hw *hws[] = { hw };
1027 struct ide_port_info d = pmac_port_info;
1028 int rc;
1029
1030 pmif->broken_dma = pmif->broken_dma_warn = 0;
1031 if (of_device_is_compatible(np, "shasta-ata")) {
1032 pmif->kind = controller_sh_ata6;
1033 d.tp_ops = &pmac_ata6_tp_ops;
1034 d.port_ops = &pmac_ide_ata4_port_ops;
1035 d.udma_mask = ATA_UDMA6;
1036 } else if (of_device_is_compatible(np, "kauai-ata")) {
1037 pmif->kind = controller_un_ata6;
1038 d.tp_ops = &pmac_ata6_tp_ops;
1039 d.port_ops = &pmac_ide_ata4_port_ops;
1040 d.udma_mask = ATA_UDMA5;
1041 } else if (of_device_is_compatible(np, "K2-UATA")) {
1042 pmif->kind = controller_k2_ata6;
1043 d.tp_ops = &pmac_ata6_tp_ops;
1044 d.port_ops = &pmac_ide_ata4_port_ops;
1045 d.udma_mask = ATA_UDMA5;
1046 } else if (of_device_is_compatible(np, "keylargo-ata")) {
1047 if (strcmp(np->name, "ata-4") == 0) {
1048 pmif->kind = controller_kl_ata4;
1049 d.port_ops = &pmac_ide_ata4_port_ops;
1050 d.udma_mask = ATA_UDMA4;
1051 } else
1052 pmif->kind = controller_kl_ata3;
1053 } else if (of_device_is_compatible(np, "heathrow-ata")) {
1054 pmif->kind = controller_heathrow;
1055 } else {
1056 pmif->kind = controller_ohare;
1057 pmif->broken_dma = 1;
1058 }
1059
1060 bidp = of_get_property(np, "AAPL,bus-id", NULL);
1061 pmif->aapl_bus_id = bidp ? *bidp : 0;
1062
1063 /* On Kauai-type controllers, we make sure the FCR is correct */
1064 if (pmif->kauai_fcr)
1065 writel(KAUAI_FCR_UATA_MAGIC |
1066 KAUAI_FCR_UATA_RESET_N |
1067 KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
1068
1069 /* Make sure we have sane timings */
1070 sanitize_timings(pmif);
1071
1072 /* If we are on a media bay, wait for it to settle and lock it */
1073 if (pmif->mdev)
1074 lock_media_bay(pmif->mdev->media_bay);
1075
1076 host = ide_host_alloc(&d, hws, 1);
1077 if (host == NULL) {
1078 rc = -ENOMEM;
1079 goto bail;
1080 }
1081 hwif = pmif->hwif = host->ports[0];
1082
1083 if (on_media_bay(pmif)) {
1084 /* Fixup bus ID for media bay */
1085 if (!bidp)
1086 pmif->aapl_bus_id = 1;
1087 } else if (pmif->kind == controller_ohare) {
1088 /* The code below is having trouble on some ohare machines
1089 * (timing related ?). Until I can put my hand on one of these
1090 * units, I keep the old way
1091 */
1092 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1093 } else {
1094 /* This is necessary to enable IDE when net-booting */
1095 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1096 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1097 msleep(10);
1098 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1099 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1100 }
1101
1102 printk(KERN_INFO DRV_NAME ": Found Apple %s controller (%s), "
1103 "bus ID %d%s, irq %d\n", model_name[pmif->kind],
1104 pmif->mdev ? "macio" : "PCI", pmif->aapl_bus_id,
1105 on_media_bay(pmif) ? " (mediabay)" : "", hw->irq);
1106
1107 rc = ide_host_register(host, &d, hws);
1108 if (rc)
1109 pmif->hwif = NULL;
1110
1111 if (pmif->mdev)
1112 unlock_media_bay(pmif->mdev->media_bay);
1113
1114 bail:
1115 if (rc && host)
1116 ide_host_free(host);
1117 return rc;
1118 }
1119
1120 static void pmac_ide_init_ports(struct ide_hw *hw, unsigned long base)
1121 {
1122 int i;
1123
1124 for (i = 0; i < 8; ++i)
1125 hw->io_ports_array[i] = base + i * 0x10;
1126
1127 hw->io_ports.ctl_addr = base + 0x160;
1128 }
1129
1130 /*
1131 * Attach to a macio probed interface
1132 */
1133 static int pmac_ide_macio_attach(struct macio_dev *mdev,
1134 const struct of_device_id *match)
1135 {
1136 void __iomem *base;
1137 unsigned long regbase;
1138 pmac_ide_hwif_t *pmif;
1139 int irq, rc;
1140 struct ide_hw hw;
1141
1142 pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1143 if (pmif == NULL)
1144 return -ENOMEM;
1145
1146 if (macio_resource_count(mdev) == 0) {
1147 printk(KERN_WARNING "ide-pmac: no address for %s\n",
1148 mdev->ofdev.dev.of_node->full_name);
1149 rc = -ENXIO;
1150 goto out_free_pmif;
1151 }
1152
1153 /* Request memory resource for IO ports */
1154 if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1155 printk(KERN_ERR "ide-pmac: can't request MMIO resource for "
1156 "%s!\n", mdev->ofdev.dev.of_node->full_name);
1157 rc = -EBUSY;
1158 goto out_free_pmif;
1159 }
1160
1161 /* XXX This is bogus. Should be fixed in the registry by checking
1162 * the kind of host interrupt controller, a bit like gatwick
1163 * fixes in irq.c. That works well enough for the single case
1164 * where that happens though...
1165 */
1166 if (macio_irq_count(mdev) == 0) {
1167 printk(KERN_WARNING "ide-pmac: no intrs for device %s, using "
1168 "13\n", mdev->ofdev.dev.of_node->full_name);
1169 irq = irq_create_mapping(NULL, 13);
1170 } else
1171 irq = macio_irq(mdev, 0);
1172
1173 base = ioremap(macio_resource_start(mdev, 0), 0x400);
1174 regbase = (unsigned long) base;
1175
1176 pmif->mdev = mdev;
1177 pmif->node = mdev->ofdev.dev.of_node;
1178 pmif->regbase = regbase;
1179 pmif->irq = irq;
1180 pmif->kauai_fcr = NULL;
1181
1182 if (macio_resource_count(mdev) >= 2) {
1183 if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1184 printk(KERN_WARNING "ide-pmac: can't request DMA "
1185 "resource for %s!\n",
1186 mdev->ofdev.dev.of_node->full_name);
1187 else
1188 pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1189 } else
1190 pmif->dma_regs = NULL;
1191
1192 dev_set_drvdata(&mdev->ofdev.dev, pmif);
1193
1194 memset(&hw, 0, sizeof(hw));
1195 pmac_ide_init_ports(&hw, pmif->regbase);
1196 hw.irq = irq;
1197 hw.dev = &mdev->bus->pdev->dev;
1198 hw.parent = &mdev->ofdev.dev;
1199
1200 rc = pmac_ide_setup_device(pmif, &hw);
1201 if (rc != 0) {
1202 /* The inteface is released to the common IDE layer */
1203 dev_set_drvdata(&mdev->ofdev.dev, NULL);
1204 iounmap(base);
1205 if (pmif->dma_regs) {
1206 iounmap(pmif->dma_regs);
1207 macio_release_resource(mdev, 1);
1208 }
1209 macio_release_resource(mdev, 0);
1210 kfree(pmif);
1211 }
1212
1213 return rc;
1214
1215 out_free_pmif:
1216 kfree(pmif);
1217 return rc;
1218 }
1219
1220 static int
1221 pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1222 {
1223 pmac_ide_hwif_t *pmif = dev_get_drvdata(&mdev->ofdev.dev);
1224 int rc = 0;
1225
1226 if (mesg.event != mdev->ofdev.dev.power.power_state.event
1227 && (mesg.event & PM_EVENT_SLEEP)) {
1228 rc = pmac_ide_do_suspend(pmif);
1229 if (rc == 0)
1230 mdev->ofdev.dev.power.power_state = mesg;
1231 }
1232
1233 return rc;
1234 }
1235
1236 static int
1237 pmac_ide_macio_resume(struct macio_dev *mdev)
1238 {
1239 pmac_ide_hwif_t *pmif = dev_get_drvdata(&mdev->ofdev.dev);
1240 int rc = 0;
1241
1242 if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1243 rc = pmac_ide_do_resume(pmif);
1244 if (rc == 0)
1245 mdev->ofdev.dev.power.power_state = PMSG_ON;
1246 }
1247
1248 return rc;
1249 }
1250
1251 /*
1252 * Attach to a PCI probed interface
1253 */
1254 static int pmac_ide_pci_attach(struct pci_dev *pdev,
1255 const struct pci_device_id *id)
1256 {
1257 struct device_node *np;
1258 pmac_ide_hwif_t *pmif;
1259 void __iomem *base;
1260 unsigned long rbase, rlen;
1261 int rc;
1262 struct ide_hw hw;
1263
1264 np = pci_device_to_OF_node(pdev);
1265 if (np == NULL) {
1266 printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1267 return -ENODEV;
1268 }
1269
1270 pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1271 if (pmif == NULL)
1272 return -ENOMEM;
1273
1274 if (pci_enable_device(pdev)) {
1275 printk(KERN_WARNING "ide-pmac: Can't enable PCI device for "
1276 "%s\n", np->full_name);
1277 rc = -ENXIO;
1278 goto out_free_pmif;
1279 }
1280 pci_set_master(pdev);
1281
1282 if (pci_request_regions(pdev, "Kauai ATA")) {
1283 printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for "
1284 "%s\n", np->full_name);
1285 rc = -ENXIO;
1286 goto out_free_pmif;
1287 }
1288
1289 pmif->mdev = NULL;
1290 pmif->node = np;
1291
1292 rbase = pci_resource_start(pdev, 0);
1293 rlen = pci_resource_len(pdev, 0);
1294
1295 base = ioremap(rbase, rlen);
1296 pmif->regbase = (unsigned long) base + 0x2000;
1297 pmif->dma_regs = base + 0x1000;
1298 pmif->kauai_fcr = base;
1299 pmif->irq = pdev->irq;
1300
1301 pci_set_drvdata(pdev, pmif);
1302
1303 memset(&hw, 0, sizeof(hw));
1304 pmac_ide_init_ports(&hw, pmif->regbase);
1305 hw.irq = pdev->irq;
1306 hw.dev = &pdev->dev;
1307
1308 rc = pmac_ide_setup_device(pmif, &hw);
1309 if (rc != 0) {
1310 /* The inteface is released to the common IDE layer */
1311 iounmap(base);
1312 pci_release_regions(pdev);
1313 kfree(pmif);
1314 }
1315
1316 return rc;
1317
1318 out_free_pmif:
1319 kfree(pmif);
1320 return rc;
1321 }
1322
1323 static int
1324 pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1325 {
1326 pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev);
1327 int rc = 0;
1328
1329 if (mesg.event != pdev->dev.power.power_state.event
1330 && (mesg.event & PM_EVENT_SLEEP)) {
1331 rc = pmac_ide_do_suspend(pmif);
1332 if (rc == 0)
1333 pdev->dev.power.power_state = mesg;
1334 }
1335
1336 return rc;
1337 }
1338
1339 static int
1340 pmac_ide_pci_resume(struct pci_dev *pdev)
1341 {
1342 pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev);
1343 int rc = 0;
1344
1345 if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1346 rc = pmac_ide_do_resume(pmif);
1347 if (rc == 0)
1348 pdev->dev.power.power_state = PMSG_ON;
1349 }
1350
1351 return rc;
1352 }
1353
1354 #ifdef CONFIG_PMAC_MEDIABAY
1355 static void pmac_ide_macio_mb_event(struct macio_dev* mdev, int mb_state)
1356 {
1357 pmac_ide_hwif_t *pmif = dev_get_drvdata(&mdev->ofdev.dev);
1358
1359 switch(mb_state) {
1360 case MB_CD:
1361 if (!pmif->hwif->present)
1362 ide_port_scan(pmif->hwif);
1363 break;
1364 default:
1365 if (pmif->hwif->present)
1366 ide_port_unregister_devices(pmif->hwif);
1367 }
1368 }
1369 #endif /* CONFIG_PMAC_MEDIABAY */
1370
1371
1372 static struct of_device_id pmac_ide_macio_match[] =
1373 {
1374 {
1375 .name = "IDE",
1376 },
1377 {
1378 .name = "ATA",
1379 },
1380 {
1381 .type = "ide",
1382 },
1383 {
1384 .type = "ata",
1385 },
1386 {},
1387 };
1388
1389 static struct macio_driver pmac_ide_macio_driver =
1390 {
1391 .driver = {
1392 .name = "ide-pmac",
1393 .owner = THIS_MODULE,
1394 .of_match_table = pmac_ide_macio_match,
1395 },
1396 .probe = pmac_ide_macio_attach,
1397 .suspend = pmac_ide_macio_suspend,
1398 .resume = pmac_ide_macio_resume,
1399 #ifdef CONFIG_PMAC_MEDIABAY
1400 .mediabay_event = pmac_ide_macio_mb_event,
1401 #endif
1402 };
1403
1404 static const struct pci_device_id pmac_ide_pci_match[] = {
1405 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA), 0 },
1406 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100), 0 },
1407 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100), 0 },
1408 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA), 0 },
1409 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA), 0 },
1410 {},
1411 };
1412
1413 static struct pci_driver pmac_ide_pci_driver = {
1414 .name = "ide-pmac",
1415 .id_table = pmac_ide_pci_match,
1416 .probe = pmac_ide_pci_attach,
1417 .suspend = pmac_ide_pci_suspend,
1418 .resume = pmac_ide_pci_resume,
1419 };
1420 MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1421
1422 int __init pmac_ide_probe(void)
1423 {
1424 int error;
1425
1426 if (!machine_is(powermac))
1427 return -ENODEV;
1428
1429 #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1430 error = pci_register_driver(&pmac_ide_pci_driver);
1431 if (error)
1432 goto out;
1433 error = macio_register_driver(&pmac_ide_macio_driver);
1434 if (error) {
1435 pci_unregister_driver(&pmac_ide_pci_driver);
1436 goto out;
1437 }
1438 #else
1439 error = macio_register_driver(&pmac_ide_macio_driver);
1440 if (error)
1441 goto out;
1442 error = pci_register_driver(&pmac_ide_pci_driver);
1443 if (error) {
1444 macio_unregister_driver(&pmac_ide_macio_driver);
1445 goto out;
1446 }
1447 #endif
1448 out:
1449 return error;
1450 }
1451
1452 /*
1453 * pmac_ide_build_dmatable builds the DBDMA command list
1454 * for a transfer and sets the DBDMA channel to point to it.
1455 */
1456 static int pmac_ide_build_dmatable(ide_drive_t *drive, struct ide_cmd *cmd)
1457 {
1458 ide_hwif_t *hwif = drive->hwif;
1459 pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1460 struct dbdma_cmd *table;
1461 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1462 struct scatterlist *sg;
1463 int wr = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1464 int i = cmd->sg_nents, count = 0;
1465
1466 /* DMA table is already aligned */
1467 table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1468
1469 /* Make sure DMA controller is stopped (necessary ?) */
1470 writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1471 while (readl(&dma->status) & RUN)
1472 udelay(1);
1473
1474 /* Build DBDMA commands list */
1475 sg = hwif->sg_table;
1476 while (i && sg_dma_len(sg)) {
1477 u32 cur_addr;
1478 u32 cur_len;
1479
1480 cur_addr = sg_dma_address(sg);
1481 cur_len = sg_dma_len(sg);
1482
1483 if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1484 if (pmif->broken_dma_warn == 0) {
1485 printk(KERN_WARNING "%s: DMA on non aligned address, "
1486 "switching to PIO on Ohare chipset\n", drive->name);
1487 pmif->broken_dma_warn = 1;
1488 }
1489 return 0;
1490 }
1491 while (cur_len) {
1492 unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1493
1494 if (count++ >= MAX_DCMDS) {
1495 printk(KERN_WARNING "%s: DMA table too small\n",
1496 drive->name);
1497 return 0;
1498 }
1499 table->command = cpu_to_le16(wr? OUTPUT_MORE: INPUT_MORE);
1500 table->req_count = cpu_to_le16(tc);
1501 table->phy_addr = cpu_to_le32(cur_addr);
1502 table->cmd_dep = 0;
1503 table->xfer_status = 0;
1504 table->res_count = 0;
1505 cur_addr += tc;
1506 cur_len -= tc;
1507 ++table;
1508 }
1509 sg = sg_next(sg);
1510 i--;
1511 }
1512
1513 /* convert the last command to an input/output last command */
1514 if (count) {
1515 table[-1].command = cpu_to_le16(wr? OUTPUT_LAST: INPUT_LAST);
1516 /* add the stop command to the end of the list */
1517 memset(table, 0, sizeof(struct dbdma_cmd));
1518 table->command = cpu_to_le16(DBDMA_STOP);
1519 mb();
1520 writel(hwif->dmatable_dma, &dma->cmdptr);
1521 return 1;
1522 }
1523
1524 printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1525
1526 return 0; /* revert to PIO for this request */
1527 }
1528
1529 /*
1530 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1531 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1532 */
1533 static int pmac_ide_dma_setup(ide_drive_t *drive, struct ide_cmd *cmd)
1534 {
1535 ide_hwif_t *hwif = drive->hwif;
1536 pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1537 u8 unit = drive->dn & 1, ata4 = (pmif->kind == controller_kl_ata4);
1538 u8 write = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1539
1540 if (pmac_ide_build_dmatable(drive, cmd) == 0)
1541 return 1;
1542
1543 /* Apple adds 60ns to wrDataSetup on reads */
1544 if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1545 writel(pmif->timings[unit] + (write ? 0 : 0x00800000UL),
1546 PMAC_IDE_REG(IDE_TIMING_CONFIG));
1547 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1548 }
1549
1550 return 0;
1551 }
1552
1553 /*
1554 * Kick the DMA controller into life after the DMA command has been issued
1555 * to the drive.
1556 */
1557 static void
1558 pmac_ide_dma_start(ide_drive_t *drive)
1559 {
1560 ide_hwif_t *hwif = drive->hwif;
1561 pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1562 volatile struct dbdma_regs __iomem *dma;
1563
1564 dma = pmif->dma_regs;
1565
1566 writel((RUN << 16) | RUN, &dma->control);
1567 /* Make sure it gets to the controller right now */
1568 (void)readl(&dma->control);
1569 }
1570
1571 /*
1572 * After a DMA transfer, make sure the controller is stopped
1573 */
1574 static int
1575 pmac_ide_dma_end (ide_drive_t *drive)
1576 {
1577 ide_hwif_t *hwif = drive->hwif;
1578 pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1579 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1580 u32 dstat;
1581
1582 dstat = readl(&dma->status);
1583 writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1584
1585 /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1586 * in theory, but with ATAPI decices doing buffer underruns, that would
1587 * cause us to disable DMA, which isn't what we want
1588 */
1589 return (dstat & (RUN|DEAD)) != RUN;
1590 }
1591
1592 /*
1593 * Check out that the interrupt we got was for us. We can't always know this
1594 * for sure with those Apple interfaces (well, we could on the recent ones but
1595 * that's not implemented yet), on the other hand, we don't have shared interrupts
1596 * so it's not really a problem
1597 */
1598 static int
1599 pmac_ide_dma_test_irq (ide_drive_t *drive)
1600 {
1601 ide_hwif_t *hwif = drive->hwif;
1602 pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1603 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1604 unsigned long status, timeout;
1605
1606 /* We have to things to deal with here:
1607 *
1608 * - The dbdma won't stop if the command was started
1609 * but completed with an error without transferring all
1610 * datas. This happens when bad blocks are met during
1611 * a multi-block transfer.
1612 *
1613 * - The dbdma fifo hasn't yet finished flushing to
1614 * to system memory when the disk interrupt occurs.
1615 *
1616 */
1617
1618 /* If ACTIVE is cleared, the STOP command have passed and
1619 * transfer is complete.
1620 */
1621 status = readl(&dma->status);
1622 if (!(status & ACTIVE))
1623 return 1;
1624
1625 /* If dbdma didn't execute the STOP command yet, the
1626 * active bit is still set. We consider that we aren't
1627 * sharing interrupts (which is hopefully the case with
1628 * those controllers) and so we just try to flush the
1629 * channel for pending data in the fifo
1630 */
1631 udelay(1);
1632 writel((FLUSH << 16) | FLUSH, &dma->control);
1633 timeout = 0;
1634 for (;;) {
1635 udelay(1);
1636 status = readl(&dma->status);
1637 if ((status & FLUSH) == 0)
1638 break;
1639 if (++timeout > 100) {
1640 printk(KERN_WARNING "ide%d, ide_dma_test_irq timeout flushing channel\n",
1641 hwif->index);
1642 break;
1643 }
1644 }
1645 return 1;
1646 }
1647
1648 static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
1649 {
1650 }
1651
1652 static void
1653 pmac_ide_dma_lost_irq (ide_drive_t *drive)
1654 {
1655 ide_hwif_t *hwif = drive->hwif;
1656 pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1657 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1658 unsigned long status = readl(&dma->status);
1659
1660 printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
1661 }
1662
1663 static const struct ide_dma_ops pmac_dma_ops = {
1664 .dma_host_set = pmac_ide_dma_host_set,
1665 .dma_setup = pmac_ide_dma_setup,
1666 .dma_start = pmac_ide_dma_start,
1667 .dma_end = pmac_ide_dma_end,
1668 .dma_test_irq = pmac_ide_dma_test_irq,
1669 .dma_lost_irq = pmac_ide_dma_lost_irq,
1670 };
1671
1672 /*
1673 * Allocate the data structures needed for using DMA with an interface
1674 * and fill the proper list of functions pointers
1675 */
1676 static int pmac_ide_init_dma(ide_hwif_t *hwif, const struct ide_port_info *d)
1677 {
1678 pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1679 struct pci_dev *dev = to_pci_dev(hwif->dev);
1680
1681 /* We won't need pci_dev if we switch to generic consistent
1682 * DMA routines ...
1683 */
1684 if (dev == NULL || pmif->dma_regs == 0)
1685 return -ENODEV;
1686 /*
1687 * Allocate space for the DBDMA commands.
1688 * The +2 is +1 for the stop command and +1 to allow for
1689 * aligning the start address to a multiple of 16 bytes.
1690 */
1691 pmif->dma_table_cpu = dma_alloc_coherent(&dev->dev,
1692 (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
1693 &hwif->dmatable_dma, GFP_KERNEL);
1694 if (pmif->dma_table_cpu == NULL) {
1695 printk(KERN_ERR "%s: unable to allocate DMA command list\n",
1696 hwif->name);
1697 return -ENOMEM;
1698 }
1699
1700 hwif->sg_max_nents = MAX_DCMDS;
1701
1702 return 0;
1703 }
1704
1705 module_init(pmac_ide_probe);
1706
1707 MODULE_LICENSE("GPL");
This page took 0.089965 seconds and 5 git commands to generate.