power: supply: sbs-battery: simplify DT parsing
[deliverable/linux.git] / drivers / infiniband / hw / cxgb4 / t4.h
1 /*
2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 * - Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials
20 * provided with the distribution.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29 * SOFTWARE.
30 */
31 #ifndef __T4_H__
32 #define __T4_H__
33
34 #include "t4_hw.h"
35 #include "t4_regs.h"
36 #include "t4_values.h"
37 #include "t4_msg.h"
38 #include "t4fw_ri_api.h"
39
40 #define T4_MAX_NUM_PD 65536
41 #define T4_MAX_MR_SIZE (~0ULL)
42 #define T4_PAGESIZE_MASK 0xffff000 /* 4KB-128MB */
43 #define T4_STAG_UNSET 0xffffffff
44 #define T4_FW_MAJ 0
45 #define PCIE_MA_SYNC_A 0x30b4
46
47 struct t4_status_page {
48 __be32 rsvd1; /* flit 0 - hw owns */
49 __be16 rsvd2;
50 __be16 qid;
51 __be16 cidx;
52 __be16 pidx;
53 u8 qp_err; /* flit 1 - sw owns */
54 u8 db_off;
55 u8 pad;
56 u16 host_wq_pidx;
57 u16 host_cidx;
58 u16 host_pidx;
59 };
60
61 #define T4_EQ_ENTRY_SIZE 64
62
63 #define T4_SQ_NUM_SLOTS 5
64 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
65 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
66 sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
67 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
68 sizeof(struct fw_ri_immd)))
69 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
70 sizeof(struct fw_ri_rdma_write_wr) - \
71 sizeof(struct fw_ri_immd)))
72 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
73 sizeof(struct fw_ri_rdma_write_wr) - \
74 sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
75 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
76 sizeof(struct fw_ri_immd)) & ~31UL)
77 #define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
78 #define T4_MAX_FR_DSGL 1024
79 #define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
80
81 static inline int t4_max_fr_depth(int use_dsgl)
82 {
83 return use_dsgl ? T4_MAX_FR_DSGL_DEPTH : T4_MAX_FR_IMMD_DEPTH;
84 }
85
86 #define T4_RQ_NUM_SLOTS 2
87 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
88 #define T4_MAX_RECV_SGE 4
89
90 union t4_wr {
91 struct fw_ri_res_wr res;
92 struct fw_ri_wr ri;
93 struct fw_ri_rdma_write_wr write;
94 struct fw_ri_send_wr send;
95 struct fw_ri_rdma_read_wr read;
96 struct fw_ri_bind_mw_wr bind;
97 struct fw_ri_fr_nsmr_wr fr;
98 struct fw_ri_inv_lstag_wr inv;
99 struct t4_status_page status;
100 __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
101 };
102
103 union t4_recv_wr {
104 struct fw_ri_recv_wr recv;
105 struct t4_status_page status;
106 __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
107 };
108
109 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
110 enum fw_wr_opcodes opcode, u8 flags, u8 len16)
111 {
112 wqe->send.opcode = (u8)opcode;
113 wqe->send.flags = flags;
114 wqe->send.wrid = wrid;
115 wqe->send.r1[0] = 0;
116 wqe->send.r1[1] = 0;
117 wqe->send.r1[2] = 0;
118 wqe->send.len16 = len16;
119 }
120
121 /* CQE/AE status codes */
122 #define T4_ERR_SUCCESS 0x0
123 #define T4_ERR_STAG 0x1 /* STAG invalid: either the */
124 /* STAG is offlimt, being 0, */
125 /* or STAG_key mismatch */
126 #define T4_ERR_PDID 0x2 /* PDID mismatch */
127 #define T4_ERR_QPID 0x3 /* QPID mismatch */
128 #define T4_ERR_ACCESS 0x4 /* Invalid access right */
129 #define T4_ERR_WRAP 0x5 /* Wrap error */
130 #define T4_ERR_BOUND 0x6 /* base and bounds voilation */
131 #define T4_ERR_INVALIDATE_SHARED_MR 0x7 /* attempt to invalidate a */
132 /* shared memory region */
133 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8 /* attempt to invalidate a */
134 /* shared memory region */
135 #define T4_ERR_ECC 0x9 /* ECC error detected */
136 #define T4_ERR_ECC_PSTAG 0xA /* ECC error detected when */
137 /* reading PSTAG for a MW */
138 /* Invalidate */
139 #define T4_ERR_PBL_ADDR_BOUND 0xB /* pbl addr out of bounds: */
140 /* software error */
141 #define T4_ERR_SWFLUSH 0xC /* SW FLUSHED */
142 #define T4_ERR_CRC 0x10 /* CRC error */
143 #define T4_ERR_MARKER 0x11 /* Marker error */
144 #define T4_ERR_PDU_LEN_ERR 0x12 /* invalid PDU length */
145 #define T4_ERR_OUT_OF_RQE 0x13 /* out of RQE */
146 #define T4_ERR_DDP_VERSION 0x14 /* wrong DDP version */
147 #define T4_ERR_RDMA_VERSION 0x15 /* wrong RDMA version */
148 #define T4_ERR_OPCODE 0x16 /* invalid rdma opcode */
149 #define T4_ERR_DDP_QUEUE_NUM 0x17 /* invalid ddp queue number */
150 #define T4_ERR_MSN 0x18 /* MSN error */
151 #define T4_ERR_TBIT 0x19 /* tag bit not set correctly */
152 #define T4_ERR_MO 0x1A /* MO not 0 for TERMINATE */
153 /* or READ_REQ */
154 #define T4_ERR_MSN_GAP 0x1B
155 #define T4_ERR_MSN_RANGE 0x1C
156 #define T4_ERR_IRD_OVERFLOW 0x1D
157 #define T4_ERR_RQE_ADDR_BOUND 0x1E /* RQE addr out of bounds: */
158 /* software error */
159 #define T4_ERR_INTERNAL_ERR 0x1F /* internal error (opcode */
160 /* mismatch) */
161 /*
162 * CQE defs
163 */
164 struct t4_cqe {
165 __be32 header;
166 __be32 len;
167 union {
168 struct {
169 __be32 stag;
170 __be32 msn;
171 } rcqe;
172 struct {
173 u32 nada1;
174 u16 nada2;
175 u16 cidx;
176 } scqe;
177 struct {
178 __be32 wrid_hi;
179 __be32 wrid_low;
180 } gen;
181 } u;
182 __be64 reserved;
183 __be64 bits_type_ts;
184 };
185
186 /* macros for flit 0 of the cqe */
187
188 #define CQE_QPID_S 12
189 #define CQE_QPID_M 0xFFFFF
190 #define CQE_QPID_G(x) ((((x) >> CQE_QPID_S)) & CQE_QPID_M)
191 #define CQE_QPID_V(x) ((x)<<CQE_QPID_S)
192
193 #define CQE_SWCQE_S 11
194 #define CQE_SWCQE_M 0x1
195 #define CQE_SWCQE_G(x) ((((x) >> CQE_SWCQE_S)) & CQE_SWCQE_M)
196 #define CQE_SWCQE_V(x) ((x)<<CQE_SWCQE_S)
197
198 #define CQE_STATUS_S 5
199 #define CQE_STATUS_M 0x1F
200 #define CQE_STATUS_G(x) ((((x) >> CQE_STATUS_S)) & CQE_STATUS_M)
201 #define CQE_STATUS_V(x) ((x)<<CQE_STATUS_S)
202
203 #define CQE_TYPE_S 4
204 #define CQE_TYPE_M 0x1
205 #define CQE_TYPE_G(x) ((((x) >> CQE_TYPE_S)) & CQE_TYPE_M)
206 #define CQE_TYPE_V(x) ((x)<<CQE_TYPE_S)
207
208 #define CQE_OPCODE_S 0
209 #define CQE_OPCODE_M 0xF
210 #define CQE_OPCODE_G(x) ((((x) >> CQE_OPCODE_S)) & CQE_OPCODE_M)
211 #define CQE_OPCODE_V(x) ((x)<<CQE_OPCODE_S)
212
213 #define SW_CQE(x) (CQE_SWCQE_G(be32_to_cpu((x)->header)))
214 #define CQE_QPID(x) (CQE_QPID_G(be32_to_cpu((x)->header)))
215 #define CQE_TYPE(x) (CQE_TYPE_G(be32_to_cpu((x)->header)))
216 #define SQ_TYPE(x) (CQE_TYPE((x)))
217 #define RQ_TYPE(x) (!CQE_TYPE((x)))
218 #define CQE_STATUS(x) (CQE_STATUS_G(be32_to_cpu((x)->header)))
219 #define CQE_OPCODE(x) (CQE_OPCODE_G(be32_to_cpu((x)->header)))
220
221 #define CQE_SEND_OPCODE(x)( \
222 (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
223 (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
224 (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
225 (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
226
227 #define CQE_LEN(x) (be32_to_cpu((x)->len))
228
229 /* used for RQ completion processing */
230 #define CQE_WRID_STAG(x) (be32_to_cpu((x)->u.rcqe.stag))
231 #define CQE_WRID_MSN(x) (be32_to_cpu((x)->u.rcqe.msn))
232
233 /* used for SQ completion processing */
234 #define CQE_WRID_SQ_IDX(x) ((x)->u.scqe.cidx)
235
236 /* generic accessor macros */
237 #define CQE_WRID_HI(x) (be32_to_cpu((x)->u.gen.wrid_hi))
238 #define CQE_WRID_LOW(x) (be32_to_cpu((x)->u.gen.wrid_low))
239
240 /* macros for flit 3 of the cqe */
241 #define CQE_GENBIT_S 63
242 #define CQE_GENBIT_M 0x1
243 #define CQE_GENBIT_G(x) (((x) >> CQE_GENBIT_S) & CQE_GENBIT_M)
244 #define CQE_GENBIT_V(x) ((x)<<CQE_GENBIT_S)
245
246 #define CQE_OVFBIT_S 62
247 #define CQE_OVFBIT_M 0x1
248 #define CQE_OVFBIT_G(x) ((((x) >> CQE_OVFBIT_S)) & CQE_OVFBIT_M)
249
250 #define CQE_IQTYPE_S 60
251 #define CQE_IQTYPE_M 0x3
252 #define CQE_IQTYPE_G(x) ((((x) >> CQE_IQTYPE_S)) & CQE_IQTYPE_M)
253
254 #define CQE_TS_M 0x0fffffffffffffffULL
255 #define CQE_TS_G(x) ((x) & CQE_TS_M)
256
257 #define CQE_OVFBIT(x) ((unsigned)CQE_OVFBIT_G(be64_to_cpu((x)->bits_type_ts)))
258 #define CQE_GENBIT(x) ((unsigned)CQE_GENBIT_G(be64_to_cpu((x)->bits_type_ts)))
259 #define CQE_TS(x) (CQE_TS_G(be64_to_cpu((x)->bits_type_ts)))
260
261 struct t4_swsqe {
262 u64 wr_id;
263 struct t4_cqe cqe;
264 int read_len;
265 int opcode;
266 int complete;
267 int signaled;
268 u16 idx;
269 int flushed;
270 struct timespec host_ts;
271 u64 sge_ts;
272 };
273
274 static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
275 {
276 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
277 return pgprot_writecombine(prot);
278 #else
279 return pgprot_noncached(prot);
280 #endif
281 }
282
283 enum {
284 T4_SQ_ONCHIP = (1<<0),
285 };
286
287 struct t4_sq {
288 union t4_wr *queue;
289 dma_addr_t dma_addr;
290 DEFINE_DMA_UNMAP_ADDR(mapping);
291 unsigned long phys_addr;
292 struct t4_swsqe *sw_sq;
293 struct t4_swsqe *oldest_read;
294 void __iomem *bar2_va;
295 u64 bar2_pa;
296 size_t memsize;
297 u32 bar2_qid;
298 u32 qid;
299 u16 in_use;
300 u16 size;
301 u16 cidx;
302 u16 pidx;
303 u16 wq_pidx;
304 u16 wq_pidx_inc;
305 u16 flags;
306 short flush_cidx;
307 };
308
309 struct t4_swrqe {
310 u64 wr_id;
311 struct timespec host_ts;
312 u64 sge_ts;
313 };
314
315 struct t4_rq {
316 union t4_recv_wr *queue;
317 dma_addr_t dma_addr;
318 DEFINE_DMA_UNMAP_ADDR(mapping);
319 struct t4_swrqe *sw_rq;
320 void __iomem *bar2_va;
321 u64 bar2_pa;
322 size_t memsize;
323 u32 bar2_qid;
324 u32 qid;
325 u32 msn;
326 u32 rqt_hwaddr;
327 u16 rqt_size;
328 u16 in_use;
329 u16 size;
330 u16 cidx;
331 u16 pidx;
332 u16 wq_pidx;
333 u16 wq_pidx_inc;
334 };
335
336 struct t4_wq {
337 struct t4_sq sq;
338 struct t4_rq rq;
339 void __iomem *db;
340 struct c4iw_rdev *rdev;
341 int flushed;
342 };
343
344 static inline int t4_rqes_posted(struct t4_wq *wq)
345 {
346 return wq->rq.in_use;
347 }
348
349 static inline int t4_rq_empty(struct t4_wq *wq)
350 {
351 return wq->rq.in_use == 0;
352 }
353
354 static inline int t4_rq_full(struct t4_wq *wq)
355 {
356 return wq->rq.in_use == (wq->rq.size - 1);
357 }
358
359 static inline u32 t4_rq_avail(struct t4_wq *wq)
360 {
361 return wq->rq.size - 1 - wq->rq.in_use;
362 }
363
364 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
365 {
366 wq->rq.in_use++;
367 if (++wq->rq.pidx == wq->rq.size)
368 wq->rq.pidx = 0;
369 wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
370 if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
371 wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
372 }
373
374 static inline void t4_rq_consume(struct t4_wq *wq)
375 {
376 wq->rq.in_use--;
377 wq->rq.msn++;
378 if (++wq->rq.cidx == wq->rq.size)
379 wq->rq.cidx = 0;
380 }
381
382 static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
383 {
384 return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
385 }
386
387 static inline u16 t4_rq_wq_size(struct t4_wq *wq)
388 {
389 return wq->rq.size * T4_RQ_NUM_SLOTS;
390 }
391
392 static inline int t4_sq_onchip(struct t4_sq *sq)
393 {
394 return sq->flags & T4_SQ_ONCHIP;
395 }
396
397 static inline int t4_sq_empty(struct t4_wq *wq)
398 {
399 return wq->sq.in_use == 0;
400 }
401
402 static inline int t4_sq_full(struct t4_wq *wq)
403 {
404 return wq->sq.in_use == (wq->sq.size - 1);
405 }
406
407 static inline u32 t4_sq_avail(struct t4_wq *wq)
408 {
409 return wq->sq.size - 1 - wq->sq.in_use;
410 }
411
412 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
413 {
414 wq->sq.in_use++;
415 if (++wq->sq.pidx == wq->sq.size)
416 wq->sq.pidx = 0;
417 wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
418 if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
419 wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
420 }
421
422 static inline void t4_sq_consume(struct t4_wq *wq)
423 {
424 BUG_ON(wq->sq.in_use < 1);
425 if (wq->sq.cidx == wq->sq.flush_cidx)
426 wq->sq.flush_cidx = -1;
427 wq->sq.in_use--;
428 if (++wq->sq.cidx == wq->sq.size)
429 wq->sq.cidx = 0;
430 }
431
432 static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
433 {
434 return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
435 }
436
437 static inline u16 t4_sq_wq_size(struct t4_wq *wq)
438 {
439 return wq->sq.size * T4_SQ_NUM_SLOTS;
440 }
441
442 /* This function copies 64 byte coalesced work request to memory
443 * mapped BAR2 space. For coalesced WRs, the SGE fetches data
444 * from the FIFO instead of from Host.
445 */
446 static inline void pio_copy(u64 __iomem *dst, u64 *src)
447 {
448 int count = 8;
449
450 while (count) {
451 writeq(*src, dst);
452 src++;
453 dst++;
454 count--;
455 }
456 }
457
458 static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc, union t4_wr *wqe)
459 {
460
461 /* Flush host queue memory writes. */
462 wmb();
463 if (wq->sq.bar2_va) {
464 if (inc == 1 && wq->sq.bar2_qid == 0 && wqe) {
465 PDBG("%s: WC wq->sq.pidx = %d\n",
466 __func__, wq->sq.pidx);
467 pio_copy((u64 __iomem *)
468 (wq->sq.bar2_va + SGE_UDB_WCDOORBELL),
469 (u64 *)wqe);
470 } else {
471 PDBG("%s: DB wq->sq.pidx = %d\n",
472 __func__, wq->sq.pidx);
473 writel(PIDX_T5_V(inc) | QID_V(wq->sq.bar2_qid),
474 wq->sq.bar2_va + SGE_UDB_KDOORBELL);
475 }
476
477 /* Flush user doorbell area writes. */
478 wmb();
479 return;
480 }
481 writel(QID_V(wq->sq.qid) | PIDX_V(inc), wq->db);
482 }
483
484 static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc,
485 union t4_recv_wr *wqe)
486 {
487
488 /* Flush host queue memory writes. */
489 wmb();
490 if (wq->rq.bar2_va) {
491 if (inc == 1 && wq->rq.bar2_qid == 0 && wqe) {
492 PDBG("%s: WC wq->rq.pidx = %d\n",
493 __func__, wq->rq.pidx);
494 pio_copy((u64 __iomem *)
495 (wq->rq.bar2_va + SGE_UDB_WCDOORBELL),
496 (void *)wqe);
497 } else {
498 PDBG("%s: DB wq->rq.pidx = %d\n",
499 __func__, wq->rq.pidx);
500 writel(PIDX_T5_V(inc) | QID_V(wq->rq.bar2_qid),
501 wq->rq.bar2_va + SGE_UDB_KDOORBELL);
502 }
503
504 /* Flush user doorbell area writes. */
505 wmb();
506 return;
507 }
508 writel(QID_V(wq->rq.qid) | PIDX_V(inc), wq->db);
509 }
510
511 static inline int t4_wq_in_error(struct t4_wq *wq)
512 {
513 return wq->rq.queue[wq->rq.size].status.qp_err;
514 }
515
516 static inline void t4_set_wq_in_error(struct t4_wq *wq)
517 {
518 wq->rq.queue[wq->rq.size].status.qp_err = 1;
519 }
520
521 static inline void t4_disable_wq_db(struct t4_wq *wq)
522 {
523 wq->rq.queue[wq->rq.size].status.db_off = 1;
524 }
525
526 static inline void t4_enable_wq_db(struct t4_wq *wq)
527 {
528 wq->rq.queue[wq->rq.size].status.db_off = 0;
529 }
530
531 static inline int t4_wq_db_enabled(struct t4_wq *wq)
532 {
533 return !wq->rq.queue[wq->rq.size].status.db_off;
534 }
535
536 enum t4_cq_flags {
537 CQ_ARMED = 1,
538 };
539
540 struct t4_cq {
541 struct t4_cqe *queue;
542 dma_addr_t dma_addr;
543 DEFINE_DMA_UNMAP_ADDR(mapping);
544 struct t4_cqe *sw_queue;
545 void __iomem *gts;
546 void __iomem *bar2_va;
547 u64 bar2_pa;
548 u32 bar2_qid;
549 struct c4iw_rdev *rdev;
550 size_t memsize;
551 __be64 bits_type_ts;
552 u32 cqid;
553 u32 qid_mask;
554 int vector;
555 u16 size; /* including status page */
556 u16 cidx;
557 u16 sw_pidx;
558 u16 sw_cidx;
559 u16 sw_in_use;
560 u16 cidx_inc;
561 u8 gen;
562 u8 error;
563 unsigned long flags;
564 };
565
566 static inline void write_gts(struct t4_cq *cq, u32 val)
567 {
568 if (cq->bar2_va)
569 writel(val | INGRESSQID_V(cq->bar2_qid),
570 cq->bar2_va + SGE_UDB_GTS);
571 else
572 writel(val | INGRESSQID_V(cq->cqid), cq->gts);
573 }
574
575 static inline int t4_clear_cq_armed(struct t4_cq *cq)
576 {
577 return test_and_clear_bit(CQ_ARMED, &cq->flags);
578 }
579
580 static inline int t4_arm_cq(struct t4_cq *cq, int se)
581 {
582 u32 val;
583
584 set_bit(CQ_ARMED, &cq->flags);
585 while (cq->cidx_inc > CIDXINC_M) {
586 val = SEINTARM_V(0) | CIDXINC_V(CIDXINC_M) | TIMERREG_V(7);
587 write_gts(cq, val);
588 cq->cidx_inc -= CIDXINC_M;
589 }
590 val = SEINTARM_V(se) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(6);
591 write_gts(cq, val);
592 cq->cidx_inc = 0;
593 return 0;
594 }
595
596 static inline void t4_swcq_produce(struct t4_cq *cq)
597 {
598 cq->sw_in_use++;
599 if (cq->sw_in_use == cq->size) {
600 PDBG("%s cxgb4 sw cq overflow cqid %u\n", __func__, cq->cqid);
601 cq->error = 1;
602 BUG_ON(1);
603 }
604 if (++cq->sw_pidx == cq->size)
605 cq->sw_pidx = 0;
606 }
607
608 static inline void t4_swcq_consume(struct t4_cq *cq)
609 {
610 BUG_ON(cq->sw_in_use < 1);
611 cq->sw_in_use--;
612 if (++cq->sw_cidx == cq->size)
613 cq->sw_cidx = 0;
614 }
615
616 static inline void t4_hwcq_consume(struct t4_cq *cq)
617 {
618 cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
619 if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == CIDXINC_M) {
620 u32 val;
621
622 val = SEINTARM_V(0) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(7);
623 write_gts(cq, val);
624 cq->cidx_inc = 0;
625 }
626 if (++cq->cidx == cq->size) {
627 cq->cidx = 0;
628 cq->gen ^= 1;
629 }
630 }
631
632 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
633 {
634 return (CQE_GENBIT(cqe) == cq->gen);
635 }
636
637 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
638 {
639 int ret;
640 u16 prev_cidx;
641
642 if (cq->cidx == 0)
643 prev_cidx = cq->size - 1;
644 else
645 prev_cidx = cq->cidx - 1;
646
647 if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
648 ret = -EOVERFLOW;
649 cq->error = 1;
650 printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
651 BUG_ON(1);
652 } else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
653
654 /* Ensure CQE is flushed to memory */
655 rmb();
656 *cqe = &cq->queue[cq->cidx];
657 ret = 0;
658 } else
659 ret = -ENODATA;
660 return ret;
661 }
662
663 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
664 {
665 if (cq->sw_in_use == cq->size) {
666 PDBG("%s cxgb4 sw cq overflow cqid %u\n", __func__, cq->cqid);
667 cq->error = 1;
668 BUG_ON(1);
669 return NULL;
670 }
671 if (cq->sw_in_use)
672 return &cq->sw_queue[cq->sw_cidx];
673 return NULL;
674 }
675
676 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
677 {
678 int ret = 0;
679
680 if (cq->error)
681 ret = -ENODATA;
682 else if (cq->sw_in_use)
683 *cqe = &cq->sw_queue[cq->sw_cidx];
684 else
685 ret = t4_next_hw_cqe(cq, cqe);
686 return ret;
687 }
688
689 static inline int t4_cq_in_error(struct t4_cq *cq)
690 {
691 return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
692 }
693
694 static inline void t4_set_cq_in_error(struct t4_cq *cq)
695 {
696 ((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
697 }
698 #endif
699
700 struct t4_dev_status_page {
701 u8 db_off;
702 u8 pad1;
703 u16 pad2;
704 u32 pad3;
705 u64 qp_start;
706 u64 qp_size;
707 u64 cq_start;
708 u64 cq_size;
709 };
This page took 0.061492 seconds and 5 git commands to generate.