some kmalloc/memset ->kzalloc (tree wide)
[deliverable/linux.git] / drivers / infiniband / hw / cxgb3 / iwch_cm.c
1 /*
2 * Copyright (c) 2006 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/workqueue.h>
35 #include <linux/skbuff.h>
36 #include <linux/timer.h>
37 #include <linux/notifier.h>
38
39 #include <net/neighbour.h>
40 #include <net/netevent.h>
41 #include <net/route.h>
42
43 #include "tcb.h"
44 #include "cxgb3_offload.h"
45 #include "iwch.h"
46 #include "iwch_provider.h"
47 #include "iwch_cm.h"
48
49 static char *states[] = {
50 "idle",
51 "listen",
52 "connecting",
53 "mpa_wait_req",
54 "mpa_req_sent",
55 "mpa_req_rcvd",
56 "mpa_rep_sent",
57 "fpdu_mode",
58 "aborting",
59 "closing",
60 "moribund",
61 "dead",
62 NULL,
63 };
64
65 static int ep_timeout_secs = 10;
66 module_param(ep_timeout_secs, int, 0444);
67 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
68 "in seconds (default=10)");
69
70 static int mpa_rev = 1;
71 module_param(mpa_rev, int, 0444);
72 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
73 "1 is spec compliant. (default=1)");
74
75 static int markers_enabled = 0;
76 module_param(markers_enabled, int, 0444);
77 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");
78
79 static int crc_enabled = 1;
80 module_param(crc_enabled, int, 0444);
81 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");
82
83 static int rcv_win = 256 * 1024;
84 module_param(rcv_win, int, 0444);
85 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256)");
86
87 static int snd_win = 32 * 1024;
88 module_param(snd_win, int, 0444);
89 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=32KB)");
90
91 static unsigned int nocong = 0;
92 module_param(nocong, uint, 0444);
93 MODULE_PARM_DESC(nocong, "Turn off congestion control (default=0)");
94
95 static unsigned int cong_flavor = 1;
96 module_param(cong_flavor, uint, 0444);
97 MODULE_PARM_DESC(cong_flavor, "TCP Congestion control flavor (default=1)");
98
99 static void process_work(struct work_struct *work);
100 static struct workqueue_struct *workq;
101 static DECLARE_WORK(skb_work, process_work);
102
103 static struct sk_buff_head rxq;
104 static cxgb3_cpl_handler_func work_handlers[NUM_CPL_CMDS];
105
106 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
107 static void ep_timeout(unsigned long arg);
108 static void connect_reply_upcall(struct iwch_ep *ep, int status);
109
110 static void start_ep_timer(struct iwch_ep *ep)
111 {
112 PDBG("%s ep %p\n", __FUNCTION__, ep);
113 if (timer_pending(&ep->timer)) {
114 PDBG("%s stopped / restarted timer ep %p\n", __FUNCTION__, ep);
115 del_timer_sync(&ep->timer);
116 } else
117 get_ep(&ep->com);
118 ep->timer.expires = jiffies + ep_timeout_secs * HZ;
119 ep->timer.data = (unsigned long)ep;
120 ep->timer.function = ep_timeout;
121 add_timer(&ep->timer);
122 }
123
124 static void stop_ep_timer(struct iwch_ep *ep)
125 {
126 PDBG("%s ep %p\n", __FUNCTION__, ep);
127 del_timer_sync(&ep->timer);
128 put_ep(&ep->com);
129 }
130
131 static void release_tid(struct t3cdev *tdev, u32 hwtid, struct sk_buff *skb)
132 {
133 struct cpl_tid_release *req;
134
135 skb = get_skb(skb, sizeof *req, GFP_KERNEL);
136 if (!skb)
137 return;
138 req = (struct cpl_tid_release *) skb_put(skb, sizeof(*req));
139 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
140 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, hwtid));
141 skb->priority = CPL_PRIORITY_SETUP;
142 tdev->send(tdev, skb);
143 return;
144 }
145
146 int iwch_quiesce_tid(struct iwch_ep *ep)
147 {
148 struct cpl_set_tcb_field *req;
149 struct sk_buff *skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
150
151 if (!skb)
152 return -ENOMEM;
153 req = (struct cpl_set_tcb_field *) skb_put(skb, sizeof(*req));
154 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
155 req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
156 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, ep->hwtid));
157 req->reply = 0;
158 req->cpu_idx = 0;
159 req->word = htons(W_TCB_RX_QUIESCE);
160 req->mask = cpu_to_be64(1ULL << S_TCB_RX_QUIESCE);
161 req->val = cpu_to_be64(1 << S_TCB_RX_QUIESCE);
162
163 skb->priority = CPL_PRIORITY_DATA;
164 ep->com.tdev->send(ep->com.tdev, skb);
165 return 0;
166 }
167
168 int iwch_resume_tid(struct iwch_ep *ep)
169 {
170 struct cpl_set_tcb_field *req;
171 struct sk_buff *skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
172
173 if (!skb)
174 return -ENOMEM;
175 req = (struct cpl_set_tcb_field *) skb_put(skb, sizeof(*req));
176 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
177 req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
178 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, ep->hwtid));
179 req->reply = 0;
180 req->cpu_idx = 0;
181 req->word = htons(W_TCB_RX_QUIESCE);
182 req->mask = cpu_to_be64(1ULL << S_TCB_RX_QUIESCE);
183 req->val = 0;
184
185 skb->priority = CPL_PRIORITY_DATA;
186 ep->com.tdev->send(ep->com.tdev, skb);
187 return 0;
188 }
189
190 static void set_emss(struct iwch_ep *ep, u16 opt)
191 {
192 PDBG("%s ep %p opt %u\n", __FUNCTION__, ep, opt);
193 ep->emss = T3C_DATA(ep->com.tdev)->mtus[G_TCPOPT_MSS(opt)] - 40;
194 if (G_TCPOPT_TSTAMP(opt))
195 ep->emss -= 12;
196 if (ep->emss < 128)
197 ep->emss = 128;
198 PDBG("emss=%d\n", ep->emss);
199 }
200
201 static enum iwch_ep_state state_read(struct iwch_ep_common *epc)
202 {
203 unsigned long flags;
204 enum iwch_ep_state state;
205
206 spin_lock_irqsave(&epc->lock, flags);
207 state = epc->state;
208 spin_unlock_irqrestore(&epc->lock, flags);
209 return state;
210 }
211
212 static void __state_set(struct iwch_ep_common *epc, enum iwch_ep_state new)
213 {
214 epc->state = new;
215 }
216
217 static void state_set(struct iwch_ep_common *epc, enum iwch_ep_state new)
218 {
219 unsigned long flags;
220
221 spin_lock_irqsave(&epc->lock, flags);
222 PDBG("%s - %s -> %s\n", __FUNCTION__, states[epc->state], states[new]);
223 __state_set(epc, new);
224 spin_unlock_irqrestore(&epc->lock, flags);
225 return;
226 }
227
228 static void *alloc_ep(int size, gfp_t gfp)
229 {
230 struct iwch_ep_common *epc;
231
232 epc = kzalloc(size, gfp);
233 if (epc) {
234 kref_init(&epc->kref);
235 spin_lock_init(&epc->lock);
236 init_waitqueue_head(&epc->waitq);
237 }
238 PDBG("%s alloc ep %p\n", __FUNCTION__, epc);
239 return epc;
240 }
241
242 void __free_ep(struct kref *kref)
243 {
244 struct iwch_ep_common *epc;
245 epc = container_of(kref, struct iwch_ep_common, kref);
246 PDBG("%s ep %p state %s\n", __FUNCTION__, epc, states[state_read(epc)]);
247 kfree(epc);
248 }
249
250 static void release_ep_resources(struct iwch_ep *ep)
251 {
252 PDBG("%s ep %p tid %d\n", __FUNCTION__, ep, ep->hwtid);
253 cxgb3_remove_tid(ep->com.tdev, (void *)ep, ep->hwtid);
254 dst_release(ep->dst);
255 l2t_release(L2DATA(ep->com.tdev), ep->l2t);
256 put_ep(&ep->com);
257 }
258
259 static void process_work(struct work_struct *work)
260 {
261 struct sk_buff *skb = NULL;
262 void *ep;
263 struct t3cdev *tdev;
264 int ret;
265
266 while ((skb = skb_dequeue(&rxq))) {
267 ep = *((void **) (skb->cb));
268 tdev = *((struct t3cdev **) (skb->cb + sizeof(void *)));
269 ret = work_handlers[G_OPCODE(ntohl((__force __be32)skb->csum))](tdev, skb, ep);
270 if (ret & CPL_RET_BUF_DONE)
271 kfree_skb(skb);
272
273 /*
274 * ep was referenced in sched(), and is freed here.
275 */
276 put_ep((struct iwch_ep_common *)ep);
277 }
278 }
279
280 static int status2errno(int status)
281 {
282 switch (status) {
283 case CPL_ERR_NONE:
284 return 0;
285 case CPL_ERR_CONN_RESET:
286 return -ECONNRESET;
287 case CPL_ERR_ARP_MISS:
288 return -EHOSTUNREACH;
289 case CPL_ERR_CONN_TIMEDOUT:
290 return -ETIMEDOUT;
291 case CPL_ERR_TCAM_FULL:
292 return -ENOMEM;
293 case CPL_ERR_CONN_EXIST:
294 return -EADDRINUSE;
295 default:
296 return -EIO;
297 }
298 }
299
300 /*
301 * Try and reuse skbs already allocated...
302 */
303 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
304 {
305 if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) {
306 skb_trim(skb, 0);
307 skb_get(skb);
308 } else {
309 skb = alloc_skb(len, gfp);
310 }
311 return skb;
312 }
313
314 static struct rtable *find_route(struct t3cdev *dev, __be32 local_ip,
315 __be32 peer_ip, __be16 local_port,
316 __be16 peer_port, u8 tos)
317 {
318 struct rtable *rt;
319 struct flowi fl = {
320 .oif = 0,
321 .nl_u = {
322 .ip4_u = {
323 .daddr = peer_ip,
324 .saddr = local_ip,
325 .tos = tos}
326 },
327 .proto = IPPROTO_TCP,
328 .uli_u = {
329 .ports = {
330 .sport = local_port,
331 .dport = peer_port}
332 }
333 };
334
335 if (ip_route_output_flow(&rt, &fl, NULL, 0))
336 return NULL;
337 return rt;
338 }
339
340 static unsigned int find_best_mtu(const struct t3c_data *d, unsigned short mtu)
341 {
342 int i = 0;
343
344 while (i < d->nmtus - 1 && d->mtus[i + 1] <= mtu)
345 ++i;
346 return i;
347 }
348
349 static void arp_failure_discard(struct t3cdev *dev, struct sk_buff *skb)
350 {
351 PDBG("%s t3cdev %p\n", __FUNCTION__, dev);
352 kfree_skb(skb);
353 }
354
355 /*
356 * Handle an ARP failure for an active open.
357 */
358 static void act_open_req_arp_failure(struct t3cdev *dev, struct sk_buff *skb)
359 {
360 printk(KERN_ERR MOD "ARP failure duing connect\n");
361 kfree_skb(skb);
362 }
363
364 /*
365 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant
366 * and send it along.
367 */
368 static void abort_arp_failure(struct t3cdev *dev, struct sk_buff *skb)
369 {
370 struct cpl_abort_req *req = cplhdr(skb);
371
372 PDBG("%s t3cdev %p\n", __FUNCTION__, dev);
373 req->cmd = CPL_ABORT_NO_RST;
374 cxgb3_ofld_send(dev, skb);
375 }
376
377 static int send_halfclose(struct iwch_ep *ep, gfp_t gfp)
378 {
379 struct cpl_close_con_req *req;
380 struct sk_buff *skb;
381
382 PDBG("%s ep %p\n", __FUNCTION__, ep);
383 skb = get_skb(NULL, sizeof(*req), gfp);
384 if (!skb) {
385 printk(KERN_ERR MOD "%s - failed to alloc skb\n", __FUNCTION__);
386 return -ENOMEM;
387 }
388 skb->priority = CPL_PRIORITY_DATA;
389 set_arp_failure_handler(skb, arp_failure_discard);
390 req = (struct cpl_close_con_req *) skb_put(skb, sizeof(*req));
391 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_CLOSE_CON));
392 req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
393 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_CON_REQ, ep->hwtid));
394 l2t_send(ep->com.tdev, skb, ep->l2t);
395 return 0;
396 }
397
398 static int send_abort(struct iwch_ep *ep, struct sk_buff *skb, gfp_t gfp)
399 {
400 struct cpl_abort_req *req;
401
402 PDBG("%s ep %p\n", __FUNCTION__, ep);
403 skb = get_skb(skb, sizeof(*req), gfp);
404 if (!skb) {
405 printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
406 __FUNCTION__);
407 return -ENOMEM;
408 }
409 skb->priority = CPL_PRIORITY_DATA;
410 set_arp_failure_handler(skb, abort_arp_failure);
411 req = (struct cpl_abort_req *) skb_put(skb, sizeof(*req));
412 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_REQ));
413 req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
414 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ABORT_REQ, ep->hwtid));
415 req->cmd = CPL_ABORT_SEND_RST;
416 l2t_send(ep->com.tdev, skb, ep->l2t);
417 return 0;
418 }
419
420 static int send_connect(struct iwch_ep *ep)
421 {
422 struct cpl_act_open_req *req;
423 struct sk_buff *skb;
424 u32 opt0h, opt0l, opt2;
425 unsigned int mtu_idx;
426 int wscale;
427
428 PDBG("%s ep %p\n", __FUNCTION__, ep);
429
430 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
431 if (!skb) {
432 printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
433 __FUNCTION__);
434 return -ENOMEM;
435 }
436 mtu_idx = find_best_mtu(T3C_DATA(ep->com.tdev), dst_mtu(ep->dst));
437 wscale = compute_wscale(rcv_win);
438 opt0h = V_NAGLE(0) |
439 V_NO_CONG(nocong) |
440 V_KEEP_ALIVE(1) |
441 F_TCAM_BYPASS |
442 V_WND_SCALE(wscale) |
443 V_MSS_IDX(mtu_idx) |
444 V_L2T_IDX(ep->l2t->idx) | V_TX_CHANNEL(ep->l2t->smt_idx);
445 opt0l = V_TOS((ep->tos >> 2) & M_TOS) | V_RCV_BUFSIZ(rcv_win>>10);
446 opt2 = V_FLAVORS_VALID(1) | V_CONG_CONTROL_FLAVOR(cong_flavor);
447 skb->priority = CPL_PRIORITY_SETUP;
448 set_arp_failure_handler(skb, act_open_req_arp_failure);
449
450 req = (struct cpl_act_open_req *) skb_put(skb, sizeof(*req));
451 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
452 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ACT_OPEN_REQ, ep->atid));
453 req->local_port = ep->com.local_addr.sin_port;
454 req->peer_port = ep->com.remote_addr.sin_port;
455 req->local_ip = ep->com.local_addr.sin_addr.s_addr;
456 req->peer_ip = ep->com.remote_addr.sin_addr.s_addr;
457 req->opt0h = htonl(opt0h);
458 req->opt0l = htonl(opt0l);
459 req->params = 0;
460 req->opt2 = htonl(opt2);
461 l2t_send(ep->com.tdev, skb, ep->l2t);
462 return 0;
463 }
464
465 static void send_mpa_req(struct iwch_ep *ep, struct sk_buff *skb)
466 {
467 int mpalen;
468 struct tx_data_wr *req;
469 struct mpa_message *mpa;
470 int len;
471
472 PDBG("%s ep %p pd_len %d\n", __FUNCTION__, ep, ep->plen);
473
474 BUG_ON(skb_cloned(skb));
475
476 mpalen = sizeof(*mpa) + ep->plen;
477 if (skb->data + mpalen + sizeof(*req) > skb_end_pointer(skb)) {
478 kfree_skb(skb);
479 skb=alloc_skb(mpalen + sizeof(*req), GFP_KERNEL);
480 if (!skb) {
481 connect_reply_upcall(ep, -ENOMEM);
482 return;
483 }
484 }
485 skb_trim(skb, 0);
486 skb_reserve(skb, sizeof(*req));
487 skb_put(skb, mpalen);
488 skb->priority = CPL_PRIORITY_DATA;
489 mpa = (struct mpa_message *) skb->data;
490 memset(mpa, 0, sizeof(*mpa));
491 memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
492 mpa->flags = (crc_enabled ? MPA_CRC : 0) |
493 (markers_enabled ? MPA_MARKERS : 0);
494 mpa->private_data_size = htons(ep->plen);
495 mpa->revision = mpa_rev;
496
497 if (ep->plen)
498 memcpy(mpa->private_data, ep->mpa_pkt + sizeof(*mpa), ep->plen);
499
500 /*
501 * Reference the mpa skb. This ensures the data area
502 * will remain in memory until the hw acks the tx.
503 * Function tx_ack() will deref it.
504 */
505 skb_get(skb);
506 set_arp_failure_handler(skb, arp_failure_discard);
507 skb_reset_transport_header(skb);
508 len = skb->len;
509 req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
510 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA));
511 req->wr_lo = htonl(V_WR_TID(ep->hwtid));
512 req->len = htonl(len);
513 req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
514 V_TX_SNDBUF(snd_win>>15));
515 req->flags = htonl(F_TX_INIT);
516 req->sndseq = htonl(ep->snd_seq);
517 BUG_ON(ep->mpa_skb);
518 ep->mpa_skb = skb;
519 l2t_send(ep->com.tdev, skb, ep->l2t);
520 start_ep_timer(ep);
521 state_set(&ep->com, MPA_REQ_SENT);
522 return;
523 }
524
525 static int send_mpa_reject(struct iwch_ep *ep, const void *pdata, u8 plen)
526 {
527 int mpalen;
528 struct tx_data_wr *req;
529 struct mpa_message *mpa;
530 struct sk_buff *skb;
531
532 PDBG("%s ep %p plen %d\n", __FUNCTION__, ep, plen);
533
534 mpalen = sizeof(*mpa) + plen;
535
536 skb = get_skb(NULL, mpalen + sizeof(*req), GFP_KERNEL);
537 if (!skb) {
538 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __FUNCTION__);
539 return -ENOMEM;
540 }
541 skb_reserve(skb, sizeof(*req));
542 mpa = (struct mpa_message *) skb_put(skb, mpalen);
543 memset(mpa, 0, sizeof(*mpa));
544 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
545 mpa->flags = MPA_REJECT;
546 mpa->revision = mpa_rev;
547 mpa->private_data_size = htons(plen);
548 if (plen)
549 memcpy(mpa->private_data, pdata, plen);
550
551 /*
552 * Reference the mpa skb again. This ensures the data area
553 * will remain in memory until the hw acks the tx.
554 * Function tx_ack() will deref it.
555 */
556 skb_get(skb);
557 skb->priority = CPL_PRIORITY_DATA;
558 set_arp_failure_handler(skb, arp_failure_discard);
559 skb_reset_transport_header(skb);
560 req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
561 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA));
562 req->wr_lo = htonl(V_WR_TID(ep->hwtid));
563 req->len = htonl(mpalen);
564 req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
565 V_TX_SNDBUF(snd_win>>15));
566 req->flags = htonl(F_TX_INIT);
567 req->sndseq = htonl(ep->snd_seq);
568 BUG_ON(ep->mpa_skb);
569 ep->mpa_skb = skb;
570 l2t_send(ep->com.tdev, skb, ep->l2t);
571 return 0;
572 }
573
574 static int send_mpa_reply(struct iwch_ep *ep, const void *pdata, u8 plen)
575 {
576 int mpalen;
577 struct tx_data_wr *req;
578 struct mpa_message *mpa;
579 int len;
580 struct sk_buff *skb;
581
582 PDBG("%s ep %p plen %d\n", __FUNCTION__, ep, plen);
583
584 mpalen = sizeof(*mpa) + plen;
585
586 skb = get_skb(NULL, mpalen + sizeof(*req), GFP_KERNEL);
587 if (!skb) {
588 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __FUNCTION__);
589 return -ENOMEM;
590 }
591 skb->priority = CPL_PRIORITY_DATA;
592 skb_reserve(skb, sizeof(*req));
593 mpa = (struct mpa_message *) skb_put(skb, mpalen);
594 memset(mpa, 0, sizeof(*mpa));
595 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
596 mpa->flags = (ep->mpa_attr.crc_enabled ? MPA_CRC : 0) |
597 (markers_enabled ? MPA_MARKERS : 0);
598 mpa->revision = mpa_rev;
599 mpa->private_data_size = htons(plen);
600 if (plen)
601 memcpy(mpa->private_data, pdata, plen);
602
603 /*
604 * Reference the mpa skb. This ensures the data area
605 * will remain in memory until the hw acks the tx.
606 * Function tx_ack() will deref it.
607 */
608 skb_get(skb);
609 set_arp_failure_handler(skb, arp_failure_discard);
610 skb_reset_transport_header(skb);
611 len = skb->len;
612 req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
613 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA));
614 req->wr_lo = htonl(V_WR_TID(ep->hwtid));
615 req->len = htonl(len);
616 req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
617 V_TX_SNDBUF(snd_win>>15));
618 req->flags = htonl(F_TX_INIT);
619 req->sndseq = htonl(ep->snd_seq);
620 ep->mpa_skb = skb;
621 state_set(&ep->com, MPA_REP_SENT);
622 l2t_send(ep->com.tdev, skb, ep->l2t);
623 return 0;
624 }
625
626 static int act_establish(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
627 {
628 struct iwch_ep *ep = ctx;
629 struct cpl_act_establish *req = cplhdr(skb);
630 unsigned int tid = GET_TID(req);
631
632 PDBG("%s ep %p tid %d\n", __FUNCTION__, ep, tid);
633
634 dst_confirm(ep->dst);
635
636 /* setup the hwtid for this connection */
637 ep->hwtid = tid;
638 cxgb3_insert_tid(ep->com.tdev, &t3c_client, ep, tid);
639
640 ep->snd_seq = ntohl(req->snd_isn);
641 ep->rcv_seq = ntohl(req->rcv_isn);
642
643 set_emss(ep, ntohs(req->tcp_opt));
644
645 /* dealloc the atid */
646 cxgb3_free_atid(ep->com.tdev, ep->atid);
647
648 /* start MPA negotiation */
649 send_mpa_req(ep, skb);
650
651 return 0;
652 }
653
654 static void abort_connection(struct iwch_ep *ep, struct sk_buff *skb, gfp_t gfp)
655 {
656 PDBG("%s ep %p\n", __FILE__, ep);
657 state_set(&ep->com, ABORTING);
658 send_abort(ep, skb, gfp);
659 }
660
661 static void close_complete_upcall(struct iwch_ep *ep)
662 {
663 struct iw_cm_event event;
664
665 PDBG("%s ep %p\n", __FUNCTION__, ep);
666 memset(&event, 0, sizeof(event));
667 event.event = IW_CM_EVENT_CLOSE;
668 if (ep->com.cm_id) {
669 PDBG("close complete delivered ep %p cm_id %p tid %d\n",
670 ep, ep->com.cm_id, ep->hwtid);
671 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
672 ep->com.cm_id->rem_ref(ep->com.cm_id);
673 ep->com.cm_id = NULL;
674 ep->com.qp = NULL;
675 }
676 }
677
678 static void peer_close_upcall(struct iwch_ep *ep)
679 {
680 struct iw_cm_event event;
681
682 PDBG("%s ep %p\n", __FUNCTION__, ep);
683 memset(&event, 0, sizeof(event));
684 event.event = IW_CM_EVENT_DISCONNECT;
685 if (ep->com.cm_id) {
686 PDBG("peer close delivered ep %p cm_id %p tid %d\n",
687 ep, ep->com.cm_id, ep->hwtid);
688 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
689 }
690 }
691
692 static void peer_abort_upcall(struct iwch_ep *ep)
693 {
694 struct iw_cm_event event;
695
696 PDBG("%s ep %p\n", __FUNCTION__, ep);
697 memset(&event, 0, sizeof(event));
698 event.event = IW_CM_EVENT_CLOSE;
699 event.status = -ECONNRESET;
700 if (ep->com.cm_id) {
701 PDBG("abort delivered ep %p cm_id %p tid %d\n", ep,
702 ep->com.cm_id, ep->hwtid);
703 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
704 ep->com.cm_id->rem_ref(ep->com.cm_id);
705 ep->com.cm_id = NULL;
706 ep->com.qp = NULL;
707 }
708 }
709
710 static void connect_reply_upcall(struct iwch_ep *ep, int status)
711 {
712 struct iw_cm_event event;
713
714 PDBG("%s ep %p status %d\n", __FUNCTION__, ep, status);
715 memset(&event, 0, sizeof(event));
716 event.event = IW_CM_EVENT_CONNECT_REPLY;
717 event.status = status;
718 event.local_addr = ep->com.local_addr;
719 event.remote_addr = ep->com.remote_addr;
720
721 if ((status == 0) || (status == -ECONNREFUSED)) {
722 event.private_data_len = ep->plen;
723 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
724 }
725 if (ep->com.cm_id) {
726 PDBG("%s ep %p tid %d status %d\n", __FUNCTION__, ep,
727 ep->hwtid, status);
728 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
729 }
730 if (status < 0) {
731 ep->com.cm_id->rem_ref(ep->com.cm_id);
732 ep->com.cm_id = NULL;
733 ep->com.qp = NULL;
734 }
735 }
736
737 static void connect_request_upcall(struct iwch_ep *ep)
738 {
739 struct iw_cm_event event;
740
741 PDBG("%s ep %p tid %d\n", __FUNCTION__, ep, ep->hwtid);
742 memset(&event, 0, sizeof(event));
743 event.event = IW_CM_EVENT_CONNECT_REQUEST;
744 event.local_addr = ep->com.local_addr;
745 event.remote_addr = ep->com.remote_addr;
746 event.private_data_len = ep->plen;
747 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
748 event.provider_data = ep;
749 if (state_read(&ep->parent_ep->com) != DEAD)
750 ep->parent_ep->com.cm_id->event_handler(
751 ep->parent_ep->com.cm_id,
752 &event);
753 put_ep(&ep->parent_ep->com);
754 ep->parent_ep = NULL;
755 }
756
757 static void established_upcall(struct iwch_ep *ep)
758 {
759 struct iw_cm_event event;
760
761 PDBG("%s ep %p\n", __FUNCTION__, ep);
762 memset(&event, 0, sizeof(event));
763 event.event = IW_CM_EVENT_ESTABLISHED;
764 if (ep->com.cm_id) {
765 PDBG("%s ep %p tid %d\n", __FUNCTION__, ep, ep->hwtid);
766 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
767 }
768 }
769
770 static int update_rx_credits(struct iwch_ep *ep, u32 credits)
771 {
772 struct cpl_rx_data_ack *req;
773 struct sk_buff *skb;
774
775 PDBG("%s ep %p credits %u\n", __FUNCTION__, ep, credits);
776 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
777 if (!skb) {
778 printk(KERN_ERR MOD "update_rx_credits - cannot alloc skb!\n");
779 return 0;
780 }
781
782 req = (struct cpl_rx_data_ack *) skb_put(skb, sizeof(*req));
783 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
784 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RX_DATA_ACK, ep->hwtid));
785 req->credit_dack = htonl(V_RX_CREDITS(credits) | V_RX_FORCE_ACK(1));
786 skb->priority = CPL_PRIORITY_ACK;
787 ep->com.tdev->send(ep->com.tdev, skb);
788 return credits;
789 }
790
791 static void process_mpa_reply(struct iwch_ep *ep, struct sk_buff *skb)
792 {
793 struct mpa_message *mpa;
794 u16 plen;
795 struct iwch_qp_attributes attrs;
796 enum iwch_qp_attr_mask mask;
797 int err;
798
799 PDBG("%s ep %p\n", __FUNCTION__, ep);
800
801 /*
802 * Stop mpa timer. If it expired, then the state has
803 * changed and we bail since ep_timeout already aborted
804 * the connection.
805 */
806 stop_ep_timer(ep);
807 if (state_read(&ep->com) != MPA_REQ_SENT)
808 return;
809
810 /*
811 * If we get more than the supported amount of private data
812 * then we must fail this connection.
813 */
814 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
815 err = -EINVAL;
816 goto err;
817 }
818
819 /*
820 * copy the new data into our accumulation buffer.
821 */
822 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
823 skb->len);
824 ep->mpa_pkt_len += skb->len;
825
826 /*
827 * if we don't even have the mpa message, then bail.
828 */
829 if (ep->mpa_pkt_len < sizeof(*mpa))
830 return;
831 mpa = (struct mpa_message *) ep->mpa_pkt;
832
833 /* Validate MPA header. */
834 if (mpa->revision != mpa_rev) {
835 err = -EPROTO;
836 goto err;
837 }
838 if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
839 err = -EPROTO;
840 goto err;
841 }
842
843 plen = ntohs(mpa->private_data_size);
844
845 /*
846 * Fail if there's too much private data.
847 */
848 if (plen > MPA_MAX_PRIVATE_DATA) {
849 err = -EPROTO;
850 goto err;
851 }
852
853 /*
854 * If plen does not account for pkt size
855 */
856 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
857 err = -EPROTO;
858 goto err;
859 }
860
861 ep->plen = (u8) plen;
862
863 /*
864 * If we don't have all the pdata yet, then bail.
865 * We'll continue process when more data arrives.
866 */
867 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
868 return;
869
870 if (mpa->flags & MPA_REJECT) {
871 err = -ECONNREFUSED;
872 goto err;
873 }
874
875 /*
876 * If we get here we have accumulated the entire mpa
877 * start reply message including private data. And
878 * the MPA header is valid.
879 */
880 state_set(&ep->com, FPDU_MODE);
881 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
882 ep->mpa_attr.recv_marker_enabled = markers_enabled;
883 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
884 ep->mpa_attr.version = mpa_rev;
885 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
886 "xmit_marker_enabled=%d, version=%d\n", __FUNCTION__,
887 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
888 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version);
889
890 attrs.mpa_attr = ep->mpa_attr;
891 attrs.max_ird = ep->ird;
892 attrs.max_ord = ep->ord;
893 attrs.llp_stream_handle = ep;
894 attrs.next_state = IWCH_QP_STATE_RTS;
895
896 mask = IWCH_QP_ATTR_NEXT_STATE |
897 IWCH_QP_ATTR_LLP_STREAM_HANDLE | IWCH_QP_ATTR_MPA_ATTR |
898 IWCH_QP_ATTR_MAX_IRD | IWCH_QP_ATTR_MAX_ORD;
899
900 /* bind QP and TID with INIT_WR */
901 err = iwch_modify_qp(ep->com.qp->rhp,
902 ep->com.qp, mask, &attrs, 1);
903 if (!err)
904 goto out;
905 err:
906 abort_connection(ep, skb, GFP_KERNEL);
907 out:
908 connect_reply_upcall(ep, err);
909 return;
910 }
911
912 static void process_mpa_request(struct iwch_ep *ep, struct sk_buff *skb)
913 {
914 struct mpa_message *mpa;
915 u16 plen;
916
917 PDBG("%s ep %p\n", __FUNCTION__, ep);
918
919 /*
920 * Stop mpa timer. If it expired, then the state has
921 * changed and we bail since ep_timeout already aborted
922 * the connection.
923 */
924 stop_ep_timer(ep);
925 if (state_read(&ep->com) != MPA_REQ_WAIT)
926 return;
927
928 /*
929 * If we get more than the supported amount of private data
930 * then we must fail this connection.
931 */
932 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
933 abort_connection(ep, skb, GFP_KERNEL);
934 return;
935 }
936
937 PDBG("%s enter (%s line %u)\n", __FUNCTION__, __FILE__, __LINE__);
938
939 /*
940 * Copy the new data into our accumulation buffer.
941 */
942 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
943 skb->len);
944 ep->mpa_pkt_len += skb->len;
945
946 /*
947 * If we don't even have the mpa message, then bail.
948 * We'll continue process when more data arrives.
949 */
950 if (ep->mpa_pkt_len < sizeof(*mpa))
951 return;
952 PDBG("%s enter (%s line %u)\n", __FUNCTION__, __FILE__, __LINE__);
953 mpa = (struct mpa_message *) ep->mpa_pkt;
954
955 /*
956 * Validate MPA Header.
957 */
958 if (mpa->revision != mpa_rev) {
959 abort_connection(ep, skb, GFP_KERNEL);
960 return;
961 }
962
963 if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key))) {
964 abort_connection(ep, skb, GFP_KERNEL);
965 return;
966 }
967
968 plen = ntohs(mpa->private_data_size);
969
970 /*
971 * Fail if there's too much private data.
972 */
973 if (plen > MPA_MAX_PRIVATE_DATA) {
974 abort_connection(ep, skb, GFP_KERNEL);
975 return;
976 }
977
978 /*
979 * If plen does not account for pkt size
980 */
981 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
982 abort_connection(ep, skb, GFP_KERNEL);
983 return;
984 }
985 ep->plen = (u8) plen;
986
987 /*
988 * If we don't have all the pdata yet, then bail.
989 */
990 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
991 return;
992
993 /*
994 * If we get here we have accumulated the entire mpa
995 * start reply message including private data.
996 */
997 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
998 ep->mpa_attr.recv_marker_enabled = markers_enabled;
999 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1000 ep->mpa_attr.version = mpa_rev;
1001 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1002 "xmit_marker_enabled=%d, version=%d\n", __FUNCTION__,
1003 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
1004 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version);
1005
1006 state_set(&ep->com, MPA_REQ_RCVD);
1007
1008 /* drive upcall */
1009 connect_request_upcall(ep);
1010 return;
1011 }
1012
1013 static int rx_data(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1014 {
1015 struct iwch_ep *ep = ctx;
1016 struct cpl_rx_data *hdr = cplhdr(skb);
1017 unsigned int dlen = ntohs(hdr->len);
1018
1019 PDBG("%s ep %p dlen %u\n", __FUNCTION__, ep, dlen);
1020
1021 skb_pull(skb, sizeof(*hdr));
1022 skb_trim(skb, dlen);
1023
1024 ep->rcv_seq += dlen;
1025 BUG_ON(ep->rcv_seq != (ntohl(hdr->seq) + dlen));
1026
1027 switch (state_read(&ep->com)) {
1028 case MPA_REQ_SENT:
1029 process_mpa_reply(ep, skb);
1030 break;
1031 case MPA_REQ_WAIT:
1032 process_mpa_request(ep, skb);
1033 break;
1034 case MPA_REP_SENT:
1035 break;
1036 default:
1037 printk(KERN_ERR MOD "%s Unexpected streaming data."
1038 " ep %p state %d tid %d\n",
1039 __FUNCTION__, ep, state_read(&ep->com), ep->hwtid);
1040
1041 /*
1042 * The ep will timeout and inform the ULP of the failure.
1043 * See ep_timeout().
1044 */
1045 break;
1046 }
1047
1048 /* update RX credits */
1049 update_rx_credits(ep, dlen);
1050
1051 return CPL_RET_BUF_DONE;
1052 }
1053
1054 /*
1055 * Upcall from the adapter indicating data has been transmitted.
1056 * For us its just the single MPA request or reply. We can now free
1057 * the skb holding the mpa message.
1058 */
1059 static int tx_ack(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1060 {
1061 struct iwch_ep *ep = ctx;
1062 struct cpl_wr_ack *hdr = cplhdr(skb);
1063 unsigned int credits = ntohs(hdr->credits);
1064
1065 PDBG("%s ep %p credits %u\n", __FUNCTION__, ep, credits);
1066
1067 if (credits == 0)
1068 return CPL_RET_BUF_DONE;
1069 BUG_ON(credits != 1);
1070 BUG_ON(ep->mpa_skb == NULL);
1071 kfree_skb(ep->mpa_skb);
1072 ep->mpa_skb = NULL;
1073 dst_confirm(ep->dst);
1074 if (state_read(&ep->com) == MPA_REP_SENT) {
1075 ep->com.rpl_done = 1;
1076 PDBG("waking up ep %p\n", ep);
1077 wake_up(&ep->com.waitq);
1078 }
1079 return CPL_RET_BUF_DONE;
1080 }
1081
1082 static int abort_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1083 {
1084 struct iwch_ep *ep = ctx;
1085
1086 PDBG("%s ep %p\n", __FUNCTION__, ep);
1087
1088 /*
1089 * We get 2 abort replies from the HW. The first one must
1090 * be ignored except for scribbling that we need one more.
1091 */
1092 if (!(ep->flags & ABORT_REQ_IN_PROGRESS)) {
1093 ep->flags |= ABORT_REQ_IN_PROGRESS;
1094 return CPL_RET_BUF_DONE;
1095 }
1096
1097 close_complete_upcall(ep);
1098 state_set(&ep->com, DEAD);
1099 release_ep_resources(ep);
1100 return CPL_RET_BUF_DONE;
1101 }
1102
1103 /*
1104 * Return whether a failed active open has allocated a TID
1105 */
1106 static inline int act_open_has_tid(int status)
1107 {
1108 return status != CPL_ERR_TCAM_FULL && status != CPL_ERR_CONN_EXIST &&
1109 status != CPL_ERR_ARP_MISS;
1110 }
1111
1112 static int act_open_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1113 {
1114 struct iwch_ep *ep = ctx;
1115 struct cpl_act_open_rpl *rpl = cplhdr(skb);
1116
1117 PDBG("%s ep %p status %u errno %d\n", __FUNCTION__, ep, rpl->status,
1118 status2errno(rpl->status));
1119 connect_reply_upcall(ep, status2errno(rpl->status));
1120 state_set(&ep->com, DEAD);
1121 if (ep->com.tdev->type == T3B && act_open_has_tid(rpl->status))
1122 release_tid(ep->com.tdev, GET_TID(rpl), NULL);
1123 cxgb3_free_atid(ep->com.tdev, ep->atid);
1124 dst_release(ep->dst);
1125 l2t_release(L2DATA(ep->com.tdev), ep->l2t);
1126 put_ep(&ep->com);
1127 return CPL_RET_BUF_DONE;
1128 }
1129
1130 static int listen_start(struct iwch_listen_ep *ep)
1131 {
1132 struct sk_buff *skb;
1133 struct cpl_pass_open_req *req;
1134
1135 PDBG("%s ep %p\n", __FUNCTION__, ep);
1136 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1137 if (!skb) {
1138 printk(KERN_ERR MOD "t3c_listen_start failed to alloc skb!\n");
1139 return -ENOMEM;
1140 }
1141
1142 req = (struct cpl_pass_open_req *) skb_put(skb, sizeof(*req));
1143 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1144 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, ep->stid));
1145 req->local_port = ep->com.local_addr.sin_port;
1146 req->local_ip = ep->com.local_addr.sin_addr.s_addr;
1147 req->peer_port = 0;
1148 req->peer_ip = 0;
1149 req->peer_netmask = 0;
1150 req->opt0h = htonl(F_DELACK | F_TCAM_BYPASS);
1151 req->opt0l = htonl(V_RCV_BUFSIZ(rcv_win>>10));
1152 req->opt1 = htonl(V_CONN_POLICY(CPL_CONN_POLICY_ASK));
1153
1154 skb->priority = 1;
1155 ep->com.tdev->send(ep->com.tdev, skb);
1156 return 0;
1157 }
1158
1159 static int pass_open_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1160 {
1161 struct iwch_listen_ep *ep = ctx;
1162 struct cpl_pass_open_rpl *rpl = cplhdr(skb);
1163
1164 PDBG("%s ep %p status %d error %d\n", __FUNCTION__, ep,
1165 rpl->status, status2errno(rpl->status));
1166 ep->com.rpl_err = status2errno(rpl->status);
1167 ep->com.rpl_done = 1;
1168 wake_up(&ep->com.waitq);
1169
1170 return CPL_RET_BUF_DONE;
1171 }
1172
1173 static int listen_stop(struct iwch_listen_ep *ep)
1174 {
1175 struct sk_buff *skb;
1176 struct cpl_close_listserv_req *req;
1177
1178 PDBG("%s ep %p\n", __FUNCTION__, ep);
1179 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1180 if (!skb) {
1181 printk(KERN_ERR MOD "%s - failed to alloc skb\n", __FUNCTION__);
1182 return -ENOMEM;
1183 }
1184 req = (struct cpl_close_listserv_req *) skb_put(skb, sizeof(*req));
1185 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1186 req->cpu_idx = 0;
1187 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, ep->stid));
1188 skb->priority = 1;
1189 ep->com.tdev->send(ep->com.tdev, skb);
1190 return 0;
1191 }
1192
1193 static int close_listsrv_rpl(struct t3cdev *tdev, struct sk_buff *skb,
1194 void *ctx)
1195 {
1196 struct iwch_listen_ep *ep = ctx;
1197 struct cpl_close_listserv_rpl *rpl = cplhdr(skb);
1198
1199 PDBG("%s ep %p\n", __FUNCTION__, ep);
1200 ep->com.rpl_err = status2errno(rpl->status);
1201 ep->com.rpl_done = 1;
1202 wake_up(&ep->com.waitq);
1203 return CPL_RET_BUF_DONE;
1204 }
1205
1206 static void accept_cr(struct iwch_ep *ep, __be32 peer_ip, struct sk_buff *skb)
1207 {
1208 struct cpl_pass_accept_rpl *rpl;
1209 unsigned int mtu_idx;
1210 u32 opt0h, opt0l, opt2;
1211 int wscale;
1212
1213 PDBG("%s ep %p\n", __FUNCTION__, ep);
1214 BUG_ON(skb_cloned(skb));
1215 skb_trim(skb, sizeof(*rpl));
1216 skb_get(skb);
1217 mtu_idx = find_best_mtu(T3C_DATA(ep->com.tdev), dst_mtu(ep->dst));
1218 wscale = compute_wscale(rcv_win);
1219 opt0h = V_NAGLE(0) |
1220 V_NO_CONG(nocong) |
1221 V_KEEP_ALIVE(1) |
1222 F_TCAM_BYPASS |
1223 V_WND_SCALE(wscale) |
1224 V_MSS_IDX(mtu_idx) |
1225 V_L2T_IDX(ep->l2t->idx) | V_TX_CHANNEL(ep->l2t->smt_idx);
1226 opt0l = V_TOS((ep->tos >> 2) & M_TOS) | V_RCV_BUFSIZ(rcv_win>>10);
1227 opt2 = V_FLAVORS_VALID(1) | V_CONG_CONTROL_FLAVOR(cong_flavor);
1228
1229 rpl = cplhdr(skb);
1230 rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1231 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL, ep->hwtid));
1232 rpl->peer_ip = peer_ip;
1233 rpl->opt0h = htonl(opt0h);
1234 rpl->opt0l_status = htonl(opt0l | CPL_PASS_OPEN_ACCEPT);
1235 rpl->opt2 = htonl(opt2);
1236 rpl->rsvd = rpl->opt2; /* workaround for HW bug */
1237 skb->priority = CPL_PRIORITY_SETUP;
1238 l2t_send(ep->com.tdev, skb, ep->l2t);
1239
1240 return;
1241 }
1242
1243 static void reject_cr(struct t3cdev *tdev, u32 hwtid, __be32 peer_ip,
1244 struct sk_buff *skb)
1245 {
1246 PDBG("%s t3cdev %p tid %u peer_ip %x\n", __FUNCTION__, tdev, hwtid,
1247 peer_ip);
1248 BUG_ON(skb_cloned(skb));
1249 skb_trim(skb, sizeof(struct cpl_tid_release));
1250 skb_get(skb);
1251
1252 if (tdev->type == T3B)
1253 release_tid(tdev, hwtid, skb);
1254 else {
1255 struct cpl_pass_accept_rpl *rpl;
1256
1257 rpl = cplhdr(skb);
1258 skb->priority = CPL_PRIORITY_SETUP;
1259 rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1260 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
1261 hwtid));
1262 rpl->peer_ip = peer_ip;
1263 rpl->opt0h = htonl(F_TCAM_BYPASS);
1264 rpl->opt0l_status = htonl(CPL_PASS_OPEN_REJECT);
1265 rpl->opt2 = 0;
1266 rpl->rsvd = rpl->opt2;
1267 tdev->send(tdev, skb);
1268 }
1269 }
1270
1271 static int pass_accept_req(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1272 {
1273 struct iwch_ep *child_ep, *parent_ep = ctx;
1274 struct cpl_pass_accept_req *req = cplhdr(skb);
1275 unsigned int hwtid = GET_TID(req);
1276 struct dst_entry *dst;
1277 struct l2t_entry *l2t;
1278 struct rtable *rt;
1279 struct iff_mac tim;
1280
1281 PDBG("%s parent ep %p tid %u\n", __FUNCTION__, parent_ep, hwtid);
1282
1283 if (state_read(&parent_ep->com) != LISTEN) {
1284 printk(KERN_ERR "%s - listening ep not in LISTEN\n",
1285 __FUNCTION__);
1286 goto reject;
1287 }
1288
1289 /*
1290 * Find the netdev for this connection request.
1291 */
1292 tim.mac_addr = req->dst_mac;
1293 tim.vlan_tag = ntohs(req->vlan_tag);
1294 if (tdev->ctl(tdev, GET_IFF_FROM_MAC, &tim) < 0 || !tim.dev) {
1295 printk(KERN_ERR
1296 "%s bad dst mac %02x %02x %02x %02x %02x %02x\n",
1297 __FUNCTION__,
1298 req->dst_mac[0],
1299 req->dst_mac[1],
1300 req->dst_mac[2],
1301 req->dst_mac[3],
1302 req->dst_mac[4],
1303 req->dst_mac[5]);
1304 goto reject;
1305 }
1306
1307 /* Find output route */
1308 rt = find_route(tdev,
1309 req->local_ip,
1310 req->peer_ip,
1311 req->local_port,
1312 req->peer_port, G_PASS_OPEN_TOS(ntohl(req->tos_tid)));
1313 if (!rt) {
1314 printk(KERN_ERR MOD "%s - failed to find dst entry!\n",
1315 __FUNCTION__);
1316 goto reject;
1317 }
1318 dst = &rt->u.dst;
1319 l2t = t3_l2t_get(tdev, dst->neighbour, dst->neighbour->dev);
1320 if (!l2t) {
1321 printk(KERN_ERR MOD "%s - failed to allocate l2t entry!\n",
1322 __FUNCTION__);
1323 dst_release(dst);
1324 goto reject;
1325 }
1326 child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
1327 if (!child_ep) {
1328 printk(KERN_ERR MOD "%s - failed to allocate ep entry!\n",
1329 __FUNCTION__);
1330 l2t_release(L2DATA(tdev), l2t);
1331 dst_release(dst);
1332 goto reject;
1333 }
1334 state_set(&child_ep->com, CONNECTING);
1335 child_ep->com.tdev = tdev;
1336 child_ep->com.cm_id = NULL;
1337 child_ep->com.local_addr.sin_family = PF_INET;
1338 child_ep->com.local_addr.sin_port = req->local_port;
1339 child_ep->com.local_addr.sin_addr.s_addr = req->local_ip;
1340 child_ep->com.remote_addr.sin_family = PF_INET;
1341 child_ep->com.remote_addr.sin_port = req->peer_port;
1342 child_ep->com.remote_addr.sin_addr.s_addr = req->peer_ip;
1343 get_ep(&parent_ep->com);
1344 child_ep->parent_ep = parent_ep;
1345 child_ep->tos = G_PASS_OPEN_TOS(ntohl(req->tos_tid));
1346 child_ep->l2t = l2t;
1347 child_ep->dst = dst;
1348 child_ep->hwtid = hwtid;
1349 init_timer(&child_ep->timer);
1350 cxgb3_insert_tid(tdev, &t3c_client, child_ep, hwtid);
1351 accept_cr(child_ep, req->peer_ip, skb);
1352 goto out;
1353 reject:
1354 reject_cr(tdev, hwtid, req->peer_ip, skb);
1355 out:
1356 return CPL_RET_BUF_DONE;
1357 }
1358
1359 static int pass_establish(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1360 {
1361 struct iwch_ep *ep = ctx;
1362 struct cpl_pass_establish *req = cplhdr(skb);
1363
1364 PDBG("%s ep %p\n", __FUNCTION__, ep);
1365 ep->snd_seq = ntohl(req->snd_isn);
1366 ep->rcv_seq = ntohl(req->rcv_isn);
1367
1368 set_emss(ep, ntohs(req->tcp_opt));
1369
1370 dst_confirm(ep->dst);
1371 state_set(&ep->com, MPA_REQ_WAIT);
1372 start_ep_timer(ep);
1373
1374 return CPL_RET_BUF_DONE;
1375 }
1376
1377 static int peer_close(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1378 {
1379 struct iwch_ep *ep = ctx;
1380 struct iwch_qp_attributes attrs;
1381 unsigned long flags;
1382 int disconnect = 1;
1383 int release = 0;
1384
1385 PDBG("%s ep %p\n", __FUNCTION__, ep);
1386 dst_confirm(ep->dst);
1387
1388 spin_lock_irqsave(&ep->com.lock, flags);
1389 switch (ep->com.state) {
1390 case MPA_REQ_WAIT:
1391 __state_set(&ep->com, CLOSING);
1392 break;
1393 case MPA_REQ_SENT:
1394 __state_set(&ep->com, CLOSING);
1395 connect_reply_upcall(ep, -ECONNRESET);
1396 break;
1397 case MPA_REQ_RCVD:
1398
1399 /*
1400 * We're gonna mark this puppy DEAD, but keep
1401 * the reference on it until the ULP accepts or
1402 * rejects the CR.
1403 */
1404 __state_set(&ep->com, CLOSING);
1405 get_ep(&ep->com);
1406 break;
1407 case MPA_REP_SENT:
1408 __state_set(&ep->com, CLOSING);
1409 ep->com.rpl_done = 1;
1410 ep->com.rpl_err = -ECONNRESET;
1411 PDBG("waking up ep %p\n", ep);
1412 wake_up(&ep->com.waitq);
1413 break;
1414 case FPDU_MODE:
1415 start_ep_timer(ep);
1416 __state_set(&ep->com, CLOSING);
1417 attrs.next_state = IWCH_QP_STATE_CLOSING;
1418 iwch_modify_qp(ep->com.qp->rhp, ep->com.qp,
1419 IWCH_QP_ATTR_NEXT_STATE, &attrs, 1);
1420 peer_close_upcall(ep);
1421 break;
1422 case ABORTING:
1423 disconnect = 0;
1424 break;
1425 case CLOSING:
1426 __state_set(&ep->com, MORIBUND);
1427 disconnect = 0;
1428 break;
1429 case MORIBUND:
1430 stop_ep_timer(ep);
1431 if (ep->com.cm_id && ep->com.qp) {
1432 attrs.next_state = IWCH_QP_STATE_IDLE;
1433 iwch_modify_qp(ep->com.qp->rhp, ep->com.qp,
1434 IWCH_QP_ATTR_NEXT_STATE, &attrs, 1);
1435 }
1436 close_complete_upcall(ep);
1437 __state_set(&ep->com, DEAD);
1438 release = 1;
1439 disconnect = 0;
1440 break;
1441 case DEAD:
1442 disconnect = 0;
1443 break;
1444 default:
1445 BUG_ON(1);
1446 }
1447 spin_unlock_irqrestore(&ep->com.lock, flags);
1448 if (disconnect)
1449 iwch_ep_disconnect(ep, 0, GFP_KERNEL);
1450 if (release)
1451 release_ep_resources(ep);
1452 return CPL_RET_BUF_DONE;
1453 }
1454
1455 /*
1456 * Returns whether an ABORT_REQ_RSS message is a negative advice.
1457 */
1458 static int is_neg_adv_abort(unsigned int status)
1459 {
1460 return status == CPL_ERR_RTX_NEG_ADVICE ||
1461 status == CPL_ERR_PERSIST_NEG_ADVICE;
1462 }
1463
1464 static int peer_abort(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1465 {
1466 struct cpl_abort_req_rss *req = cplhdr(skb);
1467 struct iwch_ep *ep = ctx;
1468 struct cpl_abort_rpl *rpl;
1469 struct sk_buff *rpl_skb;
1470 struct iwch_qp_attributes attrs;
1471 int ret;
1472 int state;
1473
1474 if (is_neg_adv_abort(req->status)) {
1475 PDBG("%s neg_adv_abort ep %p tid %d\n", __FUNCTION__, ep,
1476 ep->hwtid);
1477 t3_l2t_send_event(ep->com.tdev, ep->l2t);
1478 return CPL_RET_BUF_DONE;
1479 }
1480
1481 /*
1482 * We get 2 peer aborts from the HW. The first one must
1483 * be ignored except for scribbling that we need one more.
1484 */
1485 if (!(ep->flags & PEER_ABORT_IN_PROGRESS)) {
1486 ep->flags |= PEER_ABORT_IN_PROGRESS;
1487 return CPL_RET_BUF_DONE;
1488 }
1489
1490 state = state_read(&ep->com);
1491 PDBG("%s ep %p state %u\n", __FUNCTION__, ep, state);
1492 switch (state) {
1493 case CONNECTING:
1494 break;
1495 case MPA_REQ_WAIT:
1496 stop_ep_timer(ep);
1497 break;
1498 case MPA_REQ_SENT:
1499 stop_ep_timer(ep);
1500 connect_reply_upcall(ep, -ECONNRESET);
1501 break;
1502 case MPA_REP_SENT:
1503 ep->com.rpl_done = 1;
1504 ep->com.rpl_err = -ECONNRESET;
1505 PDBG("waking up ep %p\n", ep);
1506 wake_up(&ep->com.waitq);
1507 break;
1508 case MPA_REQ_RCVD:
1509
1510 /*
1511 * We're gonna mark this puppy DEAD, but keep
1512 * the reference on it until the ULP accepts or
1513 * rejects the CR.
1514 */
1515 get_ep(&ep->com);
1516 break;
1517 case MORIBUND:
1518 case CLOSING:
1519 stop_ep_timer(ep);
1520 /*FALLTHROUGH*/
1521 case FPDU_MODE:
1522 if (ep->com.cm_id && ep->com.qp) {
1523 attrs.next_state = IWCH_QP_STATE_ERROR;
1524 ret = iwch_modify_qp(ep->com.qp->rhp,
1525 ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1526 &attrs, 1);
1527 if (ret)
1528 printk(KERN_ERR MOD
1529 "%s - qp <- error failed!\n",
1530 __FUNCTION__);
1531 }
1532 peer_abort_upcall(ep);
1533 break;
1534 case ABORTING:
1535 break;
1536 case DEAD:
1537 PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __FUNCTION__);
1538 return CPL_RET_BUF_DONE;
1539 default:
1540 BUG_ON(1);
1541 break;
1542 }
1543 dst_confirm(ep->dst);
1544
1545 rpl_skb = get_skb(skb, sizeof(*rpl), GFP_KERNEL);
1546 if (!rpl_skb) {
1547 printk(KERN_ERR MOD "%s - cannot allocate skb!\n",
1548 __FUNCTION__);
1549 dst_release(ep->dst);
1550 l2t_release(L2DATA(ep->com.tdev), ep->l2t);
1551 put_ep(&ep->com);
1552 return CPL_RET_BUF_DONE;
1553 }
1554 rpl_skb->priority = CPL_PRIORITY_DATA;
1555 rpl = (struct cpl_abort_rpl *) skb_put(rpl_skb, sizeof(*rpl));
1556 rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
1557 rpl->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
1558 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, ep->hwtid));
1559 rpl->cmd = CPL_ABORT_NO_RST;
1560 ep->com.tdev->send(ep->com.tdev, rpl_skb);
1561 if (state != ABORTING) {
1562 state_set(&ep->com, DEAD);
1563 release_ep_resources(ep);
1564 }
1565 return CPL_RET_BUF_DONE;
1566 }
1567
1568 static int close_con_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1569 {
1570 struct iwch_ep *ep = ctx;
1571 struct iwch_qp_attributes attrs;
1572 unsigned long flags;
1573 int release = 0;
1574
1575 PDBG("%s ep %p\n", __FUNCTION__, ep);
1576 BUG_ON(!ep);
1577
1578 /* The cm_id may be null if we failed to connect */
1579 spin_lock_irqsave(&ep->com.lock, flags);
1580 switch (ep->com.state) {
1581 case CLOSING:
1582 __state_set(&ep->com, MORIBUND);
1583 break;
1584 case MORIBUND:
1585 stop_ep_timer(ep);
1586 if ((ep->com.cm_id) && (ep->com.qp)) {
1587 attrs.next_state = IWCH_QP_STATE_IDLE;
1588 iwch_modify_qp(ep->com.qp->rhp,
1589 ep->com.qp,
1590 IWCH_QP_ATTR_NEXT_STATE,
1591 &attrs, 1);
1592 }
1593 close_complete_upcall(ep);
1594 __state_set(&ep->com, DEAD);
1595 release = 1;
1596 break;
1597 case ABORTING:
1598 break;
1599 case DEAD:
1600 default:
1601 BUG_ON(1);
1602 break;
1603 }
1604 spin_unlock_irqrestore(&ep->com.lock, flags);
1605 if (release)
1606 release_ep_resources(ep);
1607 return CPL_RET_BUF_DONE;
1608 }
1609
1610 /*
1611 * T3A does 3 things when a TERM is received:
1612 * 1) send up a CPL_RDMA_TERMINATE message with the TERM packet
1613 * 2) generate an async event on the QP with the TERMINATE opcode
1614 * 3) post a TERMINATE opcde cqe into the associated CQ.
1615 *
1616 * For (1), we save the message in the qp for later consumer consumption.
1617 * For (2), we move the QP into TERMINATE, post a QP event and disconnect.
1618 * For (3), we toss the CQE in cxio_poll_cq().
1619 *
1620 * terminate() handles case (1)...
1621 */
1622 static int terminate(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1623 {
1624 struct iwch_ep *ep = ctx;
1625
1626 PDBG("%s ep %p\n", __FUNCTION__, ep);
1627 skb_pull(skb, sizeof(struct cpl_rdma_terminate));
1628 PDBG("%s saving %d bytes of term msg\n", __FUNCTION__, skb->len);
1629 skb_copy_from_linear_data(skb, ep->com.qp->attr.terminate_buffer,
1630 skb->len);
1631 ep->com.qp->attr.terminate_msg_len = skb->len;
1632 ep->com.qp->attr.is_terminate_local = 0;
1633 return CPL_RET_BUF_DONE;
1634 }
1635
1636 static int ec_status(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1637 {
1638 struct cpl_rdma_ec_status *rep = cplhdr(skb);
1639 struct iwch_ep *ep = ctx;
1640
1641 PDBG("%s ep %p tid %u status %d\n", __FUNCTION__, ep, ep->hwtid,
1642 rep->status);
1643 if (rep->status) {
1644 struct iwch_qp_attributes attrs;
1645
1646 printk(KERN_ERR MOD "%s BAD CLOSE - Aborting tid %u\n",
1647 __FUNCTION__, ep->hwtid);
1648 stop_ep_timer(ep);
1649 attrs.next_state = IWCH_QP_STATE_ERROR;
1650 iwch_modify_qp(ep->com.qp->rhp,
1651 ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1652 &attrs, 1);
1653 abort_connection(ep, NULL, GFP_KERNEL);
1654 }
1655 return CPL_RET_BUF_DONE;
1656 }
1657
1658 static void ep_timeout(unsigned long arg)
1659 {
1660 struct iwch_ep *ep = (struct iwch_ep *)arg;
1661 struct iwch_qp_attributes attrs;
1662 unsigned long flags;
1663
1664 spin_lock_irqsave(&ep->com.lock, flags);
1665 PDBG("%s ep %p tid %u state %d\n", __FUNCTION__, ep, ep->hwtid,
1666 ep->com.state);
1667 switch (ep->com.state) {
1668 case MPA_REQ_SENT:
1669 connect_reply_upcall(ep, -ETIMEDOUT);
1670 break;
1671 case MPA_REQ_WAIT:
1672 break;
1673 case CLOSING:
1674 case MORIBUND:
1675 if (ep->com.cm_id && ep->com.qp) {
1676 attrs.next_state = IWCH_QP_STATE_ERROR;
1677 iwch_modify_qp(ep->com.qp->rhp,
1678 ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1679 &attrs, 1);
1680 }
1681 break;
1682 default:
1683 BUG();
1684 }
1685 __state_set(&ep->com, CLOSING);
1686 spin_unlock_irqrestore(&ep->com.lock, flags);
1687 abort_connection(ep, NULL, GFP_ATOMIC);
1688 put_ep(&ep->com);
1689 }
1690
1691 int iwch_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
1692 {
1693 int err;
1694 struct iwch_ep *ep = to_ep(cm_id);
1695 PDBG("%s ep %p tid %u\n", __FUNCTION__, ep, ep->hwtid);
1696
1697 if (state_read(&ep->com) == DEAD) {
1698 put_ep(&ep->com);
1699 return -ECONNRESET;
1700 }
1701 BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
1702 if (mpa_rev == 0)
1703 abort_connection(ep, NULL, GFP_KERNEL);
1704 else {
1705 err = send_mpa_reject(ep, pdata, pdata_len);
1706 err = iwch_ep_disconnect(ep, 0, GFP_KERNEL);
1707 }
1708 return 0;
1709 }
1710
1711 int iwch_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
1712 {
1713 int err;
1714 struct iwch_qp_attributes attrs;
1715 enum iwch_qp_attr_mask mask;
1716 struct iwch_ep *ep = to_ep(cm_id);
1717 struct iwch_dev *h = to_iwch_dev(cm_id->device);
1718 struct iwch_qp *qp = get_qhp(h, conn_param->qpn);
1719
1720 PDBG("%s ep %p tid %u\n", __FUNCTION__, ep, ep->hwtid);
1721 if (state_read(&ep->com) == DEAD)
1722 return -ECONNRESET;
1723
1724 BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
1725 BUG_ON(!qp);
1726
1727 if ((conn_param->ord > qp->rhp->attr.max_rdma_read_qp_depth) ||
1728 (conn_param->ird > qp->rhp->attr.max_rdma_reads_per_qp)) {
1729 abort_connection(ep, NULL, GFP_KERNEL);
1730 return -EINVAL;
1731 }
1732
1733 cm_id->add_ref(cm_id);
1734 ep->com.cm_id = cm_id;
1735 ep->com.qp = qp;
1736
1737 ep->com.rpl_done = 0;
1738 ep->com.rpl_err = 0;
1739 ep->ird = conn_param->ird;
1740 ep->ord = conn_param->ord;
1741 PDBG("%s %d ird %d ord %d\n", __FUNCTION__, __LINE__, ep->ird, ep->ord);
1742
1743 get_ep(&ep->com);
1744
1745 /* bind QP to EP and move to RTS */
1746 attrs.mpa_attr = ep->mpa_attr;
1747 attrs.max_ird = ep->ord;
1748 attrs.max_ord = ep->ord;
1749 attrs.llp_stream_handle = ep;
1750 attrs.next_state = IWCH_QP_STATE_RTS;
1751
1752 /* bind QP and TID with INIT_WR */
1753 mask = IWCH_QP_ATTR_NEXT_STATE |
1754 IWCH_QP_ATTR_LLP_STREAM_HANDLE |
1755 IWCH_QP_ATTR_MPA_ATTR |
1756 IWCH_QP_ATTR_MAX_IRD |
1757 IWCH_QP_ATTR_MAX_ORD;
1758
1759 err = iwch_modify_qp(ep->com.qp->rhp,
1760 ep->com.qp, mask, &attrs, 1);
1761 if (err)
1762 goto err;
1763
1764 err = send_mpa_reply(ep, conn_param->private_data,
1765 conn_param->private_data_len);
1766 if (err)
1767 goto err;
1768
1769 /* wait for wr_ack */
1770 wait_event(ep->com.waitq, ep->com.rpl_done);
1771 err = ep->com.rpl_err;
1772 if (err)
1773 goto err;
1774
1775 state_set(&ep->com, FPDU_MODE);
1776 established_upcall(ep);
1777 put_ep(&ep->com);
1778 return 0;
1779 err:
1780 ep->com.cm_id = NULL;
1781 ep->com.qp = NULL;
1782 cm_id->rem_ref(cm_id);
1783 put_ep(&ep->com);
1784 return err;
1785 }
1786
1787 int iwch_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
1788 {
1789 int err = 0;
1790 struct iwch_dev *h = to_iwch_dev(cm_id->device);
1791 struct iwch_ep *ep;
1792 struct rtable *rt;
1793
1794 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
1795 if (!ep) {
1796 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __FUNCTION__);
1797 err = -ENOMEM;
1798 goto out;
1799 }
1800 init_timer(&ep->timer);
1801 ep->plen = conn_param->private_data_len;
1802 if (ep->plen)
1803 memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
1804 conn_param->private_data, ep->plen);
1805 ep->ird = conn_param->ird;
1806 ep->ord = conn_param->ord;
1807 ep->com.tdev = h->rdev.t3cdev_p;
1808
1809 cm_id->add_ref(cm_id);
1810 ep->com.cm_id = cm_id;
1811 ep->com.qp = get_qhp(h, conn_param->qpn);
1812 BUG_ON(!ep->com.qp);
1813 PDBG("%s qpn 0x%x qp %p cm_id %p\n", __FUNCTION__, conn_param->qpn,
1814 ep->com.qp, cm_id);
1815
1816 /*
1817 * Allocate an active TID to initiate a TCP connection.
1818 */
1819 ep->atid = cxgb3_alloc_atid(h->rdev.t3cdev_p, &t3c_client, ep);
1820 if (ep->atid == -1) {
1821 printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __FUNCTION__);
1822 err = -ENOMEM;
1823 goto fail2;
1824 }
1825
1826 /* find a route */
1827 rt = find_route(h->rdev.t3cdev_p,
1828 cm_id->local_addr.sin_addr.s_addr,
1829 cm_id->remote_addr.sin_addr.s_addr,
1830 cm_id->local_addr.sin_port,
1831 cm_id->remote_addr.sin_port, IPTOS_LOWDELAY);
1832 if (!rt) {
1833 printk(KERN_ERR MOD "%s - cannot find route.\n", __FUNCTION__);
1834 err = -EHOSTUNREACH;
1835 goto fail3;
1836 }
1837 ep->dst = &rt->u.dst;
1838
1839 /* get a l2t entry */
1840 ep->l2t = t3_l2t_get(ep->com.tdev, ep->dst->neighbour,
1841 ep->dst->neighbour->dev);
1842 if (!ep->l2t) {
1843 printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __FUNCTION__);
1844 err = -ENOMEM;
1845 goto fail4;
1846 }
1847
1848 state_set(&ep->com, CONNECTING);
1849 ep->tos = IPTOS_LOWDELAY;
1850 ep->com.local_addr = cm_id->local_addr;
1851 ep->com.remote_addr = cm_id->remote_addr;
1852
1853 /* send connect request to rnic */
1854 err = send_connect(ep);
1855 if (!err)
1856 goto out;
1857
1858 l2t_release(L2DATA(h->rdev.t3cdev_p), ep->l2t);
1859 fail4:
1860 dst_release(ep->dst);
1861 fail3:
1862 cxgb3_free_atid(ep->com.tdev, ep->atid);
1863 fail2:
1864 put_ep(&ep->com);
1865 out:
1866 return err;
1867 }
1868
1869 int iwch_create_listen(struct iw_cm_id *cm_id, int backlog)
1870 {
1871 int err = 0;
1872 struct iwch_dev *h = to_iwch_dev(cm_id->device);
1873 struct iwch_listen_ep *ep;
1874
1875
1876 might_sleep();
1877
1878 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
1879 if (!ep) {
1880 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __FUNCTION__);
1881 err = -ENOMEM;
1882 goto fail1;
1883 }
1884 PDBG("%s ep %p\n", __FUNCTION__, ep);
1885 ep->com.tdev = h->rdev.t3cdev_p;
1886 cm_id->add_ref(cm_id);
1887 ep->com.cm_id = cm_id;
1888 ep->backlog = backlog;
1889 ep->com.local_addr = cm_id->local_addr;
1890
1891 /*
1892 * Allocate a server TID.
1893 */
1894 ep->stid = cxgb3_alloc_stid(h->rdev.t3cdev_p, &t3c_client, ep);
1895 if (ep->stid == -1) {
1896 printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __FUNCTION__);
1897 err = -ENOMEM;
1898 goto fail2;
1899 }
1900
1901 state_set(&ep->com, LISTEN);
1902 err = listen_start(ep);
1903 if (err)
1904 goto fail3;
1905
1906 /* wait for pass_open_rpl */
1907 wait_event(ep->com.waitq, ep->com.rpl_done);
1908 err = ep->com.rpl_err;
1909 if (!err) {
1910 cm_id->provider_data = ep;
1911 goto out;
1912 }
1913 fail3:
1914 cxgb3_free_stid(ep->com.tdev, ep->stid);
1915 fail2:
1916 cm_id->rem_ref(cm_id);
1917 put_ep(&ep->com);
1918 fail1:
1919 out:
1920 return err;
1921 }
1922
1923 int iwch_destroy_listen(struct iw_cm_id *cm_id)
1924 {
1925 int err;
1926 struct iwch_listen_ep *ep = to_listen_ep(cm_id);
1927
1928 PDBG("%s ep %p\n", __FUNCTION__, ep);
1929
1930 might_sleep();
1931 state_set(&ep->com, DEAD);
1932 ep->com.rpl_done = 0;
1933 ep->com.rpl_err = 0;
1934 err = listen_stop(ep);
1935 wait_event(ep->com.waitq, ep->com.rpl_done);
1936 cxgb3_free_stid(ep->com.tdev, ep->stid);
1937 err = ep->com.rpl_err;
1938 cm_id->rem_ref(cm_id);
1939 put_ep(&ep->com);
1940 return err;
1941 }
1942
1943 int iwch_ep_disconnect(struct iwch_ep *ep, int abrupt, gfp_t gfp)
1944 {
1945 int ret=0;
1946 unsigned long flags;
1947 int close = 0;
1948
1949 spin_lock_irqsave(&ep->com.lock, flags);
1950
1951 PDBG("%s ep %p state %s, abrupt %d\n", __FUNCTION__, ep,
1952 states[ep->com.state], abrupt);
1953
1954 if (ep->com.state == DEAD) {
1955 PDBG("%s already dead ep %p\n", __FUNCTION__, ep);
1956 goto out;
1957 }
1958
1959 if (abrupt) {
1960 if (ep->com.state != ABORTING) {
1961 ep->com.state = ABORTING;
1962 close = 1;
1963 }
1964 goto out;
1965 }
1966
1967 switch (ep->com.state) {
1968 case MPA_REQ_WAIT:
1969 case MPA_REQ_SENT:
1970 case MPA_REQ_RCVD:
1971 case MPA_REP_SENT:
1972 case FPDU_MODE:
1973 start_ep_timer(ep);
1974 ep->com.state = CLOSING;
1975 close = 1;
1976 break;
1977 case CLOSING:
1978 ep->com.state = MORIBUND;
1979 close = 1;
1980 break;
1981 case MORIBUND:
1982 break;
1983 default:
1984 BUG();
1985 break;
1986 }
1987 out:
1988 spin_unlock_irqrestore(&ep->com.lock, flags);
1989 if (close) {
1990 if (abrupt)
1991 ret = send_abort(ep, NULL, gfp);
1992 else
1993 ret = send_halfclose(ep, gfp);
1994 }
1995 return ret;
1996 }
1997
1998 int iwch_ep_redirect(void *ctx, struct dst_entry *old, struct dst_entry *new,
1999 struct l2t_entry *l2t)
2000 {
2001 struct iwch_ep *ep = ctx;
2002
2003 if (ep->dst != old)
2004 return 0;
2005
2006 PDBG("%s ep %p redirect to dst %p l2t %p\n", __FUNCTION__, ep, new,
2007 l2t);
2008 dst_hold(new);
2009 l2t_release(L2DATA(ep->com.tdev), ep->l2t);
2010 ep->l2t = l2t;
2011 dst_release(old);
2012 ep->dst = new;
2013 return 1;
2014 }
2015
2016 /*
2017 * All the CM events are handled on a work queue to have a safe context.
2018 */
2019 static int sched(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
2020 {
2021 struct iwch_ep_common *epc = ctx;
2022
2023 get_ep(epc);
2024
2025 /*
2026 * Save ctx and tdev in the skb->cb area.
2027 */
2028 *((void **) skb->cb) = ctx;
2029 *((struct t3cdev **) (skb->cb + sizeof(void *))) = tdev;
2030
2031 /*
2032 * Queue the skb and schedule the worker thread.
2033 */
2034 skb_queue_tail(&rxq, skb);
2035 queue_work(workq, &skb_work);
2036 return 0;
2037 }
2038
2039 static int set_tcb_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
2040 {
2041 struct cpl_set_tcb_rpl *rpl = cplhdr(skb);
2042
2043 if (rpl->status != CPL_ERR_NONE) {
2044 printk(KERN_ERR MOD "Unexpected SET_TCB_RPL status %u "
2045 "for tid %u\n", rpl->status, GET_TID(rpl));
2046 }
2047 return CPL_RET_BUF_DONE;
2048 }
2049
2050 int __init iwch_cm_init(void)
2051 {
2052 skb_queue_head_init(&rxq);
2053
2054 workq = create_singlethread_workqueue("iw_cxgb3");
2055 if (!workq)
2056 return -ENOMEM;
2057
2058 /*
2059 * All upcalls from the T3 Core go to sched() to
2060 * schedule the processing on a work queue.
2061 */
2062 t3c_handlers[CPL_ACT_ESTABLISH] = sched;
2063 t3c_handlers[CPL_ACT_OPEN_RPL] = sched;
2064 t3c_handlers[CPL_RX_DATA] = sched;
2065 t3c_handlers[CPL_TX_DMA_ACK] = sched;
2066 t3c_handlers[CPL_ABORT_RPL_RSS] = sched;
2067 t3c_handlers[CPL_ABORT_RPL] = sched;
2068 t3c_handlers[CPL_PASS_OPEN_RPL] = sched;
2069 t3c_handlers[CPL_CLOSE_LISTSRV_RPL] = sched;
2070 t3c_handlers[CPL_PASS_ACCEPT_REQ] = sched;
2071 t3c_handlers[CPL_PASS_ESTABLISH] = sched;
2072 t3c_handlers[CPL_PEER_CLOSE] = sched;
2073 t3c_handlers[CPL_CLOSE_CON_RPL] = sched;
2074 t3c_handlers[CPL_ABORT_REQ_RSS] = sched;
2075 t3c_handlers[CPL_RDMA_TERMINATE] = sched;
2076 t3c_handlers[CPL_RDMA_EC_STATUS] = sched;
2077 t3c_handlers[CPL_SET_TCB_RPL] = set_tcb_rpl;
2078
2079 /*
2080 * These are the real handlers that are called from a
2081 * work queue.
2082 */
2083 work_handlers[CPL_ACT_ESTABLISH] = act_establish;
2084 work_handlers[CPL_ACT_OPEN_RPL] = act_open_rpl;
2085 work_handlers[CPL_RX_DATA] = rx_data;
2086 work_handlers[CPL_TX_DMA_ACK] = tx_ack;
2087 work_handlers[CPL_ABORT_RPL_RSS] = abort_rpl;
2088 work_handlers[CPL_ABORT_RPL] = abort_rpl;
2089 work_handlers[CPL_PASS_OPEN_RPL] = pass_open_rpl;
2090 work_handlers[CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl;
2091 work_handlers[CPL_PASS_ACCEPT_REQ] = pass_accept_req;
2092 work_handlers[CPL_PASS_ESTABLISH] = pass_establish;
2093 work_handlers[CPL_PEER_CLOSE] = peer_close;
2094 work_handlers[CPL_ABORT_REQ_RSS] = peer_abort;
2095 work_handlers[CPL_CLOSE_CON_RPL] = close_con_rpl;
2096 work_handlers[CPL_RDMA_TERMINATE] = terminate;
2097 work_handlers[CPL_RDMA_EC_STATUS] = ec_status;
2098 return 0;
2099 }
2100
2101 void __exit iwch_cm_term(void)
2102 {
2103 flush_workqueue(workq);
2104 destroy_workqueue(workq);
2105 }
This page took 0.075729 seconds and 5 git commands to generate.