ftrace, sched: Add TRACE_FLAG_PREEMPT_RESCHED
[deliverable/linux.git] / drivers / iio / adc / nau7802.c
1 /*
2 * Driver for the Nuvoton NAU7802 ADC
3 *
4 * Copyright 2013 Free Electrons
5 *
6 * Licensed under the GPLv2 or later.
7 */
8
9 #include <linux/delay.h>
10 #include <linux/i2c.h>
11 #include <linux/interrupt.h>
12 #include <linux/module.h>
13 #include <linux/wait.h>
14 #include <linux/log2.h>
15
16 #include <linux/iio/iio.h>
17 #include <linux/iio/sysfs.h>
18
19 #define NAU7802_REG_PUCTRL 0x00
20 #define NAU7802_PUCTRL_RR(x) (x << 0)
21 #define NAU7802_PUCTRL_RR_BIT NAU7802_PUCTRL_RR(1)
22 #define NAU7802_PUCTRL_PUD(x) (x << 1)
23 #define NAU7802_PUCTRL_PUD_BIT NAU7802_PUCTRL_PUD(1)
24 #define NAU7802_PUCTRL_PUA(x) (x << 2)
25 #define NAU7802_PUCTRL_PUA_BIT NAU7802_PUCTRL_PUA(1)
26 #define NAU7802_PUCTRL_PUR(x) (x << 3)
27 #define NAU7802_PUCTRL_PUR_BIT NAU7802_PUCTRL_PUR(1)
28 #define NAU7802_PUCTRL_CS(x) (x << 4)
29 #define NAU7802_PUCTRL_CS_BIT NAU7802_PUCTRL_CS(1)
30 #define NAU7802_PUCTRL_CR(x) (x << 5)
31 #define NAU7802_PUCTRL_CR_BIT NAU7802_PUCTRL_CR(1)
32 #define NAU7802_PUCTRL_AVDDS(x) (x << 7)
33 #define NAU7802_PUCTRL_AVDDS_BIT NAU7802_PUCTRL_AVDDS(1)
34 #define NAU7802_REG_CTRL1 0x01
35 #define NAU7802_CTRL1_VLDO(x) (x << 3)
36 #define NAU7802_CTRL1_GAINS(x) (x)
37 #define NAU7802_CTRL1_GAINS_BITS 0x07
38 #define NAU7802_REG_CTRL2 0x02
39 #define NAU7802_CTRL2_CHS(x) (x << 7)
40 #define NAU7802_CTRL2_CRS(x) (x << 4)
41 #define NAU7802_SAMP_FREQ_320 0x07
42 #define NAU7802_CTRL2_CHS_BIT NAU7802_CTRL2_CHS(1)
43 #define NAU7802_REG_ADC_B2 0x12
44 #define NAU7802_REG_ADC_B1 0x13
45 #define NAU7802_REG_ADC_B0 0x14
46 #define NAU7802_REG_ADC_CTRL 0x15
47
48 #define NAU7802_MIN_CONVERSIONS 6
49
50 struct nau7802_state {
51 struct i2c_client *client;
52 s32 last_value;
53 struct mutex lock;
54 struct mutex data_lock;
55 u32 vref_mv;
56 u32 conversion_count;
57 u32 min_conversions;
58 u8 sample_rate;
59 u32 scale_avail[8];
60 struct completion value_ok;
61 };
62
63 #define NAU7802_CHANNEL(chan) { \
64 .type = IIO_VOLTAGE, \
65 .indexed = 1, \
66 .channel = (chan), \
67 .scan_index = (chan), \
68 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
69 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
70 BIT(IIO_CHAN_INFO_SAMP_FREQ) \
71 }
72
73 static const struct iio_chan_spec nau7802_chan_array[] = {
74 NAU7802_CHANNEL(0),
75 NAU7802_CHANNEL(1),
76 };
77
78 static const u16 nau7802_sample_freq_avail[] = {10, 20, 40, 80,
79 10, 10, 10, 320};
80
81 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("10 40 80 320");
82
83 static struct attribute *nau7802_attributes[] = {
84 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
85 NULL
86 };
87
88 static const struct attribute_group nau7802_attribute_group = {
89 .attrs = nau7802_attributes,
90 };
91
92 static int nau7802_set_gain(struct nau7802_state *st, int gain)
93 {
94 int ret;
95
96 mutex_lock(&st->lock);
97 st->conversion_count = 0;
98
99 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL1);
100 if (ret < 0)
101 goto nau7802_sysfs_set_gain_out;
102 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL1,
103 (ret & (~NAU7802_CTRL1_GAINS_BITS)) |
104 gain);
105
106 nau7802_sysfs_set_gain_out:
107 mutex_unlock(&st->lock);
108
109 return ret;
110 }
111
112 static int nau7802_read_conversion(struct nau7802_state *st)
113 {
114 int data;
115
116 mutex_lock(&st->data_lock);
117 data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B2);
118 if (data < 0)
119 goto nau7802_read_conversion_out;
120 st->last_value = data << 16;
121
122 data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B1);
123 if (data < 0)
124 goto nau7802_read_conversion_out;
125 st->last_value |= data << 8;
126
127 data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B0);
128 if (data < 0)
129 goto nau7802_read_conversion_out;
130 st->last_value |= data;
131
132 st->last_value = sign_extend32(st->last_value, 23);
133
134 nau7802_read_conversion_out:
135 mutex_unlock(&st->data_lock);
136
137 return data;
138 }
139
140 /*
141 * Conversions are synchronised on the rising edge of NAU7802_PUCTRL_CS_BIT
142 */
143 static int nau7802_sync(struct nau7802_state *st)
144 {
145 int ret;
146
147 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
148 if (ret < 0)
149 return ret;
150 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
151 ret | NAU7802_PUCTRL_CS_BIT);
152
153 return ret;
154 }
155
156 static irqreturn_t nau7802_eoc_trigger(int irq, void *private)
157 {
158 struct iio_dev *indio_dev = private;
159 struct nau7802_state *st = iio_priv(indio_dev);
160 int status;
161
162 status = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
163 if (status < 0)
164 return IRQ_HANDLED;
165
166 if (!(status & NAU7802_PUCTRL_CR_BIT))
167 return IRQ_NONE;
168
169 if (nau7802_read_conversion(st) < 0)
170 return IRQ_HANDLED;
171
172 /*
173 * Because there is actually only one ADC for both channels, we have to
174 * wait for enough conversions to happen before getting a significant
175 * value when changing channels and the values are far apart.
176 */
177 if (st->conversion_count < NAU7802_MIN_CONVERSIONS)
178 st->conversion_count++;
179 if (st->conversion_count >= NAU7802_MIN_CONVERSIONS)
180 complete_all(&st->value_ok);
181
182 return IRQ_HANDLED;
183 }
184
185 static int nau7802_read_irq(struct iio_dev *indio_dev,
186 struct iio_chan_spec const *chan,
187 int *val)
188 {
189 struct nau7802_state *st = iio_priv(indio_dev);
190 int ret;
191
192 INIT_COMPLETION(st->value_ok);
193 enable_irq(st->client->irq);
194
195 nau7802_sync(st);
196
197 /* read registers to ensure we flush everything */
198 ret = nau7802_read_conversion(st);
199 if (ret < 0)
200 goto read_chan_info_failure;
201
202 /* Wait for a conversion to finish */
203 ret = wait_for_completion_interruptible_timeout(&st->value_ok,
204 msecs_to_jiffies(1000));
205 if (ret == 0)
206 ret = -ETIMEDOUT;
207
208 if (ret < 0)
209 goto read_chan_info_failure;
210
211 disable_irq(st->client->irq);
212
213 *val = st->last_value;
214
215 return IIO_VAL_INT;
216
217 read_chan_info_failure:
218 disable_irq(st->client->irq);
219
220 return ret;
221 }
222
223 static int nau7802_read_poll(struct iio_dev *indio_dev,
224 struct iio_chan_spec const *chan,
225 int *val)
226 {
227 struct nau7802_state *st = iio_priv(indio_dev);
228 int ret;
229
230 nau7802_sync(st);
231
232 /* read registers to ensure we flush everything */
233 ret = nau7802_read_conversion(st);
234 if (ret < 0)
235 return ret;
236
237 /*
238 * Because there is actually only one ADC for both channels, we have to
239 * wait for enough conversions to happen before getting a significant
240 * value when changing channels and the values are far appart.
241 */
242 do {
243 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
244 if (ret < 0)
245 return ret;
246
247 while (!(ret & NAU7802_PUCTRL_CR_BIT)) {
248 if (st->sample_rate != NAU7802_SAMP_FREQ_320)
249 msleep(20);
250 else
251 mdelay(4);
252 ret = i2c_smbus_read_byte_data(st->client,
253 NAU7802_REG_PUCTRL);
254 if (ret < 0)
255 return ret;
256 }
257
258 ret = nau7802_read_conversion(st);
259 if (ret < 0)
260 return ret;
261 if (st->conversion_count < NAU7802_MIN_CONVERSIONS)
262 st->conversion_count++;
263 } while (st->conversion_count < NAU7802_MIN_CONVERSIONS);
264
265 *val = st->last_value;
266
267 return IIO_VAL_INT;
268 }
269
270 static int nau7802_read_raw(struct iio_dev *indio_dev,
271 struct iio_chan_spec const *chan,
272 int *val, int *val2, long mask)
273 {
274 struct nau7802_state *st = iio_priv(indio_dev);
275 int ret;
276
277 switch (mask) {
278 case IIO_CHAN_INFO_RAW:
279 mutex_lock(&st->lock);
280 /*
281 * Select the channel to use
282 * - Channel 1 is value 0 in the CHS register
283 * - Channel 2 is value 1 in the CHS register
284 */
285 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL2);
286 if (ret < 0) {
287 mutex_unlock(&st->lock);
288 return ret;
289 }
290
291 if (((ret & NAU7802_CTRL2_CHS_BIT) && !chan->channel) ||
292 (!(ret & NAU7802_CTRL2_CHS_BIT) &&
293 chan->channel)) {
294 st->conversion_count = 0;
295 ret = i2c_smbus_write_byte_data(st->client,
296 NAU7802_REG_CTRL2,
297 NAU7802_CTRL2_CHS(chan->channel) |
298 NAU7802_CTRL2_CRS(st->sample_rate));
299
300 if (ret < 0) {
301 mutex_unlock(&st->lock);
302 return ret;
303 }
304 }
305
306 if (st->client->irq)
307 ret = nau7802_read_irq(indio_dev, chan, val);
308 else
309 ret = nau7802_read_poll(indio_dev, chan, val);
310
311 mutex_unlock(&st->lock);
312 return ret;
313
314 case IIO_CHAN_INFO_SCALE:
315 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL1);
316 if (ret < 0)
317 return ret;
318
319 /*
320 * We have 24 bits of signed data, that means 23 bits of data
321 * plus the sign bit
322 */
323 *val = st->vref_mv;
324 *val2 = 23 + (ret & NAU7802_CTRL1_GAINS_BITS);
325
326 return IIO_VAL_FRACTIONAL_LOG2;
327
328 case IIO_CHAN_INFO_SAMP_FREQ:
329 *val = nau7802_sample_freq_avail[st->sample_rate];
330 *val2 = 0;
331 return IIO_VAL_INT;
332
333 default:
334 break;
335 }
336
337 return -EINVAL;
338 }
339
340 static int nau7802_write_raw(struct iio_dev *indio_dev,
341 struct iio_chan_spec const *chan,
342 int val, int val2, long mask)
343 {
344 struct nau7802_state *st = iio_priv(indio_dev);
345 int i, ret;
346
347 switch (mask) {
348 case IIO_CHAN_INFO_SCALE:
349 for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
350 if (val2 == st->scale_avail[i])
351 return nau7802_set_gain(st, i);
352
353 break;
354
355 case IIO_CHAN_INFO_SAMP_FREQ:
356 for (i = 0; i < ARRAY_SIZE(nau7802_sample_freq_avail); i++)
357 if (val == nau7802_sample_freq_avail[i]) {
358 mutex_lock(&st->lock);
359 st->sample_rate = i;
360 st->conversion_count = 0;
361 ret = i2c_smbus_write_byte_data(st->client,
362 NAU7802_REG_CTRL2,
363 NAU7802_CTRL2_CRS(st->sample_rate));
364 mutex_unlock(&st->lock);
365 return ret;
366 }
367
368 break;
369
370 default:
371 break;
372 }
373
374 return -EINVAL;
375 }
376
377 static int nau7802_write_raw_get_fmt(struct iio_dev *indio_dev,
378 struct iio_chan_spec const *chan,
379 long mask)
380 {
381 return IIO_VAL_INT_PLUS_NANO;
382 }
383
384 static const struct iio_info nau7802_info = {
385 .driver_module = THIS_MODULE,
386 .read_raw = &nau7802_read_raw,
387 .write_raw = &nau7802_write_raw,
388 .write_raw_get_fmt = nau7802_write_raw_get_fmt,
389 .attrs = &nau7802_attribute_group,
390 };
391
392 static int nau7802_probe(struct i2c_client *client,
393 const struct i2c_device_id *id)
394 {
395 struct iio_dev *indio_dev;
396 struct nau7802_state *st;
397 struct device_node *np = client->dev.of_node;
398 int i, ret;
399 u8 data;
400 u32 tmp = 0;
401
402 if (!client->dev.of_node) {
403 dev_err(&client->dev, "No device tree node available.\n");
404 return -EINVAL;
405 }
406
407 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*st));
408 if (indio_dev == NULL)
409 return -ENOMEM;
410
411 st = iio_priv(indio_dev);
412
413 i2c_set_clientdata(client, indio_dev);
414
415 indio_dev->dev.parent = &client->dev;
416 indio_dev->name = dev_name(&client->dev);
417 indio_dev->modes = INDIO_DIRECT_MODE;
418 indio_dev->info = &nau7802_info;
419
420 st->client = client;
421
422 /* Reset the device */
423 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
424 NAU7802_PUCTRL_RR_BIT);
425 if (ret < 0)
426 return ret;
427
428 /* Enter normal operation mode */
429 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
430 NAU7802_PUCTRL_PUD_BIT);
431 if (ret < 0)
432 return ret;
433
434 /*
435 * After about 200 usecs, the device should be ready and then
436 * the Power Up bit will be set to 1. If not, wait for it.
437 */
438 udelay(210);
439 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
440 if (ret < 0)
441 return ret;
442 if (!(ret & NAU7802_PUCTRL_PUR_BIT))
443 return ret;
444
445 of_property_read_u32(np, "nuvoton,vldo", &tmp);
446 st->vref_mv = tmp;
447
448 data = NAU7802_PUCTRL_PUD_BIT | NAU7802_PUCTRL_PUA_BIT |
449 NAU7802_PUCTRL_CS_BIT;
450 if (tmp >= 2400)
451 data |= NAU7802_PUCTRL_AVDDS_BIT;
452
453 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL, data);
454 if (ret < 0)
455 return ret;
456 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_ADC_CTRL, 0x30);
457 if (ret < 0)
458 return ret;
459
460 if (tmp >= 2400) {
461 data = NAU7802_CTRL1_VLDO((4500 - tmp) / 300);
462 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL1,
463 data);
464 if (ret < 0)
465 return ret;
466 }
467
468 /* Populate available ADC input ranges */
469 for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
470 st->scale_avail[i] = (((u64)st->vref_mv) * 1000000000ULL)
471 >> (23 + i);
472
473 init_completion(&st->value_ok);
474
475 /*
476 * The ADC fires continuously and we can't do anything about
477 * it. So we need to have the IRQ disabled by default, and we
478 * will enable them back when we will need them..
479 */
480 if (client->irq) {
481 ret = request_threaded_irq(client->irq,
482 NULL,
483 nau7802_eoc_trigger,
484 IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
485 client->dev.driver->name,
486 indio_dev);
487 if (ret) {
488 /*
489 * What may happen here is that our IRQ controller is
490 * not able to get level interrupt but this is required
491 * by this ADC as when going over 40 sample per second,
492 * the interrupt line may stay high between conversions.
493 * So, we continue no matter what but we switch to
494 * polling mode.
495 */
496 dev_info(&client->dev,
497 "Failed to allocate IRQ, using polling mode\n");
498 client->irq = 0;
499 } else
500 disable_irq(client->irq);
501 }
502
503 if (!client->irq) {
504 /*
505 * We are polling, use the fastest sample rate by
506 * default
507 */
508 st->sample_rate = NAU7802_SAMP_FREQ_320;
509 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL2,
510 NAU7802_CTRL2_CRS(st->sample_rate));
511 if (ret)
512 goto error_free_irq;
513 }
514
515 /* Setup the ADC channels available on the board */
516 indio_dev->num_channels = ARRAY_SIZE(nau7802_chan_array);
517 indio_dev->channels = nau7802_chan_array;
518
519 mutex_init(&st->lock);
520 mutex_init(&st->data_lock);
521
522 ret = iio_device_register(indio_dev);
523 if (ret < 0) {
524 dev_err(&client->dev, "Couldn't register the device.\n");
525 goto error_device_register;
526 }
527
528 return 0;
529
530 error_device_register:
531 mutex_destroy(&st->lock);
532 mutex_destroy(&st->data_lock);
533 error_free_irq:
534 if (client->irq)
535 free_irq(client->irq, indio_dev);
536
537 return ret;
538 }
539
540 static int nau7802_remove(struct i2c_client *client)
541 {
542 struct iio_dev *indio_dev = i2c_get_clientdata(client);
543 struct nau7802_state *st = iio_priv(indio_dev);
544
545 iio_device_unregister(indio_dev);
546 mutex_destroy(&st->lock);
547 mutex_destroy(&st->data_lock);
548 if (client->irq)
549 free_irq(client->irq, indio_dev);
550
551 return 0;
552 }
553
554 static const struct i2c_device_id nau7802_i2c_id[] = {
555 { "nau7802", 0 },
556 { }
557 };
558 MODULE_DEVICE_TABLE(i2c, nau7802_i2c_id);
559
560 static const struct of_device_id nau7802_dt_ids[] = {
561 { .compatible = "nuvoton,nau7802" },
562 {},
563 };
564 MODULE_DEVICE_TABLE(of, nau7802_dt_ids);
565
566 static struct i2c_driver nau7802_driver = {
567 .probe = nau7802_probe,
568 .remove = nau7802_remove,
569 .id_table = nau7802_i2c_id,
570 .driver = {
571 .name = "nau7802",
572 .of_match_table = of_match_ptr(nau7802_dt_ids),
573 },
574 };
575
576 module_i2c_driver(nau7802_driver);
577
578 MODULE_LICENSE("GPL");
579 MODULE_DESCRIPTION("Nuvoton NAU7802 ADC Driver");
580 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
581 MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
This page took 0.042047 seconds and 5 git commands to generate.