Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[deliverable/linux.git] / drivers / iio / magnetometer / bmc150_magn.c
1 /*
2 * Bosch BMC150 three-axis magnetic field sensor driver
3 *
4 * Copyright (c) 2015, Intel Corporation.
5 *
6 * This code is based on bmm050_api.c authored by contact@bosch.sensortec.com:
7 *
8 * (C) Copyright 2011~2014 Bosch Sensortec GmbH All Rights Reserved
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms and conditions of the GNU General Public License,
12 * version 2, as published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
18 */
19
20 #include <linux/module.h>
21 #include <linux/i2c.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/acpi.h>
26 #include <linux/gpio/consumer.h>
27 #include <linux/pm.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/iio/iio.h>
30 #include <linux/iio/sysfs.h>
31 #include <linux/iio/buffer.h>
32 #include <linux/iio/events.h>
33 #include <linux/iio/trigger.h>
34 #include <linux/iio/trigger_consumer.h>
35 #include <linux/iio/triggered_buffer.h>
36 #include <linux/regmap.h>
37
38 #define BMC150_MAGN_DRV_NAME "bmc150_magn"
39 #define BMC150_MAGN_IRQ_NAME "bmc150_magn_event"
40
41 #define BMC150_MAGN_REG_CHIP_ID 0x40
42 #define BMC150_MAGN_CHIP_ID_VAL 0x32
43
44 #define BMC150_MAGN_REG_X_L 0x42
45 #define BMC150_MAGN_REG_X_M 0x43
46 #define BMC150_MAGN_REG_Y_L 0x44
47 #define BMC150_MAGN_REG_Y_M 0x45
48 #define BMC150_MAGN_SHIFT_XY_L 3
49 #define BMC150_MAGN_REG_Z_L 0x46
50 #define BMC150_MAGN_REG_Z_M 0x47
51 #define BMC150_MAGN_SHIFT_Z_L 1
52 #define BMC150_MAGN_REG_RHALL_L 0x48
53 #define BMC150_MAGN_REG_RHALL_M 0x49
54 #define BMC150_MAGN_SHIFT_RHALL_L 2
55
56 #define BMC150_MAGN_REG_INT_STATUS 0x4A
57
58 #define BMC150_MAGN_REG_POWER 0x4B
59 #define BMC150_MAGN_MASK_POWER_CTL BIT(0)
60
61 #define BMC150_MAGN_REG_OPMODE_ODR 0x4C
62 #define BMC150_MAGN_MASK_OPMODE GENMASK(2, 1)
63 #define BMC150_MAGN_SHIFT_OPMODE 1
64 #define BMC150_MAGN_MODE_NORMAL 0x00
65 #define BMC150_MAGN_MODE_FORCED 0x01
66 #define BMC150_MAGN_MODE_SLEEP 0x03
67 #define BMC150_MAGN_MASK_ODR GENMASK(5, 3)
68 #define BMC150_MAGN_SHIFT_ODR 3
69
70 #define BMC150_MAGN_REG_INT 0x4D
71
72 #define BMC150_MAGN_REG_INT_DRDY 0x4E
73 #define BMC150_MAGN_MASK_DRDY_EN BIT(7)
74 #define BMC150_MAGN_SHIFT_DRDY_EN 7
75 #define BMC150_MAGN_MASK_DRDY_INT3 BIT(6)
76 #define BMC150_MAGN_MASK_DRDY_Z_EN BIT(5)
77 #define BMC150_MAGN_MASK_DRDY_Y_EN BIT(4)
78 #define BMC150_MAGN_MASK_DRDY_X_EN BIT(3)
79 #define BMC150_MAGN_MASK_DRDY_DR_POLARITY BIT(2)
80 #define BMC150_MAGN_MASK_DRDY_LATCHING BIT(1)
81 #define BMC150_MAGN_MASK_DRDY_INT3_POLARITY BIT(0)
82
83 #define BMC150_MAGN_REG_LOW_THRESH 0x4F
84 #define BMC150_MAGN_REG_HIGH_THRESH 0x50
85 #define BMC150_MAGN_REG_REP_XY 0x51
86 #define BMC150_MAGN_REG_REP_Z 0x52
87 #define BMC150_MAGN_REG_REP_DATAMASK GENMASK(7, 0)
88
89 #define BMC150_MAGN_REG_TRIM_START 0x5D
90 #define BMC150_MAGN_REG_TRIM_END 0x71
91
92 #define BMC150_MAGN_XY_OVERFLOW_VAL -4096
93 #define BMC150_MAGN_Z_OVERFLOW_VAL -16384
94
95 /* Time from SUSPEND to SLEEP */
96 #define BMC150_MAGN_START_UP_TIME_MS 3
97
98 #define BMC150_MAGN_AUTO_SUSPEND_DELAY_MS 2000
99
100 #define BMC150_MAGN_REGVAL_TO_REPXY(regval) (((regval) * 2) + 1)
101 #define BMC150_MAGN_REGVAL_TO_REPZ(regval) ((regval) + 1)
102 #define BMC150_MAGN_REPXY_TO_REGVAL(rep) (((rep) - 1) / 2)
103 #define BMC150_MAGN_REPZ_TO_REGVAL(rep) ((rep) - 1)
104
105 enum bmc150_magn_axis {
106 AXIS_X,
107 AXIS_Y,
108 AXIS_Z,
109 RHALL,
110 AXIS_XYZ_MAX = RHALL,
111 AXIS_XYZR_MAX,
112 };
113
114 enum bmc150_magn_power_modes {
115 BMC150_MAGN_POWER_MODE_SUSPEND,
116 BMC150_MAGN_POWER_MODE_SLEEP,
117 BMC150_MAGN_POWER_MODE_NORMAL,
118 };
119
120 struct bmc150_magn_trim_regs {
121 s8 x1;
122 s8 y1;
123 __le16 reserved1;
124 u8 reserved2;
125 __le16 z4;
126 s8 x2;
127 s8 y2;
128 __le16 reserved3;
129 __le16 z2;
130 __le16 z1;
131 __le16 xyz1;
132 __le16 z3;
133 s8 xy2;
134 u8 xy1;
135 } __packed;
136
137 struct bmc150_magn_data {
138 struct i2c_client *client;
139 /*
140 * 1. Protect this structure.
141 * 2. Serialize sequences that power on/off the device and access HW.
142 */
143 struct mutex mutex;
144 struct regmap *regmap;
145 /* 4 x 32 bits for x, y z, 4 bytes align, 64 bits timestamp */
146 s32 buffer[6];
147 struct iio_trigger *dready_trig;
148 bool dready_trigger_on;
149 int max_odr;
150 };
151
152 static const struct {
153 int freq;
154 u8 reg_val;
155 } bmc150_magn_samp_freq_table[] = { {2, 0x01},
156 {6, 0x02},
157 {8, 0x03},
158 {10, 0x00},
159 {15, 0x04},
160 {20, 0x05},
161 {25, 0x06},
162 {30, 0x07} };
163
164 enum bmc150_magn_presets {
165 LOW_POWER_PRESET,
166 REGULAR_PRESET,
167 ENHANCED_REGULAR_PRESET,
168 HIGH_ACCURACY_PRESET
169 };
170
171 static const struct bmc150_magn_preset {
172 u8 rep_xy;
173 u8 rep_z;
174 u8 odr;
175 } bmc150_magn_presets_table[] = {
176 [LOW_POWER_PRESET] = {3, 3, 10},
177 [REGULAR_PRESET] = {9, 15, 10},
178 [ENHANCED_REGULAR_PRESET] = {15, 27, 10},
179 [HIGH_ACCURACY_PRESET] = {47, 83, 20},
180 };
181
182 #define BMC150_MAGN_DEFAULT_PRESET REGULAR_PRESET
183
184 static bool bmc150_magn_is_writeable_reg(struct device *dev, unsigned int reg)
185 {
186 switch (reg) {
187 case BMC150_MAGN_REG_POWER:
188 case BMC150_MAGN_REG_OPMODE_ODR:
189 case BMC150_MAGN_REG_INT:
190 case BMC150_MAGN_REG_INT_DRDY:
191 case BMC150_MAGN_REG_LOW_THRESH:
192 case BMC150_MAGN_REG_HIGH_THRESH:
193 case BMC150_MAGN_REG_REP_XY:
194 case BMC150_MAGN_REG_REP_Z:
195 return true;
196 default:
197 return false;
198 };
199 }
200
201 static bool bmc150_magn_is_volatile_reg(struct device *dev, unsigned int reg)
202 {
203 switch (reg) {
204 case BMC150_MAGN_REG_X_L:
205 case BMC150_MAGN_REG_X_M:
206 case BMC150_MAGN_REG_Y_L:
207 case BMC150_MAGN_REG_Y_M:
208 case BMC150_MAGN_REG_Z_L:
209 case BMC150_MAGN_REG_Z_M:
210 case BMC150_MAGN_REG_RHALL_L:
211 case BMC150_MAGN_REG_RHALL_M:
212 case BMC150_MAGN_REG_INT_STATUS:
213 return true;
214 default:
215 return false;
216 }
217 }
218
219 static const struct regmap_config bmc150_magn_regmap_config = {
220 .reg_bits = 8,
221 .val_bits = 8,
222
223 .max_register = BMC150_MAGN_REG_TRIM_END,
224 .cache_type = REGCACHE_RBTREE,
225
226 .writeable_reg = bmc150_magn_is_writeable_reg,
227 .volatile_reg = bmc150_magn_is_volatile_reg,
228 };
229
230 static int bmc150_magn_set_power_mode(struct bmc150_magn_data *data,
231 enum bmc150_magn_power_modes mode,
232 bool state)
233 {
234 int ret;
235
236 switch (mode) {
237 case BMC150_MAGN_POWER_MODE_SUSPEND:
238 ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_POWER,
239 BMC150_MAGN_MASK_POWER_CTL, !state);
240 if (ret < 0)
241 return ret;
242 usleep_range(BMC150_MAGN_START_UP_TIME_MS * 1000, 20000);
243 return 0;
244 case BMC150_MAGN_POWER_MODE_SLEEP:
245 return regmap_update_bits(data->regmap,
246 BMC150_MAGN_REG_OPMODE_ODR,
247 BMC150_MAGN_MASK_OPMODE,
248 BMC150_MAGN_MODE_SLEEP <<
249 BMC150_MAGN_SHIFT_OPMODE);
250 case BMC150_MAGN_POWER_MODE_NORMAL:
251 return regmap_update_bits(data->regmap,
252 BMC150_MAGN_REG_OPMODE_ODR,
253 BMC150_MAGN_MASK_OPMODE,
254 BMC150_MAGN_MODE_NORMAL <<
255 BMC150_MAGN_SHIFT_OPMODE);
256 }
257
258 return -EINVAL;
259 }
260
261 static int bmc150_magn_set_power_state(struct bmc150_magn_data *data, bool on)
262 {
263 #ifdef CONFIG_PM
264 int ret;
265
266 if (on) {
267 ret = pm_runtime_get_sync(&data->client->dev);
268 } else {
269 pm_runtime_mark_last_busy(&data->client->dev);
270 ret = pm_runtime_put_autosuspend(&data->client->dev);
271 }
272
273 if (ret < 0) {
274 dev_err(&data->client->dev,
275 "failed to change power state to %d\n", on);
276 if (on)
277 pm_runtime_put_noidle(&data->client->dev);
278
279 return ret;
280 }
281 #endif
282
283 return 0;
284 }
285
286 static int bmc150_magn_get_odr(struct bmc150_magn_data *data, int *val)
287 {
288 int ret, reg_val;
289 u8 i, odr_val;
290
291 ret = regmap_read(data->regmap, BMC150_MAGN_REG_OPMODE_ODR, &reg_val);
292 if (ret < 0)
293 return ret;
294 odr_val = (reg_val & BMC150_MAGN_MASK_ODR) >> BMC150_MAGN_SHIFT_ODR;
295
296 for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++)
297 if (bmc150_magn_samp_freq_table[i].reg_val == odr_val) {
298 *val = bmc150_magn_samp_freq_table[i].freq;
299 return 0;
300 }
301
302 return -EINVAL;
303 }
304
305 static int bmc150_magn_set_odr(struct bmc150_magn_data *data, int val)
306 {
307 int ret;
308 u8 i;
309
310 for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
311 if (bmc150_magn_samp_freq_table[i].freq == val) {
312 ret = regmap_update_bits(data->regmap,
313 BMC150_MAGN_REG_OPMODE_ODR,
314 BMC150_MAGN_MASK_ODR,
315 bmc150_magn_samp_freq_table[i].
316 reg_val <<
317 BMC150_MAGN_SHIFT_ODR);
318 if (ret < 0)
319 return ret;
320 return 0;
321 }
322 }
323
324 return -EINVAL;
325 }
326
327 static int bmc150_magn_set_max_odr(struct bmc150_magn_data *data, int rep_xy,
328 int rep_z, int odr)
329 {
330 int ret, reg_val, max_odr;
331
332 if (rep_xy <= 0) {
333 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
334 &reg_val);
335 if (ret < 0)
336 return ret;
337 rep_xy = BMC150_MAGN_REGVAL_TO_REPXY(reg_val);
338 }
339 if (rep_z <= 0) {
340 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
341 &reg_val);
342 if (ret < 0)
343 return ret;
344 rep_z = BMC150_MAGN_REGVAL_TO_REPZ(reg_val);
345 }
346 if (odr <= 0) {
347 ret = bmc150_magn_get_odr(data, &odr);
348 if (ret < 0)
349 return ret;
350 }
351 /* the maximum selectable read-out frequency from datasheet */
352 max_odr = 1000000 / (145 * rep_xy + 500 * rep_z + 980);
353 if (odr > max_odr) {
354 dev_err(&data->client->dev,
355 "Can't set oversampling with sampling freq %d\n",
356 odr);
357 return -EINVAL;
358 }
359 data->max_odr = max_odr;
360
361 return 0;
362 }
363
364 static s32 bmc150_magn_compensate_x(struct bmc150_magn_trim_regs *tregs, s16 x,
365 u16 rhall)
366 {
367 s16 val;
368 u16 xyz1 = le16_to_cpu(tregs->xyz1);
369
370 if (x == BMC150_MAGN_XY_OVERFLOW_VAL)
371 return S32_MIN;
372
373 if (!rhall)
374 rhall = xyz1;
375
376 val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
377 val = ((s16)((((s32)x) * ((((((((s32)tregs->xy2) * ((((s32)val) *
378 ((s32)val)) >> 7)) + (((s32)val) *
379 ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
380 ((s32)(((s16)tregs->x2) + ((s16)0xA0)))) >> 12)) >> 13)) +
381 (((s16)tregs->x1) << 3);
382
383 return (s32)val;
384 }
385
386 static s32 bmc150_magn_compensate_y(struct bmc150_magn_trim_regs *tregs, s16 y,
387 u16 rhall)
388 {
389 s16 val;
390 u16 xyz1 = le16_to_cpu(tregs->xyz1);
391
392 if (y == BMC150_MAGN_XY_OVERFLOW_VAL)
393 return S32_MIN;
394
395 if (!rhall)
396 rhall = xyz1;
397
398 val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
399 val = ((s16)((((s32)y) * ((((((((s32)tregs->xy2) * ((((s32)val) *
400 ((s32)val)) >> 7)) + (((s32)val) *
401 ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
402 ((s32)(((s16)tregs->y2) + ((s16)0xA0)))) >> 12)) >> 13)) +
403 (((s16)tregs->y1) << 3);
404
405 return (s32)val;
406 }
407
408 static s32 bmc150_magn_compensate_z(struct bmc150_magn_trim_regs *tregs, s16 z,
409 u16 rhall)
410 {
411 s32 val;
412 u16 xyz1 = le16_to_cpu(tregs->xyz1);
413 u16 z1 = le16_to_cpu(tregs->z1);
414 s16 z2 = le16_to_cpu(tregs->z2);
415 s16 z3 = le16_to_cpu(tregs->z3);
416 s16 z4 = le16_to_cpu(tregs->z4);
417
418 if (z == BMC150_MAGN_Z_OVERFLOW_VAL)
419 return S32_MIN;
420
421 val = (((((s32)(z - z4)) << 15) - ((((s32)z3) * ((s32)(((s16)rhall) -
422 ((s16)xyz1)))) >> 2)) / (z2 + ((s16)(((((s32)z1) *
423 ((((s16)rhall) << 1))) + (1 << 15)) >> 16))));
424
425 return val;
426 }
427
428 static int bmc150_magn_read_xyz(struct bmc150_magn_data *data, s32 *buffer)
429 {
430 int ret;
431 __le16 values[AXIS_XYZR_MAX];
432 s16 raw_x, raw_y, raw_z;
433 u16 rhall;
434 struct bmc150_magn_trim_regs tregs;
435
436 ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_X_L,
437 values, sizeof(values));
438 if (ret < 0)
439 return ret;
440
441 raw_x = (s16)le16_to_cpu(values[AXIS_X]) >> BMC150_MAGN_SHIFT_XY_L;
442 raw_y = (s16)le16_to_cpu(values[AXIS_Y]) >> BMC150_MAGN_SHIFT_XY_L;
443 raw_z = (s16)le16_to_cpu(values[AXIS_Z]) >> BMC150_MAGN_SHIFT_Z_L;
444 rhall = le16_to_cpu(values[RHALL]) >> BMC150_MAGN_SHIFT_RHALL_L;
445
446 ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_TRIM_START,
447 &tregs, sizeof(tregs));
448 if (ret < 0)
449 return ret;
450
451 buffer[AXIS_X] = bmc150_magn_compensate_x(&tregs, raw_x, rhall);
452 buffer[AXIS_Y] = bmc150_magn_compensate_y(&tregs, raw_y, rhall);
453 buffer[AXIS_Z] = bmc150_magn_compensate_z(&tregs, raw_z, rhall);
454
455 return 0;
456 }
457
458 static int bmc150_magn_read_raw(struct iio_dev *indio_dev,
459 struct iio_chan_spec const *chan,
460 int *val, int *val2, long mask)
461 {
462 struct bmc150_magn_data *data = iio_priv(indio_dev);
463 int ret, tmp;
464 s32 values[AXIS_XYZ_MAX];
465
466 switch (mask) {
467 case IIO_CHAN_INFO_RAW:
468 if (iio_buffer_enabled(indio_dev))
469 return -EBUSY;
470 mutex_lock(&data->mutex);
471
472 ret = bmc150_magn_set_power_state(data, true);
473 if (ret < 0) {
474 mutex_unlock(&data->mutex);
475 return ret;
476 }
477
478 ret = bmc150_magn_read_xyz(data, values);
479 if (ret < 0) {
480 bmc150_magn_set_power_state(data, false);
481 mutex_unlock(&data->mutex);
482 return ret;
483 }
484 *val = values[chan->scan_index];
485
486 ret = bmc150_magn_set_power_state(data, false);
487 if (ret < 0) {
488 mutex_unlock(&data->mutex);
489 return ret;
490 }
491
492 mutex_unlock(&data->mutex);
493 return IIO_VAL_INT;
494 case IIO_CHAN_INFO_SCALE:
495 /*
496 * The API/driver performs an off-chip temperature
497 * compensation and outputs x/y/z magnetic field data in
498 * 16 LSB/uT to the upper application layer.
499 */
500 *val = 0;
501 *val2 = 625;
502 return IIO_VAL_INT_PLUS_MICRO;
503 case IIO_CHAN_INFO_SAMP_FREQ:
504 ret = bmc150_magn_get_odr(data, val);
505 if (ret < 0)
506 return ret;
507 return IIO_VAL_INT;
508 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
509 switch (chan->channel2) {
510 case IIO_MOD_X:
511 case IIO_MOD_Y:
512 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
513 &tmp);
514 if (ret < 0)
515 return ret;
516 *val = BMC150_MAGN_REGVAL_TO_REPXY(tmp);
517 return IIO_VAL_INT;
518 case IIO_MOD_Z:
519 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
520 &tmp);
521 if (ret < 0)
522 return ret;
523 *val = BMC150_MAGN_REGVAL_TO_REPZ(tmp);
524 return IIO_VAL_INT;
525 default:
526 return -EINVAL;
527 }
528 default:
529 return -EINVAL;
530 }
531 }
532
533 static int bmc150_magn_write_raw(struct iio_dev *indio_dev,
534 struct iio_chan_spec const *chan,
535 int val, int val2, long mask)
536 {
537 struct bmc150_magn_data *data = iio_priv(indio_dev);
538 int ret;
539
540 switch (mask) {
541 case IIO_CHAN_INFO_SAMP_FREQ:
542 if (val > data->max_odr)
543 return -EINVAL;
544 mutex_lock(&data->mutex);
545 ret = bmc150_magn_set_odr(data, val);
546 mutex_unlock(&data->mutex);
547 return ret;
548 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
549 switch (chan->channel2) {
550 case IIO_MOD_X:
551 case IIO_MOD_Y:
552 if (val < 1 || val > 511)
553 return -EINVAL;
554 mutex_lock(&data->mutex);
555 ret = bmc150_magn_set_max_odr(data, val, 0, 0);
556 if (ret < 0) {
557 mutex_unlock(&data->mutex);
558 return ret;
559 }
560 ret = regmap_update_bits(data->regmap,
561 BMC150_MAGN_REG_REP_XY,
562 BMC150_MAGN_REG_REP_DATAMASK,
563 BMC150_MAGN_REPXY_TO_REGVAL
564 (val));
565 mutex_unlock(&data->mutex);
566 return ret;
567 case IIO_MOD_Z:
568 if (val < 1 || val > 256)
569 return -EINVAL;
570 mutex_lock(&data->mutex);
571 ret = bmc150_magn_set_max_odr(data, 0, val, 0);
572 if (ret < 0) {
573 mutex_unlock(&data->mutex);
574 return ret;
575 }
576 ret = regmap_update_bits(data->regmap,
577 BMC150_MAGN_REG_REP_Z,
578 BMC150_MAGN_REG_REP_DATAMASK,
579 BMC150_MAGN_REPZ_TO_REGVAL
580 (val));
581 mutex_unlock(&data->mutex);
582 return ret;
583 default:
584 return -EINVAL;
585 }
586 default:
587 return -EINVAL;
588 }
589 }
590
591 static ssize_t bmc150_magn_show_samp_freq_avail(struct device *dev,
592 struct device_attribute *attr,
593 char *buf)
594 {
595 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
596 struct bmc150_magn_data *data = iio_priv(indio_dev);
597 size_t len = 0;
598 u8 i;
599
600 for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
601 if (bmc150_magn_samp_freq_table[i].freq > data->max_odr)
602 break;
603 len += scnprintf(buf + len, PAGE_SIZE - len, "%d ",
604 bmc150_magn_samp_freq_table[i].freq);
605 }
606 /* replace last space with a newline */
607 buf[len - 1] = '\n';
608
609 return len;
610 }
611
612 static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(bmc150_magn_show_samp_freq_avail);
613
614 static struct attribute *bmc150_magn_attributes[] = {
615 &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
616 NULL,
617 };
618
619 static const struct attribute_group bmc150_magn_attrs_group = {
620 .attrs = bmc150_magn_attributes,
621 };
622
623 #define BMC150_MAGN_CHANNEL(_axis) { \
624 .type = IIO_MAGN, \
625 .modified = 1, \
626 .channel2 = IIO_MOD_##_axis, \
627 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
628 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
629 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
630 BIT(IIO_CHAN_INFO_SCALE), \
631 .scan_index = AXIS_##_axis, \
632 .scan_type = { \
633 .sign = 's', \
634 .realbits = 32, \
635 .storagebits = 32, \
636 .endianness = IIO_LE \
637 }, \
638 }
639
640 static const struct iio_chan_spec bmc150_magn_channels[] = {
641 BMC150_MAGN_CHANNEL(X),
642 BMC150_MAGN_CHANNEL(Y),
643 BMC150_MAGN_CHANNEL(Z),
644 IIO_CHAN_SOFT_TIMESTAMP(3),
645 };
646
647 static const struct iio_info bmc150_magn_info = {
648 .attrs = &bmc150_magn_attrs_group,
649 .read_raw = bmc150_magn_read_raw,
650 .write_raw = bmc150_magn_write_raw,
651 .driver_module = THIS_MODULE,
652 };
653
654 static const unsigned long bmc150_magn_scan_masks[] = {
655 BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
656 0};
657
658 static irqreturn_t bmc150_magn_trigger_handler(int irq, void *p)
659 {
660 struct iio_poll_func *pf = p;
661 struct iio_dev *indio_dev = pf->indio_dev;
662 struct bmc150_magn_data *data = iio_priv(indio_dev);
663 int ret;
664
665 mutex_lock(&data->mutex);
666 ret = bmc150_magn_read_xyz(data, data->buffer);
667 if (ret < 0)
668 goto err;
669
670 iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
671 pf->timestamp);
672
673 err:
674 mutex_unlock(&data->mutex);
675 iio_trigger_notify_done(indio_dev->trig);
676
677 return IRQ_HANDLED;
678 }
679
680 static int bmc150_magn_init(struct bmc150_magn_data *data)
681 {
682 int ret, chip_id;
683 struct bmc150_magn_preset preset;
684
685 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND,
686 false);
687 if (ret < 0) {
688 dev_err(&data->client->dev,
689 "Failed to bring up device from suspend mode\n");
690 return ret;
691 }
692
693 ret = regmap_read(data->regmap, BMC150_MAGN_REG_CHIP_ID, &chip_id);
694 if (ret < 0) {
695 dev_err(&data->client->dev, "Failed reading chip id\n");
696 goto err_poweroff;
697 }
698 if (chip_id != BMC150_MAGN_CHIP_ID_VAL) {
699 dev_err(&data->client->dev, "Invalid chip id 0x%x\n", chip_id);
700 ret = -ENODEV;
701 goto err_poweroff;
702 }
703 dev_dbg(&data->client->dev, "Chip id %x\n", chip_id);
704
705 preset = bmc150_magn_presets_table[BMC150_MAGN_DEFAULT_PRESET];
706 ret = bmc150_magn_set_odr(data, preset.odr);
707 if (ret < 0) {
708 dev_err(&data->client->dev, "Failed to set ODR to %d\n",
709 preset.odr);
710 goto err_poweroff;
711 }
712
713 ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_XY,
714 BMC150_MAGN_REPXY_TO_REGVAL(preset.rep_xy));
715 if (ret < 0) {
716 dev_err(&data->client->dev, "Failed to set REP XY to %d\n",
717 preset.rep_xy);
718 goto err_poweroff;
719 }
720
721 ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_Z,
722 BMC150_MAGN_REPZ_TO_REGVAL(preset.rep_z));
723 if (ret < 0) {
724 dev_err(&data->client->dev, "Failed to set REP Z to %d\n",
725 preset.rep_z);
726 goto err_poweroff;
727 }
728
729 ret = bmc150_magn_set_max_odr(data, preset.rep_xy, preset.rep_z,
730 preset.odr);
731 if (ret < 0)
732 goto err_poweroff;
733
734 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
735 true);
736 if (ret < 0) {
737 dev_err(&data->client->dev, "Failed to power on device\n");
738 goto err_poweroff;
739 }
740
741 return 0;
742
743 err_poweroff:
744 bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
745 return ret;
746 }
747
748 static int bmc150_magn_reset_intr(struct bmc150_magn_data *data)
749 {
750 int tmp;
751
752 /*
753 * Data Ready (DRDY) is always cleared after
754 * readout of data registers ends.
755 */
756 return regmap_read(data->regmap, BMC150_MAGN_REG_X_L, &tmp);
757 }
758
759 static int bmc150_magn_trig_try_reen(struct iio_trigger *trig)
760 {
761 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
762 struct bmc150_magn_data *data = iio_priv(indio_dev);
763 int ret;
764
765 if (!data->dready_trigger_on)
766 return 0;
767
768 mutex_lock(&data->mutex);
769 ret = bmc150_magn_reset_intr(data);
770 mutex_unlock(&data->mutex);
771
772 return ret;
773 }
774
775 static int bmc150_magn_data_rdy_trigger_set_state(struct iio_trigger *trig,
776 bool state)
777 {
778 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
779 struct bmc150_magn_data *data = iio_priv(indio_dev);
780 int ret = 0;
781
782 mutex_lock(&data->mutex);
783 if (state == data->dready_trigger_on)
784 goto err_unlock;
785
786 ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_INT_DRDY,
787 BMC150_MAGN_MASK_DRDY_EN,
788 state << BMC150_MAGN_SHIFT_DRDY_EN);
789 if (ret < 0)
790 goto err_unlock;
791
792 data->dready_trigger_on = state;
793
794 if (state) {
795 ret = bmc150_magn_reset_intr(data);
796 if (ret < 0)
797 goto err_unlock;
798 }
799 mutex_unlock(&data->mutex);
800
801 return 0;
802
803 err_unlock:
804 mutex_unlock(&data->mutex);
805 return ret;
806 }
807
808 static const struct iio_trigger_ops bmc150_magn_trigger_ops = {
809 .set_trigger_state = bmc150_magn_data_rdy_trigger_set_state,
810 .try_reenable = bmc150_magn_trig_try_reen,
811 .owner = THIS_MODULE,
812 };
813
814 static int bmc150_magn_buffer_preenable(struct iio_dev *indio_dev)
815 {
816 struct bmc150_magn_data *data = iio_priv(indio_dev);
817
818 return bmc150_magn_set_power_state(data, true);
819 }
820
821 static int bmc150_magn_buffer_postdisable(struct iio_dev *indio_dev)
822 {
823 struct bmc150_magn_data *data = iio_priv(indio_dev);
824
825 return bmc150_magn_set_power_state(data, false);
826 }
827
828 static const struct iio_buffer_setup_ops bmc150_magn_buffer_setup_ops = {
829 .preenable = bmc150_magn_buffer_preenable,
830 .postenable = iio_triggered_buffer_postenable,
831 .predisable = iio_triggered_buffer_predisable,
832 .postdisable = bmc150_magn_buffer_postdisable,
833 };
834
835 static const char *bmc150_magn_match_acpi_device(struct device *dev)
836 {
837 const struct acpi_device_id *id;
838
839 id = acpi_match_device(dev->driver->acpi_match_table, dev);
840 if (!id)
841 return NULL;
842
843 return dev_name(dev);
844 }
845
846 static int bmc150_magn_probe(struct i2c_client *client,
847 const struct i2c_device_id *id)
848 {
849 struct bmc150_magn_data *data;
850 struct iio_dev *indio_dev;
851 const char *name = NULL;
852 int ret;
853
854 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
855 if (!indio_dev)
856 return -ENOMEM;
857
858 data = iio_priv(indio_dev);
859 i2c_set_clientdata(client, indio_dev);
860 data->client = client;
861
862 if (id)
863 name = id->name;
864 else if (ACPI_HANDLE(&client->dev))
865 name = bmc150_magn_match_acpi_device(&client->dev);
866 else
867 return -ENOSYS;
868
869 mutex_init(&data->mutex);
870 data->regmap = devm_regmap_init_i2c(client, &bmc150_magn_regmap_config);
871 if (IS_ERR(data->regmap)) {
872 dev_err(&client->dev, "Failed to allocate register map\n");
873 return PTR_ERR(data->regmap);
874 }
875
876 ret = bmc150_magn_init(data);
877 if (ret < 0)
878 return ret;
879
880 indio_dev->dev.parent = &client->dev;
881 indio_dev->channels = bmc150_magn_channels;
882 indio_dev->num_channels = ARRAY_SIZE(bmc150_magn_channels);
883 indio_dev->available_scan_masks = bmc150_magn_scan_masks;
884 indio_dev->name = name;
885 indio_dev->modes = INDIO_DIRECT_MODE;
886 indio_dev->info = &bmc150_magn_info;
887
888 if (client->irq > 0) {
889 data->dready_trig = devm_iio_trigger_alloc(&client->dev,
890 "%s-dev%d",
891 indio_dev->name,
892 indio_dev->id);
893 if (!data->dready_trig) {
894 ret = -ENOMEM;
895 dev_err(&client->dev, "iio trigger alloc failed\n");
896 goto err_poweroff;
897 }
898
899 data->dready_trig->dev.parent = &client->dev;
900 data->dready_trig->ops = &bmc150_magn_trigger_ops;
901 iio_trigger_set_drvdata(data->dready_trig, indio_dev);
902 ret = iio_trigger_register(data->dready_trig);
903 if (ret) {
904 dev_err(&client->dev, "iio trigger register failed\n");
905 goto err_poweroff;
906 }
907
908 ret = request_threaded_irq(client->irq,
909 iio_trigger_generic_data_rdy_poll,
910 NULL,
911 IRQF_TRIGGER_RISING | IRQF_ONESHOT,
912 BMC150_MAGN_IRQ_NAME,
913 data->dready_trig);
914 if (ret < 0) {
915 dev_err(&client->dev, "request irq %d failed\n",
916 client->irq);
917 goto err_trigger_unregister;
918 }
919 }
920
921 ret = iio_triggered_buffer_setup(indio_dev,
922 iio_pollfunc_store_time,
923 bmc150_magn_trigger_handler,
924 &bmc150_magn_buffer_setup_ops);
925 if (ret < 0) {
926 dev_err(&client->dev,
927 "iio triggered buffer setup failed\n");
928 goto err_free_irq;
929 }
930
931 ret = pm_runtime_set_active(&client->dev);
932 if (ret)
933 goto err_buffer_cleanup;
934
935 pm_runtime_enable(&client->dev);
936 pm_runtime_set_autosuspend_delay(&client->dev,
937 BMC150_MAGN_AUTO_SUSPEND_DELAY_MS);
938 pm_runtime_use_autosuspend(&client->dev);
939
940 ret = iio_device_register(indio_dev);
941 if (ret < 0) {
942 dev_err(&client->dev, "unable to register iio device\n");
943 goto err_buffer_cleanup;
944 }
945
946 dev_dbg(&indio_dev->dev, "Registered device %s\n", name);
947 return 0;
948
949 err_buffer_cleanup:
950 iio_triggered_buffer_cleanup(indio_dev);
951 err_free_irq:
952 if (client->irq > 0)
953 free_irq(client->irq, data->dready_trig);
954 err_trigger_unregister:
955 if (data->dready_trig)
956 iio_trigger_unregister(data->dready_trig);
957 err_poweroff:
958 bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
959 return ret;
960 }
961
962 static int bmc150_magn_remove(struct i2c_client *client)
963 {
964 struct iio_dev *indio_dev = i2c_get_clientdata(client);
965 struct bmc150_magn_data *data = iio_priv(indio_dev);
966
967 iio_device_unregister(indio_dev);
968
969 pm_runtime_disable(&client->dev);
970 pm_runtime_set_suspended(&client->dev);
971 pm_runtime_put_noidle(&client->dev);
972
973 iio_triggered_buffer_cleanup(indio_dev);
974
975 if (client->irq > 0)
976 free_irq(data->client->irq, data->dready_trig);
977
978 if (data->dready_trig)
979 iio_trigger_unregister(data->dready_trig);
980
981 mutex_lock(&data->mutex);
982 bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
983 mutex_unlock(&data->mutex);
984
985 return 0;
986 }
987
988 #ifdef CONFIG_PM
989 static int bmc150_magn_runtime_suspend(struct device *dev)
990 {
991 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
992 struct bmc150_magn_data *data = iio_priv(indio_dev);
993 int ret;
994
995 mutex_lock(&data->mutex);
996 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
997 true);
998 mutex_unlock(&data->mutex);
999 if (ret < 0) {
1000 dev_err(&data->client->dev, "powering off device failed\n");
1001 return ret;
1002 }
1003 return 0;
1004 }
1005
1006 /*
1007 * Should be called with data->mutex held.
1008 */
1009 static int bmc150_magn_runtime_resume(struct device *dev)
1010 {
1011 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1012 struct bmc150_magn_data *data = iio_priv(indio_dev);
1013
1014 return bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
1015 true);
1016 }
1017 #endif
1018
1019 #ifdef CONFIG_PM_SLEEP
1020 static int bmc150_magn_suspend(struct device *dev)
1021 {
1022 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1023 struct bmc150_magn_data *data = iio_priv(indio_dev);
1024 int ret;
1025
1026 mutex_lock(&data->mutex);
1027 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
1028 true);
1029 mutex_unlock(&data->mutex);
1030
1031 return ret;
1032 }
1033
1034 static int bmc150_magn_resume(struct device *dev)
1035 {
1036 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1037 struct bmc150_magn_data *data = iio_priv(indio_dev);
1038 int ret;
1039
1040 mutex_lock(&data->mutex);
1041 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
1042 true);
1043 mutex_unlock(&data->mutex);
1044
1045 return ret;
1046 }
1047 #endif
1048
1049 static const struct dev_pm_ops bmc150_magn_pm_ops = {
1050 SET_SYSTEM_SLEEP_PM_OPS(bmc150_magn_suspend, bmc150_magn_resume)
1051 SET_RUNTIME_PM_OPS(bmc150_magn_runtime_suspend,
1052 bmc150_magn_runtime_resume, NULL)
1053 };
1054
1055 static const struct acpi_device_id bmc150_magn_acpi_match[] = {
1056 {"BMC150B", 0},
1057 {"BMC156B", 0},
1058 {},
1059 };
1060 MODULE_DEVICE_TABLE(acpi, bmc150_magn_acpi_match);
1061
1062 static const struct i2c_device_id bmc150_magn_id[] = {
1063 {"bmc150_magn", 0},
1064 {"bmc156_magn", 0},
1065 {},
1066 };
1067 MODULE_DEVICE_TABLE(i2c, bmc150_magn_id);
1068
1069 static struct i2c_driver bmc150_magn_driver = {
1070 .driver = {
1071 .name = BMC150_MAGN_DRV_NAME,
1072 .acpi_match_table = ACPI_PTR(bmc150_magn_acpi_match),
1073 .pm = &bmc150_magn_pm_ops,
1074 },
1075 .probe = bmc150_magn_probe,
1076 .remove = bmc150_magn_remove,
1077 .id_table = bmc150_magn_id,
1078 };
1079 module_i2c_driver(bmc150_magn_driver);
1080
1081 MODULE_AUTHOR("Irina Tirdea <irina.tirdea@intel.com>");
1082 MODULE_LICENSE("GPL v2");
1083 MODULE_DESCRIPTION("BMC150 magnetometer driver");
This page took 0.056415 seconds and 5 git commands to generate.