Merge branch 'dmi/master'
[deliverable/linux.git] / drivers / infiniband / hw / hfi1 / chip.c
1 /*
2 * Copyright(c) 2015, 2016 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 /*
49 * This file contains all of the code that is specific to the HFI chip
50 */
51
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67
68 #define NUM_IB_PORTS 1
69
70 uint kdeth_qp;
71 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
72 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
73
74 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
75 module_param(num_vls, uint, S_IRUGO);
76 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
77
78 /*
79 * Default time to aggregate two 10K packets from the idle state
80 * (timer not running). The timer starts at the end of the first packet,
81 * so only the time for one 10K packet and header plus a bit extra is needed.
82 * 10 * 1024 + 64 header byte = 10304 byte
83 * 10304 byte / 12.5 GB/s = 824.32ns
84 */
85 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
86 module_param(rcv_intr_timeout, uint, S_IRUGO);
87 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
88
89 uint rcv_intr_count = 16; /* same as qib */
90 module_param(rcv_intr_count, uint, S_IRUGO);
91 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
92
93 ushort link_crc_mask = SUPPORTED_CRCS;
94 module_param(link_crc_mask, ushort, S_IRUGO);
95 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
96
97 uint loopback;
98 module_param_named(loopback, loopback, uint, S_IRUGO);
99 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
100
101 /* Other driver tunables */
102 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
103 static ushort crc_14b_sideband = 1;
104 static uint use_flr = 1;
105 uint quick_linkup; /* skip LNI */
106
107 struct flag_table {
108 u64 flag; /* the flag */
109 char *str; /* description string */
110 u16 extra; /* extra information */
111 u16 unused0;
112 u32 unused1;
113 };
114
115 /* str must be a string constant */
116 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
117 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
118
119 /* Send Error Consequences */
120 #define SEC_WRITE_DROPPED 0x1
121 #define SEC_PACKET_DROPPED 0x2
122 #define SEC_SC_HALTED 0x4 /* per-context only */
123 #define SEC_SPC_FREEZE 0x8 /* per-HFI only */
124
125 #define DEFAULT_KRCVQS 2
126 #define MIN_KERNEL_KCTXTS 2
127 #define FIRST_KERNEL_KCTXT 1
128 /* sizes for both the QP and RSM map tables */
129 #define NUM_MAP_ENTRIES 256
130 #define NUM_MAP_REGS 32
131
132 /* Bit offset into the GUID which carries HFI id information */
133 #define GUID_HFI_INDEX_SHIFT 39
134
135 /* extract the emulation revision */
136 #define emulator_rev(dd) ((dd)->irev >> 8)
137 /* parallel and serial emulation versions are 3 and 4 respectively */
138 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
139 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
140
141 /* RSM fields */
142
143 /* packet type */
144 #define IB_PACKET_TYPE 2ull
145 #define QW_SHIFT 6ull
146 /* QPN[7..1] */
147 #define QPN_WIDTH 7ull
148
149 /* LRH.BTH: QW 0, OFFSET 48 - for match */
150 #define LRH_BTH_QW 0ull
151 #define LRH_BTH_BIT_OFFSET 48ull
152 #define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off))
153 #define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
154 #define LRH_BTH_SELECT
155 #define LRH_BTH_MASK 3ull
156 #define LRH_BTH_VALUE 2ull
157
158 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
159 #define LRH_SC_QW 0ull
160 #define LRH_SC_BIT_OFFSET 56ull
161 #define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off))
162 #define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
163 #define LRH_SC_MASK 128ull
164 #define LRH_SC_VALUE 0ull
165
166 /* SC[n..0] QW 0, OFFSET 60 - for select */
167 #define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull))
168
169 /* QPN[m+n:1] QW 1, OFFSET 1 */
170 #define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull))
171
172 /* defines to build power on SC2VL table */
173 #define SC2VL_VAL( \
174 num, \
175 sc0, sc0val, \
176 sc1, sc1val, \
177 sc2, sc2val, \
178 sc3, sc3val, \
179 sc4, sc4val, \
180 sc5, sc5val, \
181 sc6, sc6val, \
182 sc7, sc7val) \
183 ( \
184 ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
185 ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
186 ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
187 ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
188 ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
189 ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
190 ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
191 ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \
192 )
193
194 #define DC_SC_VL_VAL( \
195 range, \
196 e0, e0val, \
197 e1, e1val, \
198 e2, e2val, \
199 e3, e3val, \
200 e4, e4val, \
201 e5, e5val, \
202 e6, e6val, \
203 e7, e7val, \
204 e8, e8val, \
205 e9, e9val, \
206 e10, e10val, \
207 e11, e11val, \
208 e12, e12val, \
209 e13, e13val, \
210 e14, e14val, \
211 e15, e15val) \
212 ( \
213 ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
214 ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
215 ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
216 ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
217 ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
218 ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
219 ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
220 ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
221 ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
222 ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
223 ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
224 ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
225 ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
226 ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
227 ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
228 ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
229 )
230
231 /* all CceStatus sub-block freeze bits */
232 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
233 | CCE_STATUS_RXE_FROZE_SMASK \
234 | CCE_STATUS_TXE_FROZE_SMASK \
235 | CCE_STATUS_TXE_PIO_FROZE_SMASK)
236 /* all CceStatus sub-block TXE pause bits */
237 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
238 | CCE_STATUS_TXE_PAUSED_SMASK \
239 | CCE_STATUS_SDMA_PAUSED_SMASK)
240 /* all CceStatus sub-block RXE pause bits */
241 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
242
243 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
244 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
245
246 /*
247 * CCE Error flags.
248 */
249 static struct flag_table cce_err_status_flags[] = {
250 /* 0*/ FLAG_ENTRY0("CceCsrParityErr",
251 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
252 /* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr",
253 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
254 /* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr",
255 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
256 /* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
257 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
258 /* 4*/ FLAG_ENTRY0("CceTrgtAccessErr",
259 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
260 /* 5*/ FLAG_ENTRY0("CceRspdDataParityErr",
261 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
262 /* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
263 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
264 /* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr",
265 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
266 /* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
267 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
268 /* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
269 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
270 /*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
271 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
272 /*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
273 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
274 /*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
275 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
276 /*13*/ FLAG_ENTRY0("PcicRetryMemCorErr",
277 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
278 /*14*/ FLAG_ENTRY0("PcicRetryMemCorErr",
279 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
280 /*15*/ FLAG_ENTRY0("PcicPostHdQCorErr",
281 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
282 /*16*/ FLAG_ENTRY0("PcicPostHdQCorErr",
283 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
284 /*17*/ FLAG_ENTRY0("PcicPostHdQCorErr",
285 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
286 /*18*/ FLAG_ENTRY0("PcicCplDatQCorErr",
287 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
288 /*19*/ FLAG_ENTRY0("PcicNPostHQParityErr",
289 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
290 /*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr",
291 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
292 /*21*/ FLAG_ENTRY0("PcicRetryMemUncErr",
293 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
294 /*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr",
295 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
296 /*23*/ FLAG_ENTRY0("PcicPostHdQUncErr",
297 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
298 /*24*/ FLAG_ENTRY0("PcicPostDatQUncErr",
299 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
300 /*25*/ FLAG_ENTRY0("PcicCplHdQUncErr",
301 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
302 /*26*/ FLAG_ENTRY0("PcicCplDatQUncErr",
303 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
304 /*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr",
305 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
306 /*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr",
307 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
308 /*29*/ FLAG_ENTRY0("PcicReceiveParityErr",
309 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
310 /*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr",
311 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
312 /*31*/ FLAG_ENTRY0("LATriggered",
313 CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
314 /*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr",
315 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
316 /*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr",
317 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
318 /*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
319 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
320 /*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
321 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
322 /*36*/ FLAG_ENTRY0("CceMsixTableCorErr",
323 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
324 /*37*/ FLAG_ENTRY0("CceMsixTableUncErr",
325 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
326 /*38*/ FLAG_ENTRY0("CceIntMapCorErr",
327 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
328 /*39*/ FLAG_ENTRY0("CceIntMapUncErr",
329 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
330 /*40*/ FLAG_ENTRY0("CceMsixCsrParityErr",
331 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
332 /*41-63 reserved*/
333 };
334
335 /*
336 * Misc Error flags
337 */
338 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
339 static struct flag_table misc_err_status_flags[] = {
340 /* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
341 /* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
342 /* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
343 /* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
344 /* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
345 /* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
346 /* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
347 /* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
348 /* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
349 /* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
350 /*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
351 /*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
352 /*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
353 };
354
355 /*
356 * TXE PIO Error flags and consequences
357 */
358 static struct flag_table pio_err_status_flags[] = {
359 /* 0*/ FLAG_ENTRY("PioWriteBadCtxt",
360 SEC_WRITE_DROPPED,
361 SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
362 /* 1*/ FLAG_ENTRY("PioWriteAddrParity",
363 SEC_SPC_FREEZE,
364 SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
365 /* 2*/ FLAG_ENTRY("PioCsrParity",
366 SEC_SPC_FREEZE,
367 SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
368 /* 3*/ FLAG_ENTRY("PioSbMemFifo0",
369 SEC_SPC_FREEZE,
370 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
371 /* 4*/ FLAG_ENTRY("PioSbMemFifo1",
372 SEC_SPC_FREEZE,
373 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
374 /* 5*/ FLAG_ENTRY("PioPccFifoParity",
375 SEC_SPC_FREEZE,
376 SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
377 /* 6*/ FLAG_ENTRY("PioPecFifoParity",
378 SEC_SPC_FREEZE,
379 SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
380 /* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity",
381 SEC_SPC_FREEZE,
382 SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
383 /* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
384 SEC_SPC_FREEZE,
385 SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
386 /* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr",
387 SEC_SPC_FREEZE,
388 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
389 /*10*/ FLAG_ENTRY("PioSmPktResetParity",
390 SEC_SPC_FREEZE,
391 SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
392 /*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc",
393 SEC_SPC_FREEZE,
394 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
395 /*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc",
396 SEC_SPC_FREEZE,
397 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
398 /*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor",
399 0,
400 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
401 /*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor",
402 0,
403 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
404 /*15*/ FLAG_ENTRY("PioCreditRetFifoParity",
405 SEC_SPC_FREEZE,
406 SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
407 /*16*/ FLAG_ENTRY("PioPpmcPblFifo",
408 SEC_SPC_FREEZE,
409 SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
410 /*17*/ FLAG_ENTRY("PioInitSmIn",
411 0,
412 SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
413 /*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm",
414 SEC_SPC_FREEZE,
415 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
416 /*19*/ FLAG_ENTRY("PioHostAddrMemUnc",
417 SEC_SPC_FREEZE,
418 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
419 /*20*/ FLAG_ENTRY("PioHostAddrMemCor",
420 0,
421 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
422 /*21*/ FLAG_ENTRY("PioWriteDataParity",
423 SEC_SPC_FREEZE,
424 SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
425 /*22*/ FLAG_ENTRY("PioStateMachine",
426 SEC_SPC_FREEZE,
427 SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
428 /*23*/ FLAG_ENTRY("PioWriteQwValidParity",
429 SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
430 SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
431 /*24*/ FLAG_ENTRY("PioBlockQwCountParity",
432 SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
433 SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
434 /*25*/ FLAG_ENTRY("PioVlfVlLenParity",
435 SEC_SPC_FREEZE,
436 SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
437 /*26*/ FLAG_ENTRY("PioVlfSopParity",
438 SEC_SPC_FREEZE,
439 SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
440 /*27*/ FLAG_ENTRY("PioVlFifoParity",
441 SEC_SPC_FREEZE,
442 SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
443 /*28*/ FLAG_ENTRY("PioPpmcBqcMemParity",
444 SEC_SPC_FREEZE,
445 SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
446 /*29*/ FLAG_ENTRY("PioPpmcSopLen",
447 SEC_SPC_FREEZE,
448 SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
449 /*30-31 reserved*/
450 /*32*/ FLAG_ENTRY("PioCurrentFreeCntParity",
451 SEC_SPC_FREEZE,
452 SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
453 /*33*/ FLAG_ENTRY("PioLastReturnedCntParity",
454 SEC_SPC_FREEZE,
455 SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
456 /*34*/ FLAG_ENTRY("PioPccSopHeadParity",
457 SEC_SPC_FREEZE,
458 SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
459 /*35*/ FLAG_ENTRY("PioPecSopHeadParityErr",
460 SEC_SPC_FREEZE,
461 SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
462 /*36-63 reserved*/
463 };
464
465 /* TXE PIO errors that cause an SPC freeze */
466 #define ALL_PIO_FREEZE_ERR \
467 (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
468 | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
469 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
470 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
471 | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
472 | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
473 | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
474 | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
475 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
476 | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
477 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
478 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
479 | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
480 | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
481 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
482 | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
483 | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
484 | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
485 | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
486 | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
487 | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
488 | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
489 | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
490 | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
491 | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
492 | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
493 | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
494 | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
495 | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
496
497 /*
498 * TXE SDMA Error flags
499 */
500 static struct flag_table sdma_err_status_flags[] = {
501 /* 0*/ FLAG_ENTRY0("SDmaRpyTagErr",
502 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
503 /* 1*/ FLAG_ENTRY0("SDmaCsrParityErr",
504 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
505 /* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
506 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
507 /* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
508 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
509 /*04-63 reserved*/
510 };
511
512 /* TXE SDMA errors that cause an SPC freeze */
513 #define ALL_SDMA_FREEZE_ERR \
514 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
515 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
516 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
517
518 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
519 #define PORT_DISCARD_EGRESS_ERRS \
520 (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
521 | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
522 | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
523
524 /*
525 * TXE Egress Error flags
526 */
527 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
528 static struct flag_table egress_err_status_flags[] = {
529 /* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
530 /* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
531 /* 2 reserved */
532 /* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
533 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
534 /* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
535 /* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
536 /* 6 reserved */
537 /* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr",
538 SEES(TX_PIO_LAUNCH_INTF_PARITY)),
539 /* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
540 SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
541 /* 9-10 reserved */
542 /*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
543 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
544 /*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
545 /*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
546 /*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
547 /*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
548 /*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
549 SEES(TX_SDMA0_DISALLOWED_PACKET)),
550 /*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
551 SEES(TX_SDMA1_DISALLOWED_PACKET)),
552 /*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
553 SEES(TX_SDMA2_DISALLOWED_PACKET)),
554 /*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
555 SEES(TX_SDMA3_DISALLOWED_PACKET)),
556 /*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
557 SEES(TX_SDMA4_DISALLOWED_PACKET)),
558 /*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
559 SEES(TX_SDMA5_DISALLOWED_PACKET)),
560 /*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
561 SEES(TX_SDMA6_DISALLOWED_PACKET)),
562 /*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
563 SEES(TX_SDMA7_DISALLOWED_PACKET)),
564 /*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
565 SEES(TX_SDMA8_DISALLOWED_PACKET)),
566 /*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
567 SEES(TX_SDMA9_DISALLOWED_PACKET)),
568 /*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
569 SEES(TX_SDMA10_DISALLOWED_PACKET)),
570 /*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
571 SEES(TX_SDMA11_DISALLOWED_PACKET)),
572 /*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
573 SEES(TX_SDMA12_DISALLOWED_PACKET)),
574 /*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
575 SEES(TX_SDMA13_DISALLOWED_PACKET)),
576 /*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
577 SEES(TX_SDMA14_DISALLOWED_PACKET)),
578 /*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
579 SEES(TX_SDMA15_DISALLOWED_PACKET)),
580 /*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
581 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
582 /*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
583 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
584 /*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
585 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
586 /*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
587 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
588 /*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
589 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
590 /*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
591 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
592 /*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
593 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
594 /*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
595 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
596 /*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
597 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
598 /*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
599 /*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
600 /*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
601 /*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
602 /*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
603 /*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
604 /*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
605 /*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
606 /*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
607 /*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
608 /*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
609 /*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
610 /*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
611 /*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
612 /*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
613 /*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
614 /*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
615 /*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
616 /*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
617 /*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
618 /*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
619 /*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
620 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
621 /*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
622 SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
623 };
624
625 /*
626 * TXE Egress Error Info flags
627 */
628 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
629 static struct flag_table egress_err_info_flags[] = {
630 /* 0*/ FLAG_ENTRY0("Reserved", 0ull),
631 /* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)),
632 /* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
633 /* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
634 /* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
635 /* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
636 /* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
637 /* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
638 /* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)),
639 /* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
640 /*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)),
641 /*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
642 /*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
643 /*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
644 /*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
645 /*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
646 /*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
647 /*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
648 /*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
649 /*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
650 /*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
651 /*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
652 };
653
654 /* TXE Egress errors that cause an SPC freeze */
655 #define ALL_TXE_EGRESS_FREEZE_ERR \
656 (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
657 | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
658 | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
659 | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
660 | SEES(TX_LAUNCH_CSR_PARITY) \
661 | SEES(TX_SBRD_CTL_CSR_PARITY) \
662 | SEES(TX_CONFIG_PARITY) \
663 | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
664 | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
665 | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
666 | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
667 | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
668 | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
669 | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
670 | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
671 | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
672 | SEES(TX_CREDIT_RETURN_PARITY))
673
674 /*
675 * TXE Send error flags
676 */
677 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
678 static struct flag_table send_err_status_flags[] = {
679 /* 0*/ FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
680 /* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
681 /* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
682 };
683
684 /*
685 * TXE Send Context Error flags and consequences
686 */
687 static struct flag_table sc_err_status_flags[] = {
688 /* 0*/ FLAG_ENTRY("InconsistentSop",
689 SEC_PACKET_DROPPED | SEC_SC_HALTED,
690 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
691 /* 1*/ FLAG_ENTRY("DisallowedPacket",
692 SEC_PACKET_DROPPED | SEC_SC_HALTED,
693 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
694 /* 2*/ FLAG_ENTRY("WriteCrossesBoundary",
695 SEC_WRITE_DROPPED | SEC_SC_HALTED,
696 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
697 /* 3*/ FLAG_ENTRY("WriteOverflow",
698 SEC_WRITE_DROPPED | SEC_SC_HALTED,
699 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
700 /* 4*/ FLAG_ENTRY("WriteOutOfBounds",
701 SEC_WRITE_DROPPED | SEC_SC_HALTED,
702 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
703 /* 5-63 reserved*/
704 };
705
706 /*
707 * RXE Receive Error flags
708 */
709 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
710 static struct flag_table rxe_err_status_flags[] = {
711 /* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
712 /* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
713 /* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
714 /* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
715 /* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
716 /* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
717 /* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
718 /* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
719 /* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
720 /* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
721 /*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
722 /*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
723 /*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
724 /*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
725 /*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
726 /*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
727 /*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
728 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
729 /*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
730 /*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
731 /*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr",
732 RXES(RBUF_BLOCK_LIST_READ_UNC)),
733 /*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr",
734 RXES(RBUF_BLOCK_LIST_READ_COR)),
735 /*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
736 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
737 /*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
738 RXES(RBUF_CSR_QENT_CNT_PARITY)),
739 /*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
740 RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
741 /*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
742 RXES(RBUF_CSR_QVLD_BIT_PARITY)),
743 /*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
744 /*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
745 /*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
746 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
747 /*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
748 /*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
749 /*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
750 /*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
751 /*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
752 /*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
753 /*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
754 /*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
755 RXES(RBUF_FL_INITDONE_PARITY)),
756 /*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
757 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
758 /*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
759 /*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
760 /*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
761 /*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
762 RXES(LOOKUP_DES_PART1_UNC_COR)),
763 /*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr",
764 RXES(LOOKUP_DES_PART2_PARITY)),
765 /*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
766 /*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
767 /*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
768 /*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
769 /*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
770 /*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
771 /*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
772 /*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
773 /*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
774 /*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
775 /*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
776 /*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
777 /*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
778 /*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
779 /*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
780 /*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
781 /*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
782 /*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
783 /*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
784 /*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
785 /*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
786 /*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
787 };
788
789 /* RXE errors that will trigger an SPC freeze */
790 #define ALL_RXE_FREEZE_ERR \
791 (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
792 | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
793 | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
794 | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
795 | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
796 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
797 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
798 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
799 | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
800 | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
801 | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
802 | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
803 | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
804 | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
805 | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
806 | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
807 | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
808 | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
809 | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
810 | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
811 | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
812 | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
813 | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
814 | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
815 | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
816 | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
817 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
818 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
819 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
820 | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
821 | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
822 | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
823 | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
824 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
825 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
826 | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
827 | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
828 | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
829 | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
830 | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
831 | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
832 | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
833 | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
834 | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
835
836 #define RXE_FREEZE_ABORT_MASK \
837 (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
838 RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
839 RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
840
841 /*
842 * DCC Error Flags
843 */
844 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
845 static struct flag_table dcc_err_flags[] = {
846 FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
847 FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
848 FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
849 FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
850 FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
851 FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
852 FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
853 FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
854 FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
855 FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
856 FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
857 FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
858 FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
859 FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
860 FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
861 FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
862 FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
863 FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
864 FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
865 FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
866 FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
867 FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
868 FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
869 FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
870 FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
871 FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
872 FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
873 FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
874 FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
875 FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
876 FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
877 FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
878 FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
879 FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
880 FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
881 FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
882 FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
883 FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
884 FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
885 FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
886 FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
887 FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
888 FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
889 FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
890 FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
891 FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
892 };
893
894 /*
895 * LCB error flags
896 */
897 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
898 static struct flag_table lcb_err_flags[] = {
899 /* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
900 /* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
901 /* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
902 /* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
903 LCBE(ALL_LNS_FAILED_REINIT_TEST)),
904 /* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
905 /* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
906 /* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
907 /* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
908 /* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
909 /* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
910 /*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
911 /*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
912 /*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
913 /*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
914 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
915 /*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
916 /*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
917 /*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
918 /*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
919 /*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
920 /*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
921 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
922 /*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
923 /*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
924 /*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
925 /*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
926 /*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
927 /*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
928 /*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
929 LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
930 /*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
931 /*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
932 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
933 /*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
934 LCBE(REDUNDANT_FLIT_PARITY_ERR))
935 };
936
937 /*
938 * DC8051 Error Flags
939 */
940 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
941 static struct flag_table dc8051_err_flags[] = {
942 FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
943 FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
944 FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
945 FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
946 FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
947 FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
948 FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
949 FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
950 FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
951 D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
952 FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
953 };
954
955 /*
956 * DC8051 Information Error flags
957 *
958 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
959 */
960 static struct flag_table dc8051_info_err_flags[] = {
961 FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED),
962 FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME),
963 FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET),
964 FLAG_ENTRY0("Serdes internal loopback failure",
965 FAILED_SERDES_INTERNAL_LOOPBACK),
966 FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT),
967 FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING),
968 FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE),
969 FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM),
970 FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ),
971 FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
972 FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
973 FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT),
974 FLAG_ENTRY0("Host Handshake Timeout", HOST_HANDSHAKE_TIMEOUT)
975 };
976
977 /*
978 * DC8051 Information Host Information flags
979 *
980 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
981 */
982 static struct flag_table dc8051_info_host_msg_flags[] = {
983 FLAG_ENTRY0("Host request done", 0x0001),
984 FLAG_ENTRY0("BC SMA message", 0x0002),
985 FLAG_ENTRY0("BC PWR_MGM message", 0x0004),
986 FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
987 FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
988 FLAG_ENTRY0("External device config request", 0x0020),
989 FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
990 FLAG_ENTRY0("LinkUp achieved", 0x0080),
991 FLAG_ENTRY0("Link going down", 0x0100),
992 };
993
994 static u32 encoded_size(u32 size);
995 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
996 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
997 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
998 u8 *continuous);
999 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1000 u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1001 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1002 u8 *remote_tx_rate, u16 *link_widths);
1003 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
1004 u8 *flag_bits, u16 *link_widths);
1005 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1006 u8 *device_rev);
1007 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
1008 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1009 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1010 u8 *tx_polarity_inversion,
1011 u8 *rx_polarity_inversion, u8 *max_rate);
1012 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1013 unsigned int context, u64 err_status);
1014 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1015 static void handle_dcc_err(struct hfi1_devdata *dd,
1016 unsigned int context, u64 err_status);
1017 static void handle_lcb_err(struct hfi1_devdata *dd,
1018 unsigned int context, u64 err_status);
1019 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1020 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1021 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1022 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1023 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1024 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1025 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1026 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1027 static void set_partition_keys(struct hfi1_pportdata *);
1028 static const char *link_state_name(u32 state);
1029 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1030 u32 state);
1031 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1032 u64 *out_data);
1033 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1034 static int thermal_init(struct hfi1_devdata *dd);
1035
1036 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1037 int msecs);
1038 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1039 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1040 static void handle_temp_err(struct hfi1_devdata *);
1041 static void dc_shutdown(struct hfi1_devdata *);
1042 static void dc_start(struct hfi1_devdata *);
1043 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1044 unsigned int *np);
1045 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1046
1047 /*
1048 * Error interrupt table entry. This is used as input to the interrupt
1049 * "clear down" routine used for all second tier error interrupt register.
1050 * Second tier interrupt registers have a single bit representing them
1051 * in the top-level CceIntStatus.
1052 */
1053 struct err_reg_info {
1054 u32 status; /* status CSR offset */
1055 u32 clear; /* clear CSR offset */
1056 u32 mask; /* mask CSR offset */
1057 void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1058 const char *desc;
1059 };
1060
1061 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1062 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1063 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1064
1065 /*
1066 * Helpers for building HFI and DC error interrupt table entries. Different
1067 * helpers are needed because of inconsistent register names.
1068 */
1069 #define EE(reg, handler, desc) \
1070 { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1071 handler, desc }
1072 #define DC_EE1(reg, handler, desc) \
1073 { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1074 #define DC_EE2(reg, handler, desc) \
1075 { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1076
1077 /*
1078 * Table of the "misc" grouping of error interrupts. Each entry refers to
1079 * another register containing more information.
1080 */
1081 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1082 /* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"),
1083 /* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"),
1084 /* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"),
1085 /* 3*/ { 0, 0, 0, NULL }, /* reserved */
1086 /* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"),
1087 /* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"),
1088 /* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1089 /* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr")
1090 /* the rest are reserved */
1091 };
1092
1093 /*
1094 * Index into the Various section of the interrupt sources
1095 * corresponding to the Critical Temperature interrupt.
1096 */
1097 #define TCRIT_INT_SOURCE 4
1098
1099 /*
1100 * SDMA error interrupt entry - refers to another register containing more
1101 * information.
1102 */
1103 static const struct err_reg_info sdma_eng_err =
1104 EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1105
1106 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1107 /* 0*/ { 0, 0, 0, NULL }, /* PbcInt */
1108 /* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */
1109 /* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"),
1110 /* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"),
1111 /* 4*/ { 0, 0, 0, NULL }, /* TCritInt */
1112 /* rest are reserved */
1113 };
1114
1115 /*
1116 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1117 * register can not be derived from the MTU value because 10K is not
1118 * a power of 2. Therefore, we need a constant. Everything else can
1119 * be calculated.
1120 */
1121 #define DCC_CFG_PORT_MTU_CAP_10240 7
1122
1123 /*
1124 * Table of the DC grouping of error interrupts. Each entry refers to
1125 * another register containing more information.
1126 */
1127 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1128 /* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"),
1129 /* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"),
1130 /* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"),
1131 /* 3*/ /* dc_lbm_int - special, see is_dc_int() */
1132 /* the rest are reserved */
1133 };
1134
1135 struct cntr_entry {
1136 /*
1137 * counter name
1138 */
1139 char *name;
1140
1141 /*
1142 * csr to read for name (if applicable)
1143 */
1144 u64 csr;
1145
1146 /*
1147 * offset into dd or ppd to store the counter's value
1148 */
1149 int offset;
1150
1151 /*
1152 * flags
1153 */
1154 u8 flags;
1155
1156 /*
1157 * accessor for stat element, context either dd or ppd
1158 */
1159 u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1160 int mode, u64 data);
1161 };
1162
1163 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1164 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1165
1166 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1167 { \
1168 name, \
1169 csr, \
1170 offset, \
1171 flags, \
1172 accessor \
1173 }
1174
1175 /* 32bit RXE */
1176 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1177 CNTR_ELEM(#name, \
1178 (counter * 8 + RCV_COUNTER_ARRAY32), \
1179 0, flags | CNTR_32BIT, \
1180 port_access_u32_csr)
1181
1182 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1183 CNTR_ELEM(#name, \
1184 (counter * 8 + RCV_COUNTER_ARRAY32), \
1185 0, flags | CNTR_32BIT, \
1186 dev_access_u32_csr)
1187
1188 /* 64bit RXE */
1189 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1190 CNTR_ELEM(#name, \
1191 (counter * 8 + RCV_COUNTER_ARRAY64), \
1192 0, flags, \
1193 port_access_u64_csr)
1194
1195 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1196 CNTR_ELEM(#name, \
1197 (counter * 8 + RCV_COUNTER_ARRAY64), \
1198 0, flags, \
1199 dev_access_u64_csr)
1200
1201 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1202 #define OVR_ELM(ctx) \
1203 CNTR_ELEM("RcvHdrOvr" #ctx, \
1204 (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1205 0, CNTR_NORMAL, port_access_u64_csr)
1206
1207 /* 32bit TXE */
1208 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1209 CNTR_ELEM(#name, \
1210 (counter * 8 + SEND_COUNTER_ARRAY32), \
1211 0, flags | CNTR_32BIT, \
1212 port_access_u32_csr)
1213
1214 /* 64bit TXE */
1215 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1216 CNTR_ELEM(#name, \
1217 (counter * 8 + SEND_COUNTER_ARRAY64), \
1218 0, flags, \
1219 port_access_u64_csr)
1220
1221 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1222 CNTR_ELEM(#name,\
1223 counter * 8 + SEND_COUNTER_ARRAY64, \
1224 0, \
1225 flags, \
1226 dev_access_u64_csr)
1227
1228 /* CCE */
1229 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1230 CNTR_ELEM(#name, \
1231 (counter * 8 + CCE_COUNTER_ARRAY32), \
1232 0, flags | CNTR_32BIT, \
1233 dev_access_u32_csr)
1234
1235 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1236 CNTR_ELEM(#name, \
1237 (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1238 0, flags | CNTR_32BIT, \
1239 dev_access_u32_csr)
1240
1241 /* DC */
1242 #define DC_PERF_CNTR(name, counter, flags) \
1243 CNTR_ELEM(#name, \
1244 counter, \
1245 0, \
1246 flags, \
1247 dev_access_u64_csr)
1248
1249 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1250 CNTR_ELEM(#name, \
1251 counter, \
1252 0, \
1253 flags, \
1254 dc_access_lcb_cntr)
1255
1256 /* ibp counters */
1257 #define SW_IBP_CNTR(name, cntr) \
1258 CNTR_ELEM(#name, \
1259 0, \
1260 0, \
1261 CNTR_SYNTH, \
1262 access_ibp_##cntr)
1263
1264 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1265 {
1266 if (dd->flags & HFI1_PRESENT) {
1267 return readq((void __iomem *)dd->kregbase + offset);
1268 }
1269 return -1;
1270 }
1271
1272 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1273 {
1274 if (dd->flags & HFI1_PRESENT)
1275 writeq(value, (void __iomem *)dd->kregbase + offset);
1276 }
1277
1278 void __iomem *get_csr_addr(
1279 struct hfi1_devdata *dd,
1280 u32 offset)
1281 {
1282 return (void __iomem *)dd->kregbase + offset;
1283 }
1284
1285 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1286 int mode, u64 value)
1287 {
1288 u64 ret;
1289
1290 if (mode == CNTR_MODE_R) {
1291 ret = read_csr(dd, csr);
1292 } else if (mode == CNTR_MODE_W) {
1293 write_csr(dd, csr, value);
1294 ret = value;
1295 } else {
1296 dd_dev_err(dd, "Invalid cntr register access mode");
1297 return 0;
1298 }
1299
1300 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1301 return ret;
1302 }
1303
1304 /* Dev Access */
1305 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1306 void *context, int vl, int mode, u64 data)
1307 {
1308 struct hfi1_devdata *dd = context;
1309 u64 csr = entry->csr;
1310
1311 if (entry->flags & CNTR_SDMA) {
1312 if (vl == CNTR_INVALID_VL)
1313 return 0;
1314 csr += 0x100 * vl;
1315 } else {
1316 if (vl != CNTR_INVALID_VL)
1317 return 0;
1318 }
1319 return read_write_csr(dd, csr, mode, data);
1320 }
1321
1322 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1323 void *context, int idx, int mode, u64 data)
1324 {
1325 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1326
1327 if (dd->per_sdma && idx < dd->num_sdma)
1328 return dd->per_sdma[idx].err_cnt;
1329 return 0;
1330 }
1331
1332 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1333 void *context, int idx, int mode, u64 data)
1334 {
1335 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1336
1337 if (dd->per_sdma && idx < dd->num_sdma)
1338 return dd->per_sdma[idx].sdma_int_cnt;
1339 return 0;
1340 }
1341
1342 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1343 void *context, int idx, int mode, u64 data)
1344 {
1345 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1346
1347 if (dd->per_sdma && idx < dd->num_sdma)
1348 return dd->per_sdma[idx].idle_int_cnt;
1349 return 0;
1350 }
1351
1352 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1353 void *context, int idx, int mode,
1354 u64 data)
1355 {
1356 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1357
1358 if (dd->per_sdma && idx < dd->num_sdma)
1359 return dd->per_sdma[idx].progress_int_cnt;
1360 return 0;
1361 }
1362
1363 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1364 int vl, int mode, u64 data)
1365 {
1366 struct hfi1_devdata *dd = context;
1367
1368 u64 val = 0;
1369 u64 csr = entry->csr;
1370
1371 if (entry->flags & CNTR_VL) {
1372 if (vl == CNTR_INVALID_VL)
1373 return 0;
1374 csr += 8 * vl;
1375 } else {
1376 if (vl != CNTR_INVALID_VL)
1377 return 0;
1378 }
1379
1380 val = read_write_csr(dd, csr, mode, data);
1381 return val;
1382 }
1383
1384 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1385 int vl, int mode, u64 data)
1386 {
1387 struct hfi1_devdata *dd = context;
1388 u32 csr = entry->csr;
1389 int ret = 0;
1390
1391 if (vl != CNTR_INVALID_VL)
1392 return 0;
1393 if (mode == CNTR_MODE_R)
1394 ret = read_lcb_csr(dd, csr, &data);
1395 else if (mode == CNTR_MODE_W)
1396 ret = write_lcb_csr(dd, csr, data);
1397
1398 if (ret) {
1399 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1400 return 0;
1401 }
1402
1403 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1404 return data;
1405 }
1406
1407 /* Port Access */
1408 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1409 int vl, int mode, u64 data)
1410 {
1411 struct hfi1_pportdata *ppd = context;
1412
1413 if (vl != CNTR_INVALID_VL)
1414 return 0;
1415 return read_write_csr(ppd->dd, entry->csr, mode, data);
1416 }
1417
1418 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1419 void *context, int vl, int mode, u64 data)
1420 {
1421 struct hfi1_pportdata *ppd = context;
1422 u64 val;
1423 u64 csr = entry->csr;
1424
1425 if (entry->flags & CNTR_VL) {
1426 if (vl == CNTR_INVALID_VL)
1427 return 0;
1428 csr += 8 * vl;
1429 } else {
1430 if (vl != CNTR_INVALID_VL)
1431 return 0;
1432 }
1433 val = read_write_csr(ppd->dd, csr, mode, data);
1434 return val;
1435 }
1436
1437 /* Software defined */
1438 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1439 u64 data)
1440 {
1441 u64 ret;
1442
1443 if (mode == CNTR_MODE_R) {
1444 ret = *cntr;
1445 } else if (mode == CNTR_MODE_W) {
1446 *cntr = data;
1447 ret = data;
1448 } else {
1449 dd_dev_err(dd, "Invalid cntr sw access mode");
1450 return 0;
1451 }
1452
1453 hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1454
1455 return ret;
1456 }
1457
1458 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1459 int vl, int mode, u64 data)
1460 {
1461 struct hfi1_pportdata *ppd = context;
1462
1463 if (vl != CNTR_INVALID_VL)
1464 return 0;
1465 return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1466 }
1467
1468 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1469 int vl, int mode, u64 data)
1470 {
1471 struct hfi1_pportdata *ppd = context;
1472
1473 if (vl != CNTR_INVALID_VL)
1474 return 0;
1475 return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1476 }
1477
1478 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1479 void *context, int vl, int mode,
1480 u64 data)
1481 {
1482 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1483
1484 if (vl != CNTR_INVALID_VL)
1485 return 0;
1486 return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1487 }
1488
1489 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1490 void *context, int vl, int mode, u64 data)
1491 {
1492 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1493 u64 zero = 0;
1494 u64 *counter;
1495
1496 if (vl == CNTR_INVALID_VL)
1497 counter = &ppd->port_xmit_discards;
1498 else if (vl >= 0 && vl < C_VL_COUNT)
1499 counter = &ppd->port_xmit_discards_vl[vl];
1500 else
1501 counter = &zero;
1502
1503 return read_write_sw(ppd->dd, counter, mode, data);
1504 }
1505
1506 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1507 void *context, int vl, int mode,
1508 u64 data)
1509 {
1510 struct hfi1_pportdata *ppd = context;
1511
1512 if (vl != CNTR_INVALID_VL)
1513 return 0;
1514
1515 return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1516 mode, data);
1517 }
1518
1519 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1520 void *context, int vl, int mode, u64 data)
1521 {
1522 struct hfi1_pportdata *ppd = context;
1523
1524 if (vl != CNTR_INVALID_VL)
1525 return 0;
1526
1527 return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1528 mode, data);
1529 }
1530
1531 u64 get_all_cpu_total(u64 __percpu *cntr)
1532 {
1533 int cpu;
1534 u64 counter = 0;
1535
1536 for_each_possible_cpu(cpu)
1537 counter += *per_cpu_ptr(cntr, cpu);
1538 return counter;
1539 }
1540
1541 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1542 u64 __percpu *cntr,
1543 int vl, int mode, u64 data)
1544 {
1545 u64 ret = 0;
1546
1547 if (vl != CNTR_INVALID_VL)
1548 return 0;
1549
1550 if (mode == CNTR_MODE_R) {
1551 ret = get_all_cpu_total(cntr) - *z_val;
1552 } else if (mode == CNTR_MODE_W) {
1553 /* A write can only zero the counter */
1554 if (data == 0)
1555 *z_val = get_all_cpu_total(cntr);
1556 else
1557 dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1558 } else {
1559 dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1560 return 0;
1561 }
1562
1563 return ret;
1564 }
1565
1566 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1567 void *context, int vl, int mode, u64 data)
1568 {
1569 struct hfi1_devdata *dd = context;
1570
1571 return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1572 mode, data);
1573 }
1574
1575 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1576 void *context, int vl, int mode, u64 data)
1577 {
1578 struct hfi1_devdata *dd = context;
1579
1580 return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1581 mode, data);
1582 }
1583
1584 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1585 void *context, int vl, int mode, u64 data)
1586 {
1587 struct hfi1_devdata *dd = context;
1588
1589 return dd->verbs_dev.n_piowait;
1590 }
1591
1592 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1593 void *context, int vl, int mode, u64 data)
1594 {
1595 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1596
1597 return dd->verbs_dev.n_piodrain;
1598 }
1599
1600 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1601 void *context, int vl, int mode, u64 data)
1602 {
1603 struct hfi1_devdata *dd = context;
1604
1605 return dd->verbs_dev.n_txwait;
1606 }
1607
1608 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1609 void *context, int vl, int mode, u64 data)
1610 {
1611 struct hfi1_devdata *dd = context;
1612
1613 return dd->verbs_dev.n_kmem_wait;
1614 }
1615
1616 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1617 void *context, int vl, int mode, u64 data)
1618 {
1619 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1620
1621 return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1622 mode, data);
1623 }
1624
1625 /* Software counters for the error status bits within MISC_ERR_STATUS */
1626 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1627 void *context, int vl, int mode,
1628 u64 data)
1629 {
1630 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1631
1632 return dd->misc_err_status_cnt[12];
1633 }
1634
1635 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1636 void *context, int vl, int mode,
1637 u64 data)
1638 {
1639 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1640
1641 return dd->misc_err_status_cnt[11];
1642 }
1643
1644 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1645 void *context, int vl, int mode,
1646 u64 data)
1647 {
1648 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1649
1650 return dd->misc_err_status_cnt[10];
1651 }
1652
1653 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1654 void *context, int vl,
1655 int mode, u64 data)
1656 {
1657 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1658
1659 return dd->misc_err_status_cnt[9];
1660 }
1661
1662 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1663 void *context, int vl, int mode,
1664 u64 data)
1665 {
1666 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1667
1668 return dd->misc_err_status_cnt[8];
1669 }
1670
1671 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1672 const struct cntr_entry *entry,
1673 void *context, int vl, int mode, u64 data)
1674 {
1675 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1676
1677 return dd->misc_err_status_cnt[7];
1678 }
1679
1680 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1681 void *context, int vl,
1682 int mode, u64 data)
1683 {
1684 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1685
1686 return dd->misc_err_status_cnt[6];
1687 }
1688
1689 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1690 void *context, int vl, int mode,
1691 u64 data)
1692 {
1693 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1694
1695 return dd->misc_err_status_cnt[5];
1696 }
1697
1698 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1699 void *context, int vl, int mode,
1700 u64 data)
1701 {
1702 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1703
1704 return dd->misc_err_status_cnt[4];
1705 }
1706
1707 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1708 void *context, int vl,
1709 int mode, u64 data)
1710 {
1711 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1712
1713 return dd->misc_err_status_cnt[3];
1714 }
1715
1716 static u64 access_misc_csr_write_bad_addr_err_cnt(
1717 const struct cntr_entry *entry,
1718 void *context, int vl, int mode, u64 data)
1719 {
1720 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1721
1722 return dd->misc_err_status_cnt[2];
1723 }
1724
1725 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1726 void *context, int vl,
1727 int mode, u64 data)
1728 {
1729 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1730
1731 return dd->misc_err_status_cnt[1];
1732 }
1733
1734 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1735 void *context, int vl, int mode,
1736 u64 data)
1737 {
1738 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1739
1740 return dd->misc_err_status_cnt[0];
1741 }
1742
1743 /*
1744 * Software counter for the aggregate of
1745 * individual CceErrStatus counters
1746 */
1747 static u64 access_sw_cce_err_status_aggregated_cnt(
1748 const struct cntr_entry *entry,
1749 void *context, int vl, int mode, u64 data)
1750 {
1751 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1752
1753 return dd->sw_cce_err_status_aggregate;
1754 }
1755
1756 /*
1757 * Software counters corresponding to each of the
1758 * error status bits within CceErrStatus
1759 */
1760 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1761 void *context, int vl, int mode,
1762 u64 data)
1763 {
1764 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1765
1766 return dd->cce_err_status_cnt[40];
1767 }
1768
1769 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1770 void *context, int vl, int mode,
1771 u64 data)
1772 {
1773 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1774
1775 return dd->cce_err_status_cnt[39];
1776 }
1777
1778 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1779 void *context, int vl, int mode,
1780 u64 data)
1781 {
1782 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1783
1784 return dd->cce_err_status_cnt[38];
1785 }
1786
1787 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1788 void *context, int vl, int mode,
1789 u64 data)
1790 {
1791 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1792
1793 return dd->cce_err_status_cnt[37];
1794 }
1795
1796 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1797 void *context, int vl, int mode,
1798 u64 data)
1799 {
1800 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1801
1802 return dd->cce_err_status_cnt[36];
1803 }
1804
1805 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1806 const struct cntr_entry *entry,
1807 void *context, int vl, int mode, u64 data)
1808 {
1809 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1810
1811 return dd->cce_err_status_cnt[35];
1812 }
1813
1814 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1815 const struct cntr_entry *entry,
1816 void *context, int vl, int mode, u64 data)
1817 {
1818 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1819
1820 return dd->cce_err_status_cnt[34];
1821 }
1822
1823 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1824 void *context, int vl,
1825 int mode, u64 data)
1826 {
1827 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1828
1829 return dd->cce_err_status_cnt[33];
1830 }
1831
1832 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1833 void *context, int vl, int mode,
1834 u64 data)
1835 {
1836 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1837
1838 return dd->cce_err_status_cnt[32];
1839 }
1840
1841 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1842 void *context, int vl, int mode, u64 data)
1843 {
1844 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1845
1846 return dd->cce_err_status_cnt[31];
1847 }
1848
1849 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1850 void *context, int vl, int mode,
1851 u64 data)
1852 {
1853 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1854
1855 return dd->cce_err_status_cnt[30];
1856 }
1857
1858 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1859 void *context, int vl, int mode,
1860 u64 data)
1861 {
1862 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1863
1864 return dd->cce_err_status_cnt[29];
1865 }
1866
1867 static u64 access_pcic_transmit_back_parity_err_cnt(
1868 const struct cntr_entry *entry,
1869 void *context, int vl, int mode, u64 data)
1870 {
1871 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1872
1873 return dd->cce_err_status_cnt[28];
1874 }
1875
1876 static u64 access_pcic_transmit_front_parity_err_cnt(
1877 const struct cntr_entry *entry,
1878 void *context, int vl, int mode, u64 data)
1879 {
1880 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1881
1882 return dd->cce_err_status_cnt[27];
1883 }
1884
1885 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1886 void *context, int vl, int mode,
1887 u64 data)
1888 {
1889 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1890
1891 return dd->cce_err_status_cnt[26];
1892 }
1893
1894 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1895 void *context, int vl, int mode,
1896 u64 data)
1897 {
1898 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1899
1900 return dd->cce_err_status_cnt[25];
1901 }
1902
1903 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1904 void *context, int vl, int mode,
1905 u64 data)
1906 {
1907 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1908
1909 return dd->cce_err_status_cnt[24];
1910 }
1911
1912 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1913 void *context, int vl, int mode,
1914 u64 data)
1915 {
1916 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1917
1918 return dd->cce_err_status_cnt[23];
1919 }
1920
1921 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
1922 void *context, int vl,
1923 int mode, u64 data)
1924 {
1925 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1926
1927 return dd->cce_err_status_cnt[22];
1928 }
1929
1930 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
1931 void *context, int vl, int mode,
1932 u64 data)
1933 {
1934 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1935
1936 return dd->cce_err_status_cnt[21];
1937 }
1938
1939 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
1940 const struct cntr_entry *entry,
1941 void *context, int vl, int mode, u64 data)
1942 {
1943 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1944
1945 return dd->cce_err_status_cnt[20];
1946 }
1947
1948 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
1949 void *context, int vl,
1950 int mode, u64 data)
1951 {
1952 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1953
1954 return dd->cce_err_status_cnt[19];
1955 }
1956
1957 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1958 void *context, int vl, int mode,
1959 u64 data)
1960 {
1961 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1962
1963 return dd->cce_err_status_cnt[18];
1964 }
1965
1966 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
1967 void *context, int vl, int mode,
1968 u64 data)
1969 {
1970 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1971
1972 return dd->cce_err_status_cnt[17];
1973 }
1974
1975 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1976 void *context, int vl, int mode,
1977 u64 data)
1978 {
1979 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1980
1981 return dd->cce_err_status_cnt[16];
1982 }
1983
1984 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
1985 void *context, int vl, int mode,
1986 u64 data)
1987 {
1988 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1989
1990 return dd->cce_err_status_cnt[15];
1991 }
1992
1993 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
1994 void *context, int vl,
1995 int mode, u64 data)
1996 {
1997 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1998
1999 return dd->cce_err_status_cnt[14];
2000 }
2001
2002 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2003 void *context, int vl, int mode,
2004 u64 data)
2005 {
2006 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2007
2008 return dd->cce_err_status_cnt[13];
2009 }
2010
2011 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2012 const struct cntr_entry *entry,
2013 void *context, int vl, int mode, u64 data)
2014 {
2015 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2016
2017 return dd->cce_err_status_cnt[12];
2018 }
2019
2020 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2021 const struct cntr_entry *entry,
2022 void *context, int vl, int mode, u64 data)
2023 {
2024 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2025
2026 return dd->cce_err_status_cnt[11];
2027 }
2028
2029 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2030 const struct cntr_entry *entry,
2031 void *context, int vl, int mode, u64 data)
2032 {
2033 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2034
2035 return dd->cce_err_status_cnt[10];
2036 }
2037
2038 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2039 const struct cntr_entry *entry,
2040 void *context, int vl, int mode, u64 data)
2041 {
2042 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2043
2044 return dd->cce_err_status_cnt[9];
2045 }
2046
2047 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2048 const struct cntr_entry *entry,
2049 void *context, int vl, int mode, u64 data)
2050 {
2051 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2052
2053 return dd->cce_err_status_cnt[8];
2054 }
2055
2056 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2057 void *context, int vl,
2058 int mode, u64 data)
2059 {
2060 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2061
2062 return dd->cce_err_status_cnt[7];
2063 }
2064
2065 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2066 const struct cntr_entry *entry,
2067 void *context, int vl, int mode, u64 data)
2068 {
2069 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2070
2071 return dd->cce_err_status_cnt[6];
2072 }
2073
2074 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2075 void *context, int vl, int mode,
2076 u64 data)
2077 {
2078 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2079
2080 return dd->cce_err_status_cnt[5];
2081 }
2082
2083 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2084 void *context, int vl, int mode,
2085 u64 data)
2086 {
2087 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2088
2089 return dd->cce_err_status_cnt[4];
2090 }
2091
2092 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2093 const struct cntr_entry *entry,
2094 void *context, int vl, int mode, u64 data)
2095 {
2096 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2097
2098 return dd->cce_err_status_cnt[3];
2099 }
2100
2101 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2102 void *context, int vl,
2103 int mode, u64 data)
2104 {
2105 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2106
2107 return dd->cce_err_status_cnt[2];
2108 }
2109
2110 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2111 void *context, int vl,
2112 int mode, u64 data)
2113 {
2114 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2115
2116 return dd->cce_err_status_cnt[1];
2117 }
2118
2119 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2120 void *context, int vl, int mode,
2121 u64 data)
2122 {
2123 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2124
2125 return dd->cce_err_status_cnt[0];
2126 }
2127
2128 /*
2129 * Software counters corresponding to each of the
2130 * error status bits within RcvErrStatus
2131 */
2132 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2133 void *context, int vl, int mode,
2134 u64 data)
2135 {
2136 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2137
2138 return dd->rcv_err_status_cnt[63];
2139 }
2140
2141 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2142 void *context, int vl,
2143 int mode, u64 data)
2144 {
2145 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2146
2147 return dd->rcv_err_status_cnt[62];
2148 }
2149
2150 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2151 void *context, int vl, int mode,
2152 u64 data)
2153 {
2154 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2155
2156 return dd->rcv_err_status_cnt[61];
2157 }
2158
2159 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2160 void *context, int vl, int mode,
2161 u64 data)
2162 {
2163 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2164
2165 return dd->rcv_err_status_cnt[60];
2166 }
2167
2168 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2169 void *context, int vl,
2170 int mode, u64 data)
2171 {
2172 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2173
2174 return dd->rcv_err_status_cnt[59];
2175 }
2176
2177 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2178 void *context, int vl,
2179 int mode, u64 data)
2180 {
2181 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2182
2183 return dd->rcv_err_status_cnt[58];
2184 }
2185
2186 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2187 void *context, int vl, int mode,
2188 u64 data)
2189 {
2190 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2191
2192 return dd->rcv_err_status_cnt[57];
2193 }
2194
2195 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2196 void *context, int vl, int mode,
2197 u64 data)
2198 {
2199 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2200
2201 return dd->rcv_err_status_cnt[56];
2202 }
2203
2204 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2205 void *context, int vl, int mode,
2206 u64 data)
2207 {
2208 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2209
2210 return dd->rcv_err_status_cnt[55];
2211 }
2212
2213 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2214 const struct cntr_entry *entry,
2215 void *context, int vl, int mode, u64 data)
2216 {
2217 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2218
2219 return dd->rcv_err_status_cnt[54];
2220 }
2221
2222 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2223 const struct cntr_entry *entry,
2224 void *context, int vl, int mode, u64 data)
2225 {
2226 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2227
2228 return dd->rcv_err_status_cnt[53];
2229 }
2230
2231 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2232 void *context, int vl,
2233 int mode, u64 data)
2234 {
2235 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2236
2237 return dd->rcv_err_status_cnt[52];
2238 }
2239
2240 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2241 void *context, int vl,
2242 int mode, u64 data)
2243 {
2244 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2245
2246 return dd->rcv_err_status_cnt[51];
2247 }
2248
2249 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2250 void *context, int vl,
2251 int mode, u64 data)
2252 {
2253 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2254
2255 return dd->rcv_err_status_cnt[50];
2256 }
2257
2258 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2259 void *context, int vl,
2260 int mode, u64 data)
2261 {
2262 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2263
2264 return dd->rcv_err_status_cnt[49];
2265 }
2266
2267 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2268 void *context, int vl,
2269 int mode, u64 data)
2270 {
2271 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2272
2273 return dd->rcv_err_status_cnt[48];
2274 }
2275
2276 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2277 void *context, int vl,
2278 int mode, u64 data)
2279 {
2280 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2281
2282 return dd->rcv_err_status_cnt[47];
2283 }
2284
2285 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2286 void *context, int vl, int mode,
2287 u64 data)
2288 {
2289 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2290
2291 return dd->rcv_err_status_cnt[46];
2292 }
2293
2294 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2295 const struct cntr_entry *entry,
2296 void *context, int vl, int mode, u64 data)
2297 {
2298 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2299
2300 return dd->rcv_err_status_cnt[45];
2301 }
2302
2303 static u64 access_rx_lookup_csr_parity_err_cnt(
2304 const struct cntr_entry *entry,
2305 void *context, int vl, int mode, u64 data)
2306 {
2307 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2308
2309 return dd->rcv_err_status_cnt[44];
2310 }
2311
2312 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2313 const struct cntr_entry *entry,
2314 void *context, int vl, int mode, u64 data)
2315 {
2316 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2317
2318 return dd->rcv_err_status_cnt[43];
2319 }
2320
2321 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2322 const struct cntr_entry *entry,
2323 void *context, int vl, int mode, u64 data)
2324 {
2325 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2326
2327 return dd->rcv_err_status_cnt[42];
2328 }
2329
2330 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2331 const struct cntr_entry *entry,
2332 void *context, int vl, int mode, u64 data)
2333 {
2334 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2335
2336 return dd->rcv_err_status_cnt[41];
2337 }
2338
2339 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2340 const struct cntr_entry *entry,
2341 void *context, int vl, int mode, u64 data)
2342 {
2343 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2344
2345 return dd->rcv_err_status_cnt[40];
2346 }
2347
2348 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2349 const struct cntr_entry *entry,
2350 void *context, int vl, int mode, u64 data)
2351 {
2352 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2353
2354 return dd->rcv_err_status_cnt[39];
2355 }
2356
2357 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2358 const struct cntr_entry *entry,
2359 void *context, int vl, int mode, u64 data)
2360 {
2361 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2362
2363 return dd->rcv_err_status_cnt[38];
2364 }
2365
2366 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2367 const struct cntr_entry *entry,
2368 void *context, int vl, int mode, u64 data)
2369 {
2370 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2371
2372 return dd->rcv_err_status_cnt[37];
2373 }
2374
2375 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2376 const struct cntr_entry *entry,
2377 void *context, int vl, int mode, u64 data)
2378 {
2379 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2380
2381 return dd->rcv_err_status_cnt[36];
2382 }
2383
2384 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2385 const struct cntr_entry *entry,
2386 void *context, int vl, int mode, u64 data)
2387 {
2388 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2389
2390 return dd->rcv_err_status_cnt[35];
2391 }
2392
2393 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2394 const struct cntr_entry *entry,
2395 void *context, int vl, int mode, u64 data)
2396 {
2397 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2398
2399 return dd->rcv_err_status_cnt[34];
2400 }
2401
2402 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2403 const struct cntr_entry *entry,
2404 void *context, int vl, int mode, u64 data)
2405 {
2406 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2407
2408 return dd->rcv_err_status_cnt[33];
2409 }
2410
2411 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2412 void *context, int vl, int mode,
2413 u64 data)
2414 {
2415 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2416
2417 return dd->rcv_err_status_cnt[32];
2418 }
2419
2420 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2421 void *context, int vl, int mode,
2422 u64 data)
2423 {
2424 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2425
2426 return dd->rcv_err_status_cnt[31];
2427 }
2428
2429 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2430 void *context, int vl, int mode,
2431 u64 data)
2432 {
2433 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2434
2435 return dd->rcv_err_status_cnt[30];
2436 }
2437
2438 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2439 void *context, int vl, int mode,
2440 u64 data)
2441 {
2442 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2443
2444 return dd->rcv_err_status_cnt[29];
2445 }
2446
2447 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2448 void *context, int vl,
2449 int mode, u64 data)
2450 {
2451 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2452
2453 return dd->rcv_err_status_cnt[28];
2454 }
2455
2456 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2457 const struct cntr_entry *entry,
2458 void *context, int vl, int mode, u64 data)
2459 {
2460 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2461
2462 return dd->rcv_err_status_cnt[27];
2463 }
2464
2465 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2466 const struct cntr_entry *entry,
2467 void *context, int vl, int mode, u64 data)
2468 {
2469 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2470
2471 return dd->rcv_err_status_cnt[26];
2472 }
2473
2474 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2475 const struct cntr_entry *entry,
2476 void *context, int vl, int mode, u64 data)
2477 {
2478 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2479
2480 return dd->rcv_err_status_cnt[25];
2481 }
2482
2483 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2484 const struct cntr_entry *entry,
2485 void *context, int vl, int mode, u64 data)
2486 {
2487 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2488
2489 return dd->rcv_err_status_cnt[24];
2490 }
2491
2492 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2493 const struct cntr_entry *entry,
2494 void *context, int vl, int mode, u64 data)
2495 {
2496 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2497
2498 return dd->rcv_err_status_cnt[23];
2499 }
2500
2501 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2502 const struct cntr_entry *entry,
2503 void *context, int vl, int mode, u64 data)
2504 {
2505 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2506
2507 return dd->rcv_err_status_cnt[22];
2508 }
2509
2510 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2511 const struct cntr_entry *entry,
2512 void *context, int vl, int mode, u64 data)
2513 {
2514 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2515
2516 return dd->rcv_err_status_cnt[21];
2517 }
2518
2519 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2520 const struct cntr_entry *entry,
2521 void *context, int vl, int mode, u64 data)
2522 {
2523 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2524
2525 return dd->rcv_err_status_cnt[20];
2526 }
2527
2528 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2529 const struct cntr_entry *entry,
2530 void *context, int vl, int mode, u64 data)
2531 {
2532 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2533
2534 return dd->rcv_err_status_cnt[19];
2535 }
2536
2537 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2538 void *context, int vl,
2539 int mode, u64 data)
2540 {
2541 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2542
2543 return dd->rcv_err_status_cnt[18];
2544 }
2545
2546 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2547 void *context, int vl,
2548 int mode, u64 data)
2549 {
2550 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2551
2552 return dd->rcv_err_status_cnt[17];
2553 }
2554
2555 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2556 const struct cntr_entry *entry,
2557 void *context, int vl, int mode, u64 data)
2558 {
2559 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2560
2561 return dd->rcv_err_status_cnt[16];
2562 }
2563
2564 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2565 const struct cntr_entry *entry,
2566 void *context, int vl, int mode, u64 data)
2567 {
2568 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2569
2570 return dd->rcv_err_status_cnt[15];
2571 }
2572
2573 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2574 void *context, int vl,
2575 int mode, u64 data)
2576 {
2577 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2578
2579 return dd->rcv_err_status_cnt[14];
2580 }
2581
2582 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2583 void *context, int vl,
2584 int mode, u64 data)
2585 {
2586 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2587
2588 return dd->rcv_err_status_cnt[13];
2589 }
2590
2591 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2592 void *context, int vl, int mode,
2593 u64 data)
2594 {
2595 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2596
2597 return dd->rcv_err_status_cnt[12];
2598 }
2599
2600 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2601 void *context, int vl, int mode,
2602 u64 data)
2603 {
2604 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2605
2606 return dd->rcv_err_status_cnt[11];
2607 }
2608
2609 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2610 void *context, int vl, int mode,
2611 u64 data)
2612 {
2613 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2614
2615 return dd->rcv_err_status_cnt[10];
2616 }
2617
2618 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2619 void *context, int vl, int mode,
2620 u64 data)
2621 {
2622 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2623
2624 return dd->rcv_err_status_cnt[9];
2625 }
2626
2627 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2628 void *context, int vl, int mode,
2629 u64 data)
2630 {
2631 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2632
2633 return dd->rcv_err_status_cnt[8];
2634 }
2635
2636 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2637 const struct cntr_entry *entry,
2638 void *context, int vl, int mode, u64 data)
2639 {
2640 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2641
2642 return dd->rcv_err_status_cnt[7];
2643 }
2644
2645 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2646 const struct cntr_entry *entry,
2647 void *context, int vl, int mode, u64 data)
2648 {
2649 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2650
2651 return dd->rcv_err_status_cnt[6];
2652 }
2653
2654 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2655 void *context, int vl, int mode,
2656 u64 data)
2657 {
2658 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2659
2660 return dd->rcv_err_status_cnt[5];
2661 }
2662
2663 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2664 void *context, int vl, int mode,
2665 u64 data)
2666 {
2667 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2668
2669 return dd->rcv_err_status_cnt[4];
2670 }
2671
2672 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2673 void *context, int vl, int mode,
2674 u64 data)
2675 {
2676 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2677
2678 return dd->rcv_err_status_cnt[3];
2679 }
2680
2681 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2682 void *context, int vl, int mode,
2683 u64 data)
2684 {
2685 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2686
2687 return dd->rcv_err_status_cnt[2];
2688 }
2689
2690 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2691 void *context, int vl, int mode,
2692 u64 data)
2693 {
2694 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2695
2696 return dd->rcv_err_status_cnt[1];
2697 }
2698
2699 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2700 void *context, int vl, int mode,
2701 u64 data)
2702 {
2703 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2704
2705 return dd->rcv_err_status_cnt[0];
2706 }
2707
2708 /*
2709 * Software counters corresponding to each of the
2710 * error status bits within SendPioErrStatus
2711 */
2712 static u64 access_pio_pec_sop_head_parity_err_cnt(
2713 const struct cntr_entry *entry,
2714 void *context, int vl, int mode, u64 data)
2715 {
2716 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2717
2718 return dd->send_pio_err_status_cnt[35];
2719 }
2720
2721 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2722 const struct cntr_entry *entry,
2723 void *context, int vl, int mode, u64 data)
2724 {
2725 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2726
2727 return dd->send_pio_err_status_cnt[34];
2728 }
2729
2730 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2731 const struct cntr_entry *entry,
2732 void *context, int vl, int mode, u64 data)
2733 {
2734 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2735
2736 return dd->send_pio_err_status_cnt[33];
2737 }
2738
2739 static u64 access_pio_current_free_cnt_parity_err_cnt(
2740 const struct cntr_entry *entry,
2741 void *context, int vl, int mode, u64 data)
2742 {
2743 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2744
2745 return dd->send_pio_err_status_cnt[32];
2746 }
2747
2748 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2749 void *context, int vl, int mode,
2750 u64 data)
2751 {
2752 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2753
2754 return dd->send_pio_err_status_cnt[31];
2755 }
2756
2757 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2758 void *context, int vl, int mode,
2759 u64 data)
2760 {
2761 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2762
2763 return dd->send_pio_err_status_cnt[30];
2764 }
2765
2766 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2767 void *context, int vl, int mode,
2768 u64 data)
2769 {
2770 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2771
2772 return dd->send_pio_err_status_cnt[29];
2773 }
2774
2775 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2776 const struct cntr_entry *entry,
2777 void *context, int vl, int mode, u64 data)
2778 {
2779 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2780
2781 return dd->send_pio_err_status_cnt[28];
2782 }
2783
2784 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2785 void *context, int vl, int mode,
2786 u64 data)
2787 {
2788 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2789
2790 return dd->send_pio_err_status_cnt[27];
2791 }
2792
2793 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2794 void *context, int vl, int mode,
2795 u64 data)
2796 {
2797 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2798
2799 return dd->send_pio_err_status_cnt[26];
2800 }
2801
2802 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2803 void *context, int vl,
2804 int mode, u64 data)
2805 {
2806 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2807
2808 return dd->send_pio_err_status_cnt[25];
2809 }
2810
2811 static u64 access_pio_block_qw_count_parity_err_cnt(
2812 const struct cntr_entry *entry,
2813 void *context, int vl, int mode, u64 data)
2814 {
2815 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2816
2817 return dd->send_pio_err_status_cnt[24];
2818 }
2819
2820 static u64 access_pio_write_qw_valid_parity_err_cnt(
2821 const struct cntr_entry *entry,
2822 void *context, int vl, int mode, u64 data)
2823 {
2824 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2825
2826 return dd->send_pio_err_status_cnt[23];
2827 }
2828
2829 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2830 void *context, int vl, int mode,
2831 u64 data)
2832 {
2833 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2834
2835 return dd->send_pio_err_status_cnt[22];
2836 }
2837
2838 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2839 void *context, int vl,
2840 int mode, u64 data)
2841 {
2842 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2843
2844 return dd->send_pio_err_status_cnt[21];
2845 }
2846
2847 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2848 void *context, int vl,
2849 int mode, u64 data)
2850 {
2851 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2852
2853 return dd->send_pio_err_status_cnt[20];
2854 }
2855
2856 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2857 void *context, int vl,
2858 int mode, u64 data)
2859 {
2860 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2861
2862 return dd->send_pio_err_status_cnt[19];
2863 }
2864
2865 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2866 const struct cntr_entry *entry,
2867 void *context, int vl, int mode, u64 data)
2868 {
2869 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2870
2871 return dd->send_pio_err_status_cnt[18];
2872 }
2873
2874 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2875 void *context, int vl, int mode,
2876 u64 data)
2877 {
2878 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2879
2880 return dd->send_pio_err_status_cnt[17];
2881 }
2882
2883 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2884 void *context, int vl, int mode,
2885 u64 data)
2886 {
2887 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2888
2889 return dd->send_pio_err_status_cnt[16];
2890 }
2891
2892 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2893 const struct cntr_entry *entry,
2894 void *context, int vl, int mode, u64 data)
2895 {
2896 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2897
2898 return dd->send_pio_err_status_cnt[15];
2899 }
2900
2901 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2902 const struct cntr_entry *entry,
2903 void *context, int vl, int mode, u64 data)
2904 {
2905 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2906
2907 return dd->send_pio_err_status_cnt[14];
2908 }
2909
2910 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2911 const struct cntr_entry *entry,
2912 void *context, int vl, int mode, u64 data)
2913 {
2914 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2915
2916 return dd->send_pio_err_status_cnt[13];
2917 }
2918
2919 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
2920 const struct cntr_entry *entry,
2921 void *context, int vl, int mode, u64 data)
2922 {
2923 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2924
2925 return dd->send_pio_err_status_cnt[12];
2926 }
2927
2928 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
2929 const struct cntr_entry *entry,
2930 void *context, int vl, int mode, u64 data)
2931 {
2932 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2933
2934 return dd->send_pio_err_status_cnt[11];
2935 }
2936
2937 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
2938 const struct cntr_entry *entry,
2939 void *context, int vl, int mode, u64 data)
2940 {
2941 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2942
2943 return dd->send_pio_err_status_cnt[10];
2944 }
2945
2946 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
2947 const struct cntr_entry *entry,
2948 void *context, int vl, int mode, u64 data)
2949 {
2950 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2951
2952 return dd->send_pio_err_status_cnt[9];
2953 }
2954
2955 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
2956 const struct cntr_entry *entry,
2957 void *context, int vl, int mode, u64 data)
2958 {
2959 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2960
2961 return dd->send_pio_err_status_cnt[8];
2962 }
2963
2964 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
2965 const struct cntr_entry *entry,
2966 void *context, int vl, int mode, u64 data)
2967 {
2968 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2969
2970 return dd->send_pio_err_status_cnt[7];
2971 }
2972
2973 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
2974 void *context, int vl, int mode,
2975 u64 data)
2976 {
2977 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2978
2979 return dd->send_pio_err_status_cnt[6];
2980 }
2981
2982 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
2983 void *context, int vl, int mode,
2984 u64 data)
2985 {
2986 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2987
2988 return dd->send_pio_err_status_cnt[5];
2989 }
2990
2991 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
2992 void *context, int vl, int mode,
2993 u64 data)
2994 {
2995 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2996
2997 return dd->send_pio_err_status_cnt[4];
2998 }
2999
3000 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3001 void *context, int vl, int mode,
3002 u64 data)
3003 {
3004 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3005
3006 return dd->send_pio_err_status_cnt[3];
3007 }
3008
3009 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3010 void *context, int vl, int mode,
3011 u64 data)
3012 {
3013 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3014
3015 return dd->send_pio_err_status_cnt[2];
3016 }
3017
3018 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3019 void *context, int vl,
3020 int mode, u64 data)
3021 {
3022 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3023
3024 return dd->send_pio_err_status_cnt[1];
3025 }
3026
3027 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3028 void *context, int vl, int mode,
3029 u64 data)
3030 {
3031 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3032
3033 return dd->send_pio_err_status_cnt[0];
3034 }
3035
3036 /*
3037 * Software counters corresponding to each of the
3038 * error status bits within SendDmaErrStatus
3039 */
3040 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3041 const struct cntr_entry *entry,
3042 void *context, int vl, int mode, u64 data)
3043 {
3044 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3045
3046 return dd->send_dma_err_status_cnt[3];
3047 }
3048
3049 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3050 const struct cntr_entry *entry,
3051 void *context, int vl, int mode, u64 data)
3052 {
3053 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3054
3055 return dd->send_dma_err_status_cnt[2];
3056 }
3057
3058 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3059 void *context, int vl, int mode,
3060 u64 data)
3061 {
3062 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3063
3064 return dd->send_dma_err_status_cnt[1];
3065 }
3066
3067 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3068 void *context, int vl, int mode,
3069 u64 data)
3070 {
3071 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3072
3073 return dd->send_dma_err_status_cnt[0];
3074 }
3075
3076 /*
3077 * Software counters corresponding to each of the
3078 * error status bits within SendEgressErrStatus
3079 */
3080 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3081 const struct cntr_entry *entry,
3082 void *context, int vl, int mode, u64 data)
3083 {
3084 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3085
3086 return dd->send_egress_err_status_cnt[63];
3087 }
3088
3089 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3090 const struct cntr_entry *entry,
3091 void *context, int vl, int mode, u64 data)
3092 {
3093 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3094
3095 return dd->send_egress_err_status_cnt[62];
3096 }
3097
3098 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3099 void *context, int vl, int mode,
3100 u64 data)
3101 {
3102 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3103
3104 return dd->send_egress_err_status_cnt[61];
3105 }
3106
3107 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3108 void *context, int vl,
3109 int mode, u64 data)
3110 {
3111 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3112
3113 return dd->send_egress_err_status_cnt[60];
3114 }
3115
3116 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3117 const struct cntr_entry *entry,
3118 void *context, int vl, int mode, u64 data)
3119 {
3120 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3121
3122 return dd->send_egress_err_status_cnt[59];
3123 }
3124
3125 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3126 void *context, int vl, int mode,
3127 u64 data)
3128 {
3129 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3130
3131 return dd->send_egress_err_status_cnt[58];
3132 }
3133
3134 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3135 void *context, int vl, int mode,
3136 u64 data)
3137 {
3138 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3139
3140 return dd->send_egress_err_status_cnt[57];
3141 }
3142
3143 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3144 void *context, int vl, int mode,
3145 u64 data)
3146 {
3147 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3148
3149 return dd->send_egress_err_status_cnt[56];
3150 }
3151
3152 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3153 void *context, int vl, int mode,
3154 u64 data)
3155 {
3156 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3157
3158 return dd->send_egress_err_status_cnt[55];
3159 }
3160
3161 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3162 void *context, int vl, int mode,
3163 u64 data)
3164 {
3165 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3166
3167 return dd->send_egress_err_status_cnt[54];
3168 }
3169
3170 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3171 void *context, int vl, int mode,
3172 u64 data)
3173 {
3174 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3175
3176 return dd->send_egress_err_status_cnt[53];
3177 }
3178
3179 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3180 void *context, int vl, int mode,
3181 u64 data)
3182 {
3183 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3184
3185 return dd->send_egress_err_status_cnt[52];
3186 }
3187
3188 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3189 void *context, int vl, int mode,
3190 u64 data)
3191 {
3192 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3193
3194 return dd->send_egress_err_status_cnt[51];
3195 }
3196
3197 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3198 void *context, int vl, int mode,
3199 u64 data)
3200 {
3201 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3202
3203 return dd->send_egress_err_status_cnt[50];
3204 }
3205
3206 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3207 void *context, int vl, int mode,
3208 u64 data)
3209 {
3210 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3211
3212 return dd->send_egress_err_status_cnt[49];
3213 }
3214
3215 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3216 void *context, int vl, int mode,
3217 u64 data)
3218 {
3219 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3220
3221 return dd->send_egress_err_status_cnt[48];
3222 }
3223
3224 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3225 void *context, int vl, int mode,
3226 u64 data)
3227 {
3228 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3229
3230 return dd->send_egress_err_status_cnt[47];
3231 }
3232
3233 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3234 void *context, int vl, int mode,
3235 u64 data)
3236 {
3237 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3238
3239 return dd->send_egress_err_status_cnt[46];
3240 }
3241
3242 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3243 void *context, int vl, int mode,
3244 u64 data)
3245 {
3246 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3247
3248 return dd->send_egress_err_status_cnt[45];
3249 }
3250
3251 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3252 void *context, int vl,
3253 int mode, u64 data)
3254 {
3255 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3256
3257 return dd->send_egress_err_status_cnt[44];
3258 }
3259
3260 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3261 const struct cntr_entry *entry,
3262 void *context, int vl, int mode, u64 data)
3263 {
3264 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3265
3266 return dd->send_egress_err_status_cnt[43];
3267 }
3268
3269 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3270 void *context, int vl, int mode,
3271 u64 data)
3272 {
3273 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3274
3275 return dd->send_egress_err_status_cnt[42];
3276 }
3277
3278 static u64 access_tx_credit_return_partiy_err_cnt(
3279 const struct cntr_entry *entry,
3280 void *context, int vl, int mode, u64 data)
3281 {
3282 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3283
3284 return dd->send_egress_err_status_cnt[41];
3285 }
3286
3287 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3288 const struct cntr_entry *entry,
3289 void *context, int vl, int mode, u64 data)
3290 {
3291 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3292
3293 return dd->send_egress_err_status_cnt[40];
3294 }
3295
3296 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3297 const struct cntr_entry *entry,
3298 void *context, int vl, int mode, u64 data)
3299 {
3300 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3301
3302 return dd->send_egress_err_status_cnt[39];
3303 }
3304
3305 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3306 const struct cntr_entry *entry,
3307 void *context, int vl, int mode, u64 data)
3308 {
3309 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3310
3311 return dd->send_egress_err_status_cnt[38];
3312 }
3313
3314 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3315 const struct cntr_entry *entry,
3316 void *context, int vl, int mode, u64 data)
3317 {
3318 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3319
3320 return dd->send_egress_err_status_cnt[37];
3321 }
3322
3323 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3324 const struct cntr_entry *entry,
3325 void *context, int vl, int mode, u64 data)
3326 {
3327 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3328
3329 return dd->send_egress_err_status_cnt[36];
3330 }
3331
3332 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3333 const struct cntr_entry *entry,
3334 void *context, int vl, int mode, u64 data)
3335 {
3336 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3337
3338 return dd->send_egress_err_status_cnt[35];
3339 }
3340
3341 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3342 const struct cntr_entry *entry,
3343 void *context, int vl, int mode, u64 data)
3344 {
3345 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3346
3347 return dd->send_egress_err_status_cnt[34];
3348 }
3349
3350 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3351 const struct cntr_entry *entry,
3352 void *context, int vl, int mode, u64 data)
3353 {
3354 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3355
3356 return dd->send_egress_err_status_cnt[33];
3357 }
3358
3359 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3360 const struct cntr_entry *entry,
3361 void *context, int vl, int mode, u64 data)
3362 {
3363 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3364
3365 return dd->send_egress_err_status_cnt[32];
3366 }
3367
3368 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3369 const struct cntr_entry *entry,
3370 void *context, int vl, int mode, u64 data)
3371 {
3372 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3373
3374 return dd->send_egress_err_status_cnt[31];
3375 }
3376
3377 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3378 const struct cntr_entry *entry,
3379 void *context, int vl, int mode, u64 data)
3380 {
3381 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3382
3383 return dd->send_egress_err_status_cnt[30];
3384 }
3385
3386 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3387 const struct cntr_entry *entry,
3388 void *context, int vl, int mode, u64 data)
3389 {
3390 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3391
3392 return dd->send_egress_err_status_cnt[29];
3393 }
3394
3395 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3396 const struct cntr_entry *entry,
3397 void *context, int vl, int mode, u64 data)
3398 {
3399 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3400
3401 return dd->send_egress_err_status_cnt[28];
3402 }
3403
3404 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3405 const struct cntr_entry *entry,
3406 void *context, int vl, int mode, u64 data)
3407 {
3408 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3409
3410 return dd->send_egress_err_status_cnt[27];
3411 }
3412
3413 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3414 const struct cntr_entry *entry,
3415 void *context, int vl, int mode, u64 data)
3416 {
3417 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3418
3419 return dd->send_egress_err_status_cnt[26];
3420 }
3421
3422 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3423 const struct cntr_entry *entry,
3424 void *context, int vl, int mode, u64 data)
3425 {
3426 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3427
3428 return dd->send_egress_err_status_cnt[25];
3429 }
3430
3431 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3432 const struct cntr_entry *entry,
3433 void *context, int vl, int mode, u64 data)
3434 {
3435 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3436
3437 return dd->send_egress_err_status_cnt[24];
3438 }
3439
3440 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3441 const struct cntr_entry *entry,
3442 void *context, int vl, int mode, u64 data)
3443 {
3444 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3445
3446 return dd->send_egress_err_status_cnt[23];
3447 }
3448
3449 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3450 const struct cntr_entry *entry,
3451 void *context, int vl, int mode, u64 data)
3452 {
3453 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3454
3455 return dd->send_egress_err_status_cnt[22];
3456 }
3457
3458 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3459 const struct cntr_entry *entry,
3460 void *context, int vl, int mode, u64 data)
3461 {
3462 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3463
3464 return dd->send_egress_err_status_cnt[21];
3465 }
3466
3467 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3468 const struct cntr_entry *entry,
3469 void *context, int vl, int mode, u64 data)
3470 {
3471 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3472
3473 return dd->send_egress_err_status_cnt[20];
3474 }
3475
3476 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3477 const struct cntr_entry *entry,
3478 void *context, int vl, int mode, u64 data)
3479 {
3480 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3481
3482 return dd->send_egress_err_status_cnt[19];
3483 }
3484
3485 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3486 const struct cntr_entry *entry,
3487 void *context, int vl, int mode, u64 data)
3488 {
3489 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3490
3491 return dd->send_egress_err_status_cnt[18];
3492 }
3493
3494 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3495 const struct cntr_entry *entry,
3496 void *context, int vl, int mode, u64 data)
3497 {
3498 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3499
3500 return dd->send_egress_err_status_cnt[17];
3501 }
3502
3503 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3504 const struct cntr_entry *entry,
3505 void *context, int vl, int mode, u64 data)
3506 {
3507 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3508
3509 return dd->send_egress_err_status_cnt[16];
3510 }
3511
3512 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3513 void *context, int vl, int mode,
3514 u64 data)
3515 {
3516 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3517
3518 return dd->send_egress_err_status_cnt[15];
3519 }
3520
3521 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3522 void *context, int vl,
3523 int mode, u64 data)
3524 {
3525 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3526
3527 return dd->send_egress_err_status_cnt[14];
3528 }
3529
3530 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3531 void *context, int vl, int mode,
3532 u64 data)
3533 {
3534 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3535
3536 return dd->send_egress_err_status_cnt[13];
3537 }
3538
3539 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3540 void *context, int vl, int mode,
3541 u64 data)
3542 {
3543 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3544
3545 return dd->send_egress_err_status_cnt[12];
3546 }
3547
3548 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3549 const struct cntr_entry *entry,
3550 void *context, int vl, int mode, u64 data)
3551 {
3552 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3553
3554 return dd->send_egress_err_status_cnt[11];
3555 }
3556
3557 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3558 void *context, int vl, int mode,
3559 u64 data)
3560 {
3561 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3562
3563 return dd->send_egress_err_status_cnt[10];
3564 }
3565
3566 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3567 void *context, int vl, int mode,
3568 u64 data)
3569 {
3570 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3571
3572 return dd->send_egress_err_status_cnt[9];
3573 }
3574
3575 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3576 const struct cntr_entry *entry,
3577 void *context, int vl, int mode, u64 data)
3578 {
3579 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3580
3581 return dd->send_egress_err_status_cnt[8];
3582 }
3583
3584 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3585 const struct cntr_entry *entry,
3586 void *context, int vl, int mode, u64 data)
3587 {
3588 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3589
3590 return dd->send_egress_err_status_cnt[7];
3591 }
3592
3593 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3594 void *context, int vl, int mode,
3595 u64 data)
3596 {
3597 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3598
3599 return dd->send_egress_err_status_cnt[6];
3600 }
3601
3602 static u64 access_tx_incorrect_link_state_err_cnt(
3603 const struct cntr_entry *entry,
3604 void *context, int vl, int mode, u64 data)
3605 {
3606 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3607
3608 return dd->send_egress_err_status_cnt[5];
3609 }
3610
3611 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3612 void *context, int vl, int mode,
3613 u64 data)
3614 {
3615 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3616
3617 return dd->send_egress_err_status_cnt[4];
3618 }
3619
3620 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3621 const struct cntr_entry *entry,
3622 void *context, int vl, int mode, u64 data)
3623 {
3624 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3625
3626 return dd->send_egress_err_status_cnt[3];
3627 }
3628
3629 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3630 void *context, int vl, int mode,
3631 u64 data)
3632 {
3633 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3634
3635 return dd->send_egress_err_status_cnt[2];
3636 }
3637
3638 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3639 const struct cntr_entry *entry,
3640 void *context, int vl, int mode, u64 data)
3641 {
3642 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3643
3644 return dd->send_egress_err_status_cnt[1];
3645 }
3646
3647 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3648 const struct cntr_entry *entry,
3649 void *context, int vl, int mode, u64 data)
3650 {
3651 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3652
3653 return dd->send_egress_err_status_cnt[0];
3654 }
3655
3656 /*
3657 * Software counters corresponding to each of the
3658 * error status bits within SendErrStatus
3659 */
3660 static u64 access_send_csr_write_bad_addr_err_cnt(
3661 const struct cntr_entry *entry,
3662 void *context, int vl, int mode, u64 data)
3663 {
3664 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3665
3666 return dd->send_err_status_cnt[2];
3667 }
3668
3669 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3670 void *context, int vl,
3671 int mode, u64 data)
3672 {
3673 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3674
3675 return dd->send_err_status_cnt[1];
3676 }
3677
3678 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3679 void *context, int vl, int mode,
3680 u64 data)
3681 {
3682 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3683
3684 return dd->send_err_status_cnt[0];
3685 }
3686
3687 /*
3688 * Software counters corresponding to each of the
3689 * error status bits within SendCtxtErrStatus
3690 */
3691 static u64 access_pio_write_out_of_bounds_err_cnt(
3692 const struct cntr_entry *entry,
3693 void *context, int vl, int mode, u64 data)
3694 {
3695 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3696
3697 return dd->sw_ctxt_err_status_cnt[4];
3698 }
3699
3700 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3701 void *context, int vl, int mode,
3702 u64 data)
3703 {
3704 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3705
3706 return dd->sw_ctxt_err_status_cnt[3];
3707 }
3708
3709 static u64 access_pio_write_crosses_boundary_err_cnt(
3710 const struct cntr_entry *entry,
3711 void *context, int vl, int mode, u64 data)
3712 {
3713 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3714
3715 return dd->sw_ctxt_err_status_cnt[2];
3716 }
3717
3718 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3719 void *context, int vl,
3720 int mode, u64 data)
3721 {
3722 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3723
3724 return dd->sw_ctxt_err_status_cnt[1];
3725 }
3726
3727 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3728 void *context, int vl, int mode,
3729 u64 data)
3730 {
3731 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3732
3733 return dd->sw_ctxt_err_status_cnt[0];
3734 }
3735
3736 /*
3737 * Software counters corresponding to each of the
3738 * error status bits within SendDmaEngErrStatus
3739 */
3740 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3741 const struct cntr_entry *entry,
3742 void *context, int vl, int mode, u64 data)
3743 {
3744 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3745
3746 return dd->sw_send_dma_eng_err_status_cnt[23];
3747 }
3748
3749 static u64 access_sdma_header_storage_cor_err_cnt(
3750 const struct cntr_entry *entry,
3751 void *context, int vl, int mode, u64 data)
3752 {
3753 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3754
3755 return dd->sw_send_dma_eng_err_status_cnt[22];
3756 }
3757
3758 static u64 access_sdma_packet_tracking_cor_err_cnt(
3759 const struct cntr_entry *entry,
3760 void *context, int vl, int mode, u64 data)
3761 {
3762 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3763
3764 return dd->sw_send_dma_eng_err_status_cnt[21];
3765 }
3766
3767 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3768 void *context, int vl, int mode,
3769 u64 data)
3770 {
3771 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3772
3773 return dd->sw_send_dma_eng_err_status_cnt[20];
3774 }
3775
3776 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3777 void *context, int vl, int mode,
3778 u64 data)
3779 {
3780 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3781
3782 return dd->sw_send_dma_eng_err_status_cnt[19];
3783 }
3784
3785 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3786 const struct cntr_entry *entry,
3787 void *context, int vl, int mode, u64 data)
3788 {
3789 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3790
3791 return dd->sw_send_dma_eng_err_status_cnt[18];
3792 }
3793
3794 static u64 access_sdma_header_storage_unc_err_cnt(
3795 const struct cntr_entry *entry,
3796 void *context, int vl, int mode, u64 data)
3797 {
3798 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3799
3800 return dd->sw_send_dma_eng_err_status_cnt[17];
3801 }
3802
3803 static u64 access_sdma_packet_tracking_unc_err_cnt(
3804 const struct cntr_entry *entry,
3805 void *context, int vl, int mode, u64 data)
3806 {
3807 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3808
3809 return dd->sw_send_dma_eng_err_status_cnt[16];
3810 }
3811
3812 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3813 void *context, int vl, int mode,
3814 u64 data)
3815 {
3816 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3817
3818 return dd->sw_send_dma_eng_err_status_cnt[15];
3819 }
3820
3821 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3822 void *context, int vl, int mode,
3823 u64 data)
3824 {
3825 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3826
3827 return dd->sw_send_dma_eng_err_status_cnt[14];
3828 }
3829
3830 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3831 void *context, int vl, int mode,
3832 u64 data)
3833 {
3834 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3835
3836 return dd->sw_send_dma_eng_err_status_cnt[13];
3837 }
3838
3839 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3840 void *context, int vl, int mode,
3841 u64 data)
3842 {
3843 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3844
3845 return dd->sw_send_dma_eng_err_status_cnt[12];
3846 }
3847
3848 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3849 void *context, int vl, int mode,
3850 u64 data)
3851 {
3852 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3853
3854 return dd->sw_send_dma_eng_err_status_cnt[11];
3855 }
3856
3857 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3858 void *context, int vl, int mode,
3859 u64 data)
3860 {
3861 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3862
3863 return dd->sw_send_dma_eng_err_status_cnt[10];
3864 }
3865
3866 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3867 void *context, int vl, int mode,
3868 u64 data)
3869 {
3870 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3871
3872 return dd->sw_send_dma_eng_err_status_cnt[9];
3873 }
3874
3875 static u64 access_sdma_packet_desc_overflow_err_cnt(
3876 const struct cntr_entry *entry,
3877 void *context, int vl, int mode, u64 data)
3878 {
3879 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3880
3881 return dd->sw_send_dma_eng_err_status_cnt[8];
3882 }
3883
3884 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3885 void *context, int vl,
3886 int mode, u64 data)
3887 {
3888 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3889
3890 return dd->sw_send_dma_eng_err_status_cnt[7];
3891 }
3892
3893 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3894 void *context, int vl, int mode, u64 data)
3895 {
3896 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3897
3898 return dd->sw_send_dma_eng_err_status_cnt[6];
3899 }
3900
3901 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3902 void *context, int vl, int mode,
3903 u64 data)
3904 {
3905 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3906
3907 return dd->sw_send_dma_eng_err_status_cnt[5];
3908 }
3909
3910 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3911 void *context, int vl, int mode,
3912 u64 data)
3913 {
3914 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3915
3916 return dd->sw_send_dma_eng_err_status_cnt[4];
3917 }
3918
3919 static u64 access_sdma_tail_out_of_bounds_err_cnt(
3920 const struct cntr_entry *entry,
3921 void *context, int vl, int mode, u64 data)
3922 {
3923 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3924
3925 return dd->sw_send_dma_eng_err_status_cnt[3];
3926 }
3927
3928 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
3929 void *context, int vl, int mode,
3930 u64 data)
3931 {
3932 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3933
3934 return dd->sw_send_dma_eng_err_status_cnt[2];
3935 }
3936
3937 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
3938 void *context, int vl, int mode,
3939 u64 data)
3940 {
3941 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3942
3943 return dd->sw_send_dma_eng_err_status_cnt[1];
3944 }
3945
3946 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
3947 void *context, int vl, int mode,
3948 u64 data)
3949 {
3950 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3951
3952 return dd->sw_send_dma_eng_err_status_cnt[0];
3953 }
3954
3955 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
3956 void *context, int vl, int mode,
3957 u64 data)
3958 {
3959 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3960
3961 u64 val = 0;
3962 u64 csr = entry->csr;
3963
3964 val = read_write_csr(dd, csr, mode, data);
3965 if (mode == CNTR_MODE_R) {
3966 val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
3967 CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
3968 } else if (mode == CNTR_MODE_W) {
3969 dd->sw_rcv_bypass_packet_errors = 0;
3970 } else {
3971 dd_dev_err(dd, "Invalid cntr register access mode");
3972 return 0;
3973 }
3974 return val;
3975 }
3976
3977 #define def_access_sw_cpu(cntr) \
3978 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \
3979 void *context, int vl, int mode, u64 data) \
3980 { \
3981 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
3982 return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr, \
3983 ppd->ibport_data.rvp.cntr, vl, \
3984 mode, data); \
3985 }
3986
3987 def_access_sw_cpu(rc_acks);
3988 def_access_sw_cpu(rc_qacks);
3989 def_access_sw_cpu(rc_delayed_comp);
3990
3991 #define def_access_ibp_counter(cntr) \
3992 static u64 access_ibp_##cntr(const struct cntr_entry *entry, \
3993 void *context, int vl, int mode, u64 data) \
3994 { \
3995 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
3996 \
3997 if (vl != CNTR_INVALID_VL) \
3998 return 0; \
3999 \
4000 return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr, \
4001 mode, data); \
4002 }
4003
4004 def_access_ibp_counter(loop_pkts);
4005 def_access_ibp_counter(rc_resends);
4006 def_access_ibp_counter(rnr_naks);
4007 def_access_ibp_counter(other_naks);
4008 def_access_ibp_counter(rc_timeouts);
4009 def_access_ibp_counter(pkt_drops);
4010 def_access_ibp_counter(dmawait);
4011 def_access_ibp_counter(rc_seqnak);
4012 def_access_ibp_counter(rc_dupreq);
4013 def_access_ibp_counter(rdma_seq);
4014 def_access_ibp_counter(unaligned);
4015 def_access_ibp_counter(seq_naks);
4016
4017 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4018 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4019 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4020 CNTR_NORMAL),
4021 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4022 CNTR_NORMAL),
4023 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4024 RCV_TID_FLOW_GEN_MISMATCH_CNT,
4025 CNTR_NORMAL),
4026 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4027 CNTR_NORMAL),
4028 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4029 RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4030 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4031 CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4032 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4033 CNTR_NORMAL),
4034 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4035 CNTR_NORMAL),
4036 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4037 CNTR_NORMAL),
4038 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4039 CNTR_NORMAL),
4040 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4041 CNTR_NORMAL),
4042 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4043 CNTR_NORMAL),
4044 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4045 CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
4046 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4047 CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4048 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4049 CNTR_SYNTH),
4050 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4051 access_dc_rcv_err_cnt),
4052 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4053 CNTR_SYNTH),
4054 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4055 CNTR_SYNTH),
4056 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4057 CNTR_SYNTH),
4058 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4059 DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4060 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4061 DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4062 CNTR_SYNTH),
4063 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4064 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4065 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4066 CNTR_SYNTH),
4067 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4068 CNTR_SYNTH),
4069 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4070 CNTR_SYNTH),
4071 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4072 CNTR_SYNTH),
4073 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4074 CNTR_SYNTH),
4075 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4076 CNTR_SYNTH),
4077 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4078 CNTR_SYNTH),
4079 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4080 CNTR_SYNTH | CNTR_VL),
4081 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4082 CNTR_SYNTH | CNTR_VL),
4083 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4084 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4085 CNTR_SYNTH | CNTR_VL),
4086 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4087 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4088 CNTR_SYNTH | CNTR_VL),
4089 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4090 CNTR_SYNTH),
4091 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4092 CNTR_SYNTH | CNTR_VL),
4093 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4094 CNTR_SYNTH),
4095 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4096 CNTR_SYNTH | CNTR_VL),
4097 [C_DC_TOTAL_CRC] =
4098 DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4099 CNTR_SYNTH),
4100 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4101 CNTR_SYNTH),
4102 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4103 CNTR_SYNTH),
4104 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4105 CNTR_SYNTH),
4106 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4107 CNTR_SYNTH),
4108 [C_DC_CRC_MULT_LN] =
4109 DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4110 CNTR_SYNTH),
4111 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4112 CNTR_SYNTH),
4113 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4114 CNTR_SYNTH),
4115 [C_DC_SEQ_CRC_CNT] =
4116 DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4117 CNTR_SYNTH),
4118 [C_DC_ESC0_ONLY_CNT] =
4119 DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4120 CNTR_SYNTH),
4121 [C_DC_ESC0_PLUS1_CNT] =
4122 DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4123 CNTR_SYNTH),
4124 [C_DC_ESC0_PLUS2_CNT] =
4125 DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4126 CNTR_SYNTH),
4127 [C_DC_REINIT_FROM_PEER_CNT] =
4128 DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4129 CNTR_SYNTH),
4130 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4131 CNTR_SYNTH),
4132 [C_DC_MISC_FLG_CNT] =
4133 DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4134 CNTR_SYNTH),
4135 [C_DC_PRF_GOOD_LTP_CNT] =
4136 DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4137 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4138 DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4139 CNTR_SYNTH),
4140 [C_DC_PRF_RX_FLIT_CNT] =
4141 DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4142 [C_DC_PRF_TX_FLIT_CNT] =
4143 DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4144 [C_DC_PRF_CLK_CNTR] =
4145 DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4146 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4147 DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4148 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4149 DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4150 CNTR_SYNTH),
4151 [C_DC_PG_STS_TX_SBE_CNT] =
4152 DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4153 [C_DC_PG_STS_TX_MBE_CNT] =
4154 DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4155 CNTR_SYNTH),
4156 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4157 access_sw_cpu_intr),
4158 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4159 access_sw_cpu_rcv_limit),
4160 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4161 access_sw_vtx_wait),
4162 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4163 access_sw_pio_wait),
4164 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4165 access_sw_pio_drain),
4166 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4167 access_sw_kmem_wait),
4168 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4169 access_sw_send_schedule),
4170 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4171 SEND_DMA_DESC_FETCHED_CNT, 0,
4172 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4173 dev_access_u32_csr),
4174 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4175 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4176 access_sde_int_cnt),
4177 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4178 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4179 access_sde_err_cnt),
4180 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4181 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4182 access_sde_idle_int_cnt),
4183 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4184 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4185 access_sde_progress_int_cnt),
4186 /* MISC_ERR_STATUS */
4187 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4188 CNTR_NORMAL,
4189 access_misc_pll_lock_fail_err_cnt),
4190 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4191 CNTR_NORMAL,
4192 access_misc_mbist_fail_err_cnt),
4193 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4194 CNTR_NORMAL,
4195 access_misc_invalid_eep_cmd_err_cnt),
4196 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4197 CNTR_NORMAL,
4198 access_misc_efuse_done_parity_err_cnt),
4199 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4200 CNTR_NORMAL,
4201 access_misc_efuse_write_err_cnt),
4202 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4203 0, CNTR_NORMAL,
4204 access_misc_efuse_read_bad_addr_err_cnt),
4205 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4206 CNTR_NORMAL,
4207 access_misc_efuse_csr_parity_err_cnt),
4208 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4209 CNTR_NORMAL,
4210 access_misc_fw_auth_failed_err_cnt),
4211 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4212 CNTR_NORMAL,
4213 access_misc_key_mismatch_err_cnt),
4214 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4215 CNTR_NORMAL,
4216 access_misc_sbus_write_failed_err_cnt),
4217 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4218 CNTR_NORMAL,
4219 access_misc_csr_write_bad_addr_err_cnt),
4220 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4221 CNTR_NORMAL,
4222 access_misc_csr_read_bad_addr_err_cnt),
4223 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4224 CNTR_NORMAL,
4225 access_misc_csr_parity_err_cnt),
4226 /* CceErrStatus */
4227 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4228 CNTR_NORMAL,
4229 access_sw_cce_err_status_aggregated_cnt),
4230 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4231 CNTR_NORMAL,
4232 access_cce_msix_csr_parity_err_cnt),
4233 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4234 CNTR_NORMAL,
4235 access_cce_int_map_unc_err_cnt),
4236 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4237 CNTR_NORMAL,
4238 access_cce_int_map_cor_err_cnt),
4239 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4240 CNTR_NORMAL,
4241 access_cce_msix_table_unc_err_cnt),
4242 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4243 CNTR_NORMAL,
4244 access_cce_msix_table_cor_err_cnt),
4245 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4246 0, CNTR_NORMAL,
4247 access_cce_rxdma_conv_fifo_parity_err_cnt),
4248 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4249 0, CNTR_NORMAL,
4250 access_cce_rcpl_async_fifo_parity_err_cnt),
4251 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4252 CNTR_NORMAL,
4253 access_cce_seg_write_bad_addr_err_cnt),
4254 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4255 CNTR_NORMAL,
4256 access_cce_seg_read_bad_addr_err_cnt),
4257 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4258 CNTR_NORMAL,
4259 access_la_triggered_cnt),
4260 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4261 CNTR_NORMAL,
4262 access_cce_trgt_cpl_timeout_err_cnt),
4263 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4264 CNTR_NORMAL,
4265 access_pcic_receive_parity_err_cnt),
4266 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4267 CNTR_NORMAL,
4268 access_pcic_transmit_back_parity_err_cnt),
4269 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4270 0, CNTR_NORMAL,
4271 access_pcic_transmit_front_parity_err_cnt),
4272 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4273 CNTR_NORMAL,
4274 access_pcic_cpl_dat_q_unc_err_cnt),
4275 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4276 CNTR_NORMAL,
4277 access_pcic_cpl_hd_q_unc_err_cnt),
4278 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4279 CNTR_NORMAL,
4280 access_pcic_post_dat_q_unc_err_cnt),
4281 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4282 CNTR_NORMAL,
4283 access_pcic_post_hd_q_unc_err_cnt),
4284 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4285 CNTR_NORMAL,
4286 access_pcic_retry_sot_mem_unc_err_cnt),
4287 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4288 CNTR_NORMAL,
4289 access_pcic_retry_mem_unc_err),
4290 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4291 CNTR_NORMAL,
4292 access_pcic_n_post_dat_q_parity_err_cnt),
4293 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4294 CNTR_NORMAL,
4295 access_pcic_n_post_h_q_parity_err_cnt),
4296 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4297 CNTR_NORMAL,
4298 access_pcic_cpl_dat_q_cor_err_cnt),
4299 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4300 CNTR_NORMAL,
4301 access_pcic_cpl_hd_q_cor_err_cnt),
4302 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4303 CNTR_NORMAL,
4304 access_pcic_post_dat_q_cor_err_cnt),
4305 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4306 CNTR_NORMAL,
4307 access_pcic_post_hd_q_cor_err_cnt),
4308 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4309 CNTR_NORMAL,
4310 access_pcic_retry_sot_mem_cor_err_cnt),
4311 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4312 CNTR_NORMAL,
4313 access_pcic_retry_mem_cor_err_cnt),
4314 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4315 "CceCli1AsyncFifoDbgParityError", 0, 0,
4316 CNTR_NORMAL,
4317 access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4318 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4319 "CceCli1AsyncFifoRxdmaParityError", 0, 0,
4320 CNTR_NORMAL,
4321 access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4322 ),
4323 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4324 "CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4325 CNTR_NORMAL,
4326 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4327 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4328 "CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4329 CNTR_NORMAL,
4330 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4331 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4332 0, CNTR_NORMAL,
4333 access_cce_cli2_async_fifo_parity_err_cnt),
4334 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4335 CNTR_NORMAL,
4336 access_cce_csr_cfg_bus_parity_err_cnt),
4337 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4338 0, CNTR_NORMAL,
4339 access_cce_cli0_async_fifo_parity_err_cnt),
4340 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4341 CNTR_NORMAL,
4342 access_cce_rspd_data_parity_err_cnt),
4343 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4344 CNTR_NORMAL,
4345 access_cce_trgt_access_err_cnt),
4346 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4347 0, CNTR_NORMAL,
4348 access_cce_trgt_async_fifo_parity_err_cnt),
4349 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4350 CNTR_NORMAL,
4351 access_cce_csr_write_bad_addr_err_cnt),
4352 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4353 CNTR_NORMAL,
4354 access_cce_csr_read_bad_addr_err_cnt),
4355 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4356 CNTR_NORMAL,
4357 access_ccs_csr_parity_err_cnt),
4358
4359 /* RcvErrStatus */
4360 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4361 CNTR_NORMAL,
4362 access_rx_csr_parity_err_cnt),
4363 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4364 CNTR_NORMAL,
4365 access_rx_csr_write_bad_addr_err_cnt),
4366 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4367 CNTR_NORMAL,
4368 access_rx_csr_read_bad_addr_err_cnt),
4369 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4370 CNTR_NORMAL,
4371 access_rx_dma_csr_unc_err_cnt),
4372 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4373 CNTR_NORMAL,
4374 access_rx_dma_dq_fsm_encoding_err_cnt),
4375 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4376 CNTR_NORMAL,
4377 access_rx_dma_eq_fsm_encoding_err_cnt),
4378 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4379 CNTR_NORMAL,
4380 access_rx_dma_csr_parity_err_cnt),
4381 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4382 CNTR_NORMAL,
4383 access_rx_rbuf_data_cor_err_cnt),
4384 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4385 CNTR_NORMAL,
4386 access_rx_rbuf_data_unc_err_cnt),
4387 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4388 CNTR_NORMAL,
4389 access_rx_dma_data_fifo_rd_cor_err_cnt),
4390 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4391 CNTR_NORMAL,
4392 access_rx_dma_data_fifo_rd_unc_err_cnt),
4393 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4394 CNTR_NORMAL,
4395 access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4396 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4397 CNTR_NORMAL,
4398 access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4399 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4400 CNTR_NORMAL,
4401 access_rx_rbuf_desc_part2_cor_err_cnt),
4402 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4403 CNTR_NORMAL,
4404 access_rx_rbuf_desc_part2_unc_err_cnt),
4405 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4406 CNTR_NORMAL,
4407 access_rx_rbuf_desc_part1_cor_err_cnt),
4408 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4409 CNTR_NORMAL,
4410 access_rx_rbuf_desc_part1_unc_err_cnt),
4411 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4412 CNTR_NORMAL,
4413 access_rx_hq_intr_fsm_err_cnt),
4414 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4415 CNTR_NORMAL,
4416 access_rx_hq_intr_csr_parity_err_cnt),
4417 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4418 CNTR_NORMAL,
4419 access_rx_lookup_csr_parity_err_cnt),
4420 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4421 CNTR_NORMAL,
4422 access_rx_lookup_rcv_array_cor_err_cnt),
4423 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4424 CNTR_NORMAL,
4425 access_rx_lookup_rcv_array_unc_err_cnt),
4426 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4427 0, CNTR_NORMAL,
4428 access_rx_lookup_des_part2_parity_err_cnt),
4429 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4430 0, CNTR_NORMAL,
4431 access_rx_lookup_des_part1_unc_cor_err_cnt),
4432 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4433 CNTR_NORMAL,
4434 access_rx_lookup_des_part1_unc_err_cnt),
4435 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4436 CNTR_NORMAL,
4437 access_rx_rbuf_next_free_buf_cor_err_cnt),
4438 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4439 CNTR_NORMAL,
4440 access_rx_rbuf_next_free_buf_unc_err_cnt),
4441 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4442 "RxRbufFlInitWrAddrParityErr", 0, 0,
4443 CNTR_NORMAL,
4444 access_rbuf_fl_init_wr_addr_parity_err_cnt),
4445 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4446 0, CNTR_NORMAL,
4447 access_rx_rbuf_fl_initdone_parity_err_cnt),
4448 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4449 0, CNTR_NORMAL,
4450 access_rx_rbuf_fl_write_addr_parity_err_cnt),
4451 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4452 CNTR_NORMAL,
4453 access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4454 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4455 CNTR_NORMAL,
4456 access_rx_rbuf_empty_err_cnt),
4457 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4458 CNTR_NORMAL,
4459 access_rx_rbuf_full_err_cnt),
4460 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4461 CNTR_NORMAL,
4462 access_rbuf_bad_lookup_err_cnt),
4463 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4464 CNTR_NORMAL,
4465 access_rbuf_ctx_id_parity_err_cnt),
4466 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4467 CNTR_NORMAL,
4468 access_rbuf_csr_qeopdw_parity_err_cnt),
4469 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4470 "RxRbufCsrQNumOfPktParityErr", 0, 0,
4471 CNTR_NORMAL,
4472 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4473 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4474 "RxRbufCsrQTlPtrParityErr", 0, 0,
4475 CNTR_NORMAL,
4476 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4477 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4478 0, CNTR_NORMAL,
4479 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4480 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4481 0, CNTR_NORMAL,
4482 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4483 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4484 0, 0, CNTR_NORMAL,
4485 access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4486 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4487 0, CNTR_NORMAL,
4488 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4489 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4490 "RxRbufCsrQHeadBufNumParityErr", 0, 0,
4491 CNTR_NORMAL,
4492 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4493 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4494 0, CNTR_NORMAL,
4495 access_rx_rbuf_block_list_read_cor_err_cnt),
4496 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4497 0, CNTR_NORMAL,
4498 access_rx_rbuf_block_list_read_unc_err_cnt),
4499 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4500 CNTR_NORMAL,
4501 access_rx_rbuf_lookup_des_cor_err_cnt),
4502 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4503 CNTR_NORMAL,
4504 access_rx_rbuf_lookup_des_unc_err_cnt),
4505 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4506 "RxRbufLookupDesRegUncCorErr", 0, 0,
4507 CNTR_NORMAL,
4508 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4509 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4510 CNTR_NORMAL,
4511 access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4512 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4513 CNTR_NORMAL,
4514 access_rx_rbuf_free_list_cor_err_cnt),
4515 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4516 CNTR_NORMAL,
4517 access_rx_rbuf_free_list_unc_err_cnt),
4518 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4519 CNTR_NORMAL,
4520 access_rx_rcv_fsm_encoding_err_cnt),
4521 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4522 CNTR_NORMAL,
4523 access_rx_dma_flag_cor_err_cnt),
4524 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4525 CNTR_NORMAL,
4526 access_rx_dma_flag_unc_err_cnt),
4527 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4528 CNTR_NORMAL,
4529 access_rx_dc_sop_eop_parity_err_cnt),
4530 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4531 CNTR_NORMAL,
4532 access_rx_rcv_csr_parity_err_cnt),
4533 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4534 CNTR_NORMAL,
4535 access_rx_rcv_qp_map_table_cor_err_cnt),
4536 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4537 CNTR_NORMAL,
4538 access_rx_rcv_qp_map_table_unc_err_cnt),
4539 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4540 CNTR_NORMAL,
4541 access_rx_rcv_data_cor_err_cnt),
4542 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4543 CNTR_NORMAL,
4544 access_rx_rcv_data_unc_err_cnt),
4545 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4546 CNTR_NORMAL,
4547 access_rx_rcv_hdr_cor_err_cnt),
4548 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4549 CNTR_NORMAL,
4550 access_rx_rcv_hdr_unc_err_cnt),
4551 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4552 CNTR_NORMAL,
4553 access_rx_dc_intf_parity_err_cnt),
4554 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4555 CNTR_NORMAL,
4556 access_rx_dma_csr_cor_err_cnt),
4557 /* SendPioErrStatus */
4558 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4559 CNTR_NORMAL,
4560 access_pio_pec_sop_head_parity_err_cnt),
4561 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4562 CNTR_NORMAL,
4563 access_pio_pcc_sop_head_parity_err_cnt),
4564 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4565 0, 0, CNTR_NORMAL,
4566 access_pio_last_returned_cnt_parity_err_cnt),
4567 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4568 0, CNTR_NORMAL,
4569 access_pio_current_free_cnt_parity_err_cnt),
4570 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4571 CNTR_NORMAL,
4572 access_pio_reserved_31_err_cnt),
4573 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4574 CNTR_NORMAL,
4575 access_pio_reserved_30_err_cnt),
4576 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4577 CNTR_NORMAL,
4578 access_pio_ppmc_sop_len_err_cnt),
4579 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4580 CNTR_NORMAL,
4581 access_pio_ppmc_bqc_mem_parity_err_cnt),
4582 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4583 CNTR_NORMAL,
4584 access_pio_vl_fifo_parity_err_cnt),
4585 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4586 CNTR_NORMAL,
4587 access_pio_vlf_sop_parity_err_cnt),
4588 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4589 CNTR_NORMAL,
4590 access_pio_vlf_v1_len_parity_err_cnt),
4591 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4592 CNTR_NORMAL,
4593 access_pio_block_qw_count_parity_err_cnt),
4594 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4595 CNTR_NORMAL,
4596 access_pio_write_qw_valid_parity_err_cnt),
4597 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4598 CNTR_NORMAL,
4599 access_pio_state_machine_err_cnt),
4600 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4601 CNTR_NORMAL,
4602 access_pio_write_data_parity_err_cnt),
4603 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4604 CNTR_NORMAL,
4605 access_pio_host_addr_mem_cor_err_cnt),
4606 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4607 CNTR_NORMAL,
4608 access_pio_host_addr_mem_unc_err_cnt),
4609 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4610 CNTR_NORMAL,
4611 access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4612 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4613 CNTR_NORMAL,
4614 access_pio_init_sm_in_err_cnt),
4615 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4616 CNTR_NORMAL,
4617 access_pio_ppmc_pbl_fifo_err_cnt),
4618 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4619 0, CNTR_NORMAL,
4620 access_pio_credit_ret_fifo_parity_err_cnt),
4621 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4622 CNTR_NORMAL,
4623 access_pio_v1_len_mem_bank1_cor_err_cnt),
4624 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4625 CNTR_NORMAL,
4626 access_pio_v1_len_mem_bank0_cor_err_cnt),
4627 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4628 CNTR_NORMAL,
4629 access_pio_v1_len_mem_bank1_unc_err_cnt),
4630 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4631 CNTR_NORMAL,
4632 access_pio_v1_len_mem_bank0_unc_err_cnt),
4633 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4634 CNTR_NORMAL,
4635 access_pio_sm_pkt_reset_parity_err_cnt),
4636 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4637 CNTR_NORMAL,
4638 access_pio_pkt_evict_fifo_parity_err_cnt),
4639 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4640 "PioSbrdctrlCrrelFifoParityErr", 0, 0,
4641 CNTR_NORMAL,
4642 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4643 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4644 CNTR_NORMAL,
4645 access_pio_sbrdctl_crrel_parity_err_cnt),
4646 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4647 CNTR_NORMAL,
4648 access_pio_pec_fifo_parity_err_cnt),
4649 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4650 CNTR_NORMAL,
4651 access_pio_pcc_fifo_parity_err_cnt),
4652 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4653 CNTR_NORMAL,
4654 access_pio_sb_mem_fifo1_err_cnt),
4655 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4656 CNTR_NORMAL,
4657 access_pio_sb_mem_fifo0_err_cnt),
4658 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4659 CNTR_NORMAL,
4660 access_pio_csr_parity_err_cnt),
4661 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4662 CNTR_NORMAL,
4663 access_pio_write_addr_parity_err_cnt),
4664 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4665 CNTR_NORMAL,
4666 access_pio_write_bad_ctxt_err_cnt),
4667 /* SendDmaErrStatus */
4668 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4669 0, CNTR_NORMAL,
4670 access_sdma_pcie_req_tracking_cor_err_cnt),
4671 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4672 0, CNTR_NORMAL,
4673 access_sdma_pcie_req_tracking_unc_err_cnt),
4674 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4675 CNTR_NORMAL,
4676 access_sdma_csr_parity_err_cnt),
4677 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4678 CNTR_NORMAL,
4679 access_sdma_rpy_tag_err_cnt),
4680 /* SendEgressErrStatus */
4681 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4682 CNTR_NORMAL,
4683 access_tx_read_pio_memory_csr_unc_err_cnt),
4684 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4685 0, CNTR_NORMAL,
4686 access_tx_read_sdma_memory_csr_err_cnt),
4687 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4688 CNTR_NORMAL,
4689 access_tx_egress_fifo_cor_err_cnt),
4690 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4691 CNTR_NORMAL,
4692 access_tx_read_pio_memory_cor_err_cnt),
4693 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4694 CNTR_NORMAL,
4695 access_tx_read_sdma_memory_cor_err_cnt),
4696 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4697 CNTR_NORMAL,
4698 access_tx_sb_hdr_cor_err_cnt),
4699 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4700 CNTR_NORMAL,
4701 access_tx_credit_overrun_err_cnt),
4702 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4703 CNTR_NORMAL,
4704 access_tx_launch_fifo8_cor_err_cnt),
4705 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4706 CNTR_NORMAL,
4707 access_tx_launch_fifo7_cor_err_cnt),
4708 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4709 CNTR_NORMAL,
4710 access_tx_launch_fifo6_cor_err_cnt),
4711 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4712 CNTR_NORMAL,
4713 access_tx_launch_fifo5_cor_err_cnt),
4714 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4715 CNTR_NORMAL,
4716 access_tx_launch_fifo4_cor_err_cnt),
4717 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4718 CNTR_NORMAL,
4719 access_tx_launch_fifo3_cor_err_cnt),
4720 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4721 CNTR_NORMAL,
4722 access_tx_launch_fifo2_cor_err_cnt),
4723 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4724 CNTR_NORMAL,
4725 access_tx_launch_fifo1_cor_err_cnt),
4726 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4727 CNTR_NORMAL,
4728 access_tx_launch_fifo0_cor_err_cnt),
4729 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4730 CNTR_NORMAL,
4731 access_tx_credit_return_vl_err_cnt),
4732 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4733 CNTR_NORMAL,
4734 access_tx_hcrc_insertion_err_cnt),
4735 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4736 CNTR_NORMAL,
4737 access_tx_egress_fifo_unc_err_cnt),
4738 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4739 CNTR_NORMAL,
4740 access_tx_read_pio_memory_unc_err_cnt),
4741 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4742 CNTR_NORMAL,
4743 access_tx_read_sdma_memory_unc_err_cnt),
4744 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4745 CNTR_NORMAL,
4746 access_tx_sb_hdr_unc_err_cnt),
4747 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4748 CNTR_NORMAL,
4749 access_tx_credit_return_partiy_err_cnt),
4750 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4751 0, 0, CNTR_NORMAL,
4752 access_tx_launch_fifo8_unc_or_parity_err_cnt),
4753 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4754 0, 0, CNTR_NORMAL,
4755 access_tx_launch_fifo7_unc_or_parity_err_cnt),
4756 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4757 0, 0, CNTR_NORMAL,
4758 access_tx_launch_fifo6_unc_or_parity_err_cnt),
4759 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4760 0, 0, CNTR_NORMAL,
4761 access_tx_launch_fifo5_unc_or_parity_err_cnt),
4762 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4763 0, 0, CNTR_NORMAL,
4764 access_tx_launch_fifo4_unc_or_parity_err_cnt),
4765 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4766 0, 0, CNTR_NORMAL,
4767 access_tx_launch_fifo3_unc_or_parity_err_cnt),
4768 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4769 0, 0, CNTR_NORMAL,
4770 access_tx_launch_fifo2_unc_or_parity_err_cnt),
4771 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4772 0, 0, CNTR_NORMAL,
4773 access_tx_launch_fifo1_unc_or_parity_err_cnt),
4774 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4775 0, 0, CNTR_NORMAL,
4776 access_tx_launch_fifo0_unc_or_parity_err_cnt),
4777 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4778 0, 0, CNTR_NORMAL,
4779 access_tx_sdma15_disallowed_packet_err_cnt),
4780 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4781 0, 0, CNTR_NORMAL,
4782 access_tx_sdma14_disallowed_packet_err_cnt),
4783 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4784 0, 0, CNTR_NORMAL,
4785 access_tx_sdma13_disallowed_packet_err_cnt),
4786 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4787 0, 0, CNTR_NORMAL,
4788 access_tx_sdma12_disallowed_packet_err_cnt),
4789 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4790 0, 0, CNTR_NORMAL,
4791 access_tx_sdma11_disallowed_packet_err_cnt),
4792 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4793 0, 0, CNTR_NORMAL,
4794 access_tx_sdma10_disallowed_packet_err_cnt),
4795 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4796 0, 0, CNTR_NORMAL,
4797 access_tx_sdma9_disallowed_packet_err_cnt),
4798 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4799 0, 0, CNTR_NORMAL,
4800 access_tx_sdma8_disallowed_packet_err_cnt),
4801 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4802 0, 0, CNTR_NORMAL,
4803 access_tx_sdma7_disallowed_packet_err_cnt),
4804 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4805 0, 0, CNTR_NORMAL,
4806 access_tx_sdma6_disallowed_packet_err_cnt),
4807 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4808 0, 0, CNTR_NORMAL,
4809 access_tx_sdma5_disallowed_packet_err_cnt),
4810 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4811 0, 0, CNTR_NORMAL,
4812 access_tx_sdma4_disallowed_packet_err_cnt),
4813 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4814 0, 0, CNTR_NORMAL,
4815 access_tx_sdma3_disallowed_packet_err_cnt),
4816 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4817 0, 0, CNTR_NORMAL,
4818 access_tx_sdma2_disallowed_packet_err_cnt),
4819 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4820 0, 0, CNTR_NORMAL,
4821 access_tx_sdma1_disallowed_packet_err_cnt),
4822 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4823 0, 0, CNTR_NORMAL,
4824 access_tx_sdma0_disallowed_packet_err_cnt),
4825 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4826 CNTR_NORMAL,
4827 access_tx_config_parity_err_cnt),
4828 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4829 CNTR_NORMAL,
4830 access_tx_sbrd_ctl_csr_parity_err_cnt),
4831 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4832 CNTR_NORMAL,
4833 access_tx_launch_csr_parity_err_cnt),
4834 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4835 CNTR_NORMAL,
4836 access_tx_illegal_vl_err_cnt),
4837 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4838 "TxSbrdCtlStateMachineParityErr", 0, 0,
4839 CNTR_NORMAL,
4840 access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4841 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4842 CNTR_NORMAL,
4843 access_egress_reserved_10_err_cnt),
4844 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4845 CNTR_NORMAL,
4846 access_egress_reserved_9_err_cnt),
4847 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4848 0, 0, CNTR_NORMAL,
4849 access_tx_sdma_launch_intf_parity_err_cnt),
4850 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4851 CNTR_NORMAL,
4852 access_tx_pio_launch_intf_parity_err_cnt),
4853 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4854 CNTR_NORMAL,
4855 access_egress_reserved_6_err_cnt),
4856 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4857 CNTR_NORMAL,
4858 access_tx_incorrect_link_state_err_cnt),
4859 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4860 CNTR_NORMAL,
4861 access_tx_linkdown_err_cnt),
4862 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4863 "EgressFifoUnderrunOrParityErr", 0, 0,
4864 CNTR_NORMAL,
4865 access_tx_egress_fifi_underrun_or_parity_err_cnt),
4866 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4867 CNTR_NORMAL,
4868 access_egress_reserved_2_err_cnt),
4869 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4870 CNTR_NORMAL,
4871 access_tx_pkt_integrity_mem_unc_err_cnt),
4872 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4873 CNTR_NORMAL,
4874 access_tx_pkt_integrity_mem_cor_err_cnt),
4875 /* SendErrStatus */
4876 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4877 CNTR_NORMAL,
4878 access_send_csr_write_bad_addr_err_cnt),
4879 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4880 CNTR_NORMAL,
4881 access_send_csr_read_bad_addr_err_cnt),
4882 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4883 CNTR_NORMAL,
4884 access_send_csr_parity_cnt),
4885 /* SendCtxtErrStatus */
4886 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4887 CNTR_NORMAL,
4888 access_pio_write_out_of_bounds_err_cnt),
4889 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4890 CNTR_NORMAL,
4891 access_pio_write_overflow_err_cnt),
4892 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4893 0, 0, CNTR_NORMAL,
4894 access_pio_write_crosses_boundary_err_cnt),
4895 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4896 CNTR_NORMAL,
4897 access_pio_disallowed_packet_err_cnt),
4898 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4899 CNTR_NORMAL,
4900 access_pio_inconsistent_sop_err_cnt),
4901 /* SendDmaEngErrStatus */
4902 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4903 0, 0, CNTR_NORMAL,
4904 access_sdma_header_request_fifo_cor_err_cnt),
4905 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4906 CNTR_NORMAL,
4907 access_sdma_header_storage_cor_err_cnt),
4908 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4909 CNTR_NORMAL,
4910 access_sdma_packet_tracking_cor_err_cnt),
4911 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4912 CNTR_NORMAL,
4913 access_sdma_assembly_cor_err_cnt),
4914 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
4915 CNTR_NORMAL,
4916 access_sdma_desc_table_cor_err_cnt),
4917 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
4918 0, 0, CNTR_NORMAL,
4919 access_sdma_header_request_fifo_unc_err_cnt),
4920 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
4921 CNTR_NORMAL,
4922 access_sdma_header_storage_unc_err_cnt),
4923 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
4924 CNTR_NORMAL,
4925 access_sdma_packet_tracking_unc_err_cnt),
4926 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
4927 CNTR_NORMAL,
4928 access_sdma_assembly_unc_err_cnt),
4929 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
4930 CNTR_NORMAL,
4931 access_sdma_desc_table_unc_err_cnt),
4932 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
4933 CNTR_NORMAL,
4934 access_sdma_timeout_err_cnt),
4935 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
4936 CNTR_NORMAL,
4937 access_sdma_header_length_err_cnt),
4938 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
4939 CNTR_NORMAL,
4940 access_sdma_header_address_err_cnt),
4941 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
4942 CNTR_NORMAL,
4943 access_sdma_header_select_err_cnt),
4944 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
4945 CNTR_NORMAL,
4946 access_sdma_reserved_9_err_cnt),
4947 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
4948 CNTR_NORMAL,
4949 access_sdma_packet_desc_overflow_err_cnt),
4950 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
4951 CNTR_NORMAL,
4952 access_sdma_length_mismatch_err_cnt),
4953 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
4954 CNTR_NORMAL,
4955 access_sdma_halt_err_cnt),
4956 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
4957 CNTR_NORMAL,
4958 access_sdma_mem_read_err_cnt),
4959 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
4960 CNTR_NORMAL,
4961 access_sdma_first_desc_err_cnt),
4962 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
4963 CNTR_NORMAL,
4964 access_sdma_tail_out_of_bounds_err_cnt),
4965 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
4966 CNTR_NORMAL,
4967 access_sdma_too_long_err_cnt),
4968 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
4969 CNTR_NORMAL,
4970 access_sdma_gen_mismatch_err_cnt),
4971 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
4972 CNTR_NORMAL,
4973 access_sdma_wrong_dw_err_cnt),
4974 };
4975
4976 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
4977 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
4978 CNTR_NORMAL),
4979 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
4980 CNTR_NORMAL),
4981 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
4982 CNTR_NORMAL),
4983 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
4984 CNTR_NORMAL),
4985 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
4986 CNTR_NORMAL),
4987 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
4988 CNTR_NORMAL),
4989 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
4990 CNTR_NORMAL),
4991 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
4992 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
4993 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
4994 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
4995 CNTR_SYNTH | CNTR_VL),
4996 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
4997 CNTR_SYNTH | CNTR_VL),
4998 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
4999 CNTR_SYNTH | CNTR_VL),
5000 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5001 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5002 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5003 access_sw_link_dn_cnt),
5004 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5005 access_sw_link_up_cnt),
5006 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5007 access_sw_unknown_frame_cnt),
5008 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5009 access_sw_xmit_discards),
5010 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5011 CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5012 access_sw_xmit_discards),
5013 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5014 access_xmit_constraint_errs),
5015 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5016 access_rcv_constraint_errs),
5017 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5018 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5019 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5020 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5021 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5022 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5023 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5024 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5025 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5026 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5027 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5028 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5029 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5030 access_sw_cpu_rc_acks),
5031 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5032 access_sw_cpu_rc_qacks),
5033 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5034 access_sw_cpu_rc_delayed_comp),
5035 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5036 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5037 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5038 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5039 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5040 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5041 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5042 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5043 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5044 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5045 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5046 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5047 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5048 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5049 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5050 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5051 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5052 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5053 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5054 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5055 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5056 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5057 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5058 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5059 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5060 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5061 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5062 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5063 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5064 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5065 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5066 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5067 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5068 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5069 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5070 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5071 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5072 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5073 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5074 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5075 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5076 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5077 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5078 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5079 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5080 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5081 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5082 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5083 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5084 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5085 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5086 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5087 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5088 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5089 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5090 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5091 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5092 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5093 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5094 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5095 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5096 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5097 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5098 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5099 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5100 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5101 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5102 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5103 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5104 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5105 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5106 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5107 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5108 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5109 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5110 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5111 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5112 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5113 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5114 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5115 };
5116
5117 /* ======================================================================== */
5118
5119 /* return true if this is chip revision revision a */
5120 int is_ax(struct hfi1_devdata *dd)
5121 {
5122 u8 chip_rev_minor =
5123 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5124 & CCE_REVISION_CHIP_REV_MINOR_MASK;
5125 return (chip_rev_minor & 0xf0) == 0;
5126 }
5127
5128 /* return true if this is chip revision revision b */
5129 int is_bx(struct hfi1_devdata *dd)
5130 {
5131 u8 chip_rev_minor =
5132 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5133 & CCE_REVISION_CHIP_REV_MINOR_MASK;
5134 return (chip_rev_minor & 0xF0) == 0x10;
5135 }
5136
5137 /*
5138 * Append string s to buffer buf. Arguments curp and len are the current
5139 * position and remaining length, respectively.
5140 *
5141 * return 0 on success, 1 on out of room
5142 */
5143 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5144 {
5145 char *p = *curp;
5146 int len = *lenp;
5147 int result = 0; /* success */
5148 char c;
5149
5150 /* add a comma, if first in the buffer */
5151 if (p != buf) {
5152 if (len == 0) {
5153 result = 1; /* out of room */
5154 goto done;
5155 }
5156 *p++ = ',';
5157 len--;
5158 }
5159
5160 /* copy the string */
5161 while ((c = *s++) != 0) {
5162 if (len == 0) {
5163 result = 1; /* out of room */
5164 goto done;
5165 }
5166 *p++ = c;
5167 len--;
5168 }
5169
5170 done:
5171 /* write return values */
5172 *curp = p;
5173 *lenp = len;
5174
5175 return result;
5176 }
5177
5178 /*
5179 * Using the given flag table, print a comma separated string into
5180 * the buffer. End in '*' if the buffer is too short.
5181 */
5182 static char *flag_string(char *buf, int buf_len, u64 flags,
5183 struct flag_table *table, int table_size)
5184 {
5185 char extra[32];
5186 char *p = buf;
5187 int len = buf_len;
5188 int no_room = 0;
5189 int i;
5190
5191 /* make sure there is at least 2 so we can form "*" */
5192 if (len < 2)
5193 return "";
5194
5195 len--; /* leave room for a nul */
5196 for (i = 0; i < table_size; i++) {
5197 if (flags & table[i].flag) {
5198 no_room = append_str(buf, &p, &len, table[i].str);
5199 if (no_room)
5200 break;
5201 flags &= ~table[i].flag;
5202 }
5203 }
5204
5205 /* any undocumented bits left? */
5206 if (!no_room && flags) {
5207 snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5208 no_room = append_str(buf, &p, &len, extra);
5209 }
5210
5211 /* add * if ran out of room */
5212 if (no_room) {
5213 /* may need to back up to add space for a '*' */
5214 if (len == 0)
5215 --p;
5216 *p++ = '*';
5217 }
5218
5219 /* add final nul - space already allocated above */
5220 *p = 0;
5221 return buf;
5222 }
5223
5224 /* first 8 CCE error interrupt source names */
5225 static const char * const cce_misc_names[] = {
5226 "CceErrInt", /* 0 */
5227 "RxeErrInt", /* 1 */
5228 "MiscErrInt", /* 2 */
5229 "Reserved3", /* 3 */
5230 "PioErrInt", /* 4 */
5231 "SDmaErrInt", /* 5 */
5232 "EgressErrInt", /* 6 */
5233 "TxeErrInt" /* 7 */
5234 };
5235
5236 /*
5237 * Return the miscellaneous error interrupt name.
5238 */
5239 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5240 {
5241 if (source < ARRAY_SIZE(cce_misc_names))
5242 strncpy(buf, cce_misc_names[source], bsize);
5243 else
5244 snprintf(buf, bsize, "Reserved%u",
5245 source + IS_GENERAL_ERR_START);
5246
5247 return buf;
5248 }
5249
5250 /*
5251 * Return the SDMA engine error interrupt name.
5252 */
5253 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5254 {
5255 snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5256 return buf;
5257 }
5258
5259 /*
5260 * Return the send context error interrupt name.
5261 */
5262 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5263 {
5264 snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5265 return buf;
5266 }
5267
5268 static const char * const various_names[] = {
5269 "PbcInt",
5270 "GpioAssertInt",
5271 "Qsfp1Int",
5272 "Qsfp2Int",
5273 "TCritInt"
5274 };
5275
5276 /*
5277 * Return the various interrupt name.
5278 */
5279 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5280 {
5281 if (source < ARRAY_SIZE(various_names))
5282 strncpy(buf, various_names[source], bsize);
5283 else
5284 snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5285 return buf;
5286 }
5287
5288 /*
5289 * Return the DC interrupt name.
5290 */
5291 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5292 {
5293 static const char * const dc_int_names[] = {
5294 "common",
5295 "lcb",
5296 "8051",
5297 "lbm" /* local block merge */
5298 };
5299
5300 if (source < ARRAY_SIZE(dc_int_names))
5301 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5302 else
5303 snprintf(buf, bsize, "DCInt%u", source);
5304 return buf;
5305 }
5306
5307 static const char * const sdma_int_names[] = {
5308 "SDmaInt",
5309 "SdmaIdleInt",
5310 "SdmaProgressInt",
5311 };
5312
5313 /*
5314 * Return the SDMA engine interrupt name.
5315 */
5316 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5317 {
5318 /* what interrupt */
5319 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
5320 /* which engine */
5321 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5322
5323 if (likely(what < 3))
5324 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5325 else
5326 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5327 return buf;
5328 }
5329
5330 /*
5331 * Return the receive available interrupt name.
5332 */
5333 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5334 {
5335 snprintf(buf, bsize, "RcvAvailInt%u", source);
5336 return buf;
5337 }
5338
5339 /*
5340 * Return the receive urgent interrupt name.
5341 */
5342 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5343 {
5344 snprintf(buf, bsize, "RcvUrgentInt%u", source);
5345 return buf;
5346 }
5347
5348 /*
5349 * Return the send credit interrupt name.
5350 */
5351 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5352 {
5353 snprintf(buf, bsize, "SendCreditInt%u", source);
5354 return buf;
5355 }
5356
5357 /*
5358 * Return the reserved interrupt name.
5359 */
5360 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5361 {
5362 snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5363 return buf;
5364 }
5365
5366 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5367 {
5368 return flag_string(buf, buf_len, flags,
5369 cce_err_status_flags,
5370 ARRAY_SIZE(cce_err_status_flags));
5371 }
5372
5373 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5374 {
5375 return flag_string(buf, buf_len, flags,
5376 rxe_err_status_flags,
5377 ARRAY_SIZE(rxe_err_status_flags));
5378 }
5379
5380 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5381 {
5382 return flag_string(buf, buf_len, flags, misc_err_status_flags,
5383 ARRAY_SIZE(misc_err_status_flags));
5384 }
5385
5386 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5387 {
5388 return flag_string(buf, buf_len, flags,
5389 pio_err_status_flags,
5390 ARRAY_SIZE(pio_err_status_flags));
5391 }
5392
5393 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5394 {
5395 return flag_string(buf, buf_len, flags,
5396 sdma_err_status_flags,
5397 ARRAY_SIZE(sdma_err_status_flags));
5398 }
5399
5400 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5401 {
5402 return flag_string(buf, buf_len, flags,
5403 egress_err_status_flags,
5404 ARRAY_SIZE(egress_err_status_flags));
5405 }
5406
5407 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5408 {
5409 return flag_string(buf, buf_len, flags,
5410 egress_err_info_flags,
5411 ARRAY_SIZE(egress_err_info_flags));
5412 }
5413
5414 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5415 {
5416 return flag_string(buf, buf_len, flags,
5417 send_err_status_flags,
5418 ARRAY_SIZE(send_err_status_flags));
5419 }
5420
5421 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5422 {
5423 char buf[96];
5424 int i = 0;
5425
5426 /*
5427 * For most these errors, there is nothing that can be done except
5428 * report or record it.
5429 */
5430 dd_dev_info(dd, "CCE Error: %s\n",
5431 cce_err_status_string(buf, sizeof(buf), reg));
5432
5433 if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5434 is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5435 /* this error requires a manual drop into SPC freeze mode */
5436 /* then a fix up */
5437 start_freeze_handling(dd->pport, FREEZE_SELF);
5438 }
5439
5440 for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5441 if (reg & (1ull << i)) {
5442 incr_cntr64(&dd->cce_err_status_cnt[i]);
5443 /* maintain a counter over all cce_err_status errors */
5444 incr_cntr64(&dd->sw_cce_err_status_aggregate);
5445 }
5446 }
5447 }
5448
5449 /*
5450 * Check counters for receive errors that do not have an interrupt
5451 * associated with them.
5452 */
5453 #define RCVERR_CHECK_TIME 10
5454 static void update_rcverr_timer(unsigned long opaque)
5455 {
5456 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
5457 struct hfi1_pportdata *ppd = dd->pport;
5458 u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5459
5460 if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5461 ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5462 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5463 set_link_down_reason(
5464 ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5465 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5466 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
5467 }
5468 dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5469
5470 mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5471 }
5472
5473 static int init_rcverr(struct hfi1_devdata *dd)
5474 {
5475 setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
5476 /* Assume the hardware counter has been reset */
5477 dd->rcv_ovfl_cnt = 0;
5478 return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5479 }
5480
5481 static void free_rcverr(struct hfi1_devdata *dd)
5482 {
5483 if (dd->rcverr_timer.data)
5484 del_timer_sync(&dd->rcverr_timer);
5485 dd->rcverr_timer.data = 0;
5486 }
5487
5488 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5489 {
5490 char buf[96];
5491 int i = 0;
5492
5493 dd_dev_info(dd, "Receive Error: %s\n",
5494 rxe_err_status_string(buf, sizeof(buf), reg));
5495
5496 if (reg & ALL_RXE_FREEZE_ERR) {
5497 int flags = 0;
5498
5499 /*
5500 * Freeze mode recovery is disabled for the errors
5501 * in RXE_FREEZE_ABORT_MASK
5502 */
5503 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5504 flags = FREEZE_ABORT;
5505
5506 start_freeze_handling(dd->pport, flags);
5507 }
5508
5509 for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5510 if (reg & (1ull << i))
5511 incr_cntr64(&dd->rcv_err_status_cnt[i]);
5512 }
5513 }
5514
5515 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5516 {
5517 char buf[96];
5518 int i = 0;
5519
5520 dd_dev_info(dd, "Misc Error: %s",
5521 misc_err_status_string(buf, sizeof(buf), reg));
5522 for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5523 if (reg & (1ull << i))
5524 incr_cntr64(&dd->misc_err_status_cnt[i]);
5525 }
5526 }
5527
5528 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5529 {
5530 char buf[96];
5531 int i = 0;
5532
5533 dd_dev_info(dd, "PIO Error: %s\n",
5534 pio_err_status_string(buf, sizeof(buf), reg));
5535
5536 if (reg & ALL_PIO_FREEZE_ERR)
5537 start_freeze_handling(dd->pport, 0);
5538
5539 for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5540 if (reg & (1ull << i))
5541 incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5542 }
5543 }
5544
5545 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5546 {
5547 char buf[96];
5548 int i = 0;
5549
5550 dd_dev_info(dd, "SDMA Error: %s\n",
5551 sdma_err_status_string(buf, sizeof(buf), reg));
5552
5553 if (reg & ALL_SDMA_FREEZE_ERR)
5554 start_freeze_handling(dd->pport, 0);
5555
5556 for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5557 if (reg & (1ull << i))
5558 incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5559 }
5560 }
5561
5562 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5563 {
5564 incr_cntr64(&ppd->port_xmit_discards);
5565 }
5566
5567 static void count_port_inactive(struct hfi1_devdata *dd)
5568 {
5569 __count_port_discards(dd->pport);
5570 }
5571
5572 /*
5573 * We have had a "disallowed packet" error during egress. Determine the
5574 * integrity check which failed, and update relevant error counter, etc.
5575 *
5576 * Note that the SEND_EGRESS_ERR_INFO register has only a single
5577 * bit of state per integrity check, and so we can miss the reason for an
5578 * egress error if more than one packet fails the same integrity check
5579 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5580 */
5581 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5582 int vl)
5583 {
5584 struct hfi1_pportdata *ppd = dd->pport;
5585 u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5586 u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5587 char buf[96];
5588
5589 /* clear down all observed info as quickly as possible after read */
5590 write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5591
5592 dd_dev_info(dd,
5593 "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5594 info, egress_err_info_string(buf, sizeof(buf), info), src);
5595
5596 /* Eventually add other counters for each bit */
5597 if (info & PORT_DISCARD_EGRESS_ERRS) {
5598 int weight, i;
5599
5600 /*
5601 * Count all applicable bits as individual errors and
5602 * attribute them to the packet that triggered this handler.
5603 * This may not be completely accurate due to limitations
5604 * on the available hardware error information. There is
5605 * a single information register and any number of error
5606 * packets may have occurred and contributed to it before
5607 * this routine is called. This means that:
5608 * a) If multiple packets with the same error occur before
5609 * this routine is called, earlier packets are missed.
5610 * There is only a single bit for each error type.
5611 * b) Errors may not be attributed to the correct VL.
5612 * The driver is attributing all bits in the info register
5613 * to the packet that triggered this call, but bits
5614 * could be an accumulation of different packets with
5615 * different VLs.
5616 * c) A single error packet may have multiple counts attached
5617 * to it. There is no way for the driver to know if
5618 * multiple bits set in the info register are due to a
5619 * single packet or multiple packets. The driver assumes
5620 * multiple packets.
5621 */
5622 weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5623 for (i = 0; i < weight; i++) {
5624 __count_port_discards(ppd);
5625 if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5626 incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5627 else if (vl == 15)
5628 incr_cntr64(&ppd->port_xmit_discards_vl
5629 [C_VL_15]);
5630 }
5631 }
5632 }
5633
5634 /*
5635 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5636 * register. Does it represent a 'port inactive' error?
5637 */
5638 static inline int port_inactive_err(u64 posn)
5639 {
5640 return (posn >= SEES(TX_LINKDOWN) &&
5641 posn <= SEES(TX_INCORRECT_LINK_STATE));
5642 }
5643
5644 /*
5645 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5646 * register. Does it represent a 'disallowed packet' error?
5647 */
5648 static inline int disallowed_pkt_err(int posn)
5649 {
5650 return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5651 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5652 }
5653
5654 /*
5655 * Input value is a bit position of one of the SDMA engine disallowed
5656 * packet errors. Return which engine. Use of this must be guarded by
5657 * disallowed_pkt_err().
5658 */
5659 static inline int disallowed_pkt_engine(int posn)
5660 {
5661 return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5662 }
5663
5664 /*
5665 * Translate an SDMA engine to a VL. Return -1 if the tranlation cannot
5666 * be done.
5667 */
5668 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5669 {
5670 struct sdma_vl_map *m;
5671 int vl;
5672
5673 /* range check */
5674 if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5675 return -1;
5676
5677 rcu_read_lock();
5678 m = rcu_dereference(dd->sdma_map);
5679 vl = m->engine_to_vl[engine];
5680 rcu_read_unlock();
5681
5682 return vl;
5683 }
5684
5685 /*
5686 * Translate the send context (sofware index) into a VL. Return -1 if the
5687 * translation cannot be done.
5688 */
5689 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5690 {
5691 struct send_context_info *sci;
5692 struct send_context *sc;
5693 int i;
5694
5695 sci = &dd->send_contexts[sw_index];
5696
5697 /* there is no information for user (PSM) and ack contexts */
5698 if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5699 return -1;
5700
5701 sc = sci->sc;
5702 if (!sc)
5703 return -1;
5704 if (dd->vld[15].sc == sc)
5705 return 15;
5706 for (i = 0; i < num_vls; i++)
5707 if (dd->vld[i].sc == sc)
5708 return i;
5709
5710 return -1;
5711 }
5712
5713 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5714 {
5715 u64 reg_copy = reg, handled = 0;
5716 char buf[96];
5717 int i = 0;
5718
5719 if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5720 start_freeze_handling(dd->pport, 0);
5721 else if (is_ax(dd) &&
5722 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5723 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5724 start_freeze_handling(dd->pport, 0);
5725
5726 while (reg_copy) {
5727 int posn = fls64(reg_copy);
5728 /* fls64() returns a 1-based offset, we want it zero based */
5729 int shift = posn - 1;
5730 u64 mask = 1ULL << shift;
5731
5732 if (port_inactive_err(shift)) {
5733 count_port_inactive(dd);
5734 handled |= mask;
5735 } else if (disallowed_pkt_err(shift)) {
5736 int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5737
5738 handle_send_egress_err_info(dd, vl);
5739 handled |= mask;
5740 }
5741 reg_copy &= ~mask;
5742 }
5743
5744 reg &= ~handled;
5745
5746 if (reg)
5747 dd_dev_info(dd, "Egress Error: %s\n",
5748 egress_err_status_string(buf, sizeof(buf), reg));
5749
5750 for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5751 if (reg & (1ull << i))
5752 incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5753 }
5754 }
5755
5756 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5757 {
5758 char buf[96];
5759 int i = 0;
5760
5761 dd_dev_info(dd, "Send Error: %s\n",
5762 send_err_status_string(buf, sizeof(buf), reg));
5763
5764 for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5765 if (reg & (1ull << i))
5766 incr_cntr64(&dd->send_err_status_cnt[i]);
5767 }
5768 }
5769
5770 /*
5771 * The maximum number of times the error clear down will loop before
5772 * blocking a repeating error. This value is arbitrary.
5773 */
5774 #define MAX_CLEAR_COUNT 20
5775
5776 /*
5777 * Clear and handle an error register. All error interrupts are funneled
5778 * through here to have a central location to correctly handle single-
5779 * or multi-shot errors.
5780 *
5781 * For non per-context registers, call this routine with a context value
5782 * of 0 so the per-context offset is zero.
5783 *
5784 * If the handler loops too many times, assume that something is wrong
5785 * and can't be fixed, so mask the error bits.
5786 */
5787 static void interrupt_clear_down(struct hfi1_devdata *dd,
5788 u32 context,
5789 const struct err_reg_info *eri)
5790 {
5791 u64 reg;
5792 u32 count;
5793
5794 /* read in a loop until no more errors are seen */
5795 count = 0;
5796 while (1) {
5797 reg = read_kctxt_csr(dd, context, eri->status);
5798 if (reg == 0)
5799 break;
5800 write_kctxt_csr(dd, context, eri->clear, reg);
5801 if (likely(eri->handler))
5802 eri->handler(dd, context, reg);
5803 count++;
5804 if (count > MAX_CLEAR_COUNT) {
5805 u64 mask;
5806
5807 dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5808 eri->desc, reg);
5809 /*
5810 * Read-modify-write so any other masked bits
5811 * remain masked.
5812 */
5813 mask = read_kctxt_csr(dd, context, eri->mask);
5814 mask &= ~reg;
5815 write_kctxt_csr(dd, context, eri->mask, mask);
5816 break;
5817 }
5818 }
5819 }
5820
5821 /*
5822 * CCE block "misc" interrupt. Source is < 16.
5823 */
5824 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5825 {
5826 const struct err_reg_info *eri = &misc_errs[source];
5827
5828 if (eri->handler) {
5829 interrupt_clear_down(dd, 0, eri);
5830 } else {
5831 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5832 source);
5833 }
5834 }
5835
5836 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5837 {
5838 return flag_string(buf, buf_len, flags,
5839 sc_err_status_flags,
5840 ARRAY_SIZE(sc_err_status_flags));
5841 }
5842
5843 /*
5844 * Send context error interrupt. Source (hw_context) is < 160.
5845 *
5846 * All send context errors cause the send context to halt. The normal
5847 * clear-down mechanism cannot be used because we cannot clear the
5848 * error bits until several other long-running items are done first.
5849 * This is OK because with the context halted, nothing else is going
5850 * to happen on it anyway.
5851 */
5852 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5853 unsigned int hw_context)
5854 {
5855 struct send_context_info *sci;
5856 struct send_context *sc;
5857 char flags[96];
5858 u64 status;
5859 u32 sw_index;
5860 int i = 0;
5861
5862 sw_index = dd->hw_to_sw[hw_context];
5863 if (sw_index >= dd->num_send_contexts) {
5864 dd_dev_err(dd,
5865 "out of range sw index %u for send context %u\n",
5866 sw_index, hw_context);
5867 return;
5868 }
5869 sci = &dd->send_contexts[sw_index];
5870 sc = sci->sc;
5871 if (!sc) {
5872 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5873 sw_index, hw_context);
5874 return;
5875 }
5876
5877 /* tell the software that a halt has begun */
5878 sc_stop(sc, SCF_HALTED);
5879
5880 status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5881
5882 dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5883 send_context_err_status_string(flags, sizeof(flags),
5884 status));
5885
5886 if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5887 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5888
5889 /*
5890 * Automatically restart halted kernel contexts out of interrupt
5891 * context. User contexts must ask the driver to restart the context.
5892 */
5893 if (sc->type != SC_USER)
5894 queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5895
5896 /*
5897 * Update the counters for the corresponding status bits.
5898 * Note that these particular counters are aggregated over all
5899 * 160 contexts.
5900 */
5901 for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5902 if (status & (1ull << i))
5903 incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5904 }
5905 }
5906
5907 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5908 unsigned int source, u64 status)
5909 {
5910 struct sdma_engine *sde;
5911 int i = 0;
5912
5913 sde = &dd->per_sdma[source];
5914 #ifdef CONFIG_SDMA_VERBOSITY
5915 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5916 slashstrip(__FILE__), __LINE__, __func__);
5917 dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
5918 sde->this_idx, source, (unsigned long long)status);
5919 #endif
5920 sde->err_cnt++;
5921 sdma_engine_error(sde, status);
5922
5923 /*
5924 * Update the counters for the corresponding status bits.
5925 * Note that these particular counters are aggregated over
5926 * all 16 DMA engines.
5927 */
5928 for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
5929 if (status & (1ull << i))
5930 incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
5931 }
5932 }
5933
5934 /*
5935 * CCE block SDMA error interrupt. Source is < 16.
5936 */
5937 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
5938 {
5939 #ifdef CONFIG_SDMA_VERBOSITY
5940 struct sdma_engine *sde = &dd->per_sdma[source];
5941
5942 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5943 slashstrip(__FILE__), __LINE__, __func__);
5944 dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
5945 source);
5946 sdma_dumpstate(sde);
5947 #endif
5948 interrupt_clear_down(dd, source, &sdma_eng_err);
5949 }
5950
5951 /*
5952 * CCE block "various" interrupt. Source is < 8.
5953 */
5954 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
5955 {
5956 const struct err_reg_info *eri = &various_err[source];
5957
5958 /*
5959 * TCritInt cannot go through interrupt_clear_down()
5960 * because it is not a second tier interrupt. The handler
5961 * should be called directly.
5962 */
5963 if (source == TCRIT_INT_SOURCE)
5964 handle_temp_err(dd);
5965 else if (eri->handler)
5966 interrupt_clear_down(dd, 0, eri);
5967 else
5968 dd_dev_info(dd,
5969 "%s: Unimplemented/reserved interrupt %d\n",
5970 __func__, source);
5971 }
5972
5973 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
5974 {
5975 /* src_ctx is always zero */
5976 struct hfi1_pportdata *ppd = dd->pport;
5977 unsigned long flags;
5978 u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
5979
5980 if (reg & QSFP_HFI0_MODPRST_N) {
5981 if (!qsfp_mod_present(ppd)) {
5982 dd_dev_info(dd, "%s: QSFP module removed\n",
5983 __func__);
5984
5985 ppd->driver_link_ready = 0;
5986 /*
5987 * Cable removed, reset all our information about the
5988 * cache and cable capabilities
5989 */
5990
5991 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
5992 /*
5993 * We don't set cache_refresh_required here as we expect
5994 * an interrupt when a cable is inserted
5995 */
5996 ppd->qsfp_info.cache_valid = 0;
5997 ppd->qsfp_info.reset_needed = 0;
5998 ppd->qsfp_info.limiting_active = 0;
5999 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6000 flags);
6001 /* Invert the ModPresent pin now to detect plug-in */
6002 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6003 ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6004
6005 if ((ppd->offline_disabled_reason >
6006 HFI1_ODR_MASK(
6007 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6008 (ppd->offline_disabled_reason ==
6009 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6010 ppd->offline_disabled_reason =
6011 HFI1_ODR_MASK(
6012 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6013
6014 if (ppd->host_link_state == HLS_DN_POLL) {
6015 /*
6016 * The link is still in POLL. This means
6017 * that the normal link down processing
6018 * will not happen. We have to do it here
6019 * before turning the DC off.
6020 */
6021 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
6022 }
6023 } else {
6024 dd_dev_info(dd, "%s: QSFP module inserted\n",
6025 __func__);
6026
6027 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6028 ppd->qsfp_info.cache_valid = 0;
6029 ppd->qsfp_info.cache_refresh_required = 1;
6030 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6031 flags);
6032
6033 /*
6034 * Stop inversion of ModPresent pin to detect
6035 * removal of the cable
6036 */
6037 qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6038 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6039 ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6040
6041 ppd->offline_disabled_reason =
6042 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6043 }
6044 }
6045
6046 if (reg & QSFP_HFI0_INT_N) {
6047 dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6048 __func__);
6049 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6050 ppd->qsfp_info.check_interrupt_flags = 1;
6051 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6052 }
6053
6054 /* Schedule the QSFP work only if there is a cable attached. */
6055 if (qsfp_mod_present(ppd))
6056 queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work);
6057 }
6058
6059 static int request_host_lcb_access(struct hfi1_devdata *dd)
6060 {
6061 int ret;
6062
6063 ret = do_8051_command(dd, HCMD_MISC,
6064 (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6065 LOAD_DATA_FIELD_ID_SHIFT, NULL);
6066 if (ret != HCMD_SUCCESS) {
6067 dd_dev_err(dd, "%s: command failed with error %d\n",
6068 __func__, ret);
6069 }
6070 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6071 }
6072
6073 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6074 {
6075 int ret;
6076
6077 ret = do_8051_command(dd, HCMD_MISC,
6078 (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6079 LOAD_DATA_FIELD_ID_SHIFT, NULL);
6080 if (ret != HCMD_SUCCESS) {
6081 dd_dev_err(dd, "%s: command failed with error %d\n",
6082 __func__, ret);
6083 }
6084 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6085 }
6086
6087 /*
6088 * Set the LCB selector - allow host access. The DCC selector always
6089 * points to the host.
6090 */
6091 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6092 {
6093 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6094 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6095 DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6096 }
6097
6098 /*
6099 * Clear the LCB selector - allow 8051 access. The DCC selector always
6100 * points to the host.
6101 */
6102 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6103 {
6104 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6105 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6106 }
6107
6108 /*
6109 * Acquire LCB access from the 8051. If the host already has access,
6110 * just increment a counter. Otherwise, inform the 8051 that the
6111 * host is taking access.
6112 *
6113 * Returns:
6114 * 0 on success
6115 * -EBUSY if the 8051 has control and cannot be disturbed
6116 * -errno if unable to acquire access from the 8051
6117 */
6118 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6119 {
6120 struct hfi1_pportdata *ppd = dd->pport;
6121 int ret = 0;
6122
6123 /*
6124 * Use the host link state lock so the operation of this routine
6125 * { link state check, selector change, count increment } can occur
6126 * as a unit against a link state change. Otherwise there is a
6127 * race between the state change and the count increment.
6128 */
6129 if (sleep_ok) {
6130 mutex_lock(&ppd->hls_lock);
6131 } else {
6132 while (!mutex_trylock(&ppd->hls_lock))
6133 udelay(1);
6134 }
6135
6136 /* this access is valid only when the link is up */
6137 if (ppd->host_link_state & HLS_DOWN) {
6138 dd_dev_info(dd, "%s: link state %s not up\n",
6139 __func__, link_state_name(ppd->host_link_state));
6140 ret = -EBUSY;
6141 goto done;
6142 }
6143
6144 if (dd->lcb_access_count == 0) {
6145 ret = request_host_lcb_access(dd);
6146 if (ret) {
6147 dd_dev_err(dd,
6148 "%s: unable to acquire LCB access, err %d\n",
6149 __func__, ret);
6150 goto done;
6151 }
6152 set_host_lcb_access(dd);
6153 }
6154 dd->lcb_access_count++;
6155 done:
6156 mutex_unlock(&ppd->hls_lock);
6157 return ret;
6158 }
6159
6160 /*
6161 * Release LCB access by decrementing the use count. If the count is moving
6162 * from 1 to 0, inform 8051 that it has control back.
6163 *
6164 * Returns:
6165 * 0 on success
6166 * -errno if unable to release access to the 8051
6167 */
6168 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6169 {
6170 int ret = 0;
6171
6172 /*
6173 * Use the host link state lock because the acquire needed it.
6174 * Here, we only need to keep { selector change, count decrement }
6175 * as a unit.
6176 */
6177 if (sleep_ok) {
6178 mutex_lock(&dd->pport->hls_lock);
6179 } else {
6180 while (!mutex_trylock(&dd->pport->hls_lock))
6181 udelay(1);
6182 }
6183
6184 if (dd->lcb_access_count == 0) {
6185 dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n",
6186 __func__);
6187 goto done;
6188 }
6189
6190 if (dd->lcb_access_count == 1) {
6191 set_8051_lcb_access(dd);
6192 ret = request_8051_lcb_access(dd);
6193 if (ret) {
6194 dd_dev_err(dd,
6195 "%s: unable to release LCB access, err %d\n",
6196 __func__, ret);
6197 /* restore host access if the grant didn't work */
6198 set_host_lcb_access(dd);
6199 goto done;
6200 }
6201 }
6202 dd->lcb_access_count--;
6203 done:
6204 mutex_unlock(&dd->pport->hls_lock);
6205 return ret;
6206 }
6207
6208 /*
6209 * Initialize LCB access variables and state. Called during driver load,
6210 * after most of the initialization is finished.
6211 *
6212 * The DC default is LCB access on for the host. The driver defaults to
6213 * leaving access to the 8051. Assign access now - this constrains the call
6214 * to this routine to be after all LCB set-up is done. In particular, after
6215 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6216 */
6217 static void init_lcb_access(struct hfi1_devdata *dd)
6218 {
6219 dd->lcb_access_count = 0;
6220 }
6221
6222 /*
6223 * Write a response back to a 8051 request.
6224 */
6225 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6226 {
6227 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6228 DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6229 (u64)return_code <<
6230 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6231 (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6232 }
6233
6234 /*
6235 * Handle host requests from the 8051.
6236 */
6237 static void handle_8051_request(struct hfi1_pportdata *ppd)
6238 {
6239 struct hfi1_devdata *dd = ppd->dd;
6240 u64 reg;
6241 u16 data = 0;
6242 u8 type;
6243
6244 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6245 if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6246 return; /* no request */
6247
6248 /* zero out COMPLETED so the response is seen */
6249 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6250
6251 /* extract request details */
6252 type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6253 & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6254 data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6255 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6256
6257 switch (type) {
6258 case HREQ_LOAD_CONFIG:
6259 case HREQ_SAVE_CONFIG:
6260 case HREQ_READ_CONFIG:
6261 case HREQ_SET_TX_EQ_ABS:
6262 case HREQ_SET_TX_EQ_REL:
6263 case HREQ_ENABLE:
6264 dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6265 type);
6266 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6267 break;
6268 case HREQ_CONFIG_DONE:
6269 hreq_response(dd, HREQ_SUCCESS, 0);
6270 break;
6271
6272 case HREQ_INTERFACE_TEST:
6273 hreq_response(dd, HREQ_SUCCESS, data);
6274 break;
6275 default:
6276 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6277 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6278 break;
6279 }
6280 }
6281
6282 static void write_global_credit(struct hfi1_devdata *dd,
6283 u8 vau, u16 total, u16 shared)
6284 {
6285 write_csr(dd, SEND_CM_GLOBAL_CREDIT,
6286 ((u64)total <<
6287 SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT) |
6288 ((u64)shared <<
6289 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT) |
6290 ((u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT));
6291 }
6292
6293 /*
6294 * Set up initial VL15 credits of the remote. Assumes the rest of
6295 * the CM credit registers are zero from a previous global or credit reset .
6296 */
6297 void set_up_vl15(struct hfi1_devdata *dd, u8 vau, u16 vl15buf)
6298 {
6299 /* leave shared count at zero for both global and VL15 */
6300 write_global_credit(dd, vau, vl15buf, 0);
6301
6302 /* We may need some credits for another VL when sending packets
6303 * with the snoop interface. Dividing it down the middle for VL15
6304 * and VL0 should suffice.
6305 */
6306 if (unlikely(dd->hfi1_snoop.mode_flag == HFI1_PORT_SNOOP_MODE)) {
6307 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)(vl15buf >> 1)
6308 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6309 write_csr(dd, SEND_CM_CREDIT_VL, (u64)(vl15buf >> 1)
6310 << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT);
6311 } else {
6312 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6313 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6314 }
6315 }
6316
6317 /*
6318 * Zero all credit details from the previous connection and
6319 * reset the CM manager's internal counters.
6320 */
6321 void reset_link_credits(struct hfi1_devdata *dd)
6322 {
6323 int i;
6324
6325 /* remove all previous VL credit limits */
6326 for (i = 0; i < TXE_NUM_DATA_VL; i++)
6327 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6328 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6329 write_global_credit(dd, 0, 0, 0);
6330 /* reset the CM block */
6331 pio_send_control(dd, PSC_CM_RESET);
6332 }
6333
6334 /* convert a vCU to a CU */
6335 static u32 vcu_to_cu(u8 vcu)
6336 {
6337 return 1 << vcu;
6338 }
6339
6340 /* convert a CU to a vCU */
6341 static u8 cu_to_vcu(u32 cu)
6342 {
6343 return ilog2(cu);
6344 }
6345
6346 /* convert a vAU to an AU */
6347 static u32 vau_to_au(u8 vau)
6348 {
6349 return 8 * (1 << vau);
6350 }
6351
6352 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6353 {
6354 ppd->sm_trap_qp = 0x0;
6355 ppd->sa_qp = 0x1;
6356 }
6357
6358 /*
6359 * Graceful LCB shutdown. This leaves the LCB FIFOs in reset.
6360 */
6361 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6362 {
6363 u64 reg;
6364
6365 /* clear lcb run: LCB_CFG_RUN.EN = 0 */
6366 write_csr(dd, DC_LCB_CFG_RUN, 0);
6367 /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6368 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6369 1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6370 /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6371 dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6372 reg = read_csr(dd, DCC_CFG_RESET);
6373 write_csr(dd, DCC_CFG_RESET, reg |
6374 (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
6375 (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
6376 (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6377 if (!abort) {
6378 udelay(1); /* must hold for the longer of 16cclks or 20ns */
6379 write_csr(dd, DCC_CFG_RESET, reg);
6380 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6381 }
6382 }
6383
6384 /*
6385 * This routine should be called after the link has been transitioned to
6386 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6387 * reset).
6388 *
6389 * The expectation is that the caller of this routine would have taken
6390 * care of properly transitioning the link into the correct state.
6391 */
6392 static void dc_shutdown(struct hfi1_devdata *dd)
6393 {
6394 unsigned long flags;
6395
6396 spin_lock_irqsave(&dd->dc8051_lock, flags);
6397 if (dd->dc_shutdown) {
6398 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6399 return;
6400 }
6401 dd->dc_shutdown = 1;
6402 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6403 /* Shutdown the LCB */
6404 lcb_shutdown(dd, 1);
6405 /*
6406 * Going to OFFLINE would have causes the 8051 to put the
6407 * SerDes into reset already. Just need to shut down the 8051,
6408 * itself.
6409 */
6410 write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6411 }
6412
6413 /*
6414 * Calling this after the DC has been brought out of reset should not
6415 * do any damage.
6416 */
6417 static void dc_start(struct hfi1_devdata *dd)
6418 {
6419 unsigned long flags;
6420 int ret;
6421
6422 spin_lock_irqsave(&dd->dc8051_lock, flags);
6423 if (!dd->dc_shutdown)
6424 goto done;
6425 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6426 /* Take the 8051 out of reset */
6427 write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6428 /* Wait until 8051 is ready */
6429 ret = wait_fm_ready(dd, TIMEOUT_8051_START);
6430 if (ret) {
6431 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6432 __func__);
6433 }
6434 /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6435 write_csr(dd, DCC_CFG_RESET, 0x10);
6436 /* lcb_shutdown() with abort=1 does not restore these */
6437 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6438 spin_lock_irqsave(&dd->dc8051_lock, flags);
6439 dd->dc_shutdown = 0;
6440 done:
6441 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6442 }
6443
6444 /*
6445 * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6446 */
6447 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6448 {
6449 u64 rx_radr, tx_radr;
6450 u32 version;
6451
6452 if (dd->icode != ICODE_FPGA_EMULATION)
6453 return;
6454
6455 /*
6456 * These LCB defaults on emulator _s are good, nothing to do here:
6457 * LCB_CFG_TX_FIFOS_RADR
6458 * LCB_CFG_RX_FIFOS_RADR
6459 * LCB_CFG_LN_DCLK
6460 * LCB_CFG_IGNORE_LOST_RCLK
6461 */
6462 if (is_emulator_s(dd))
6463 return;
6464 /* else this is _p */
6465
6466 version = emulator_rev(dd);
6467 if (!is_ax(dd))
6468 version = 0x2d; /* all B0 use 0x2d or higher settings */
6469
6470 if (version <= 0x12) {
6471 /* release 0x12 and below */
6472
6473 /*
6474 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6475 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6476 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6477 */
6478 rx_radr =
6479 0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6480 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6481 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6482 /*
6483 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6484 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6485 */
6486 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6487 } else if (version <= 0x18) {
6488 /* release 0x13 up to 0x18 */
6489 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6490 rx_radr =
6491 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6492 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6493 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6494 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6495 } else if (version == 0x19) {
6496 /* release 0x19 */
6497 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6498 rx_radr =
6499 0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6500 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6501 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6502 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6503 } else if (version == 0x1a) {
6504 /* release 0x1a */
6505 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6506 rx_radr =
6507 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6508 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6509 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6510 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6511 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6512 } else {
6513 /* release 0x1b and higher */
6514 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6515 rx_radr =
6516 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6517 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6518 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6519 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6520 }
6521
6522 write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6523 /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6524 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6525 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6526 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6527 }
6528
6529 /*
6530 * Handle a SMA idle message
6531 *
6532 * This is a work-queue function outside of the interrupt.
6533 */
6534 void handle_sma_message(struct work_struct *work)
6535 {
6536 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6537 sma_message_work);
6538 struct hfi1_devdata *dd = ppd->dd;
6539 u64 msg;
6540 int ret;
6541
6542 /*
6543 * msg is bytes 1-4 of the 40-bit idle message - the command code
6544 * is stripped off
6545 */
6546 ret = read_idle_sma(dd, &msg);
6547 if (ret)
6548 return;
6549 dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6550 /*
6551 * React to the SMA message. Byte[1] (0 for us) is the command.
6552 */
6553 switch (msg & 0xff) {
6554 case SMA_IDLE_ARM:
6555 /*
6556 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6557 * State Transitions
6558 *
6559 * Only expected in INIT or ARMED, discard otherwise.
6560 */
6561 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6562 ppd->neighbor_normal = 1;
6563 break;
6564 case SMA_IDLE_ACTIVE:
6565 /*
6566 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6567 * State Transitions
6568 *
6569 * Can activate the node. Discard otherwise.
6570 */
6571 if (ppd->host_link_state == HLS_UP_ARMED &&
6572 ppd->is_active_optimize_enabled) {
6573 ppd->neighbor_normal = 1;
6574 ret = set_link_state(ppd, HLS_UP_ACTIVE);
6575 if (ret)
6576 dd_dev_err(
6577 dd,
6578 "%s: received Active SMA idle message, couldn't set link to Active\n",
6579 __func__);
6580 }
6581 break;
6582 default:
6583 dd_dev_err(dd,
6584 "%s: received unexpected SMA idle message 0x%llx\n",
6585 __func__, msg);
6586 break;
6587 }
6588 }
6589
6590 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6591 {
6592 u64 rcvctrl;
6593 unsigned long flags;
6594
6595 spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6596 rcvctrl = read_csr(dd, RCV_CTRL);
6597 rcvctrl |= add;
6598 rcvctrl &= ~clear;
6599 write_csr(dd, RCV_CTRL, rcvctrl);
6600 spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6601 }
6602
6603 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6604 {
6605 adjust_rcvctrl(dd, add, 0);
6606 }
6607
6608 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6609 {
6610 adjust_rcvctrl(dd, 0, clear);
6611 }
6612
6613 /*
6614 * Called from all interrupt handlers to start handling an SPC freeze.
6615 */
6616 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6617 {
6618 struct hfi1_devdata *dd = ppd->dd;
6619 struct send_context *sc;
6620 int i;
6621
6622 if (flags & FREEZE_SELF)
6623 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6624
6625 /* enter frozen mode */
6626 dd->flags |= HFI1_FROZEN;
6627
6628 /* notify all SDMA engines that they are going into a freeze */
6629 sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6630
6631 /* do halt pre-handling on all enabled send contexts */
6632 for (i = 0; i < dd->num_send_contexts; i++) {
6633 sc = dd->send_contexts[i].sc;
6634 if (sc && (sc->flags & SCF_ENABLED))
6635 sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6636 }
6637
6638 /* Send context are frozen. Notify user space */
6639 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6640
6641 if (flags & FREEZE_ABORT) {
6642 dd_dev_err(dd,
6643 "Aborted freeze recovery. Please REBOOT system\n");
6644 return;
6645 }
6646 /* queue non-interrupt handler */
6647 queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6648 }
6649
6650 /*
6651 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6652 * depending on the "freeze" parameter.
6653 *
6654 * No need to return an error if it times out, our only option
6655 * is to proceed anyway.
6656 */
6657 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6658 {
6659 unsigned long timeout;
6660 u64 reg;
6661
6662 timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6663 while (1) {
6664 reg = read_csr(dd, CCE_STATUS);
6665 if (freeze) {
6666 /* waiting until all indicators are set */
6667 if ((reg & ALL_FROZE) == ALL_FROZE)
6668 return; /* all done */
6669 } else {
6670 /* waiting until all indicators are clear */
6671 if ((reg & ALL_FROZE) == 0)
6672 return; /* all done */
6673 }
6674
6675 if (time_after(jiffies, timeout)) {
6676 dd_dev_err(dd,
6677 "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6678 freeze ? "" : "un", reg & ALL_FROZE,
6679 freeze ? ALL_FROZE : 0ull);
6680 return;
6681 }
6682 usleep_range(80, 120);
6683 }
6684 }
6685
6686 /*
6687 * Do all freeze handling for the RXE block.
6688 */
6689 static void rxe_freeze(struct hfi1_devdata *dd)
6690 {
6691 int i;
6692
6693 /* disable port */
6694 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6695
6696 /* disable all receive contexts */
6697 for (i = 0; i < dd->num_rcv_contexts; i++)
6698 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i);
6699 }
6700
6701 /*
6702 * Unfreeze handling for the RXE block - kernel contexts only.
6703 * This will also enable the port. User contexts will do unfreeze
6704 * handling on a per-context basis as they call into the driver.
6705 *
6706 */
6707 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6708 {
6709 u32 rcvmask;
6710 int i;
6711
6712 /* enable all kernel contexts */
6713 for (i = 0; i < dd->n_krcv_queues; i++) {
6714 rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6715 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6716 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
6717 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6718 hfi1_rcvctrl(dd, rcvmask, i);
6719 }
6720
6721 /* enable port */
6722 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6723 }
6724
6725 /*
6726 * Non-interrupt SPC freeze handling.
6727 *
6728 * This is a work-queue function outside of the triggering interrupt.
6729 */
6730 void handle_freeze(struct work_struct *work)
6731 {
6732 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6733 freeze_work);
6734 struct hfi1_devdata *dd = ppd->dd;
6735
6736 /* wait for freeze indicators on all affected blocks */
6737 wait_for_freeze_status(dd, 1);
6738
6739 /* SPC is now frozen */
6740
6741 /* do send PIO freeze steps */
6742 pio_freeze(dd);
6743
6744 /* do send DMA freeze steps */
6745 sdma_freeze(dd);
6746
6747 /* do send egress freeze steps - nothing to do */
6748
6749 /* do receive freeze steps */
6750 rxe_freeze(dd);
6751
6752 /*
6753 * Unfreeze the hardware - clear the freeze, wait for each
6754 * block's frozen bit to clear, then clear the frozen flag.
6755 */
6756 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6757 wait_for_freeze_status(dd, 0);
6758
6759 if (is_ax(dd)) {
6760 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6761 wait_for_freeze_status(dd, 1);
6762 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6763 wait_for_freeze_status(dd, 0);
6764 }
6765
6766 /* do send PIO unfreeze steps for kernel contexts */
6767 pio_kernel_unfreeze(dd);
6768
6769 /* do send DMA unfreeze steps */
6770 sdma_unfreeze(dd);
6771
6772 /* do send egress unfreeze steps - nothing to do */
6773
6774 /* do receive unfreeze steps for kernel contexts */
6775 rxe_kernel_unfreeze(dd);
6776
6777 /*
6778 * The unfreeze procedure touches global device registers when
6779 * it disables and re-enables RXE. Mark the device unfrozen
6780 * after all that is done so other parts of the driver waiting
6781 * for the device to unfreeze don't do things out of order.
6782 *
6783 * The above implies that the meaning of HFI1_FROZEN flag is
6784 * "Device has gone into freeze mode and freeze mode handling
6785 * is still in progress."
6786 *
6787 * The flag will be removed when freeze mode processing has
6788 * completed.
6789 */
6790 dd->flags &= ~HFI1_FROZEN;
6791 wake_up(&dd->event_queue);
6792
6793 /* no longer frozen */
6794 }
6795
6796 /*
6797 * Handle a link up interrupt from the 8051.
6798 *
6799 * This is a work-queue function outside of the interrupt.
6800 */
6801 void handle_link_up(struct work_struct *work)
6802 {
6803 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6804 link_up_work);
6805 set_link_state(ppd, HLS_UP_INIT);
6806
6807 /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6808 read_ltp_rtt(ppd->dd);
6809 /*
6810 * OPA specifies that certain counters are cleared on a transition
6811 * to link up, so do that.
6812 */
6813 clear_linkup_counters(ppd->dd);
6814 /*
6815 * And (re)set link up default values.
6816 */
6817 set_linkup_defaults(ppd);
6818
6819 /* enforce link speed enabled */
6820 if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6821 /* oops - current speed is not enabled, bounce */
6822 dd_dev_err(ppd->dd,
6823 "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6824 ppd->link_speed_active, ppd->link_speed_enabled);
6825 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6826 OPA_LINKDOWN_REASON_SPEED_POLICY);
6827 set_link_state(ppd, HLS_DN_OFFLINE);
6828 tune_serdes(ppd);
6829 start_link(ppd);
6830 }
6831 }
6832
6833 /*
6834 * Several pieces of LNI information were cached for SMA in ppd.
6835 * Reset these on link down
6836 */
6837 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6838 {
6839 ppd->neighbor_guid = 0;
6840 ppd->neighbor_port_number = 0;
6841 ppd->neighbor_type = 0;
6842 ppd->neighbor_fm_security = 0;
6843 }
6844
6845 static const char * const link_down_reason_strs[] = {
6846 [OPA_LINKDOWN_REASON_NONE] = "None",
6847 [OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Recive error 0",
6848 [OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
6849 [OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
6850 [OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
6851 [OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
6852 [OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
6853 [OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
6854 [OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
6855 [OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
6856 [OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
6857 [OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
6858 [OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
6859 [OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
6860 [OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
6861 [OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
6862 [OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
6863 [OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
6864 [OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
6865 [OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
6866 [OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
6867 [OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
6868 [OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
6869 [OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
6870 [OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
6871 [OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
6872 [OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
6873 [OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
6874 [OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
6875 [OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
6876 [OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
6877 [OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
6878 [OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
6879 "Excessive buffer overrun",
6880 [OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
6881 [OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
6882 [OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
6883 [OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
6884 [OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
6885 [OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
6886 [OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
6887 [OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
6888 "Local media not installed",
6889 [OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
6890 [OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
6891 [OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
6892 "End to end not installed",
6893 [OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
6894 [OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
6895 [OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
6896 [OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
6897 [OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
6898 [OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
6899 };
6900
6901 /* return the neighbor link down reason string */
6902 static const char *link_down_reason_str(u8 reason)
6903 {
6904 const char *str = NULL;
6905
6906 if (reason < ARRAY_SIZE(link_down_reason_strs))
6907 str = link_down_reason_strs[reason];
6908 if (!str)
6909 str = "(invalid)";
6910
6911 return str;
6912 }
6913
6914 /*
6915 * Handle a link down interrupt from the 8051.
6916 *
6917 * This is a work-queue function outside of the interrupt.
6918 */
6919 void handle_link_down(struct work_struct *work)
6920 {
6921 u8 lcl_reason, neigh_reason = 0;
6922 u8 link_down_reason;
6923 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6924 link_down_work);
6925 int was_up;
6926 static const char ldr_str[] = "Link down reason: ";
6927
6928 if ((ppd->host_link_state &
6929 (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
6930 ppd->port_type == PORT_TYPE_FIXED)
6931 ppd->offline_disabled_reason =
6932 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
6933
6934 /* Go offline first, then deal with reading/writing through 8051 */
6935 was_up = !!(ppd->host_link_state & HLS_UP);
6936 set_link_state(ppd, HLS_DN_OFFLINE);
6937
6938 if (was_up) {
6939 lcl_reason = 0;
6940 /* link down reason is only valid if the link was up */
6941 read_link_down_reason(ppd->dd, &link_down_reason);
6942 switch (link_down_reason) {
6943 case LDR_LINK_TRANSFER_ACTIVE_LOW:
6944 /* the link went down, no idle message reason */
6945 dd_dev_info(ppd->dd, "%sUnexpected link down\n",
6946 ldr_str);
6947 break;
6948 case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
6949 /*
6950 * The neighbor reason is only valid if an idle message
6951 * was received for it.
6952 */
6953 read_planned_down_reason_code(ppd->dd, &neigh_reason);
6954 dd_dev_info(ppd->dd,
6955 "%sNeighbor link down message %d, %s\n",
6956 ldr_str, neigh_reason,
6957 link_down_reason_str(neigh_reason));
6958 break;
6959 case LDR_RECEIVED_HOST_OFFLINE_REQ:
6960 dd_dev_info(ppd->dd,
6961 "%sHost requested link to go offline\n",
6962 ldr_str);
6963 break;
6964 default:
6965 dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
6966 ldr_str, link_down_reason);
6967 break;
6968 }
6969
6970 /*
6971 * If no reason, assume peer-initiated but missed
6972 * LinkGoingDown idle flits.
6973 */
6974 if (neigh_reason == 0)
6975 lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
6976 } else {
6977 /* went down while polling or going up */
6978 lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
6979 }
6980
6981 set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
6982
6983 /* inform the SMA when the link transitions from up to down */
6984 if (was_up && ppd->local_link_down_reason.sma == 0 &&
6985 ppd->neigh_link_down_reason.sma == 0) {
6986 ppd->local_link_down_reason.sma =
6987 ppd->local_link_down_reason.latest;
6988 ppd->neigh_link_down_reason.sma =
6989 ppd->neigh_link_down_reason.latest;
6990 }
6991
6992 reset_neighbor_info(ppd);
6993
6994 /* disable the port */
6995 clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6996
6997 /*
6998 * If there is no cable attached, turn the DC off. Otherwise,
6999 * start the link bring up.
7000 */
7001 if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd)) {
7002 dc_shutdown(ppd->dd);
7003 } else {
7004 tune_serdes(ppd);
7005 start_link(ppd);
7006 }
7007 }
7008
7009 void handle_link_bounce(struct work_struct *work)
7010 {
7011 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7012 link_bounce_work);
7013
7014 /*
7015 * Only do something if the link is currently up.
7016 */
7017 if (ppd->host_link_state & HLS_UP) {
7018 set_link_state(ppd, HLS_DN_OFFLINE);
7019 tune_serdes(ppd);
7020 start_link(ppd);
7021 } else {
7022 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7023 __func__, link_state_name(ppd->host_link_state));
7024 }
7025 }
7026
7027 /*
7028 * Mask conversion: Capability exchange to Port LTP. The capability
7029 * exchange has an implicit 16b CRC that is mandatory.
7030 */
7031 static int cap_to_port_ltp(int cap)
7032 {
7033 int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7034
7035 if (cap & CAP_CRC_14B)
7036 port_ltp |= PORT_LTP_CRC_MODE_14;
7037 if (cap & CAP_CRC_48B)
7038 port_ltp |= PORT_LTP_CRC_MODE_48;
7039 if (cap & CAP_CRC_12B_16B_PER_LANE)
7040 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7041
7042 return port_ltp;
7043 }
7044
7045 /*
7046 * Convert an OPA Port LTP mask to capability mask
7047 */
7048 int port_ltp_to_cap(int port_ltp)
7049 {
7050 int cap_mask = 0;
7051
7052 if (port_ltp & PORT_LTP_CRC_MODE_14)
7053 cap_mask |= CAP_CRC_14B;
7054 if (port_ltp & PORT_LTP_CRC_MODE_48)
7055 cap_mask |= CAP_CRC_48B;
7056 if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7057 cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7058
7059 return cap_mask;
7060 }
7061
7062 /*
7063 * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7064 */
7065 static int lcb_to_port_ltp(int lcb_crc)
7066 {
7067 int port_ltp = 0;
7068
7069 if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7070 port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7071 else if (lcb_crc == LCB_CRC_48B)
7072 port_ltp = PORT_LTP_CRC_MODE_48;
7073 else if (lcb_crc == LCB_CRC_14B)
7074 port_ltp = PORT_LTP_CRC_MODE_14;
7075 else
7076 port_ltp = PORT_LTP_CRC_MODE_16;
7077
7078 return port_ltp;
7079 }
7080
7081 /*
7082 * Our neighbor has indicated that we are allowed to act as a fabric
7083 * manager, so place the full management partition key in the second
7084 * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
7085 * that we should already have the limited management partition key in
7086 * array element 1, and also that the port is not yet up when
7087 * add_full_mgmt_pkey() is invoked.
7088 */
7089 static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7090 {
7091 struct hfi1_devdata *dd = ppd->dd;
7092
7093 /* Sanity check - ppd->pkeys[2] should be 0, or already initalized */
7094 if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
7095 dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
7096 __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
7097 ppd->pkeys[2] = FULL_MGMT_P_KEY;
7098 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7099 hfi1_event_pkey_change(ppd->dd, ppd->port);
7100 }
7101
7102 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7103 {
7104 if (ppd->pkeys[2] != 0) {
7105 ppd->pkeys[2] = 0;
7106 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7107 hfi1_event_pkey_change(ppd->dd, ppd->port);
7108 }
7109 }
7110
7111 /*
7112 * Convert the given link width to the OPA link width bitmask.
7113 */
7114 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7115 {
7116 switch (width) {
7117 case 0:
7118 /*
7119 * Simulator and quick linkup do not set the width.
7120 * Just set it to 4x without complaint.
7121 */
7122 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7123 return OPA_LINK_WIDTH_4X;
7124 return 0; /* no lanes up */
7125 case 1: return OPA_LINK_WIDTH_1X;
7126 case 2: return OPA_LINK_WIDTH_2X;
7127 case 3: return OPA_LINK_WIDTH_3X;
7128 default:
7129 dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7130 __func__, width);
7131 /* fall through */
7132 case 4: return OPA_LINK_WIDTH_4X;
7133 }
7134 }
7135
7136 /*
7137 * Do a population count on the bottom nibble.
7138 */
7139 static const u8 bit_counts[16] = {
7140 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7141 };
7142
7143 static inline u8 nibble_to_count(u8 nibble)
7144 {
7145 return bit_counts[nibble & 0xf];
7146 }
7147
7148 /*
7149 * Read the active lane information from the 8051 registers and return
7150 * their widths.
7151 *
7152 * Active lane information is found in these 8051 registers:
7153 * enable_lane_tx
7154 * enable_lane_rx
7155 */
7156 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7157 u16 *rx_width)
7158 {
7159 u16 tx, rx;
7160 u8 enable_lane_rx;
7161 u8 enable_lane_tx;
7162 u8 tx_polarity_inversion;
7163 u8 rx_polarity_inversion;
7164 u8 max_rate;
7165
7166 /* read the active lanes */
7167 read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7168 &rx_polarity_inversion, &max_rate);
7169 read_local_lni(dd, &enable_lane_rx);
7170
7171 /* convert to counts */
7172 tx = nibble_to_count(enable_lane_tx);
7173 rx = nibble_to_count(enable_lane_rx);
7174
7175 /*
7176 * Set link_speed_active here, overriding what was set in
7177 * handle_verify_cap(). The ASIC 8051 firmware does not correctly
7178 * set the max_rate field in handle_verify_cap until v0.19.
7179 */
7180 if ((dd->icode == ICODE_RTL_SILICON) &&
7181 (dd->dc8051_ver < dc8051_ver(0, 19))) {
7182 /* max_rate: 0 = 12.5G, 1 = 25G */
7183 switch (max_rate) {
7184 case 0:
7185 dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7186 break;
7187 default:
7188 dd_dev_err(dd,
7189 "%s: unexpected max rate %d, using 25Gb\n",
7190 __func__, (int)max_rate);
7191 /* fall through */
7192 case 1:
7193 dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7194 break;
7195 }
7196 }
7197
7198 dd_dev_info(dd,
7199 "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7200 enable_lane_tx, tx, enable_lane_rx, rx);
7201 *tx_width = link_width_to_bits(dd, tx);
7202 *rx_width = link_width_to_bits(dd, rx);
7203 }
7204
7205 /*
7206 * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7207 * Valid after the end of VerifyCap and during LinkUp. Does not change
7208 * after link up. I.e. look elsewhere for downgrade information.
7209 *
7210 * Bits are:
7211 * + bits [7:4] contain the number of active transmitters
7212 * + bits [3:0] contain the number of active receivers
7213 * These are numbers 1 through 4 and can be different values if the
7214 * link is asymmetric.
7215 *
7216 * verify_cap_local_fm_link_width[0] retains its original value.
7217 */
7218 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7219 u16 *rx_width)
7220 {
7221 u16 widths, tx, rx;
7222 u8 misc_bits, local_flags;
7223 u16 active_tx, active_rx;
7224
7225 read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7226 tx = widths >> 12;
7227 rx = (widths >> 8) & 0xf;
7228
7229 *tx_width = link_width_to_bits(dd, tx);
7230 *rx_width = link_width_to_bits(dd, rx);
7231
7232 /* print the active widths */
7233 get_link_widths(dd, &active_tx, &active_rx);
7234 }
7235
7236 /*
7237 * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7238 * hardware information when the link first comes up.
7239 *
7240 * The link width is not available until after VerifyCap.AllFramesReceived
7241 * (the trigger for handle_verify_cap), so this is outside that routine
7242 * and should be called when the 8051 signals linkup.
7243 */
7244 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7245 {
7246 u16 tx_width, rx_width;
7247
7248 /* get end-of-LNI link widths */
7249 get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7250
7251 /* use tx_width as the link is supposed to be symmetric on link up */
7252 ppd->link_width_active = tx_width;
7253 /* link width downgrade active (LWD.A) starts out matching LW.A */
7254 ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7255 ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7256 /* per OPA spec, on link up LWD.E resets to LWD.S */
7257 ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7258 /* cache the active egress rate (units {10^6 bits/sec]) */
7259 ppd->current_egress_rate = active_egress_rate(ppd);
7260 }
7261
7262 /*
7263 * Handle a verify capabilities interrupt from the 8051.
7264 *
7265 * This is a work-queue function outside of the interrupt.
7266 */
7267 void handle_verify_cap(struct work_struct *work)
7268 {
7269 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7270 link_vc_work);
7271 struct hfi1_devdata *dd = ppd->dd;
7272 u64 reg;
7273 u8 power_management;
7274 u8 continious;
7275 u8 vcu;
7276 u8 vau;
7277 u8 z;
7278 u16 vl15buf;
7279 u16 link_widths;
7280 u16 crc_mask;
7281 u16 crc_val;
7282 u16 device_id;
7283 u16 active_tx, active_rx;
7284 u8 partner_supported_crc;
7285 u8 remote_tx_rate;
7286 u8 device_rev;
7287
7288 set_link_state(ppd, HLS_VERIFY_CAP);
7289
7290 lcb_shutdown(dd, 0);
7291 adjust_lcb_for_fpga_serdes(dd);
7292
7293 /*
7294 * These are now valid:
7295 * remote VerifyCap fields in the general LNI config
7296 * CSR DC8051_STS_REMOTE_GUID
7297 * CSR DC8051_STS_REMOTE_NODE_TYPE
7298 * CSR DC8051_STS_REMOTE_FM_SECURITY
7299 * CSR DC8051_STS_REMOTE_PORT_NO
7300 */
7301
7302 read_vc_remote_phy(dd, &power_management, &continious);
7303 read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7304 &partner_supported_crc);
7305 read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7306 read_remote_device_id(dd, &device_id, &device_rev);
7307 /*
7308 * And the 'MgmtAllowed' information, which is exchanged during
7309 * LNI, is also be available at this point.
7310 */
7311 read_mgmt_allowed(dd, &ppd->mgmt_allowed);
7312 /* print the active widths */
7313 get_link_widths(dd, &active_tx, &active_rx);
7314 dd_dev_info(dd,
7315 "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7316 (int)power_management, (int)continious);
7317 dd_dev_info(dd,
7318 "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7319 (int)vau, (int)z, (int)vcu, (int)vl15buf,
7320 (int)partner_supported_crc);
7321 dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7322 (u32)remote_tx_rate, (u32)link_widths);
7323 dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7324 (u32)device_id, (u32)device_rev);
7325 /*
7326 * The peer vAU value just read is the peer receiver value. HFI does
7327 * not support a transmit vAU of 0 (AU == 8). We advertised that
7328 * with Z=1 in the fabric capabilities sent to the peer. The peer
7329 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7330 * receive to vAU of 1 (AU == 16). Do the same here. We do not care
7331 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7332 * subject to the Z value exception.
7333 */
7334 if (vau == 0)
7335 vau = 1;
7336 set_up_vl15(dd, vau, vl15buf);
7337
7338 /* set up the LCB CRC mode */
7339 crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7340
7341 /* order is important: use the lowest bit in common */
7342 if (crc_mask & CAP_CRC_14B)
7343 crc_val = LCB_CRC_14B;
7344 else if (crc_mask & CAP_CRC_48B)
7345 crc_val = LCB_CRC_48B;
7346 else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7347 crc_val = LCB_CRC_12B_16B_PER_LANE;
7348 else
7349 crc_val = LCB_CRC_16B;
7350
7351 dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7352 write_csr(dd, DC_LCB_CFG_CRC_MODE,
7353 (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7354
7355 /* set (14b only) or clear sideband credit */
7356 reg = read_csr(dd, SEND_CM_CTRL);
7357 if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7358 write_csr(dd, SEND_CM_CTRL,
7359 reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7360 } else {
7361 write_csr(dd, SEND_CM_CTRL,
7362 reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7363 }
7364
7365 ppd->link_speed_active = 0; /* invalid value */
7366 if (dd->dc8051_ver < dc8051_ver(0, 20)) {
7367 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7368 switch (remote_tx_rate) {
7369 case 0:
7370 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7371 break;
7372 case 1:
7373 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7374 break;
7375 }
7376 } else {
7377 /* actual rate is highest bit of the ANDed rates */
7378 u8 rate = remote_tx_rate & ppd->local_tx_rate;
7379
7380 if (rate & 2)
7381 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7382 else if (rate & 1)
7383 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7384 }
7385 if (ppd->link_speed_active == 0) {
7386 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7387 __func__, (int)remote_tx_rate);
7388 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7389 }
7390
7391 /*
7392 * Cache the values of the supported, enabled, and active
7393 * LTP CRC modes to return in 'portinfo' queries. But the bit
7394 * flags that are returned in the portinfo query differ from
7395 * what's in the link_crc_mask, crc_sizes, and crc_val
7396 * variables. Convert these here.
7397 */
7398 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7399 /* supported crc modes */
7400 ppd->port_ltp_crc_mode |=
7401 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7402 /* enabled crc modes */
7403 ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7404 /* active crc mode */
7405
7406 /* set up the remote credit return table */
7407 assign_remote_cm_au_table(dd, vcu);
7408
7409 /*
7410 * The LCB is reset on entry to handle_verify_cap(), so this must
7411 * be applied on every link up.
7412 *
7413 * Adjust LCB error kill enable to kill the link if
7414 * these RBUF errors are seen:
7415 * REPLAY_BUF_MBE_SMASK
7416 * FLIT_INPUT_BUF_MBE_SMASK
7417 */
7418 if (is_ax(dd)) { /* fixed in B0 */
7419 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7420 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7421 | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7422 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7423 }
7424
7425 /* pull LCB fifos out of reset - all fifo clocks must be stable */
7426 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7427
7428 /* give 8051 access to the LCB CSRs */
7429 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7430 set_8051_lcb_access(dd);
7431
7432 ppd->neighbor_guid =
7433 read_csr(dd, DC_DC8051_STS_REMOTE_GUID);
7434 ppd->neighbor_port_number = read_csr(dd, DC_DC8051_STS_REMOTE_PORT_NO) &
7435 DC_DC8051_STS_REMOTE_PORT_NO_VAL_SMASK;
7436 ppd->neighbor_type =
7437 read_csr(dd, DC_DC8051_STS_REMOTE_NODE_TYPE) &
7438 DC_DC8051_STS_REMOTE_NODE_TYPE_VAL_MASK;
7439 ppd->neighbor_fm_security =
7440 read_csr(dd, DC_DC8051_STS_REMOTE_FM_SECURITY) &
7441 DC_DC8051_STS_LOCAL_FM_SECURITY_DISABLED_MASK;
7442 dd_dev_info(dd,
7443 "Neighbor Guid: %llx Neighbor type %d MgmtAllowed %d FM security bypass %d\n",
7444 ppd->neighbor_guid, ppd->neighbor_type,
7445 ppd->mgmt_allowed, ppd->neighbor_fm_security);
7446 if (ppd->mgmt_allowed)
7447 add_full_mgmt_pkey(ppd);
7448
7449 /* tell the 8051 to go to LinkUp */
7450 set_link_state(ppd, HLS_GOING_UP);
7451 }
7452
7453 /*
7454 * Apply the link width downgrade enabled policy against the current active
7455 * link widths.
7456 *
7457 * Called when the enabled policy changes or the active link widths change.
7458 */
7459 void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
7460 {
7461 int do_bounce = 0;
7462 int tries;
7463 u16 lwde;
7464 u16 tx, rx;
7465
7466 /* use the hls lock to avoid a race with actual link up */
7467 tries = 0;
7468 retry:
7469 mutex_lock(&ppd->hls_lock);
7470 /* only apply if the link is up */
7471 if (ppd->host_link_state & HLS_DOWN) {
7472 /* still going up..wait and retry */
7473 if (ppd->host_link_state & HLS_GOING_UP) {
7474 if (++tries < 1000) {
7475 mutex_unlock(&ppd->hls_lock);
7476 usleep_range(100, 120); /* arbitrary */
7477 goto retry;
7478 }
7479 dd_dev_err(ppd->dd,
7480 "%s: giving up waiting for link state change\n",
7481 __func__);
7482 }
7483 goto done;
7484 }
7485
7486 lwde = ppd->link_width_downgrade_enabled;
7487
7488 if (refresh_widths) {
7489 get_link_widths(ppd->dd, &tx, &rx);
7490 ppd->link_width_downgrade_tx_active = tx;
7491 ppd->link_width_downgrade_rx_active = rx;
7492 }
7493
7494 if (ppd->link_width_downgrade_tx_active == 0 ||
7495 ppd->link_width_downgrade_rx_active == 0) {
7496 /* the 8051 reported a dead link as a downgrade */
7497 dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7498 } else if (lwde == 0) {
7499 /* downgrade is disabled */
7500
7501 /* bounce if not at starting active width */
7502 if ((ppd->link_width_active !=
7503 ppd->link_width_downgrade_tx_active) ||
7504 (ppd->link_width_active !=
7505 ppd->link_width_downgrade_rx_active)) {
7506 dd_dev_err(ppd->dd,
7507 "Link downgrade is disabled and link has downgraded, downing link\n");
7508 dd_dev_err(ppd->dd,
7509 " original 0x%x, tx active 0x%x, rx active 0x%x\n",
7510 ppd->link_width_active,
7511 ppd->link_width_downgrade_tx_active,
7512 ppd->link_width_downgrade_rx_active);
7513 do_bounce = 1;
7514 }
7515 } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7516 (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7517 /* Tx or Rx is outside the enabled policy */
7518 dd_dev_err(ppd->dd,
7519 "Link is outside of downgrade allowed, downing link\n");
7520 dd_dev_err(ppd->dd,
7521 " enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7522 lwde, ppd->link_width_downgrade_tx_active,
7523 ppd->link_width_downgrade_rx_active);
7524 do_bounce = 1;
7525 }
7526
7527 done:
7528 mutex_unlock(&ppd->hls_lock);
7529
7530 if (do_bounce) {
7531 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7532 OPA_LINKDOWN_REASON_WIDTH_POLICY);
7533 set_link_state(ppd, HLS_DN_OFFLINE);
7534 tune_serdes(ppd);
7535 start_link(ppd);
7536 }
7537 }
7538
7539 /*
7540 * Handle a link downgrade interrupt from the 8051.
7541 *
7542 * This is a work-queue function outside of the interrupt.
7543 */
7544 void handle_link_downgrade(struct work_struct *work)
7545 {
7546 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7547 link_downgrade_work);
7548
7549 dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7550 apply_link_downgrade_policy(ppd, 1);
7551 }
7552
7553 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7554 {
7555 return flag_string(buf, buf_len, flags, dcc_err_flags,
7556 ARRAY_SIZE(dcc_err_flags));
7557 }
7558
7559 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7560 {
7561 return flag_string(buf, buf_len, flags, lcb_err_flags,
7562 ARRAY_SIZE(lcb_err_flags));
7563 }
7564
7565 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7566 {
7567 return flag_string(buf, buf_len, flags, dc8051_err_flags,
7568 ARRAY_SIZE(dc8051_err_flags));
7569 }
7570
7571 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7572 {
7573 return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7574 ARRAY_SIZE(dc8051_info_err_flags));
7575 }
7576
7577 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7578 {
7579 return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7580 ARRAY_SIZE(dc8051_info_host_msg_flags));
7581 }
7582
7583 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7584 {
7585 struct hfi1_pportdata *ppd = dd->pport;
7586 u64 info, err, host_msg;
7587 int queue_link_down = 0;
7588 char buf[96];
7589
7590 /* look at the flags */
7591 if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7592 /* 8051 information set by firmware */
7593 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7594 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7595 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7596 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7597 host_msg = (info >>
7598 DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7599 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7600
7601 /*
7602 * Handle error flags.
7603 */
7604 if (err & FAILED_LNI) {
7605 /*
7606 * LNI error indications are cleared by the 8051
7607 * only when starting polling. Only pay attention
7608 * to them when in the states that occur during
7609 * LNI.
7610 */
7611 if (ppd->host_link_state
7612 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7613 queue_link_down = 1;
7614 dd_dev_info(dd, "Link error: %s\n",
7615 dc8051_info_err_string(buf,
7616 sizeof(buf),
7617 err &
7618 FAILED_LNI));
7619 }
7620 err &= ~(u64)FAILED_LNI;
7621 }
7622 /* unknown frames can happen durning LNI, just count */
7623 if (err & UNKNOWN_FRAME) {
7624 ppd->unknown_frame_count++;
7625 err &= ~(u64)UNKNOWN_FRAME;
7626 }
7627 if (err) {
7628 /* report remaining errors, but do not do anything */
7629 dd_dev_err(dd, "8051 info error: %s\n",
7630 dc8051_info_err_string(buf, sizeof(buf),
7631 err));
7632 }
7633
7634 /*
7635 * Handle host message flags.
7636 */
7637 if (host_msg & HOST_REQ_DONE) {
7638 /*
7639 * Presently, the driver does a busy wait for
7640 * host requests to complete. This is only an
7641 * informational message.
7642 * NOTE: The 8051 clears the host message
7643 * information *on the next 8051 command*.
7644 * Therefore, when linkup is achieved,
7645 * this flag will still be set.
7646 */
7647 host_msg &= ~(u64)HOST_REQ_DONE;
7648 }
7649 if (host_msg & BC_SMA_MSG) {
7650 queue_work(ppd->hfi1_wq, &ppd->sma_message_work);
7651 host_msg &= ~(u64)BC_SMA_MSG;
7652 }
7653 if (host_msg & LINKUP_ACHIEVED) {
7654 dd_dev_info(dd, "8051: Link up\n");
7655 queue_work(ppd->hfi1_wq, &ppd->link_up_work);
7656 host_msg &= ~(u64)LINKUP_ACHIEVED;
7657 }
7658 if (host_msg & EXT_DEVICE_CFG_REQ) {
7659 handle_8051_request(ppd);
7660 host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7661 }
7662 if (host_msg & VERIFY_CAP_FRAME) {
7663 queue_work(ppd->hfi1_wq, &ppd->link_vc_work);
7664 host_msg &= ~(u64)VERIFY_CAP_FRAME;
7665 }
7666 if (host_msg & LINK_GOING_DOWN) {
7667 const char *extra = "";
7668 /* no downgrade action needed if going down */
7669 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7670 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7671 extra = " (ignoring downgrade)";
7672 }
7673 dd_dev_info(dd, "8051: Link down%s\n", extra);
7674 queue_link_down = 1;
7675 host_msg &= ~(u64)LINK_GOING_DOWN;
7676 }
7677 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7678 queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work);
7679 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7680 }
7681 if (host_msg) {
7682 /* report remaining messages, but do not do anything */
7683 dd_dev_info(dd, "8051 info host message: %s\n",
7684 dc8051_info_host_msg_string(buf,
7685 sizeof(buf),
7686 host_msg));
7687 }
7688
7689 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7690 }
7691 if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7692 /*
7693 * Lost the 8051 heartbeat. If this happens, we
7694 * receive constant interrupts about it. Disable
7695 * the interrupt after the first.
7696 */
7697 dd_dev_err(dd, "Lost 8051 heartbeat\n");
7698 write_csr(dd, DC_DC8051_ERR_EN,
7699 read_csr(dd, DC_DC8051_ERR_EN) &
7700 ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7701
7702 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7703 }
7704 if (reg) {
7705 /* report the error, but do not do anything */
7706 dd_dev_err(dd, "8051 error: %s\n",
7707 dc8051_err_string(buf, sizeof(buf), reg));
7708 }
7709
7710 if (queue_link_down) {
7711 /*
7712 * if the link is already going down or disabled, do not
7713 * queue another
7714 */
7715 if ((ppd->host_link_state &
7716 (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7717 ppd->link_enabled == 0) {
7718 dd_dev_info(dd, "%s: not queuing link down\n",
7719 __func__);
7720 } else {
7721 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
7722 }
7723 }
7724 }
7725
7726 static const char * const fm_config_txt[] = {
7727 [0] =
7728 "BadHeadDist: Distance violation between two head flits",
7729 [1] =
7730 "BadTailDist: Distance violation between two tail flits",
7731 [2] =
7732 "BadCtrlDist: Distance violation between two credit control flits",
7733 [3] =
7734 "BadCrdAck: Credits return for unsupported VL",
7735 [4] =
7736 "UnsupportedVLMarker: Received VL Marker",
7737 [5] =
7738 "BadPreempt: Exceeded the preemption nesting level",
7739 [6] =
7740 "BadControlFlit: Received unsupported control flit",
7741 /* no 7 */
7742 [8] =
7743 "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7744 };
7745
7746 static const char * const port_rcv_txt[] = {
7747 [1] =
7748 "BadPktLen: Illegal PktLen",
7749 [2] =
7750 "PktLenTooLong: Packet longer than PktLen",
7751 [3] =
7752 "PktLenTooShort: Packet shorter than PktLen",
7753 [4] =
7754 "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7755 [5] =
7756 "BadDLID: Illegal DLID (0, doesn't match HFI)",
7757 [6] =
7758 "BadL2: Illegal L2 opcode",
7759 [7] =
7760 "BadSC: Unsupported SC",
7761 [9] =
7762 "BadRC: Illegal RC",
7763 [11] =
7764 "PreemptError: Preempting with same VL",
7765 [12] =
7766 "PreemptVL15: Preempting a VL15 packet",
7767 };
7768
7769 #define OPA_LDR_FMCONFIG_OFFSET 16
7770 #define OPA_LDR_PORTRCV_OFFSET 0
7771 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7772 {
7773 u64 info, hdr0, hdr1;
7774 const char *extra;
7775 char buf[96];
7776 struct hfi1_pportdata *ppd = dd->pport;
7777 u8 lcl_reason = 0;
7778 int do_bounce = 0;
7779
7780 if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7781 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7782 info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7783 dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7784 /* set status bit */
7785 dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7786 }
7787 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7788 }
7789
7790 if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7791 struct hfi1_pportdata *ppd = dd->pport;
7792 /* this counter saturates at (2^32) - 1 */
7793 if (ppd->link_downed < (u32)UINT_MAX)
7794 ppd->link_downed++;
7795 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7796 }
7797
7798 if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7799 u8 reason_valid = 1;
7800
7801 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7802 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7803 dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7804 /* set status bit */
7805 dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7806 }
7807 switch (info) {
7808 case 0:
7809 case 1:
7810 case 2:
7811 case 3:
7812 case 4:
7813 case 5:
7814 case 6:
7815 extra = fm_config_txt[info];
7816 break;
7817 case 8:
7818 extra = fm_config_txt[info];
7819 if (ppd->port_error_action &
7820 OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7821 do_bounce = 1;
7822 /*
7823 * lcl_reason cannot be derived from info
7824 * for this error
7825 */
7826 lcl_reason =
7827 OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7828 }
7829 break;
7830 default:
7831 reason_valid = 0;
7832 snprintf(buf, sizeof(buf), "reserved%lld", info);
7833 extra = buf;
7834 break;
7835 }
7836
7837 if (reason_valid && !do_bounce) {
7838 do_bounce = ppd->port_error_action &
7839 (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7840 lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7841 }
7842
7843 /* just report this */
7844 dd_dev_info(dd, "DCC Error: fmconfig error: %s\n", extra);
7845 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7846 }
7847
7848 if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7849 u8 reason_valid = 1;
7850
7851 info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7852 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7853 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7854 if (!(dd->err_info_rcvport.status_and_code &
7855 OPA_EI_STATUS_SMASK)) {
7856 dd->err_info_rcvport.status_and_code =
7857 info & OPA_EI_CODE_SMASK;
7858 /* set status bit */
7859 dd->err_info_rcvport.status_and_code |=
7860 OPA_EI_STATUS_SMASK;
7861 /*
7862 * save first 2 flits in the packet that caused
7863 * the error
7864 */
7865 dd->err_info_rcvport.packet_flit1 = hdr0;
7866 dd->err_info_rcvport.packet_flit2 = hdr1;
7867 }
7868 switch (info) {
7869 case 1:
7870 case 2:
7871 case 3:
7872 case 4:
7873 case 5:
7874 case 6:
7875 case 7:
7876 case 9:
7877 case 11:
7878 case 12:
7879 extra = port_rcv_txt[info];
7880 break;
7881 default:
7882 reason_valid = 0;
7883 snprintf(buf, sizeof(buf), "reserved%lld", info);
7884 extra = buf;
7885 break;
7886 }
7887
7888 if (reason_valid && !do_bounce) {
7889 do_bounce = ppd->port_error_action &
7890 (1 << (OPA_LDR_PORTRCV_OFFSET + info));
7891 lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
7892 }
7893
7894 /* just report this */
7895 dd_dev_info(dd, "DCC Error: PortRcv error: %s\n", extra);
7896 dd_dev_info(dd, " hdr0 0x%llx, hdr1 0x%llx\n",
7897 hdr0, hdr1);
7898
7899 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
7900 }
7901
7902 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
7903 /* informative only */
7904 dd_dev_info(dd, "8051 access to LCB blocked\n");
7905 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
7906 }
7907 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
7908 /* informative only */
7909 dd_dev_info(dd, "host access to LCB blocked\n");
7910 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
7911 }
7912
7913 /* report any remaining errors */
7914 if (reg)
7915 dd_dev_info(dd, "DCC Error: %s\n",
7916 dcc_err_string(buf, sizeof(buf), reg));
7917
7918 if (lcl_reason == 0)
7919 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
7920
7921 if (do_bounce) {
7922 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
7923 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
7924 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
7925 }
7926 }
7927
7928 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7929 {
7930 char buf[96];
7931
7932 dd_dev_info(dd, "LCB Error: %s\n",
7933 lcb_err_string(buf, sizeof(buf), reg));
7934 }
7935
7936 /*
7937 * CCE block DC interrupt. Source is < 8.
7938 */
7939 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
7940 {
7941 const struct err_reg_info *eri = &dc_errs[source];
7942
7943 if (eri->handler) {
7944 interrupt_clear_down(dd, 0, eri);
7945 } else if (source == 3 /* dc_lbm_int */) {
7946 /*
7947 * This indicates that a parity error has occurred on the
7948 * address/control lines presented to the LBM. The error
7949 * is a single pulse, there is no associated error flag,
7950 * and it is non-maskable. This is because if a parity
7951 * error occurs on the request the request is dropped.
7952 * This should never occur, but it is nice to know if it
7953 * ever does.
7954 */
7955 dd_dev_err(dd, "Parity error in DC LBM block\n");
7956 } else {
7957 dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
7958 }
7959 }
7960
7961 /*
7962 * TX block send credit interrupt. Source is < 160.
7963 */
7964 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
7965 {
7966 sc_group_release_update(dd, source);
7967 }
7968
7969 /*
7970 * TX block SDMA interrupt. Source is < 48.
7971 *
7972 * SDMA interrupts are grouped by type:
7973 *
7974 * 0 - N-1 = SDma
7975 * N - 2N-1 = SDmaProgress
7976 * 2N - 3N-1 = SDmaIdle
7977 */
7978 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
7979 {
7980 /* what interrupt */
7981 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
7982 /* which engine */
7983 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
7984
7985 #ifdef CONFIG_SDMA_VERBOSITY
7986 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
7987 slashstrip(__FILE__), __LINE__, __func__);
7988 sdma_dumpstate(&dd->per_sdma[which]);
7989 #endif
7990
7991 if (likely(what < 3 && which < dd->num_sdma)) {
7992 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
7993 } else {
7994 /* should not happen */
7995 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
7996 }
7997 }
7998
7999 /*
8000 * RX block receive available interrupt. Source is < 160.
8001 */
8002 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8003 {
8004 struct hfi1_ctxtdata *rcd;
8005 char *err_detail;
8006
8007 if (likely(source < dd->num_rcv_contexts)) {
8008 rcd = dd->rcd[source];
8009 if (rcd) {
8010 if (source < dd->first_user_ctxt)
8011 rcd->do_interrupt(rcd, 0);
8012 else
8013 handle_user_interrupt(rcd);
8014 return; /* OK */
8015 }
8016 /* received an interrupt, but no rcd */
8017 err_detail = "dataless";
8018 } else {
8019 /* received an interrupt, but are not using that context */
8020 err_detail = "out of range";
8021 }
8022 dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8023 err_detail, source);
8024 }
8025
8026 /*
8027 * RX block receive urgent interrupt. Source is < 160.
8028 */
8029 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8030 {
8031 struct hfi1_ctxtdata *rcd;
8032 char *err_detail;
8033
8034 if (likely(source < dd->num_rcv_contexts)) {
8035 rcd = dd->rcd[source];
8036 if (rcd) {
8037 /* only pay attention to user urgent interrupts */
8038 if (source >= dd->first_user_ctxt)
8039 handle_user_interrupt(rcd);
8040 return; /* OK */
8041 }
8042 /* received an interrupt, but no rcd */
8043 err_detail = "dataless";
8044 } else {
8045 /* received an interrupt, but are not using that context */
8046 err_detail = "out of range";
8047 }
8048 dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8049 err_detail, source);
8050 }
8051
8052 /*
8053 * Reserved range interrupt. Should not be called in normal operation.
8054 */
8055 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8056 {
8057 char name[64];
8058
8059 dd_dev_err(dd, "unexpected %s interrupt\n",
8060 is_reserved_name(name, sizeof(name), source));
8061 }
8062
8063 static const struct is_table is_table[] = {
8064 /*
8065 * start end
8066 * name func interrupt func
8067 */
8068 { IS_GENERAL_ERR_START, IS_GENERAL_ERR_END,
8069 is_misc_err_name, is_misc_err_int },
8070 { IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END,
8071 is_sdma_eng_err_name, is_sdma_eng_err_int },
8072 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8073 is_sendctxt_err_name, is_sendctxt_err_int },
8074 { IS_SDMA_START, IS_SDMA_END,
8075 is_sdma_eng_name, is_sdma_eng_int },
8076 { IS_VARIOUS_START, IS_VARIOUS_END,
8077 is_various_name, is_various_int },
8078 { IS_DC_START, IS_DC_END,
8079 is_dc_name, is_dc_int },
8080 { IS_RCVAVAIL_START, IS_RCVAVAIL_END,
8081 is_rcv_avail_name, is_rcv_avail_int },
8082 { IS_RCVURGENT_START, IS_RCVURGENT_END,
8083 is_rcv_urgent_name, is_rcv_urgent_int },
8084 { IS_SENDCREDIT_START, IS_SENDCREDIT_END,
8085 is_send_credit_name, is_send_credit_int},
8086 { IS_RESERVED_START, IS_RESERVED_END,
8087 is_reserved_name, is_reserved_int},
8088 };
8089
8090 /*
8091 * Interrupt source interrupt - called when the given source has an interrupt.
8092 * Source is a bit index into an array of 64-bit integers.
8093 */
8094 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8095 {
8096 const struct is_table *entry;
8097
8098 /* avoids a double compare by walking the table in-order */
8099 for (entry = &is_table[0]; entry->is_name; entry++) {
8100 if (source < entry->end) {
8101 trace_hfi1_interrupt(dd, entry, source);
8102 entry->is_int(dd, source - entry->start);
8103 return;
8104 }
8105 }
8106 /* fell off the end */
8107 dd_dev_err(dd, "invalid interrupt source %u\n", source);
8108 }
8109
8110 /*
8111 * General interrupt handler. This is able to correctly handle
8112 * all interrupts in case INTx is used.
8113 */
8114 static irqreturn_t general_interrupt(int irq, void *data)
8115 {
8116 struct hfi1_devdata *dd = data;
8117 u64 regs[CCE_NUM_INT_CSRS];
8118 u32 bit;
8119 int i;
8120
8121 this_cpu_inc(*dd->int_counter);
8122
8123 /* phase 1: scan and clear all handled interrupts */
8124 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8125 if (dd->gi_mask[i] == 0) {
8126 regs[i] = 0; /* used later */
8127 continue;
8128 }
8129 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8130 dd->gi_mask[i];
8131 /* only clear if anything is set */
8132 if (regs[i])
8133 write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8134 }
8135
8136 /* phase 2: call the appropriate handler */
8137 for_each_set_bit(bit, (unsigned long *)&regs[0],
8138 CCE_NUM_INT_CSRS * 64) {
8139 is_interrupt(dd, bit);
8140 }
8141
8142 return IRQ_HANDLED;
8143 }
8144
8145 static irqreturn_t sdma_interrupt(int irq, void *data)
8146 {
8147 struct sdma_engine *sde = data;
8148 struct hfi1_devdata *dd = sde->dd;
8149 u64 status;
8150
8151 #ifdef CONFIG_SDMA_VERBOSITY
8152 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8153 slashstrip(__FILE__), __LINE__, __func__);
8154 sdma_dumpstate(sde);
8155 #endif
8156
8157 this_cpu_inc(*dd->int_counter);
8158
8159 /* This read_csr is really bad in the hot path */
8160 status = read_csr(dd,
8161 CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8162 & sde->imask;
8163 if (likely(status)) {
8164 /* clear the interrupt(s) */
8165 write_csr(dd,
8166 CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8167 status);
8168
8169 /* handle the interrupt(s) */
8170 sdma_engine_interrupt(sde, status);
8171 } else
8172 dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n",
8173 sde->this_idx);
8174
8175 return IRQ_HANDLED;
8176 }
8177
8178 /*
8179 * Clear the receive interrupt. Use a read of the interrupt clear CSR
8180 * to insure that the write completed. This does NOT guarantee that
8181 * queued DMA writes to memory from the chip are pushed.
8182 */
8183 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8184 {
8185 struct hfi1_devdata *dd = rcd->dd;
8186 u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8187
8188 mmiowb(); /* make sure everything before is written */
8189 write_csr(dd, addr, rcd->imask);
8190 /* force the above write on the chip and get a value back */
8191 (void)read_csr(dd, addr);
8192 }
8193
8194 /* force the receive interrupt */
8195 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8196 {
8197 write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8198 }
8199
8200 /*
8201 * Return non-zero if a packet is present.
8202 *
8203 * This routine is called when rechecking for packets after the RcvAvail
8204 * interrupt has been cleared down. First, do a quick check of memory for
8205 * a packet present. If not found, use an expensive CSR read of the context
8206 * tail to determine the actual tail. The CSR read is necessary because there
8207 * is no method to push pending DMAs to memory other than an interrupt and we
8208 * are trying to determine if we need to force an interrupt.
8209 */
8210 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8211 {
8212 u32 tail;
8213 int present;
8214
8215 if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
8216 present = (rcd->seq_cnt ==
8217 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8218 else /* is RDMA rtail */
8219 present = (rcd->head != get_rcvhdrtail(rcd));
8220
8221 if (present)
8222 return 1;
8223
8224 /* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8225 tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8226 return rcd->head != tail;
8227 }
8228
8229 /*
8230 * Receive packet IRQ handler. This routine expects to be on its own IRQ.
8231 * This routine will try to handle packets immediately (latency), but if
8232 * it finds too many, it will invoke the thread handler (bandwitdh). The
8233 * chip receive interrupt is *not* cleared down until this or the thread (if
8234 * invoked) is finished. The intent is to avoid extra interrupts while we
8235 * are processing packets anyway.
8236 */
8237 static irqreturn_t receive_context_interrupt(int irq, void *data)
8238 {
8239 struct hfi1_ctxtdata *rcd = data;
8240 struct hfi1_devdata *dd = rcd->dd;
8241 int disposition;
8242 int present;
8243
8244 trace_hfi1_receive_interrupt(dd, rcd->ctxt);
8245 this_cpu_inc(*dd->int_counter);
8246 aspm_ctx_disable(rcd);
8247
8248 /* receive interrupt remains blocked while processing packets */
8249 disposition = rcd->do_interrupt(rcd, 0);
8250
8251 /*
8252 * Too many packets were seen while processing packets in this
8253 * IRQ handler. Invoke the handler thread. The receive interrupt
8254 * remains blocked.
8255 */
8256 if (disposition == RCV_PKT_LIMIT)
8257 return IRQ_WAKE_THREAD;
8258
8259 /*
8260 * The packet processor detected no more packets. Clear the receive
8261 * interrupt and recheck for a packet packet that may have arrived
8262 * after the previous check and interrupt clear. If a packet arrived,
8263 * force another interrupt.
8264 */
8265 clear_recv_intr(rcd);
8266 present = check_packet_present(rcd);
8267 if (present)
8268 force_recv_intr(rcd);
8269
8270 return IRQ_HANDLED;
8271 }
8272
8273 /*
8274 * Receive packet thread handler. This expects to be invoked with the
8275 * receive interrupt still blocked.
8276 */
8277 static irqreturn_t receive_context_thread(int irq, void *data)
8278 {
8279 struct hfi1_ctxtdata *rcd = data;
8280 int present;
8281
8282 /* receive interrupt is still blocked from the IRQ handler */
8283 (void)rcd->do_interrupt(rcd, 1);
8284
8285 /*
8286 * The packet processor will only return if it detected no more
8287 * packets. Hold IRQs here so we can safely clear the interrupt and
8288 * recheck for a packet that may have arrived after the previous
8289 * check and the interrupt clear. If a packet arrived, force another
8290 * interrupt.
8291 */
8292 local_irq_disable();
8293 clear_recv_intr(rcd);
8294 present = check_packet_present(rcd);
8295 if (present)
8296 force_recv_intr(rcd);
8297 local_irq_enable();
8298
8299 return IRQ_HANDLED;
8300 }
8301
8302 /* ========================================================================= */
8303
8304 u32 read_physical_state(struct hfi1_devdata *dd)
8305 {
8306 u64 reg;
8307
8308 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8309 return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8310 & DC_DC8051_STS_CUR_STATE_PORT_MASK;
8311 }
8312
8313 u32 read_logical_state(struct hfi1_devdata *dd)
8314 {
8315 u64 reg;
8316
8317 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8318 return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8319 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8320 }
8321
8322 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8323 {
8324 u64 reg;
8325
8326 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8327 /* clear current state, set new state */
8328 reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8329 reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8330 write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8331 }
8332
8333 /*
8334 * Use the 8051 to read a LCB CSR.
8335 */
8336 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8337 {
8338 u32 regno;
8339 int ret;
8340
8341 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8342 if (acquire_lcb_access(dd, 0) == 0) {
8343 *data = read_csr(dd, addr);
8344 release_lcb_access(dd, 0);
8345 return 0;
8346 }
8347 return -EBUSY;
8348 }
8349
8350 /* register is an index of LCB registers: (offset - base) / 8 */
8351 regno = (addr - DC_LCB_CFG_RUN) >> 3;
8352 ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8353 if (ret != HCMD_SUCCESS)
8354 return -EBUSY;
8355 return 0;
8356 }
8357
8358 /*
8359 * Read an LCB CSR. Access may not be in host control, so check.
8360 * Return 0 on success, -EBUSY on failure.
8361 */
8362 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8363 {
8364 struct hfi1_pportdata *ppd = dd->pport;
8365
8366 /* if up, go through the 8051 for the value */
8367 if (ppd->host_link_state & HLS_UP)
8368 return read_lcb_via_8051(dd, addr, data);
8369 /* if going up or down, no access */
8370 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8371 return -EBUSY;
8372 /* otherwise, host has access */
8373 *data = read_csr(dd, addr);
8374 return 0;
8375 }
8376
8377 /*
8378 * Use the 8051 to write a LCB CSR.
8379 */
8380 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8381 {
8382 u32 regno;
8383 int ret;
8384
8385 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8386 (dd->dc8051_ver < dc8051_ver(0, 20))) {
8387 if (acquire_lcb_access(dd, 0) == 0) {
8388 write_csr(dd, addr, data);
8389 release_lcb_access(dd, 0);
8390 return 0;
8391 }
8392 return -EBUSY;
8393 }
8394
8395 /* register is an index of LCB registers: (offset - base) / 8 */
8396 regno = (addr - DC_LCB_CFG_RUN) >> 3;
8397 ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8398 if (ret != HCMD_SUCCESS)
8399 return -EBUSY;
8400 return 0;
8401 }
8402
8403 /*
8404 * Write an LCB CSR. Access may not be in host control, so check.
8405 * Return 0 on success, -EBUSY on failure.
8406 */
8407 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8408 {
8409 struct hfi1_pportdata *ppd = dd->pport;
8410
8411 /* if up, go through the 8051 for the value */
8412 if (ppd->host_link_state & HLS_UP)
8413 return write_lcb_via_8051(dd, addr, data);
8414 /* if going up or down, no access */
8415 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8416 return -EBUSY;
8417 /* otherwise, host has access */
8418 write_csr(dd, addr, data);
8419 return 0;
8420 }
8421
8422 /*
8423 * Returns:
8424 * < 0 = Linux error, not able to get access
8425 * > 0 = 8051 command RETURN_CODE
8426 */
8427 static int do_8051_command(
8428 struct hfi1_devdata *dd,
8429 u32 type,
8430 u64 in_data,
8431 u64 *out_data)
8432 {
8433 u64 reg, completed;
8434 int return_code;
8435 unsigned long flags;
8436 unsigned long timeout;
8437
8438 hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8439
8440 /*
8441 * Alternative to holding the lock for a long time:
8442 * - keep busy wait - have other users bounce off
8443 */
8444 spin_lock_irqsave(&dd->dc8051_lock, flags);
8445
8446 /* We can't send any commands to the 8051 if it's in reset */
8447 if (dd->dc_shutdown) {
8448 return_code = -ENODEV;
8449 goto fail;
8450 }
8451
8452 /*
8453 * If an 8051 host command timed out previously, then the 8051 is
8454 * stuck.
8455 *
8456 * On first timeout, attempt to reset and restart the entire DC
8457 * block (including 8051). (Is this too big of a hammer?)
8458 *
8459 * If the 8051 times out a second time, the reset did not bring it
8460 * back to healthy life. In that case, fail any subsequent commands.
8461 */
8462 if (dd->dc8051_timed_out) {
8463 if (dd->dc8051_timed_out > 1) {
8464 dd_dev_err(dd,
8465 "Previous 8051 host command timed out, skipping command %u\n",
8466 type);
8467 return_code = -ENXIO;
8468 goto fail;
8469 }
8470 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
8471 dc_shutdown(dd);
8472 dc_start(dd);
8473 spin_lock_irqsave(&dd->dc8051_lock, flags);
8474 }
8475
8476 /*
8477 * If there is no timeout, then the 8051 command interface is
8478 * waiting for a command.
8479 */
8480
8481 /*
8482 * When writing a LCB CSR, out_data contains the full value to
8483 * to be written, while in_data contains the relative LCB
8484 * address in 7:0. Do the work here, rather than the caller,
8485 * of distrubting the write data to where it needs to go:
8486 *
8487 * Write data
8488 * 39:00 -> in_data[47:8]
8489 * 47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8490 * 63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8491 */
8492 if (type == HCMD_WRITE_LCB_CSR) {
8493 in_data |= ((*out_data) & 0xffffffffffull) << 8;
8494 reg = ((((*out_data) >> 40) & 0xff) <<
8495 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8496 | ((((*out_data) >> 48) & 0xffff) <<
8497 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8498 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8499 }
8500
8501 /*
8502 * Do two writes: the first to stabilize the type and req_data, the
8503 * second to activate.
8504 */
8505 reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8506 << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8507 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8508 << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8509 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8510 reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8511 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8512
8513 /* wait for completion, alternate: interrupt */
8514 timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8515 while (1) {
8516 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8517 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8518 if (completed)
8519 break;
8520 if (time_after(jiffies, timeout)) {
8521 dd->dc8051_timed_out++;
8522 dd_dev_err(dd, "8051 host command %u timeout\n", type);
8523 if (out_data)
8524 *out_data = 0;
8525 return_code = -ETIMEDOUT;
8526 goto fail;
8527 }
8528 udelay(2);
8529 }
8530
8531 if (out_data) {
8532 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8533 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8534 if (type == HCMD_READ_LCB_CSR) {
8535 /* top 16 bits are in a different register */
8536 *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8537 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8538 << (48
8539 - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8540 }
8541 }
8542 return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8543 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8544 dd->dc8051_timed_out = 0;
8545 /*
8546 * Clear command for next user.
8547 */
8548 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8549
8550 fail:
8551 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
8552
8553 return return_code;
8554 }
8555
8556 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8557 {
8558 return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8559 }
8560
8561 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8562 u8 lane_id, u32 config_data)
8563 {
8564 u64 data;
8565 int ret;
8566
8567 data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8568 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8569 | (u64)config_data << LOAD_DATA_DATA_SHIFT;
8570 ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8571 if (ret != HCMD_SUCCESS) {
8572 dd_dev_err(dd,
8573 "load 8051 config: field id %d, lane %d, err %d\n",
8574 (int)field_id, (int)lane_id, ret);
8575 }
8576 return ret;
8577 }
8578
8579 /*
8580 * Read the 8051 firmware "registers". Use the RAM directly. Always
8581 * set the result, even on error.
8582 * Return 0 on success, -errno on failure
8583 */
8584 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8585 u32 *result)
8586 {
8587 u64 big_data;
8588 u32 addr;
8589 int ret;
8590
8591 /* address start depends on the lane_id */
8592 if (lane_id < 4)
8593 addr = (4 * NUM_GENERAL_FIELDS)
8594 + (lane_id * 4 * NUM_LANE_FIELDS);
8595 else
8596 addr = 0;
8597 addr += field_id * 4;
8598
8599 /* read is in 8-byte chunks, hardware will truncate the address down */
8600 ret = read_8051_data(dd, addr, 8, &big_data);
8601
8602 if (ret == 0) {
8603 /* extract the 4 bytes we want */
8604 if (addr & 0x4)
8605 *result = (u32)(big_data >> 32);
8606 else
8607 *result = (u32)big_data;
8608 } else {
8609 *result = 0;
8610 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8611 __func__, lane_id, field_id);
8612 }
8613
8614 return ret;
8615 }
8616
8617 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8618 u8 continuous)
8619 {
8620 u32 frame;
8621
8622 frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8623 | power_management << POWER_MANAGEMENT_SHIFT;
8624 return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8625 GENERAL_CONFIG, frame);
8626 }
8627
8628 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8629 u16 vl15buf, u8 crc_sizes)
8630 {
8631 u32 frame;
8632
8633 frame = (u32)vau << VAU_SHIFT
8634 | (u32)z << Z_SHIFT
8635 | (u32)vcu << VCU_SHIFT
8636 | (u32)vl15buf << VL15BUF_SHIFT
8637 | (u32)crc_sizes << CRC_SIZES_SHIFT;
8638 return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8639 GENERAL_CONFIG, frame);
8640 }
8641
8642 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8643 u8 *flag_bits, u16 *link_widths)
8644 {
8645 u32 frame;
8646
8647 read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8648 &frame);
8649 *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8650 *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8651 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8652 }
8653
8654 static int write_vc_local_link_width(struct hfi1_devdata *dd,
8655 u8 misc_bits,
8656 u8 flag_bits,
8657 u16 link_widths)
8658 {
8659 u32 frame;
8660
8661 frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8662 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8663 | (u32)link_widths << LINK_WIDTH_SHIFT;
8664 return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8665 frame);
8666 }
8667
8668 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8669 u8 device_rev)
8670 {
8671 u32 frame;
8672
8673 frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8674 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8675 return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8676 }
8677
8678 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8679 u8 *device_rev)
8680 {
8681 u32 frame;
8682
8683 read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8684 *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8685 *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8686 & REMOTE_DEVICE_REV_MASK;
8687 }
8688
8689 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_a, u8 *ver_b)
8690 {
8691 u32 frame;
8692
8693 read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8694 *ver_a = (frame >> STS_FM_VERSION_A_SHIFT) & STS_FM_VERSION_A_MASK;
8695 *ver_b = (frame >> STS_FM_VERSION_B_SHIFT) & STS_FM_VERSION_B_MASK;
8696 }
8697
8698 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8699 u8 *continuous)
8700 {
8701 u32 frame;
8702
8703 read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8704 *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8705 & POWER_MANAGEMENT_MASK;
8706 *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8707 & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8708 }
8709
8710 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8711 u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8712 {
8713 u32 frame;
8714
8715 read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8716 *vau = (frame >> VAU_SHIFT) & VAU_MASK;
8717 *z = (frame >> Z_SHIFT) & Z_MASK;
8718 *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8719 *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8720 *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8721 }
8722
8723 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8724 u8 *remote_tx_rate,
8725 u16 *link_widths)
8726 {
8727 u32 frame;
8728
8729 read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8730 &frame);
8731 *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8732 & REMOTE_TX_RATE_MASK;
8733 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8734 }
8735
8736 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8737 {
8738 u32 frame;
8739
8740 read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8741 *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8742 }
8743
8744 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
8745 {
8746 u32 frame;
8747
8748 read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
8749 *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
8750 }
8751
8752 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8753 {
8754 read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8755 }
8756
8757 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8758 {
8759 read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8760 }
8761
8762 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8763 {
8764 u32 frame;
8765 int ret;
8766
8767 *link_quality = 0;
8768 if (dd->pport->host_link_state & HLS_UP) {
8769 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8770 &frame);
8771 if (ret == 0)
8772 *link_quality = (frame >> LINK_QUALITY_SHIFT)
8773 & LINK_QUALITY_MASK;
8774 }
8775 }
8776
8777 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8778 {
8779 u32 frame;
8780
8781 read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8782 *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8783 }
8784
8785 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
8786 {
8787 u32 frame;
8788
8789 read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
8790 *ldr = (frame & 0xff);
8791 }
8792
8793 static int read_tx_settings(struct hfi1_devdata *dd,
8794 u8 *enable_lane_tx,
8795 u8 *tx_polarity_inversion,
8796 u8 *rx_polarity_inversion,
8797 u8 *max_rate)
8798 {
8799 u32 frame;
8800 int ret;
8801
8802 ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
8803 *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
8804 & ENABLE_LANE_TX_MASK;
8805 *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
8806 & TX_POLARITY_INVERSION_MASK;
8807 *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
8808 & RX_POLARITY_INVERSION_MASK;
8809 *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
8810 return ret;
8811 }
8812
8813 static int write_tx_settings(struct hfi1_devdata *dd,
8814 u8 enable_lane_tx,
8815 u8 tx_polarity_inversion,
8816 u8 rx_polarity_inversion,
8817 u8 max_rate)
8818 {
8819 u32 frame;
8820
8821 /* no need to mask, all variable sizes match field widths */
8822 frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
8823 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
8824 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
8825 | max_rate << MAX_RATE_SHIFT;
8826 return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
8827 }
8828
8829 /*
8830 * Read an idle LCB message.
8831 *
8832 * Returns 0 on success, -EINVAL on error
8833 */
8834 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
8835 {
8836 int ret;
8837
8838 ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
8839 if (ret != HCMD_SUCCESS) {
8840 dd_dev_err(dd, "read idle message: type %d, err %d\n",
8841 (u32)type, ret);
8842 return -EINVAL;
8843 }
8844 dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
8845 /* return only the payload as we already know the type */
8846 *data_out >>= IDLE_PAYLOAD_SHIFT;
8847 return 0;
8848 }
8849
8850 /*
8851 * Read an idle SMA message. To be done in response to a notification from
8852 * the 8051.
8853 *
8854 * Returns 0 on success, -EINVAL on error
8855 */
8856 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
8857 {
8858 return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
8859 data);
8860 }
8861
8862 /*
8863 * Send an idle LCB message.
8864 *
8865 * Returns 0 on success, -EINVAL on error
8866 */
8867 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
8868 {
8869 int ret;
8870
8871 dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
8872 ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
8873 if (ret != HCMD_SUCCESS) {
8874 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
8875 data, ret);
8876 return -EINVAL;
8877 }
8878 return 0;
8879 }
8880
8881 /*
8882 * Send an idle SMA message.
8883 *
8884 * Returns 0 on success, -EINVAL on error
8885 */
8886 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
8887 {
8888 u64 data;
8889
8890 data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
8891 ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
8892 return send_idle_message(dd, data);
8893 }
8894
8895 /*
8896 * Initialize the LCB then do a quick link up. This may or may not be
8897 * in loopback.
8898 *
8899 * return 0 on success, -errno on error
8900 */
8901 static int do_quick_linkup(struct hfi1_devdata *dd)
8902 {
8903 u64 reg;
8904 unsigned long timeout;
8905 int ret;
8906
8907 lcb_shutdown(dd, 0);
8908
8909 if (loopback) {
8910 /* LCB_CFG_LOOPBACK.VAL = 2 */
8911 /* LCB_CFG_LANE_WIDTH.VAL = 0 */
8912 write_csr(dd, DC_LCB_CFG_LOOPBACK,
8913 IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
8914 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
8915 }
8916
8917 /* start the LCBs */
8918 /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
8919 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
8920
8921 /* simulator only loopback steps */
8922 if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8923 /* LCB_CFG_RUN.EN = 1 */
8924 write_csr(dd, DC_LCB_CFG_RUN,
8925 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
8926
8927 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
8928 timeout = jiffies + msecs_to_jiffies(10);
8929 while (1) {
8930 reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
8931 if (reg)
8932 break;
8933 if (time_after(jiffies, timeout)) {
8934 dd_dev_err(dd,
8935 "timeout waiting for LINK_TRANSFER_ACTIVE\n");
8936 return -ETIMEDOUT;
8937 }
8938 udelay(2);
8939 }
8940
8941 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
8942 1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
8943 }
8944
8945 if (!loopback) {
8946 /*
8947 * When doing quick linkup and not in loopback, both
8948 * sides must be done with LCB set-up before either
8949 * starts the quick linkup. Put a delay here so that
8950 * both sides can be started and have a chance to be
8951 * done with LCB set up before resuming.
8952 */
8953 dd_dev_err(dd,
8954 "Pausing for peer to be finished with LCB set up\n");
8955 msleep(5000);
8956 dd_dev_err(dd, "Continuing with quick linkup\n");
8957 }
8958
8959 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
8960 set_8051_lcb_access(dd);
8961
8962 /*
8963 * State "quick" LinkUp request sets the physical link state to
8964 * LinkUp without a verify capability sequence.
8965 * This state is in simulator v37 and later.
8966 */
8967 ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
8968 if (ret != HCMD_SUCCESS) {
8969 dd_dev_err(dd,
8970 "%s: set physical link state to quick LinkUp failed with return %d\n",
8971 __func__, ret);
8972
8973 set_host_lcb_access(dd);
8974 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
8975
8976 if (ret >= 0)
8977 ret = -EINVAL;
8978 return ret;
8979 }
8980
8981 return 0; /* success */
8982 }
8983
8984 /*
8985 * Set the SerDes to internal loopback mode.
8986 * Returns 0 on success, -errno on error.
8987 */
8988 static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
8989 {
8990 int ret;
8991
8992 ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
8993 if (ret == HCMD_SUCCESS)
8994 return 0;
8995 dd_dev_err(dd,
8996 "Set physical link state to SerDes Loopback failed with return %d\n",
8997 ret);
8998 if (ret >= 0)
8999 ret = -EINVAL;
9000 return ret;
9001 }
9002
9003 /*
9004 * Do all special steps to set up loopback.
9005 */
9006 static int init_loopback(struct hfi1_devdata *dd)
9007 {
9008 dd_dev_info(dd, "Entering loopback mode\n");
9009
9010 /* all loopbacks should disable self GUID check */
9011 write_csr(dd, DC_DC8051_CFG_MODE,
9012 (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9013
9014 /*
9015 * The simulator has only one loopback option - LCB. Switch
9016 * to that option, which includes quick link up.
9017 *
9018 * Accept all valid loopback values.
9019 */
9020 if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9021 (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9022 loopback == LOOPBACK_CABLE)) {
9023 loopback = LOOPBACK_LCB;
9024 quick_linkup = 1;
9025 return 0;
9026 }
9027
9028 /* handle serdes loopback */
9029 if (loopback == LOOPBACK_SERDES) {
9030 /* internal serdes loopack needs quick linkup on RTL */
9031 if (dd->icode == ICODE_RTL_SILICON)
9032 quick_linkup = 1;
9033 return set_serdes_loopback_mode(dd);
9034 }
9035
9036 /* LCB loopback - handled at poll time */
9037 if (loopback == LOOPBACK_LCB) {
9038 quick_linkup = 1; /* LCB is always quick linkup */
9039
9040 /* not supported in emulation due to emulation RTL changes */
9041 if (dd->icode == ICODE_FPGA_EMULATION) {
9042 dd_dev_err(dd,
9043 "LCB loopback not supported in emulation\n");
9044 return -EINVAL;
9045 }
9046 return 0;
9047 }
9048
9049 /* external cable loopback requires no extra steps */
9050 if (loopback == LOOPBACK_CABLE)
9051 return 0;
9052
9053 dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9054 return -EINVAL;
9055 }
9056
9057 /*
9058 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9059 * used in the Verify Capability link width attribute.
9060 */
9061 static u16 opa_to_vc_link_widths(u16 opa_widths)
9062 {
9063 int i;
9064 u16 result = 0;
9065
9066 static const struct link_bits {
9067 u16 from;
9068 u16 to;
9069 } opa_link_xlate[] = {
9070 { OPA_LINK_WIDTH_1X, 1 << (1 - 1) },
9071 { OPA_LINK_WIDTH_2X, 1 << (2 - 1) },
9072 { OPA_LINK_WIDTH_3X, 1 << (3 - 1) },
9073 { OPA_LINK_WIDTH_4X, 1 << (4 - 1) },
9074 };
9075
9076 for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9077 if (opa_widths & opa_link_xlate[i].from)
9078 result |= opa_link_xlate[i].to;
9079 }
9080 return result;
9081 }
9082
9083 /*
9084 * Set link attributes before moving to polling.
9085 */
9086 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9087 {
9088 struct hfi1_devdata *dd = ppd->dd;
9089 u8 enable_lane_tx;
9090 u8 tx_polarity_inversion;
9091 u8 rx_polarity_inversion;
9092 int ret;
9093
9094 /* reset our fabric serdes to clear any lingering problems */
9095 fabric_serdes_reset(dd);
9096
9097 /* set the local tx rate - need to read-modify-write */
9098 ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9099 &rx_polarity_inversion, &ppd->local_tx_rate);
9100 if (ret)
9101 goto set_local_link_attributes_fail;
9102
9103 if (dd->dc8051_ver < dc8051_ver(0, 20)) {
9104 /* set the tx rate to the fastest enabled */
9105 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9106 ppd->local_tx_rate = 1;
9107 else
9108 ppd->local_tx_rate = 0;
9109 } else {
9110 /* set the tx rate to all enabled */
9111 ppd->local_tx_rate = 0;
9112 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9113 ppd->local_tx_rate |= 2;
9114 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9115 ppd->local_tx_rate |= 1;
9116 }
9117
9118 enable_lane_tx = 0xF; /* enable all four lanes */
9119 ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9120 rx_polarity_inversion, ppd->local_tx_rate);
9121 if (ret != HCMD_SUCCESS)
9122 goto set_local_link_attributes_fail;
9123
9124 /*
9125 * DC supports continuous updates.
9126 */
9127 ret = write_vc_local_phy(dd,
9128 0 /* no power management */,
9129 1 /* continuous updates */);
9130 if (ret != HCMD_SUCCESS)
9131 goto set_local_link_attributes_fail;
9132
9133 /* z=1 in the next call: AU of 0 is not supported by the hardware */
9134 ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9135 ppd->port_crc_mode_enabled);
9136 if (ret != HCMD_SUCCESS)
9137 goto set_local_link_attributes_fail;
9138
9139 ret = write_vc_local_link_width(dd, 0, 0,
9140 opa_to_vc_link_widths(
9141 ppd->link_width_enabled));
9142 if (ret != HCMD_SUCCESS)
9143 goto set_local_link_attributes_fail;
9144
9145 /* let peer know who we are */
9146 ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9147 if (ret == HCMD_SUCCESS)
9148 return 0;
9149
9150 set_local_link_attributes_fail:
9151 dd_dev_err(dd,
9152 "Failed to set local link attributes, return 0x%x\n",
9153 ret);
9154 return ret;
9155 }
9156
9157 /*
9158 * Call this to start the link.
9159 * Do not do anything if the link is disabled.
9160 * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9161 */
9162 int start_link(struct hfi1_pportdata *ppd)
9163 {
9164 if (!ppd->link_enabled) {
9165 dd_dev_info(ppd->dd,
9166 "%s: stopping link start because link is disabled\n",
9167 __func__);
9168 return 0;
9169 }
9170 if (!ppd->driver_link_ready) {
9171 dd_dev_info(ppd->dd,
9172 "%s: stopping link start because driver is not ready\n",
9173 __func__);
9174 return 0;
9175 }
9176
9177 /*
9178 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9179 * pkey table can be configured properly if the HFI unit is connected
9180 * to switch port with MgmtAllowed=NO
9181 */
9182 clear_full_mgmt_pkey(ppd);
9183
9184 return set_link_state(ppd, HLS_DN_POLL);
9185 }
9186
9187 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9188 {
9189 struct hfi1_devdata *dd = ppd->dd;
9190 u64 mask;
9191 unsigned long timeout;
9192
9193 /*
9194 * Some QSFP cables have a quirk that asserts the IntN line as a side
9195 * effect of power up on plug-in. We ignore this false positive
9196 * interrupt until the module has finished powering up by waiting for
9197 * a minimum timeout of the module inrush initialization time of
9198 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9199 * module have stabilized.
9200 */
9201 msleep(500);
9202
9203 /*
9204 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9205 */
9206 timeout = jiffies + msecs_to_jiffies(2000);
9207 while (1) {
9208 mask = read_csr(dd, dd->hfi1_id ?
9209 ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9210 if (!(mask & QSFP_HFI0_INT_N))
9211 break;
9212 if (time_after(jiffies, timeout)) {
9213 dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9214 __func__);
9215 break;
9216 }
9217 udelay(2);
9218 }
9219 }
9220
9221 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9222 {
9223 struct hfi1_devdata *dd = ppd->dd;
9224 u64 mask;
9225
9226 mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9227 if (enable) {
9228 /*
9229 * Clear the status register to avoid an immediate interrupt
9230 * when we re-enable the IntN pin
9231 */
9232 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9233 QSFP_HFI0_INT_N);
9234 mask |= (u64)QSFP_HFI0_INT_N;
9235 } else {
9236 mask &= ~(u64)QSFP_HFI0_INT_N;
9237 }
9238 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9239 }
9240
9241 void reset_qsfp(struct hfi1_pportdata *ppd)
9242 {
9243 struct hfi1_devdata *dd = ppd->dd;
9244 u64 mask, qsfp_mask;
9245
9246 /* Disable INT_N from triggering QSFP interrupts */
9247 set_qsfp_int_n(ppd, 0);
9248
9249 /* Reset the QSFP */
9250 mask = (u64)QSFP_HFI0_RESET_N;
9251
9252 qsfp_mask = read_csr(dd,
9253 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9254 qsfp_mask &= ~mask;
9255 write_csr(dd,
9256 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9257
9258 udelay(10);
9259
9260 qsfp_mask |= mask;
9261 write_csr(dd,
9262 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9263
9264 wait_for_qsfp_init(ppd);
9265
9266 /*
9267 * Allow INT_N to trigger the QSFP interrupt to watch
9268 * for alarms and warnings
9269 */
9270 set_qsfp_int_n(ppd, 1);
9271 }
9272
9273 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9274 u8 *qsfp_interrupt_status)
9275 {
9276 struct hfi1_devdata *dd = ppd->dd;
9277
9278 if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9279 (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9280 dd_dev_info(dd, "%s: QSFP cable on fire\n",
9281 __func__);
9282
9283 if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9284 (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9285 dd_dev_info(dd, "%s: QSFP cable temperature too low\n",
9286 __func__);
9287
9288 /*
9289 * The remaining alarms/warnings don't matter if the link is down.
9290 */
9291 if (ppd->host_link_state & HLS_DOWN)
9292 return 0;
9293
9294 if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9295 (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9296 dd_dev_info(dd, "%s: QSFP supply voltage too high\n",
9297 __func__);
9298
9299 if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9300 (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9301 dd_dev_info(dd, "%s: QSFP supply voltage too low\n",
9302 __func__);
9303
9304 /* Byte 2 is vendor specific */
9305
9306 if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9307 (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9308 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too high\n",
9309 __func__);
9310
9311 if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9312 (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9313 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too low\n",
9314 __func__);
9315
9316 if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9317 (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9318 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too high\n",
9319 __func__);
9320
9321 if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9322 (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9323 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too low\n",
9324 __func__);
9325
9326 if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9327 (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9328 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too high\n",
9329 __func__);
9330
9331 if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9332 (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9333 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too low\n",
9334 __func__);
9335
9336 if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9337 (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9338 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too high\n",
9339 __func__);
9340
9341 if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9342 (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9343 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too low\n",
9344 __func__);
9345
9346 if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9347 (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9348 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too high\n",
9349 __func__);
9350
9351 if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9352 (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9353 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too low\n",
9354 __func__);
9355
9356 if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9357 (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9358 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too high\n",
9359 __func__);
9360
9361 if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9362 (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9363 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too low\n",
9364 __func__);
9365
9366 /* Bytes 9-10 and 11-12 are reserved */
9367 /* Bytes 13-15 are vendor specific */
9368
9369 return 0;
9370 }
9371
9372 /* This routine will only be scheduled if the QSFP module present is asserted */
9373 void qsfp_event(struct work_struct *work)
9374 {
9375 struct qsfp_data *qd;
9376 struct hfi1_pportdata *ppd;
9377 struct hfi1_devdata *dd;
9378
9379 qd = container_of(work, struct qsfp_data, qsfp_work);
9380 ppd = qd->ppd;
9381 dd = ppd->dd;
9382
9383 /* Sanity check */
9384 if (!qsfp_mod_present(ppd))
9385 return;
9386
9387 /*
9388 * Turn DC back on after cable has been re-inserted. Up until
9389 * now, the DC has been in reset to save power.
9390 */
9391 dc_start(dd);
9392
9393 if (qd->cache_refresh_required) {
9394 set_qsfp_int_n(ppd, 0);
9395
9396 wait_for_qsfp_init(ppd);
9397
9398 /*
9399 * Allow INT_N to trigger the QSFP interrupt to watch
9400 * for alarms and warnings
9401 */
9402 set_qsfp_int_n(ppd, 1);
9403
9404 tune_serdes(ppd);
9405
9406 start_link(ppd);
9407 }
9408
9409 if (qd->check_interrupt_flags) {
9410 u8 qsfp_interrupt_status[16] = {0,};
9411
9412 if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9413 &qsfp_interrupt_status[0], 16) != 16) {
9414 dd_dev_info(dd,
9415 "%s: Failed to read status of QSFP module\n",
9416 __func__);
9417 } else {
9418 unsigned long flags;
9419
9420 handle_qsfp_error_conditions(
9421 ppd, qsfp_interrupt_status);
9422 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9423 ppd->qsfp_info.check_interrupt_flags = 0;
9424 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9425 flags);
9426 }
9427 }
9428 }
9429
9430 static void init_qsfp_int(struct hfi1_devdata *dd)
9431 {
9432 struct hfi1_pportdata *ppd = dd->pport;
9433 u64 qsfp_mask, cce_int_mask;
9434 const int qsfp1_int_smask = QSFP1_INT % 64;
9435 const int qsfp2_int_smask = QSFP2_INT % 64;
9436
9437 /*
9438 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9439 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9440 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9441 * the index of the appropriate CSR in the CCEIntMask CSR array
9442 */
9443 cce_int_mask = read_csr(dd, CCE_INT_MASK +
9444 (8 * (QSFP1_INT / 64)));
9445 if (dd->hfi1_id) {
9446 cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9447 write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9448 cce_int_mask);
9449 } else {
9450 cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9451 write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9452 cce_int_mask);
9453 }
9454
9455 qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9456 /* Clear current status to avoid spurious interrupts */
9457 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9458 qsfp_mask);
9459 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9460 qsfp_mask);
9461
9462 set_qsfp_int_n(ppd, 0);
9463
9464 /* Handle active low nature of INT_N and MODPRST_N pins */
9465 if (qsfp_mod_present(ppd))
9466 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9467 write_csr(dd,
9468 dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9469 qsfp_mask);
9470 }
9471
9472 /*
9473 * Do a one-time initialize of the LCB block.
9474 */
9475 static void init_lcb(struct hfi1_devdata *dd)
9476 {
9477 /* simulator does not correctly handle LCB cclk loopback, skip */
9478 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9479 return;
9480
9481 /* the DC has been reset earlier in the driver load */
9482
9483 /* set LCB for cclk loopback on the port */
9484 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9485 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9486 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9487 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9488 write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9489 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9490 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9491 }
9492
9493 /*
9494 * Perform a test read on the QSFP. Return 0 on success, -ERRNO
9495 * on error.
9496 */
9497 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9498 {
9499 int ret;
9500 u8 status;
9501
9502 /* report success if not a QSFP */
9503 if (ppd->port_type != PORT_TYPE_QSFP)
9504 return 0;
9505
9506 /* read byte 2, the status byte */
9507 ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9508 if (ret < 0)
9509 return ret;
9510 if (ret != 1)
9511 return -EIO;
9512
9513 return 0; /* success */
9514 }
9515
9516 /*
9517 * Values for QSFP retry.
9518 *
9519 * Give up after 10s (20 x 500ms). The overall timeout was empirically
9520 * arrived at from experience on a large cluster.
9521 */
9522 #define MAX_QSFP_RETRIES 20
9523 #define QSFP_RETRY_WAIT 500 /* msec */
9524
9525 /*
9526 * Try a QSFP read. If it fails, schedule a retry for later.
9527 * Called on first link activation after driver load.
9528 */
9529 static void try_start_link(struct hfi1_pportdata *ppd)
9530 {
9531 if (test_qsfp_read(ppd)) {
9532 /* read failed */
9533 if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9534 dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9535 return;
9536 }
9537 dd_dev_info(ppd->dd,
9538 "QSFP not responding, waiting and retrying %d\n",
9539 (int)ppd->qsfp_retry_count);
9540 ppd->qsfp_retry_count++;
9541 queue_delayed_work(ppd->hfi1_wq, &ppd->start_link_work,
9542 msecs_to_jiffies(QSFP_RETRY_WAIT));
9543 return;
9544 }
9545 ppd->qsfp_retry_count = 0;
9546
9547 /*
9548 * Tune the SerDes to a ballpark setting for optimal signal and bit
9549 * error rate. Needs to be done before starting the link.
9550 */
9551 tune_serdes(ppd);
9552 start_link(ppd);
9553 }
9554
9555 /*
9556 * Workqueue function to start the link after a delay.
9557 */
9558 void handle_start_link(struct work_struct *work)
9559 {
9560 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9561 start_link_work.work);
9562 try_start_link(ppd);
9563 }
9564
9565 int bringup_serdes(struct hfi1_pportdata *ppd)
9566 {
9567 struct hfi1_devdata *dd = ppd->dd;
9568 u64 guid;
9569 int ret;
9570
9571 if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9572 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9573
9574 guid = ppd->guid;
9575 if (!guid) {
9576 if (dd->base_guid)
9577 guid = dd->base_guid + ppd->port - 1;
9578 ppd->guid = guid;
9579 }
9580
9581 /* Set linkinit_reason on power up per OPA spec */
9582 ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9583
9584 /* one-time init of the LCB */
9585 init_lcb(dd);
9586
9587 if (loopback) {
9588 ret = init_loopback(dd);
9589 if (ret < 0)
9590 return ret;
9591 }
9592
9593 get_port_type(ppd);
9594 if (ppd->port_type == PORT_TYPE_QSFP) {
9595 set_qsfp_int_n(ppd, 0);
9596 wait_for_qsfp_init(ppd);
9597 set_qsfp_int_n(ppd, 1);
9598 }
9599
9600 try_start_link(ppd);
9601 return 0;
9602 }
9603
9604 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9605 {
9606 struct hfi1_devdata *dd = ppd->dd;
9607
9608 /*
9609 * Shut down the link and keep it down. First turn off that the
9610 * driver wants to allow the link to be up (driver_link_ready).
9611 * Then make sure the link is not automatically restarted
9612 * (link_enabled). Cancel any pending restart. And finally
9613 * go offline.
9614 */
9615 ppd->driver_link_ready = 0;
9616 ppd->link_enabled = 0;
9617
9618 ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9619 flush_delayed_work(&ppd->start_link_work);
9620 cancel_delayed_work_sync(&ppd->start_link_work);
9621
9622 ppd->offline_disabled_reason =
9623 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
9624 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
9625 OPA_LINKDOWN_REASON_SMA_DISABLED);
9626 set_link_state(ppd, HLS_DN_OFFLINE);
9627
9628 /* disable the port */
9629 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9630 }
9631
9632 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9633 {
9634 struct hfi1_pportdata *ppd;
9635 int i;
9636
9637 ppd = (struct hfi1_pportdata *)(dd + 1);
9638 for (i = 0; i < dd->num_pports; i++, ppd++) {
9639 ppd->ibport_data.rvp.rc_acks = NULL;
9640 ppd->ibport_data.rvp.rc_qacks = NULL;
9641 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9642 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9643 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9644 if (!ppd->ibport_data.rvp.rc_acks ||
9645 !ppd->ibport_data.rvp.rc_delayed_comp ||
9646 !ppd->ibport_data.rvp.rc_qacks)
9647 return -ENOMEM;
9648 }
9649
9650 return 0;
9651 }
9652
9653 static const char * const pt_names[] = {
9654 "expected",
9655 "eager",
9656 "invalid"
9657 };
9658
9659 static const char *pt_name(u32 type)
9660 {
9661 return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type];
9662 }
9663
9664 /*
9665 * index is the index into the receive array
9666 */
9667 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9668 u32 type, unsigned long pa, u16 order)
9669 {
9670 u64 reg;
9671 void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc :
9672 (dd->kregbase + RCV_ARRAY));
9673
9674 if (!(dd->flags & HFI1_PRESENT))
9675 goto done;
9676
9677 if (type == PT_INVALID) {
9678 pa = 0;
9679 } else if (type > PT_INVALID) {
9680 dd_dev_err(dd,
9681 "unexpected receive array type %u for index %u, not handled\n",
9682 type, index);
9683 goto done;
9684 }
9685
9686 hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx",
9687 pt_name(type), index, pa, (unsigned long)order);
9688
9689 #define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */
9690 reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9691 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9692 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9693 << RCV_ARRAY_RT_ADDR_SHIFT;
9694 writeq(reg, base + (index * 8));
9695
9696 if (type == PT_EAGER)
9697 /*
9698 * Eager entries are written one-by-one so we have to push them
9699 * after we write the entry.
9700 */
9701 flush_wc();
9702 done:
9703 return;
9704 }
9705
9706 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9707 {
9708 struct hfi1_devdata *dd = rcd->dd;
9709 u32 i;
9710
9711 /* this could be optimized */
9712 for (i = rcd->eager_base; i < rcd->eager_base +
9713 rcd->egrbufs.alloced; i++)
9714 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9715
9716 for (i = rcd->expected_base;
9717 i < rcd->expected_base + rcd->expected_count; i++)
9718 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9719 }
9720
9721 struct hfi1_message_header *hfi1_get_msgheader(
9722 struct hfi1_devdata *dd, __le32 *rhf_addr)
9723 {
9724 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
9725
9726 return (struct hfi1_message_header *)
9727 (rhf_addr - dd->rhf_offset + offset);
9728 }
9729
9730 static const char * const ib_cfg_name_strings[] = {
9731 "HFI1_IB_CFG_LIDLMC",
9732 "HFI1_IB_CFG_LWID_DG_ENB",
9733 "HFI1_IB_CFG_LWID_ENB",
9734 "HFI1_IB_CFG_LWID",
9735 "HFI1_IB_CFG_SPD_ENB",
9736 "HFI1_IB_CFG_SPD",
9737 "HFI1_IB_CFG_RXPOL_ENB",
9738 "HFI1_IB_CFG_LREV_ENB",
9739 "HFI1_IB_CFG_LINKLATENCY",
9740 "HFI1_IB_CFG_HRTBT",
9741 "HFI1_IB_CFG_OP_VLS",
9742 "HFI1_IB_CFG_VL_HIGH_CAP",
9743 "HFI1_IB_CFG_VL_LOW_CAP",
9744 "HFI1_IB_CFG_OVERRUN_THRESH",
9745 "HFI1_IB_CFG_PHYERR_THRESH",
9746 "HFI1_IB_CFG_LINKDEFAULT",
9747 "HFI1_IB_CFG_PKEYS",
9748 "HFI1_IB_CFG_MTU",
9749 "HFI1_IB_CFG_LSTATE",
9750 "HFI1_IB_CFG_VL_HIGH_LIMIT",
9751 "HFI1_IB_CFG_PMA_TICKS",
9752 "HFI1_IB_CFG_PORT"
9753 };
9754
9755 static const char *ib_cfg_name(int which)
9756 {
9757 if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9758 return "invalid";
9759 return ib_cfg_name_strings[which];
9760 }
9761
9762 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9763 {
9764 struct hfi1_devdata *dd = ppd->dd;
9765 int val = 0;
9766
9767 switch (which) {
9768 case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9769 val = ppd->link_width_enabled;
9770 break;
9771 case HFI1_IB_CFG_LWID: /* currently active Link-width */
9772 val = ppd->link_width_active;
9773 break;
9774 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9775 val = ppd->link_speed_enabled;
9776 break;
9777 case HFI1_IB_CFG_SPD: /* current Link speed */
9778 val = ppd->link_speed_active;
9779 break;
9780
9781 case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9782 case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9783 case HFI1_IB_CFG_LINKLATENCY:
9784 goto unimplemented;
9785
9786 case HFI1_IB_CFG_OP_VLS:
9787 val = ppd->vls_operational;
9788 break;
9789 case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9790 val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9791 break;
9792 case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9793 val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9794 break;
9795 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9796 val = ppd->overrun_threshold;
9797 break;
9798 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9799 val = ppd->phy_error_threshold;
9800 break;
9801 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9802 val = dd->link_default;
9803 break;
9804
9805 case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9806 case HFI1_IB_CFG_PMA_TICKS:
9807 default:
9808 unimplemented:
9809 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9810 dd_dev_info(
9811 dd,
9812 "%s: which %s: not implemented\n",
9813 __func__,
9814 ib_cfg_name(which));
9815 break;
9816 }
9817
9818 return val;
9819 }
9820
9821 /*
9822 * The largest MAD packet size.
9823 */
9824 #define MAX_MAD_PACKET 2048
9825
9826 /*
9827 * Return the maximum header bytes that can go on the _wire_
9828 * for this device. This count includes the ICRC which is
9829 * not part of the packet held in memory but it is appended
9830 * by the HW.
9831 * This is dependent on the device's receive header entry size.
9832 * HFI allows this to be set per-receive context, but the
9833 * driver presently enforces a global value.
9834 */
9835 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
9836 {
9837 /*
9838 * The maximum non-payload (MTU) bytes in LRH.PktLen are
9839 * the Receive Header Entry Size minus the PBC (or RHF) size
9840 * plus one DW for the ICRC appended by HW.
9841 *
9842 * dd->rcd[0].rcvhdrqentsize is in DW.
9843 * We use rcd[0] as all context will have the same value. Also,
9844 * the first kernel context would have been allocated by now so
9845 * we are guaranteed a valid value.
9846 */
9847 return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
9848 }
9849
9850 /*
9851 * Set Send Length
9852 * @ppd - per port data
9853 *
9854 * Set the MTU by limiting how many DWs may be sent. The SendLenCheck*
9855 * registers compare against LRH.PktLen, so use the max bytes included
9856 * in the LRH.
9857 *
9858 * This routine changes all VL values except VL15, which it maintains at
9859 * the same value.
9860 */
9861 static void set_send_length(struct hfi1_pportdata *ppd)
9862 {
9863 struct hfi1_devdata *dd = ppd->dd;
9864 u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
9865 u32 maxvlmtu = dd->vld[15].mtu;
9866 u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
9867 & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
9868 SEND_LEN_CHECK1_LEN_VL15_SHIFT;
9869 int i, j;
9870 u32 thres;
9871
9872 for (i = 0; i < ppd->vls_supported; i++) {
9873 if (dd->vld[i].mtu > maxvlmtu)
9874 maxvlmtu = dd->vld[i].mtu;
9875 if (i <= 3)
9876 len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
9877 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
9878 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
9879 else
9880 len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
9881 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
9882 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
9883 }
9884 write_csr(dd, SEND_LEN_CHECK0, len1);
9885 write_csr(dd, SEND_LEN_CHECK1, len2);
9886 /* adjust kernel credit return thresholds based on new MTUs */
9887 /* all kernel receive contexts have the same hdrqentsize */
9888 for (i = 0; i < ppd->vls_supported; i++) {
9889 thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
9890 sc_mtu_to_threshold(dd->vld[i].sc,
9891 dd->vld[i].mtu,
9892 dd->rcd[0]->rcvhdrqentsize));
9893 for (j = 0; j < INIT_SC_PER_VL; j++)
9894 sc_set_cr_threshold(
9895 pio_select_send_context_vl(dd, j, i),
9896 thres);
9897 }
9898 thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
9899 sc_mtu_to_threshold(dd->vld[15].sc,
9900 dd->vld[15].mtu,
9901 dd->rcd[0]->rcvhdrqentsize));
9902 sc_set_cr_threshold(dd->vld[15].sc, thres);
9903
9904 /* Adjust maximum MTU for the port in DC */
9905 dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
9906 (ilog2(maxvlmtu >> 8) + 1);
9907 len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
9908 len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
9909 len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
9910 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
9911 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
9912 }
9913
9914 static void set_lidlmc(struct hfi1_pportdata *ppd)
9915 {
9916 int i;
9917 u64 sreg = 0;
9918 struct hfi1_devdata *dd = ppd->dd;
9919 u32 mask = ~((1U << ppd->lmc) - 1);
9920 u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
9921
9922 if (dd->hfi1_snoop.mode_flag)
9923 dd_dev_info(dd, "Set lid/lmc while snooping");
9924
9925 c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
9926 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
9927 c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
9928 << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
9929 ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
9930 << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
9931 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
9932
9933 /*
9934 * Iterate over all the send contexts and set their SLID check
9935 */
9936 sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
9937 SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
9938 (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
9939 SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
9940
9941 for (i = 0; i < dd->chip_send_contexts; i++) {
9942 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
9943 i, (u32)sreg);
9944 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
9945 }
9946
9947 /* Now we have to do the same thing for the sdma engines */
9948 sdma_update_lmc(dd, mask, ppd->lid);
9949 }
9950
9951 static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs)
9952 {
9953 unsigned long timeout;
9954 u32 curr_state;
9955
9956 timeout = jiffies + msecs_to_jiffies(msecs);
9957 while (1) {
9958 curr_state = read_physical_state(dd);
9959 if (curr_state == state)
9960 break;
9961 if (time_after(jiffies, timeout)) {
9962 dd_dev_err(dd,
9963 "timeout waiting for phy link state 0x%x, current state is 0x%x\n",
9964 state, curr_state);
9965 return -ETIMEDOUT;
9966 }
9967 usleep_range(1950, 2050); /* sleep 2ms-ish */
9968 }
9969
9970 return 0;
9971 }
9972
9973 static const char *state_completed_string(u32 completed)
9974 {
9975 static const char * const state_completed[] = {
9976 "EstablishComm",
9977 "OptimizeEQ",
9978 "VerifyCap"
9979 };
9980
9981 if (completed < ARRAY_SIZE(state_completed))
9982 return state_completed[completed];
9983
9984 return "unknown";
9985 }
9986
9987 static const char all_lanes_dead_timeout_expired[] =
9988 "All lanes were inactive – was the interconnect media removed?";
9989 static const char tx_out_of_policy[] =
9990 "Passing lanes on local port do not meet the local link width policy";
9991 static const char no_state_complete[] =
9992 "State timeout occurred before link partner completed the state";
9993 static const char * const state_complete_reasons[] = {
9994 [0x00] = "Reason unknown",
9995 [0x01] = "Link was halted by driver, refer to LinkDownReason",
9996 [0x02] = "Link partner reported failure",
9997 [0x10] = "Unable to achieve frame sync on any lane",
9998 [0x11] =
9999 "Unable to find a common bit rate with the link partner",
10000 [0x12] =
10001 "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10002 [0x13] =
10003 "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10004 [0x14] = no_state_complete,
10005 [0x15] =
10006 "State timeout occurred before link partner identified equalization presets",
10007 [0x16] =
10008 "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10009 [0x17] = tx_out_of_policy,
10010 [0x20] = all_lanes_dead_timeout_expired,
10011 [0x21] =
10012 "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10013 [0x22] = no_state_complete,
10014 [0x23] =
10015 "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10016 [0x24] = tx_out_of_policy,
10017 [0x30] = all_lanes_dead_timeout_expired,
10018 [0x31] =
10019 "State timeout occurred waiting for host to process received frames",
10020 [0x32] = no_state_complete,
10021 [0x33] =
10022 "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10023 [0x34] = tx_out_of_policy,
10024 };
10025
10026 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10027 u32 code)
10028 {
10029 const char *str = NULL;
10030
10031 if (code < ARRAY_SIZE(state_complete_reasons))
10032 str = state_complete_reasons[code];
10033
10034 if (str)
10035 return str;
10036 return "Reserved";
10037 }
10038
10039 /* describe the given last state complete frame */
10040 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10041 const char *prefix)
10042 {
10043 struct hfi1_devdata *dd = ppd->dd;
10044 u32 success;
10045 u32 state;
10046 u32 reason;
10047 u32 lanes;
10048
10049 /*
10050 * Decode frame:
10051 * [ 0: 0] - success
10052 * [ 3: 1] - state
10053 * [ 7: 4] - next state timeout
10054 * [15: 8] - reason code
10055 * [31:16] - lanes
10056 */
10057 success = frame & 0x1;
10058 state = (frame >> 1) & 0x7;
10059 reason = (frame >> 8) & 0xff;
10060 lanes = (frame >> 16) & 0xffff;
10061
10062 dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10063 prefix, frame);
10064 dd_dev_err(dd, " last reported state state: %s (0x%x)\n",
10065 state_completed_string(state), state);
10066 dd_dev_err(dd, " state successfully completed: %s\n",
10067 success ? "yes" : "no");
10068 dd_dev_err(dd, " fail reason 0x%x: %s\n",
10069 reason, state_complete_reason_code_string(ppd, reason));
10070 dd_dev_err(dd, " passing lane mask: 0x%x", lanes);
10071 }
10072
10073 /*
10074 * Read the last state complete frames and explain them. This routine
10075 * expects to be called if the link went down during link negotiation
10076 * and initialization (LNI). That is, anywhere between polling and link up.
10077 */
10078 static void check_lni_states(struct hfi1_pportdata *ppd)
10079 {
10080 u32 last_local_state;
10081 u32 last_remote_state;
10082
10083 read_last_local_state(ppd->dd, &last_local_state);
10084 read_last_remote_state(ppd->dd, &last_remote_state);
10085
10086 /*
10087 * Don't report anything if there is nothing to report. A value of
10088 * 0 means the link was taken down while polling and there was no
10089 * training in-process.
10090 */
10091 if (last_local_state == 0 && last_remote_state == 0)
10092 return;
10093
10094 decode_state_complete(ppd, last_local_state, "transmitted");
10095 decode_state_complete(ppd, last_remote_state, "received");
10096 }
10097
10098 /*
10099 * Helper for set_link_state(). Do not call except from that routine.
10100 * Expects ppd->hls_mutex to be held.
10101 *
10102 * @rem_reason value to be sent to the neighbor
10103 *
10104 * LinkDownReasons only set if transition succeeds.
10105 */
10106 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10107 {
10108 struct hfi1_devdata *dd = ppd->dd;
10109 u32 pstate, previous_state;
10110 int ret;
10111 int do_transition;
10112 int do_wait;
10113
10114 previous_state = ppd->host_link_state;
10115 ppd->host_link_state = HLS_GOING_OFFLINE;
10116 pstate = read_physical_state(dd);
10117 if (pstate == PLS_OFFLINE) {
10118 do_transition = 0; /* in right state */
10119 do_wait = 0; /* ...no need to wait */
10120 } else if ((pstate & 0xff) == PLS_OFFLINE) {
10121 do_transition = 0; /* in an offline transient state */
10122 do_wait = 1; /* ...wait for it to settle */
10123 } else {
10124 do_transition = 1; /* need to move to offline */
10125 do_wait = 1; /* ...will need to wait */
10126 }
10127
10128 if (do_transition) {
10129 ret = set_physical_link_state(dd,
10130 (rem_reason << 8) | PLS_OFFLINE);
10131
10132 if (ret != HCMD_SUCCESS) {
10133 dd_dev_err(dd,
10134 "Failed to transition to Offline link state, return %d\n",
10135 ret);
10136 return -EINVAL;
10137 }
10138 if (ppd->offline_disabled_reason ==
10139 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10140 ppd->offline_disabled_reason =
10141 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10142 }
10143
10144 if (do_wait) {
10145 /* it can take a while for the link to go down */
10146 ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000);
10147 if (ret < 0)
10148 return ret;
10149 }
10150
10151 /* make sure the logical state is also down */
10152 wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10153
10154 /*
10155 * Now in charge of LCB - must be after the physical state is
10156 * offline.quiet and before host_link_state is changed.
10157 */
10158 set_host_lcb_access(dd);
10159 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10160 ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10161
10162 if (ppd->port_type == PORT_TYPE_QSFP &&
10163 ppd->qsfp_info.limiting_active &&
10164 qsfp_mod_present(ppd)) {
10165 int ret;
10166
10167 ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10168 if (ret == 0) {
10169 set_qsfp_tx(ppd, 0);
10170 release_chip_resource(dd, qsfp_resource(dd));
10171 } else {
10172 /* not fatal, but should warn */
10173 dd_dev_err(dd,
10174 "Unable to acquire lock to turn off QSFP TX\n");
10175 }
10176 }
10177
10178 /*
10179 * The LNI has a mandatory wait time after the physical state
10180 * moves to Offline.Quiet. The wait time may be different
10181 * depending on how the link went down. The 8051 firmware
10182 * will observe the needed wait time and only move to ready
10183 * when that is completed. The largest of the quiet timeouts
10184 * is 6s, so wait that long and then at least 0.5s more for
10185 * other transitions, and another 0.5s for a buffer.
10186 */
10187 ret = wait_fm_ready(dd, 7000);
10188 if (ret) {
10189 dd_dev_err(dd,
10190 "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10191 /* state is really offline, so make it so */
10192 ppd->host_link_state = HLS_DN_OFFLINE;
10193 return ret;
10194 }
10195
10196 /*
10197 * The state is now offline and the 8051 is ready to accept host
10198 * requests.
10199 * - change our state
10200 * - notify others if we were previously in a linkup state
10201 */
10202 ppd->host_link_state = HLS_DN_OFFLINE;
10203 if (previous_state & HLS_UP) {
10204 /* went down while link was up */
10205 handle_linkup_change(dd, 0);
10206 } else if (previous_state
10207 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10208 /* went down while attempting link up */
10209 check_lni_states(ppd);
10210 }
10211
10212 /* the active link width (downgrade) is 0 on link down */
10213 ppd->link_width_active = 0;
10214 ppd->link_width_downgrade_tx_active = 0;
10215 ppd->link_width_downgrade_rx_active = 0;
10216 ppd->current_egress_rate = 0;
10217 return 0;
10218 }
10219
10220 /* return the link state name */
10221 static const char *link_state_name(u32 state)
10222 {
10223 const char *name;
10224 int n = ilog2(state);
10225 static const char * const names[] = {
10226 [__HLS_UP_INIT_BP] = "INIT",
10227 [__HLS_UP_ARMED_BP] = "ARMED",
10228 [__HLS_UP_ACTIVE_BP] = "ACTIVE",
10229 [__HLS_DN_DOWNDEF_BP] = "DOWNDEF",
10230 [__HLS_DN_POLL_BP] = "POLL",
10231 [__HLS_DN_DISABLE_BP] = "DISABLE",
10232 [__HLS_DN_OFFLINE_BP] = "OFFLINE",
10233 [__HLS_VERIFY_CAP_BP] = "VERIFY_CAP",
10234 [__HLS_GOING_UP_BP] = "GOING_UP",
10235 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10236 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10237 };
10238
10239 name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10240 return name ? name : "unknown";
10241 }
10242
10243 /* return the link state reason name */
10244 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10245 {
10246 if (state == HLS_UP_INIT) {
10247 switch (ppd->linkinit_reason) {
10248 case OPA_LINKINIT_REASON_LINKUP:
10249 return "(LINKUP)";
10250 case OPA_LINKINIT_REASON_FLAPPING:
10251 return "(FLAPPING)";
10252 case OPA_LINKINIT_OUTSIDE_POLICY:
10253 return "(OUTSIDE_POLICY)";
10254 case OPA_LINKINIT_QUARANTINED:
10255 return "(QUARANTINED)";
10256 case OPA_LINKINIT_INSUFIC_CAPABILITY:
10257 return "(INSUFIC_CAPABILITY)";
10258 default:
10259 break;
10260 }
10261 }
10262 return "";
10263 }
10264
10265 /*
10266 * driver_physical_state - convert the driver's notion of a port's
10267 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10268 * Return -1 (converted to a u32) to indicate error.
10269 */
10270 u32 driver_physical_state(struct hfi1_pportdata *ppd)
10271 {
10272 switch (ppd->host_link_state) {
10273 case HLS_UP_INIT:
10274 case HLS_UP_ARMED:
10275 case HLS_UP_ACTIVE:
10276 return IB_PORTPHYSSTATE_LINKUP;
10277 case HLS_DN_POLL:
10278 return IB_PORTPHYSSTATE_POLLING;
10279 case HLS_DN_DISABLE:
10280 return IB_PORTPHYSSTATE_DISABLED;
10281 case HLS_DN_OFFLINE:
10282 return OPA_PORTPHYSSTATE_OFFLINE;
10283 case HLS_VERIFY_CAP:
10284 return IB_PORTPHYSSTATE_POLLING;
10285 case HLS_GOING_UP:
10286 return IB_PORTPHYSSTATE_POLLING;
10287 case HLS_GOING_OFFLINE:
10288 return OPA_PORTPHYSSTATE_OFFLINE;
10289 case HLS_LINK_COOLDOWN:
10290 return OPA_PORTPHYSSTATE_OFFLINE;
10291 case HLS_DN_DOWNDEF:
10292 default:
10293 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10294 ppd->host_link_state);
10295 return -1;
10296 }
10297 }
10298
10299 /*
10300 * driver_logical_state - convert the driver's notion of a port's
10301 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10302 * (converted to a u32) to indicate error.
10303 */
10304 u32 driver_logical_state(struct hfi1_pportdata *ppd)
10305 {
10306 if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10307 return IB_PORT_DOWN;
10308
10309 switch (ppd->host_link_state & HLS_UP) {
10310 case HLS_UP_INIT:
10311 return IB_PORT_INIT;
10312 case HLS_UP_ARMED:
10313 return IB_PORT_ARMED;
10314 case HLS_UP_ACTIVE:
10315 return IB_PORT_ACTIVE;
10316 default:
10317 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10318 ppd->host_link_state);
10319 return -1;
10320 }
10321 }
10322
10323 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10324 u8 neigh_reason, u8 rem_reason)
10325 {
10326 if (ppd->local_link_down_reason.latest == 0 &&
10327 ppd->neigh_link_down_reason.latest == 0) {
10328 ppd->local_link_down_reason.latest = lcl_reason;
10329 ppd->neigh_link_down_reason.latest = neigh_reason;
10330 ppd->remote_link_down_reason = rem_reason;
10331 }
10332 }
10333
10334 /*
10335 * Change the physical and/or logical link state.
10336 *
10337 * Do not call this routine while inside an interrupt. It contains
10338 * calls to routines that can take multiple seconds to finish.
10339 *
10340 * Returns 0 on success, -errno on failure.
10341 */
10342 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10343 {
10344 struct hfi1_devdata *dd = ppd->dd;
10345 struct ib_event event = {.device = NULL};
10346 int ret1, ret = 0;
10347 int orig_new_state, poll_bounce;
10348
10349 mutex_lock(&ppd->hls_lock);
10350
10351 orig_new_state = state;
10352 if (state == HLS_DN_DOWNDEF)
10353 state = dd->link_default;
10354
10355 /* interpret poll -> poll as a link bounce */
10356 poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10357 state == HLS_DN_POLL;
10358
10359 dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10360 link_state_name(ppd->host_link_state),
10361 link_state_name(orig_new_state),
10362 poll_bounce ? "(bounce) " : "",
10363 link_state_reason_name(ppd, state));
10364
10365 /*
10366 * If we're going to a (HLS_*) link state that implies the logical
10367 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10368 * reset is_sm_config_started to 0.
10369 */
10370 if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10371 ppd->is_sm_config_started = 0;
10372
10373 /*
10374 * Do nothing if the states match. Let a poll to poll link bounce
10375 * go through.
10376 */
10377 if (ppd->host_link_state == state && !poll_bounce)
10378 goto done;
10379
10380 switch (state) {
10381 case HLS_UP_INIT:
10382 if (ppd->host_link_state == HLS_DN_POLL &&
10383 (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10384 /*
10385 * Quick link up jumps from polling to here.
10386 *
10387 * Whether in normal or loopback mode, the
10388 * simulator jumps from polling to link up.
10389 * Accept that here.
10390 */
10391 /* OK */
10392 } else if (ppd->host_link_state != HLS_GOING_UP) {
10393 goto unexpected;
10394 }
10395
10396 ppd->host_link_state = HLS_UP_INIT;
10397 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10398 if (ret) {
10399 /* logical state didn't change, stay at going_up */
10400 ppd->host_link_state = HLS_GOING_UP;
10401 dd_dev_err(dd,
10402 "%s: logical state did not change to INIT\n",
10403 __func__);
10404 } else {
10405 /* clear old transient LINKINIT_REASON code */
10406 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10407 ppd->linkinit_reason =
10408 OPA_LINKINIT_REASON_LINKUP;
10409
10410 /* enable the port */
10411 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10412
10413 handle_linkup_change(dd, 1);
10414 }
10415 break;
10416 case HLS_UP_ARMED:
10417 if (ppd->host_link_state != HLS_UP_INIT)
10418 goto unexpected;
10419
10420 ppd->host_link_state = HLS_UP_ARMED;
10421 set_logical_state(dd, LSTATE_ARMED);
10422 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10423 if (ret) {
10424 /* logical state didn't change, stay at init */
10425 ppd->host_link_state = HLS_UP_INIT;
10426 dd_dev_err(dd,
10427 "%s: logical state did not change to ARMED\n",
10428 __func__);
10429 }
10430 /*
10431 * The simulator does not currently implement SMA messages,
10432 * so neighbor_normal is not set. Set it here when we first
10433 * move to Armed.
10434 */
10435 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10436 ppd->neighbor_normal = 1;
10437 break;
10438 case HLS_UP_ACTIVE:
10439 if (ppd->host_link_state != HLS_UP_ARMED)
10440 goto unexpected;
10441
10442 ppd->host_link_state = HLS_UP_ACTIVE;
10443 set_logical_state(dd, LSTATE_ACTIVE);
10444 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10445 if (ret) {
10446 /* logical state didn't change, stay at armed */
10447 ppd->host_link_state = HLS_UP_ARMED;
10448 dd_dev_err(dd,
10449 "%s: logical state did not change to ACTIVE\n",
10450 __func__);
10451 } else {
10452 /* tell all engines to go running */
10453 sdma_all_running(dd);
10454
10455 /* Signal the IB layer that the port has went active */
10456 event.device = &dd->verbs_dev.rdi.ibdev;
10457 event.element.port_num = ppd->port;
10458 event.event = IB_EVENT_PORT_ACTIVE;
10459 }
10460 break;
10461 case HLS_DN_POLL:
10462 if ((ppd->host_link_state == HLS_DN_DISABLE ||
10463 ppd->host_link_state == HLS_DN_OFFLINE) &&
10464 dd->dc_shutdown)
10465 dc_start(dd);
10466 /* Hand LED control to the DC */
10467 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10468
10469 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10470 u8 tmp = ppd->link_enabled;
10471
10472 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10473 if (ret) {
10474 ppd->link_enabled = tmp;
10475 break;
10476 }
10477 ppd->remote_link_down_reason = 0;
10478
10479 if (ppd->driver_link_ready)
10480 ppd->link_enabled = 1;
10481 }
10482
10483 set_all_slowpath(ppd->dd);
10484 ret = set_local_link_attributes(ppd);
10485 if (ret)
10486 break;
10487
10488 ppd->port_error_action = 0;
10489 ppd->host_link_state = HLS_DN_POLL;
10490
10491 if (quick_linkup) {
10492 /* quick linkup does not go into polling */
10493 ret = do_quick_linkup(dd);
10494 } else {
10495 ret1 = set_physical_link_state(dd, PLS_POLLING);
10496 if (ret1 != HCMD_SUCCESS) {
10497 dd_dev_err(dd,
10498 "Failed to transition to Polling link state, return 0x%x\n",
10499 ret1);
10500 ret = -EINVAL;
10501 }
10502 }
10503 ppd->offline_disabled_reason =
10504 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10505 /*
10506 * If an error occurred above, go back to offline. The
10507 * caller may reschedule another attempt.
10508 */
10509 if (ret)
10510 goto_offline(ppd, 0);
10511 break;
10512 case HLS_DN_DISABLE:
10513 /* link is disabled */
10514 ppd->link_enabled = 0;
10515
10516 /* allow any state to transition to disabled */
10517
10518 /* must transition to offline first */
10519 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10520 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10521 if (ret)
10522 break;
10523 ppd->remote_link_down_reason = 0;
10524 }
10525
10526 ret1 = set_physical_link_state(dd, PLS_DISABLED);
10527 if (ret1 != HCMD_SUCCESS) {
10528 dd_dev_err(dd,
10529 "Failed to transition to Disabled link state, return 0x%x\n",
10530 ret1);
10531 ret = -EINVAL;
10532 break;
10533 }
10534 ppd->host_link_state = HLS_DN_DISABLE;
10535 dc_shutdown(dd);
10536 break;
10537 case HLS_DN_OFFLINE:
10538 if (ppd->host_link_state == HLS_DN_DISABLE)
10539 dc_start(dd);
10540
10541 /* allow any state to transition to offline */
10542 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10543 if (!ret)
10544 ppd->remote_link_down_reason = 0;
10545 break;
10546 case HLS_VERIFY_CAP:
10547 if (ppd->host_link_state != HLS_DN_POLL)
10548 goto unexpected;
10549 ppd->host_link_state = HLS_VERIFY_CAP;
10550 break;
10551 case HLS_GOING_UP:
10552 if (ppd->host_link_state != HLS_VERIFY_CAP)
10553 goto unexpected;
10554
10555 ret1 = set_physical_link_state(dd, PLS_LINKUP);
10556 if (ret1 != HCMD_SUCCESS) {
10557 dd_dev_err(dd,
10558 "Failed to transition to link up state, return 0x%x\n",
10559 ret1);
10560 ret = -EINVAL;
10561 break;
10562 }
10563 ppd->host_link_state = HLS_GOING_UP;
10564 break;
10565
10566 case HLS_GOING_OFFLINE: /* transient within goto_offline() */
10567 case HLS_LINK_COOLDOWN: /* transient within goto_offline() */
10568 default:
10569 dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10570 __func__, state);
10571 ret = -EINVAL;
10572 break;
10573 }
10574
10575 goto done;
10576
10577 unexpected:
10578 dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10579 __func__, link_state_name(ppd->host_link_state),
10580 link_state_name(state));
10581 ret = -EINVAL;
10582
10583 done:
10584 mutex_unlock(&ppd->hls_lock);
10585
10586 if (event.device)
10587 ib_dispatch_event(&event);
10588
10589 return ret;
10590 }
10591
10592 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10593 {
10594 u64 reg;
10595 int ret = 0;
10596
10597 switch (which) {
10598 case HFI1_IB_CFG_LIDLMC:
10599 set_lidlmc(ppd);
10600 break;
10601 case HFI1_IB_CFG_VL_HIGH_LIMIT:
10602 /*
10603 * The VL Arbitrator high limit is sent in units of 4k
10604 * bytes, while HFI stores it in units of 64 bytes.
10605 */
10606 val *= 4096 / 64;
10607 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10608 << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10609 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10610 break;
10611 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10612 /* HFI only supports POLL as the default link down state */
10613 if (val != HLS_DN_POLL)
10614 ret = -EINVAL;
10615 break;
10616 case HFI1_IB_CFG_OP_VLS:
10617 if (ppd->vls_operational != val) {
10618 ppd->vls_operational = val;
10619 if (!ppd->port)
10620 ret = -EINVAL;
10621 }
10622 break;
10623 /*
10624 * For link width, link width downgrade, and speed enable, always AND
10625 * the setting with what is actually supported. This has two benefits.
10626 * First, enabled can't have unsupported values, no matter what the
10627 * SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean
10628 * "fill in with your supported value" have all the bits in the
10629 * field set, so simply ANDing with supported has the desired result.
10630 */
10631 case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10632 ppd->link_width_enabled = val & ppd->link_width_supported;
10633 break;
10634 case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10635 ppd->link_width_downgrade_enabled =
10636 val & ppd->link_width_downgrade_supported;
10637 break;
10638 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10639 ppd->link_speed_enabled = val & ppd->link_speed_supported;
10640 break;
10641 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10642 /*
10643 * HFI does not follow IB specs, save this value
10644 * so we can report it, if asked.
10645 */
10646 ppd->overrun_threshold = val;
10647 break;
10648 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10649 /*
10650 * HFI does not follow IB specs, save this value
10651 * so we can report it, if asked.
10652 */
10653 ppd->phy_error_threshold = val;
10654 break;
10655
10656 case HFI1_IB_CFG_MTU:
10657 set_send_length(ppd);
10658 break;
10659
10660 case HFI1_IB_CFG_PKEYS:
10661 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10662 set_partition_keys(ppd);
10663 break;
10664
10665 default:
10666 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10667 dd_dev_info(ppd->dd,
10668 "%s: which %s, val 0x%x: not implemented\n",
10669 __func__, ib_cfg_name(which), val);
10670 break;
10671 }
10672 return ret;
10673 }
10674
10675 /* begin functions related to vl arbitration table caching */
10676 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10677 {
10678 int i;
10679
10680 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10681 VL_ARB_LOW_PRIO_TABLE_SIZE);
10682 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10683 VL_ARB_HIGH_PRIO_TABLE_SIZE);
10684
10685 /*
10686 * Note that we always return values directly from the
10687 * 'vl_arb_cache' (and do no CSR reads) in response to a
10688 * 'Get(VLArbTable)'. This is obviously correct after a
10689 * 'Set(VLArbTable)', since the cache will then be up to
10690 * date. But it's also correct prior to any 'Set(VLArbTable)'
10691 * since then both the cache, and the relevant h/w registers
10692 * will be zeroed.
10693 */
10694
10695 for (i = 0; i < MAX_PRIO_TABLE; i++)
10696 spin_lock_init(&ppd->vl_arb_cache[i].lock);
10697 }
10698
10699 /*
10700 * vl_arb_lock_cache
10701 *
10702 * All other vl_arb_* functions should be called only after locking
10703 * the cache.
10704 */
10705 static inline struct vl_arb_cache *
10706 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10707 {
10708 if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10709 return NULL;
10710 spin_lock(&ppd->vl_arb_cache[idx].lock);
10711 return &ppd->vl_arb_cache[idx];
10712 }
10713
10714 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10715 {
10716 spin_unlock(&ppd->vl_arb_cache[idx].lock);
10717 }
10718
10719 static void vl_arb_get_cache(struct vl_arb_cache *cache,
10720 struct ib_vl_weight_elem *vl)
10721 {
10722 memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
10723 }
10724
10725 static void vl_arb_set_cache(struct vl_arb_cache *cache,
10726 struct ib_vl_weight_elem *vl)
10727 {
10728 memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10729 }
10730
10731 static int vl_arb_match_cache(struct vl_arb_cache *cache,
10732 struct ib_vl_weight_elem *vl)
10733 {
10734 return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10735 }
10736
10737 /* end functions related to vl arbitration table caching */
10738
10739 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
10740 u32 size, struct ib_vl_weight_elem *vl)
10741 {
10742 struct hfi1_devdata *dd = ppd->dd;
10743 u64 reg;
10744 unsigned int i, is_up = 0;
10745 int drain, ret = 0;
10746
10747 mutex_lock(&ppd->hls_lock);
10748
10749 if (ppd->host_link_state & HLS_UP)
10750 is_up = 1;
10751
10752 drain = !is_ax(dd) && is_up;
10753
10754 if (drain)
10755 /*
10756 * Before adjusting VL arbitration weights, empty per-VL
10757 * FIFOs, otherwise a packet whose VL weight is being
10758 * set to 0 could get stuck in a FIFO with no chance to
10759 * egress.
10760 */
10761 ret = stop_drain_data_vls(dd);
10762
10763 if (ret) {
10764 dd_dev_err(
10765 dd,
10766 "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
10767 __func__);
10768 goto err;
10769 }
10770
10771 for (i = 0; i < size; i++, vl++) {
10772 /*
10773 * NOTE: The low priority shift and mask are used here, but
10774 * they are the same for both the low and high registers.
10775 */
10776 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
10777 << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
10778 | (((u64)vl->weight
10779 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
10780 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
10781 write_csr(dd, target + (i * 8), reg);
10782 }
10783 pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
10784
10785 if (drain)
10786 open_fill_data_vls(dd); /* reopen all VLs */
10787
10788 err:
10789 mutex_unlock(&ppd->hls_lock);
10790
10791 return ret;
10792 }
10793
10794 /*
10795 * Read one credit merge VL register.
10796 */
10797 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
10798 struct vl_limit *vll)
10799 {
10800 u64 reg = read_csr(dd, csr);
10801
10802 vll->dedicated = cpu_to_be16(
10803 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
10804 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
10805 vll->shared = cpu_to_be16(
10806 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
10807 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
10808 }
10809
10810 /*
10811 * Read the current credit merge limits.
10812 */
10813 static int get_buffer_control(struct hfi1_devdata *dd,
10814 struct buffer_control *bc, u16 *overall_limit)
10815 {
10816 u64 reg;
10817 int i;
10818
10819 /* not all entries are filled in */
10820 memset(bc, 0, sizeof(*bc));
10821
10822 /* OPA and HFI have a 1-1 mapping */
10823 for (i = 0; i < TXE_NUM_DATA_VL; i++)
10824 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
10825
10826 /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
10827 read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
10828
10829 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10830 bc->overall_shared_limit = cpu_to_be16(
10831 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
10832 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
10833 if (overall_limit)
10834 *overall_limit = (reg
10835 >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
10836 & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
10837 return sizeof(struct buffer_control);
10838 }
10839
10840 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10841 {
10842 u64 reg;
10843 int i;
10844
10845 /* each register contains 16 SC->VLnt mappings, 4 bits each */
10846 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
10847 for (i = 0; i < sizeof(u64); i++) {
10848 u8 byte = *(((u8 *)&reg) + i);
10849
10850 dp->vlnt[2 * i] = byte & 0xf;
10851 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
10852 }
10853
10854 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
10855 for (i = 0; i < sizeof(u64); i++) {
10856 u8 byte = *(((u8 *)&reg) + i);
10857
10858 dp->vlnt[16 + (2 * i)] = byte & 0xf;
10859 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
10860 }
10861 return sizeof(struct sc2vlnt);
10862 }
10863
10864 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
10865 struct ib_vl_weight_elem *vl)
10866 {
10867 unsigned int i;
10868
10869 for (i = 0; i < nelems; i++, vl++) {
10870 vl->vl = 0xf;
10871 vl->weight = 0;
10872 }
10873 }
10874
10875 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10876 {
10877 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
10878 DC_SC_VL_VAL(15_0,
10879 0, dp->vlnt[0] & 0xf,
10880 1, dp->vlnt[1] & 0xf,
10881 2, dp->vlnt[2] & 0xf,
10882 3, dp->vlnt[3] & 0xf,
10883 4, dp->vlnt[4] & 0xf,
10884 5, dp->vlnt[5] & 0xf,
10885 6, dp->vlnt[6] & 0xf,
10886 7, dp->vlnt[7] & 0xf,
10887 8, dp->vlnt[8] & 0xf,
10888 9, dp->vlnt[9] & 0xf,
10889 10, dp->vlnt[10] & 0xf,
10890 11, dp->vlnt[11] & 0xf,
10891 12, dp->vlnt[12] & 0xf,
10892 13, dp->vlnt[13] & 0xf,
10893 14, dp->vlnt[14] & 0xf,
10894 15, dp->vlnt[15] & 0xf));
10895 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
10896 DC_SC_VL_VAL(31_16,
10897 16, dp->vlnt[16] & 0xf,
10898 17, dp->vlnt[17] & 0xf,
10899 18, dp->vlnt[18] & 0xf,
10900 19, dp->vlnt[19] & 0xf,
10901 20, dp->vlnt[20] & 0xf,
10902 21, dp->vlnt[21] & 0xf,
10903 22, dp->vlnt[22] & 0xf,
10904 23, dp->vlnt[23] & 0xf,
10905 24, dp->vlnt[24] & 0xf,
10906 25, dp->vlnt[25] & 0xf,
10907 26, dp->vlnt[26] & 0xf,
10908 27, dp->vlnt[27] & 0xf,
10909 28, dp->vlnt[28] & 0xf,
10910 29, dp->vlnt[29] & 0xf,
10911 30, dp->vlnt[30] & 0xf,
10912 31, dp->vlnt[31] & 0xf));
10913 }
10914
10915 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
10916 u16 limit)
10917 {
10918 if (limit != 0)
10919 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
10920 what, (int)limit, idx);
10921 }
10922
10923 /* change only the shared limit portion of SendCmGLobalCredit */
10924 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
10925 {
10926 u64 reg;
10927
10928 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10929 reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
10930 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
10931 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
10932 }
10933
10934 /* change only the total credit limit portion of SendCmGLobalCredit */
10935 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
10936 {
10937 u64 reg;
10938
10939 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10940 reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
10941 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
10942 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
10943 }
10944
10945 /* set the given per-VL shared limit */
10946 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
10947 {
10948 u64 reg;
10949 u32 addr;
10950
10951 if (vl < TXE_NUM_DATA_VL)
10952 addr = SEND_CM_CREDIT_VL + (8 * vl);
10953 else
10954 addr = SEND_CM_CREDIT_VL15;
10955
10956 reg = read_csr(dd, addr);
10957 reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
10958 reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
10959 write_csr(dd, addr, reg);
10960 }
10961
10962 /* set the given per-VL dedicated limit */
10963 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
10964 {
10965 u64 reg;
10966 u32 addr;
10967
10968 if (vl < TXE_NUM_DATA_VL)
10969 addr = SEND_CM_CREDIT_VL + (8 * vl);
10970 else
10971 addr = SEND_CM_CREDIT_VL15;
10972
10973 reg = read_csr(dd, addr);
10974 reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
10975 reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
10976 write_csr(dd, addr, reg);
10977 }
10978
10979 /* spin until the given per-VL status mask bits clear */
10980 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
10981 const char *which)
10982 {
10983 unsigned long timeout;
10984 u64 reg;
10985
10986 timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
10987 while (1) {
10988 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
10989
10990 if (reg == 0)
10991 return; /* success */
10992 if (time_after(jiffies, timeout))
10993 break; /* timed out */
10994 udelay(1);
10995 }
10996
10997 dd_dev_err(dd,
10998 "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
10999 which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11000 /*
11001 * If this occurs, it is likely there was a credit loss on the link.
11002 * The only recovery from that is a link bounce.
11003 */
11004 dd_dev_err(dd,
11005 "Continuing anyway. A credit loss may occur. Suggest a link bounce\n");
11006 }
11007
11008 /*
11009 * The number of credits on the VLs may be changed while everything
11010 * is "live", but the following algorithm must be followed due to
11011 * how the hardware is actually implemented. In particular,
11012 * Return_Credit_Status[] is the only correct status check.
11013 *
11014 * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11015 * set Global_Shared_Credit_Limit = 0
11016 * use_all_vl = 1
11017 * mask0 = all VLs that are changing either dedicated or shared limits
11018 * set Shared_Limit[mask0] = 0
11019 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11020 * if (changing any dedicated limit)
11021 * mask1 = all VLs that are lowering dedicated limits
11022 * lower Dedicated_Limit[mask1]
11023 * spin until Return_Credit_Status[mask1] == 0
11024 * raise Dedicated_Limits
11025 * raise Shared_Limits
11026 * raise Global_Shared_Credit_Limit
11027 *
11028 * lower = if the new limit is lower, set the limit to the new value
11029 * raise = if the new limit is higher than the current value (may be changed
11030 * earlier in the algorithm), set the new limit to the new value
11031 */
11032 int set_buffer_control(struct hfi1_pportdata *ppd,
11033 struct buffer_control *new_bc)
11034 {
11035 struct hfi1_devdata *dd = ppd->dd;
11036 u64 changing_mask, ld_mask, stat_mask;
11037 int change_count;
11038 int i, use_all_mask;
11039 int this_shared_changing;
11040 int vl_count = 0, ret;
11041 /*
11042 * A0: add the variable any_shared_limit_changing below and in the
11043 * algorithm above. If removing A0 support, it can be removed.
11044 */
11045 int any_shared_limit_changing;
11046 struct buffer_control cur_bc;
11047 u8 changing[OPA_MAX_VLS];
11048 u8 lowering_dedicated[OPA_MAX_VLS];
11049 u16 cur_total;
11050 u32 new_total = 0;
11051 const u64 all_mask =
11052 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11053 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11054 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11055 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11056 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11057 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11058 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11059 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11060 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11061
11062 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11063 #define NUM_USABLE_VLS 16 /* look at VL15 and less */
11064
11065 /* find the new total credits, do sanity check on unused VLs */
11066 for (i = 0; i < OPA_MAX_VLS; i++) {
11067 if (valid_vl(i)) {
11068 new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11069 continue;
11070 }
11071 nonzero_msg(dd, i, "dedicated",
11072 be16_to_cpu(new_bc->vl[i].dedicated));
11073 nonzero_msg(dd, i, "shared",
11074 be16_to_cpu(new_bc->vl[i].shared));
11075 new_bc->vl[i].dedicated = 0;
11076 new_bc->vl[i].shared = 0;
11077 }
11078 new_total += be16_to_cpu(new_bc->overall_shared_limit);
11079
11080 /* fetch the current values */
11081 get_buffer_control(dd, &cur_bc, &cur_total);
11082
11083 /*
11084 * Create the masks we will use.
11085 */
11086 memset(changing, 0, sizeof(changing));
11087 memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11088 /*
11089 * NOTE: Assumes that the individual VL bits are adjacent and in
11090 * increasing order
11091 */
11092 stat_mask =
11093 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11094 changing_mask = 0;
11095 ld_mask = 0;
11096 change_count = 0;
11097 any_shared_limit_changing = 0;
11098 for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11099 if (!valid_vl(i))
11100 continue;
11101 this_shared_changing = new_bc->vl[i].shared
11102 != cur_bc.vl[i].shared;
11103 if (this_shared_changing)
11104 any_shared_limit_changing = 1;
11105 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11106 this_shared_changing) {
11107 changing[i] = 1;
11108 changing_mask |= stat_mask;
11109 change_count++;
11110 }
11111 if (be16_to_cpu(new_bc->vl[i].dedicated) <
11112 be16_to_cpu(cur_bc.vl[i].dedicated)) {
11113 lowering_dedicated[i] = 1;
11114 ld_mask |= stat_mask;
11115 }
11116 }
11117
11118 /* bracket the credit change with a total adjustment */
11119 if (new_total > cur_total)
11120 set_global_limit(dd, new_total);
11121
11122 /*
11123 * Start the credit change algorithm.
11124 */
11125 use_all_mask = 0;
11126 if ((be16_to_cpu(new_bc->overall_shared_limit) <
11127 be16_to_cpu(cur_bc.overall_shared_limit)) ||
11128 (is_ax(dd) && any_shared_limit_changing)) {
11129 set_global_shared(dd, 0);
11130 cur_bc.overall_shared_limit = 0;
11131 use_all_mask = 1;
11132 }
11133
11134 for (i = 0; i < NUM_USABLE_VLS; i++) {
11135 if (!valid_vl(i))
11136 continue;
11137
11138 if (changing[i]) {
11139 set_vl_shared(dd, i, 0);
11140 cur_bc.vl[i].shared = 0;
11141 }
11142 }
11143
11144 wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11145 "shared");
11146
11147 if (change_count > 0) {
11148 for (i = 0; i < NUM_USABLE_VLS; i++) {
11149 if (!valid_vl(i))
11150 continue;
11151
11152 if (lowering_dedicated[i]) {
11153 set_vl_dedicated(dd, i,
11154 be16_to_cpu(new_bc->
11155 vl[i].dedicated));
11156 cur_bc.vl[i].dedicated =
11157 new_bc->vl[i].dedicated;
11158 }
11159 }
11160
11161 wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11162
11163 /* now raise all dedicated that are going up */
11164 for (i = 0; i < NUM_USABLE_VLS; i++) {
11165 if (!valid_vl(i))
11166 continue;
11167
11168 if (be16_to_cpu(new_bc->vl[i].dedicated) >
11169 be16_to_cpu(cur_bc.vl[i].dedicated))
11170 set_vl_dedicated(dd, i,
11171 be16_to_cpu(new_bc->
11172 vl[i].dedicated));
11173 }
11174 }
11175
11176 /* next raise all shared that are going up */
11177 for (i = 0; i < NUM_USABLE_VLS; i++) {
11178 if (!valid_vl(i))
11179 continue;
11180
11181 if (be16_to_cpu(new_bc->vl[i].shared) >
11182 be16_to_cpu(cur_bc.vl[i].shared))
11183 set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11184 }
11185
11186 /* finally raise the global shared */
11187 if (be16_to_cpu(new_bc->overall_shared_limit) >
11188 be16_to_cpu(cur_bc.overall_shared_limit))
11189 set_global_shared(dd,
11190 be16_to_cpu(new_bc->overall_shared_limit));
11191
11192 /* bracket the credit change with a total adjustment */
11193 if (new_total < cur_total)
11194 set_global_limit(dd, new_total);
11195
11196 /*
11197 * Determine the actual number of operational VLS using the number of
11198 * dedicated and shared credits for each VL.
11199 */
11200 if (change_count > 0) {
11201 for (i = 0; i < TXE_NUM_DATA_VL; i++)
11202 if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11203 be16_to_cpu(new_bc->vl[i].shared) > 0)
11204 vl_count++;
11205 ppd->actual_vls_operational = vl_count;
11206 ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11207 ppd->actual_vls_operational :
11208 ppd->vls_operational,
11209 NULL);
11210 if (ret == 0)
11211 ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11212 ppd->actual_vls_operational :
11213 ppd->vls_operational, NULL);
11214 if (ret)
11215 return ret;
11216 }
11217 return 0;
11218 }
11219
11220 /*
11221 * Read the given fabric manager table. Return the size of the
11222 * table (in bytes) on success, and a negative error code on
11223 * failure.
11224 */
11225 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11226
11227 {
11228 int size;
11229 struct vl_arb_cache *vlc;
11230
11231 switch (which) {
11232 case FM_TBL_VL_HIGH_ARB:
11233 size = 256;
11234 /*
11235 * OPA specifies 128 elements (of 2 bytes each), though
11236 * HFI supports only 16 elements in h/w.
11237 */
11238 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11239 vl_arb_get_cache(vlc, t);
11240 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11241 break;
11242 case FM_TBL_VL_LOW_ARB:
11243 size = 256;
11244 /*
11245 * OPA specifies 128 elements (of 2 bytes each), though
11246 * HFI supports only 16 elements in h/w.
11247 */
11248 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11249 vl_arb_get_cache(vlc, t);
11250 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11251 break;
11252 case FM_TBL_BUFFER_CONTROL:
11253 size = get_buffer_control(ppd->dd, t, NULL);
11254 break;
11255 case FM_TBL_SC2VLNT:
11256 size = get_sc2vlnt(ppd->dd, t);
11257 break;
11258 case FM_TBL_VL_PREEMPT_ELEMS:
11259 size = 256;
11260 /* OPA specifies 128 elements, of 2 bytes each */
11261 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11262 break;
11263 case FM_TBL_VL_PREEMPT_MATRIX:
11264 size = 256;
11265 /*
11266 * OPA specifies that this is the same size as the VL
11267 * arbitration tables (i.e., 256 bytes).
11268 */
11269 break;
11270 default:
11271 return -EINVAL;
11272 }
11273 return size;
11274 }
11275
11276 /*
11277 * Write the given fabric manager table.
11278 */
11279 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11280 {
11281 int ret = 0;
11282 struct vl_arb_cache *vlc;
11283
11284 switch (which) {
11285 case FM_TBL_VL_HIGH_ARB:
11286 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11287 if (vl_arb_match_cache(vlc, t)) {
11288 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11289 break;
11290 }
11291 vl_arb_set_cache(vlc, t);
11292 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11293 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11294 VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11295 break;
11296 case FM_TBL_VL_LOW_ARB:
11297 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11298 if (vl_arb_match_cache(vlc, t)) {
11299 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11300 break;
11301 }
11302 vl_arb_set_cache(vlc, t);
11303 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11304 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11305 VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11306 break;
11307 case FM_TBL_BUFFER_CONTROL:
11308 ret = set_buffer_control(ppd, t);
11309 break;
11310 case FM_TBL_SC2VLNT:
11311 set_sc2vlnt(ppd->dd, t);
11312 break;
11313 default:
11314 ret = -EINVAL;
11315 }
11316 return ret;
11317 }
11318
11319 /*
11320 * Disable all data VLs.
11321 *
11322 * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11323 */
11324 static int disable_data_vls(struct hfi1_devdata *dd)
11325 {
11326 if (is_ax(dd))
11327 return 1;
11328
11329 pio_send_control(dd, PSC_DATA_VL_DISABLE);
11330
11331 return 0;
11332 }
11333
11334 /*
11335 * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11336 * Just re-enables all data VLs (the "fill" part happens
11337 * automatically - the name was chosen for symmetry with
11338 * stop_drain_data_vls()).
11339 *
11340 * Return 0 if successful, non-zero if the VLs cannot be enabled.
11341 */
11342 int open_fill_data_vls(struct hfi1_devdata *dd)
11343 {
11344 if (is_ax(dd))
11345 return 1;
11346
11347 pio_send_control(dd, PSC_DATA_VL_ENABLE);
11348
11349 return 0;
11350 }
11351
11352 /*
11353 * drain_data_vls() - assumes that disable_data_vls() has been called,
11354 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11355 * engines to drop to 0.
11356 */
11357 static void drain_data_vls(struct hfi1_devdata *dd)
11358 {
11359 sc_wait(dd);
11360 sdma_wait(dd);
11361 pause_for_credit_return(dd);
11362 }
11363
11364 /*
11365 * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11366 *
11367 * Use open_fill_data_vls() to resume using data VLs. This pair is
11368 * meant to be used like this:
11369 *
11370 * stop_drain_data_vls(dd);
11371 * // do things with per-VL resources
11372 * open_fill_data_vls(dd);
11373 */
11374 int stop_drain_data_vls(struct hfi1_devdata *dd)
11375 {
11376 int ret;
11377
11378 ret = disable_data_vls(dd);
11379 if (ret == 0)
11380 drain_data_vls(dd);
11381
11382 return ret;
11383 }
11384
11385 /*
11386 * Convert a nanosecond time to a cclock count. No matter how slow
11387 * the cclock, a non-zero ns will always have a non-zero result.
11388 */
11389 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11390 {
11391 u32 cclocks;
11392
11393 if (dd->icode == ICODE_FPGA_EMULATION)
11394 cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11395 else /* simulation pretends to be ASIC */
11396 cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11397 if (ns && !cclocks) /* if ns nonzero, must be at least 1 */
11398 cclocks = 1;
11399 return cclocks;
11400 }
11401
11402 /*
11403 * Convert a cclock count to nanoseconds. Not matter how slow
11404 * the cclock, a non-zero cclocks will always have a non-zero result.
11405 */
11406 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11407 {
11408 u32 ns;
11409
11410 if (dd->icode == ICODE_FPGA_EMULATION)
11411 ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11412 else /* simulation pretends to be ASIC */
11413 ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11414 if (cclocks && !ns)
11415 ns = 1;
11416 return ns;
11417 }
11418
11419 /*
11420 * Dynamically adjust the receive interrupt timeout for a context based on
11421 * incoming packet rate.
11422 *
11423 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11424 */
11425 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11426 {
11427 struct hfi1_devdata *dd = rcd->dd;
11428 u32 timeout = rcd->rcvavail_timeout;
11429
11430 /*
11431 * This algorithm doubles or halves the timeout depending on whether
11432 * the number of packets received in this interrupt were less than or
11433 * greater equal the interrupt count.
11434 *
11435 * The calculations below do not allow a steady state to be achieved.
11436 * Only at the endpoints it is possible to have an unchanging
11437 * timeout.
11438 */
11439 if (npkts < rcv_intr_count) {
11440 /*
11441 * Not enough packets arrived before the timeout, adjust
11442 * timeout downward.
11443 */
11444 if (timeout < 2) /* already at minimum? */
11445 return;
11446 timeout >>= 1;
11447 } else {
11448 /*
11449 * More than enough packets arrived before the timeout, adjust
11450 * timeout upward.
11451 */
11452 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11453 return;
11454 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11455 }
11456
11457 rcd->rcvavail_timeout = timeout;
11458 /*
11459 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11460 * been verified to be in range
11461 */
11462 write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11463 (u64)timeout <<
11464 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11465 }
11466
11467 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11468 u32 intr_adjust, u32 npkts)
11469 {
11470 struct hfi1_devdata *dd = rcd->dd;
11471 u64 reg;
11472 u32 ctxt = rcd->ctxt;
11473
11474 /*
11475 * Need to write timeout register before updating RcvHdrHead to ensure
11476 * that a new value is used when the HW decides to restart counting.
11477 */
11478 if (intr_adjust)
11479 adjust_rcv_timeout(rcd, npkts);
11480 if (updegr) {
11481 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11482 << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11483 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11484 }
11485 mmiowb();
11486 reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11487 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11488 << RCV_HDR_HEAD_HEAD_SHIFT);
11489 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11490 mmiowb();
11491 }
11492
11493 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11494 {
11495 u32 head, tail;
11496
11497 head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11498 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11499
11500 if (rcd->rcvhdrtail_kvaddr)
11501 tail = get_rcvhdrtail(rcd);
11502 else
11503 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11504
11505 return head == tail;
11506 }
11507
11508 /*
11509 * Context Control and Receive Array encoding for buffer size:
11510 * 0x0 invalid
11511 * 0x1 4 KB
11512 * 0x2 8 KB
11513 * 0x3 16 KB
11514 * 0x4 32 KB
11515 * 0x5 64 KB
11516 * 0x6 128 KB
11517 * 0x7 256 KB
11518 * 0x8 512 KB (Receive Array only)
11519 * 0x9 1 MB (Receive Array only)
11520 * 0xa 2 MB (Receive Array only)
11521 *
11522 * 0xB-0xF - reserved (Receive Array only)
11523 *
11524 *
11525 * This routine assumes that the value has already been sanity checked.
11526 */
11527 static u32 encoded_size(u32 size)
11528 {
11529 switch (size) {
11530 case 4 * 1024: return 0x1;
11531 case 8 * 1024: return 0x2;
11532 case 16 * 1024: return 0x3;
11533 case 32 * 1024: return 0x4;
11534 case 64 * 1024: return 0x5;
11535 case 128 * 1024: return 0x6;
11536 case 256 * 1024: return 0x7;
11537 case 512 * 1024: return 0x8;
11538 case 1 * 1024 * 1024: return 0x9;
11539 case 2 * 1024 * 1024: return 0xa;
11540 }
11541 return 0x1; /* if invalid, go with the minimum size */
11542 }
11543
11544 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt)
11545 {
11546 struct hfi1_ctxtdata *rcd;
11547 u64 rcvctrl, reg;
11548 int did_enable = 0;
11549
11550 rcd = dd->rcd[ctxt];
11551 if (!rcd)
11552 return;
11553
11554 hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11555
11556 rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11557 /* if the context already enabled, don't do the extra steps */
11558 if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11559 !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11560 /* reset the tail and hdr addresses, and sequence count */
11561 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11562 rcd->rcvhdrq_phys);
11563 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
11564 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11565 rcd->rcvhdrqtailaddr_phys);
11566 rcd->seq_cnt = 1;
11567
11568 /* reset the cached receive header queue head value */
11569 rcd->head = 0;
11570
11571 /*
11572 * Zero the receive header queue so we don't get false
11573 * positives when checking the sequence number. The
11574 * sequence numbers could land exactly on the same spot.
11575 * E.g. a rcd restart before the receive header wrapped.
11576 */
11577 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11578
11579 /* starting timeout */
11580 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11581
11582 /* enable the context */
11583 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11584
11585 /* clean the egr buffer size first */
11586 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11587 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11588 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11589 << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11590
11591 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11592 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11593 did_enable = 1;
11594
11595 /* zero RcvEgrIndexHead */
11596 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11597
11598 /* set eager count and base index */
11599 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11600 & RCV_EGR_CTRL_EGR_CNT_MASK)
11601 << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11602 (((rcd->eager_base >> RCV_SHIFT)
11603 & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11604 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11605 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11606
11607 /*
11608 * Set TID (expected) count and base index.
11609 * rcd->expected_count is set to individual RcvArray entries,
11610 * not pairs, and the CSR takes a pair-count in groups of
11611 * four, so divide by 8.
11612 */
11613 reg = (((rcd->expected_count >> RCV_SHIFT)
11614 & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11615 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11616 (((rcd->expected_base >> RCV_SHIFT)
11617 & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11618 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11619 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11620 if (ctxt == HFI1_CTRL_CTXT)
11621 write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11622 }
11623 if (op & HFI1_RCVCTRL_CTXT_DIS) {
11624 write_csr(dd, RCV_VL15, 0);
11625 /*
11626 * When receive context is being disabled turn on tail
11627 * update with a dummy tail address and then disable
11628 * receive context.
11629 */
11630 if (dd->rcvhdrtail_dummy_physaddr) {
11631 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11632 dd->rcvhdrtail_dummy_physaddr);
11633 /* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11634 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11635 }
11636
11637 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11638 }
11639 if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11640 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11641 if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11642 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11643 if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_phys)
11644 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11645 if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11646 /* See comment on RcvCtxtCtrl.TailUpd above */
11647 if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11648 rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11649 }
11650 if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11651 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11652 if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11653 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11654 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11655 /*
11656 * In one-packet-per-eager mode, the size comes from
11657 * the RcvArray entry.
11658 */
11659 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11660 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11661 }
11662 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11663 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11664 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11665 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11666 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11667 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11668 if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11669 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11670 if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11671 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11672 rcd->rcvctrl = rcvctrl;
11673 hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11674 write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11675
11676 /* work around sticky RcvCtxtStatus.BlockedRHQFull */
11677 if (did_enable &&
11678 (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11679 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11680 if (reg != 0) {
11681 dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11682 ctxt, reg);
11683 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11684 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11685 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11686 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11687 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11688 dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11689 ctxt, reg, reg == 0 ? "not" : "still");
11690 }
11691 }
11692
11693 if (did_enable) {
11694 /*
11695 * The interrupt timeout and count must be set after
11696 * the context is enabled to take effect.
11697 */
11698 /* set interrupt timeout */
11699 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11700 (u64)rcd->rcvavail_timeout <<
11701 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11702
11703 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11704 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11705 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11706 }
11707
11708 if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11709 /*
11710 * If the context has been disabled and the Tail Update has
11711 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11712 * so it doesn't contain an address that is invalid.
11713 */
11714 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11715 dd->rcvhdrtail_dummy_physaddr);
11716 }
11717
11718 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
11719 {
11720 int ret;
11721 u64 val = 0;
11722
11723 if (namep) {
11724 ret = dd->cntrnameslen;
11725 *namep = dd->cntrnames;
11726 } else {
11727 const struct cntr_entry *entry;
11728 int i, j;
11729
11730 ret = (dd->ndevcntrs) * sizeof(u64);
11731
11732 /* Get the start of the block of counters */
11733 *cntrp = dd->cntrs;
11734
11735 /*
11736 * Now go and fill in each counter in the block.
11737 */
11738 for (i = 0; i < DEV_CNTR_LAST; i++) {
11739 entry = &dev_cntrs[i];
11740 hfi1_cdbg(CNTR, "reading %s", entry->name);
11741 if (entry->flags & CNTR_DISABLED) {
11742 /* Nothing */
11743 hfi1_cdbg(CNTR, "\tDisabled\n");
11744 } else {
11745 if (entry->flags & CNTR_VL) {
11746 hfi1_cdbg(CNTR, "\tPer VL\n");
11747 for (j = 0; j < C_VL_COUNT; j++) {
11748 val = entry->rw_cntr(entry,
11749 dd, j,
11750 CNTR_MODE_R,
11751 0);
11752 hfi1_cdbg(
11753 CNTR,
11754 "\t\tRead 0x%llx for %d\n",
11755 val, j);
11756 dd->cntrs[entry->offset + j] =
11757 val;
11758 }
11759 } else if (entry->flags & CNTR_SDMA) {
11760 hfi1_cdbg(CNTR,
11761 "\t Per SDMA Engine\n");
11762 for (j = 0; j < dd->chip_sdma_engines;
11763 j++) {
11764 val =
11765 entry->rw_cntr(entry, dd, j,
11766 CNTR_MODE_R, 0);
11767 hfi1_cdbg(CNTR,
11768 "\t\tRead 0x%llx for %d\n",
11769 val, j);
11770 dd->cntrs[entry->offset + j] =
11771 val;
11772 }
11773 } else {
11774 val = entry->rw_cntr(entry, dd,
11775 CNTR_INVALID_VL,
11776 CNTR_MODE_R, 0);
11777 dd->cntrs[entry->offset] = val;
11778 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11779 }
11780 }
11781 }
11782 }
11783 return ret;
11784 }
11785
11786 /*
11787 * Used by sysfs to create files for hfi stats to read
11788 */
11789 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
11790 {
11791 int ret;
11792 u64 val = 0;
11793
11794 if (namep) {
11795 ret = ppd->dd->portcntrnameslen;
11796 *namep = ppd->dd->portcntrnames;
11797 } else {
11798 const struct cntr_entry *entry;
11799 int i, j;
11800
11801 ret = ppd->dd->nportcntrs * sizeof(u64);
11802 *cntrp = ppd->cntrs;
11803
11804 for (i = 0; i < PORT_CNTR_LAST; i++) {
11805 entry = &port_cntrs[i];
11806 hfi1_cdbg(CNTR, "reading %s", entry->name);
11807 if (entry->flags & CNTR_DISABLED) {
11808 /* Nothing */
11809 hfi1_cdbg(CNTR, "\tDisabled\n");
11810 continue;
11811 }
11812
11813 if (entry->flags & CNTR_VL) {
11814 hfi1_cdbg(CNTR, "\tPer VL");
11815 for (j = 0; j < C_VL_COUNT; j++) {
11816 val = entry->rw_cntr(entry, ppd, j,
11817 CNTR_MODE_R,
11818 0);
11819 hfi1_cdbg(
11820 CNTR,
11821 "\t\tRead 0x%llx for %d",
11822 val, j);
11823 ppd->cntrs[entry->offset + j] = val;
11824 }
11825 } else {
11826 val = entry->rw_cntr(entry, ppd,
11827 CNTR_INVALID_VL,
11828 CNTR_MODE_R,
11829 0);
11830 ppd->cntrs[entry->offset] = val;
11831 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11832 }
11833 }
11834 }
11835 return ret;
11836 }
11837
11838 static void free_cntrs(struct hfi1_devdata *dd)
11839 {
11840 struct hfi1_pportdata *ppd;
11841 int i;
11842
11843 if (dd->synth_stats_timer.data)
11844 del_timer_sync(&dd->synth_stats_timer);
11845 dd->synth_stats_timer.data = 0;
11846 ppd = (struct hfi1_pportdata *)(dd + 1);
11847 for (i = 0; i < dd->num_pports; i++, ppd++) {
11848 kfree(ppd->cntrs);
11849 kfree(ppd->scntrs);
11850 free_percpu(ppd->ibport_data.rvp.rc_acks);
11851 free_percpu(ppd->ibport_data.rvp.rc_qacks);
11852 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
11853 ppd->cntrs = NULL;
11854 ppd->scntrs = NULL;
11855 ppd->ibport_data.rvp.rc_acks = NULL;
11856 ppd->ibport_data.rvp.rc_qacks = NULL;
11857 ppd->ibport_data.rvp.rc_delayed_comp = NULL;
11858 }
11859 kfree(dd->portcntrnames);
11860 dd->portcntrnames = NULL;
11861 kfree(dd->cntrs);
11862 dd->cntrs = NULL;
11863 kfree(dd->scntrs);
11864 dd->scntrs = NULL;
11865 kfree(dd->cntrnames);
11866 dd->cntrnames = NULL;
11867 }
11868
11869 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
11870 u64 *psval, void *context, int vl)
11871 {
11872 u64 val;
11873 u64 sval = *psval;
11874
11875 if (entry->flags & CNTR_DISABLED) {
11876 dd_dev_err(dd, "Counter %s not enabled", entry->name);
11877 return 0;
11878 }
11879
11880 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
11881
11882 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
11883
11884 /* If its a synthetic counter there is more work we need to do */
11885 if (entry->flags & CNTR_SYNTH) {
11886 if (sval == CNTR_MAX) {
11887 /* No need to read already saturated */
11888 return CNTR_MAX;
11889 }
11890
11891 if (entry->flags & CNTR_32BIT) {
11892 /* 32bit counters can wrap multiple times */
11893 u64 upper = sval >> 32;
11894 u64 lower = (sval << 32) >> 32;
11895
11896 if (lower > val) { /* hw wrapped */
11897 if (upper == CNTR_32BIT_MAX)
11898 val = CNTR_MAX;
11899 else
11900 upper++;
11901 }
11902
11903 if (val != CNTR_MAX)
11904 val = (upper << 32) | val;
11905
11906 } else {
11907 /* If we rolled we are saturated */
11908 if ((val < sval) || (val > CNTR_MAX))
11909 val = CNTR_MAX;
11910 }
11911 }
11912
11913 *psval = val;
11914
11915 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
11916
11917 return val;
11918 }
11919
11920 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
11921 struct cntr_entry *entry,
11922 u64 *psval, void *context, int vl, u64 data)
11923 {
11924 u64 val;
11925
11926 if (entry->flags & CNTR_DISABLED) {
11927 dd_dev_err(dd, "Counter %s not enabled", entry->name);
11928 return 0;
11929 }
11930
11931 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
11932
11933 if (entry->flags & CNTR_SYNTH) {
11934 *psval = data;
11935 if (entry->flags & CNTR_32BIT) {
11936 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
11937 (data << 32) >> 32);
11938 val = data; /* return the full 64bit value */
11939 } else {
11940 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
11941 data);
11942 }
11943 } else {
11944 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
11945 }
11946
11947 *psval = val;
11948
11949 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
11950
11951 return val;
11952 }
11953
11954 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
11955 {
11956 struct cntr_entry *entry;
11957 u64 *sval;
11958
11959 entry = &dev_cntrs[index];
11960 sval = dd->scntrs + entry->offset;
11961
11962 if (vl != CNTR_INVALID_VL)
11963 sval += vl;
11964
11965 return read_dev_port_cntr(dd, entry, sval, dd, vl);
11966 }
11967
11968 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
11969 {
11970 struct cntr_entry *entry;
11971 u64 *sval;
11972
11973 entry = &dev_cntrs[index];
11974 sval = dd->scntrs + entry->offset;
11975
11976 if (vl != CNTR_INVALID_VL)
11977 sval += vl;
11978
11979 return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
11980 }
11981
11982 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
11983 {
11984 struct cntr_entry *entry;
11985 u64 *sval;
11986
11987 entry = &port_cntrs[index];
11988 sval = ppd->scntrs + entry->offset;
11989
11990 if (vl != CNTR_INVALID_VL)
11991 sval += vl;
11992
11993 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
11994 (index <= C_RCV_HDR_OVF_LAST)) {
11995 /* We do not want to bother for disabled contexts */
11996 return 0;
11997 }
11998
11999 return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12000 }
12001
12002 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12003 {
12004 struct cntr_entry *entry;
12005 u64 *sval;
12006
12007 entry = &port_cntrs[index];
12008 sval = ppd->scntrs + entry->offset;
12009
12010 if (vl != CNTR_INVALID_VL)
12011 sval += vl;
12012
12013 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12014 (index <= C_RCV_HDR_OVF_LAST)) {
12015 /* We do not want to bother for disabled contexts */
12016 return 0;
12017 }
12018
12019 return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12020 }
12021
12022 static void update_synth_timer(unsigned long opaque)
12023 {
12024 u64 cur_tx;
12025 u64 cur_rx;
12026 u64 total_flits;
12027 u8 update = 0;
12028 int i, j, vl;
12029 struct hfi1_pportdata *ppd;
12030 struct cntr_entry *entry;
12031
12032 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
12033
12034 /*
12035 * Rather than keep beating on the CSRs pick a minimal set that we can
12036 * check to watch for potential roll over. We can do this by looking at
12037 * the number of flits sent/recv. If the total flits exceeds 32bits then
12038 * we have to iterate all the counters and update.
12039 */
12040 entry = &dev_cntrs[C_DC_RCV_FLITS];
12041 cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12042
12043 entry = &dev_cntrs[C_DC_XMIT_FLITS];
12044 cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12045
12046 hfi1_cdbg(
12047 CNTR,
12048 "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12049 dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12050
12051 if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12052 /*
12053 * May not be strictly necessary to update but it won't hurt and
12054 * simplifies the logic here.
12055 */
12056 update = 1;
12057 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12058 dd->unit);
12059 } else {
12060 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12061 hfi1_cdbg(CNTR,
12062 "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12063 total_flits, (u64)CNTR_32BIT_MAX);
12064 if (total_flits >= CNTR_32BIT_MAX) {
12065 hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12066 dd->unit);
12067 update = 1;
12068 }
12069 }
12070
12071 if (update) {
12072 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12073 for (i = 0; i < DEV_CNTR_LAST; i++) {
12074 entry = &dev_cntrs[i];
12075 if (entry->flags & CNTR_VL) {
12076 for (vl = 0; vl < C_VL_COUNT; vl++)
12077 read_dev_cntr(dd, i, vl);
12078 } else {
12079 read_dev_cntr(dd, i, CNTR_INVALID_VL);
12080 }
12081 }
12082 ppd = (struct hfi1_pportdata *)(dd + 1);
12083 for (i = 0; i < dd->num_pports; i++, ppd++) {
12084 for (j = 0; j < PORT_CNTR_LAST; j++) {
12085 entry = &port_cntrs[j];
12086 if (entry->flags & CNTR_VL) {
12087 for (vl = 0; vl < C_VL_COUNT; vl++)
12088 read_port_cntr(ppd, j, vl);
12089 } else {
12090 read_port_cntr(ppd, j, CNTR_INVALID_VL);
12091 }
12092 }
12093 }
12094
12095 /*
12096 * We want the value in the register. The goal is to keep track
12097 * of the number of "ticks" not the counter value. In other
12098 * words if the register rolls we want to notice it and go ahead
12099 * and force an update.
12100 */
12101 entry = &dev_cntrs[C_DC_XMIT_FLITS];
12102 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12103 CNTR_MODE_R, 0);
12104
12105 entry = &dev_cntrs[C_DC_RCV_FLITS];
12106 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12107 CNTR_MODE_R, 0);
12108
12109 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12110 dd->unit, dd->last_tx, dd->last_rx);
12111
12112 } else {
12113 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12114 }
12115
12116 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12117 }
12118
12119 #define C_MAX_NAME 13 /* 12 chars + one for /0 */
12120 static int init_cntrs(struct hfi1_devdata *dd)
12121 {
12122 int i, rcv_ctxts, j;
12123 size_t sz;
12124 char *p;
12125 char name[C_MAX_NAME];
12126 struct hfi1_pportdata *ppd;
12127 const char *bit_type_32 = ",32";
12128 const int bit_type_32_sz = strlen(bit_type_32);
12129
12130 /* set up the stats timer; the add_timer is done at the end */
12131 setup_timer(&dd->synth_stats_timer, update_synth_timer,
12132 (unsigned long)dd);
12133
12134 /***********************/
12135 /* per device counters */
12136 /***********************/
12137
12138 /* size names and determine how many we have*/
12139 dd->ndevcntrs = 0;
12140 sz = 0;
12141
12142 for (i = 0; i < DEV_CNTR_LAST; i++) {
12143 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12144 hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12145 continue;
12146 }
12147
12148 if (dev_cntrs[i].flags & CNTR_VL) {
12149 dev_cntrs[i].offset = dd->ndevcntrs;
12150 for (j = 0; j < C_VL_COUNT; j++) {
12151 snprintf(name, C_MAX_NAME, "%s%d",
12152 dev_cntrs[i].name, vl_from_idx(j));
12153 sz += strlen(name);
12154 /* Add ",32" for 32-bit counters */
12155 if (dev_cntrs[i].flags & CNTR_32BIT)
12156 sz += bit_type_32_sz;
12157 sz++;
12158 dd->ndevcntrs++;
12159 }
12160 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12161 dev_cntrs[i].offset = dd->ndevcntrs;
12162 for (j = 0; j < dd->chip_sdma_engines; j++) {
12163 snprintf(name, C_MAX_NAME, "%s%d",
12164 dev_cntrs[i].name, j);
12165 sz += strlen(name);
12166 /* Add ",32" for 32-bit counters */
12167 if (dev_cntrs[i].flags & CNTR_32BIT)
12168 sz += bit_type_32_sz;
12169 sz++;
12170 dd->ndevcntrs++;
12171 }
12172 } else {
12173 /* +1 for newline. */
12174 sz += strlen(dev_cntrs[i].name) + 1;
12175 /* Add ",32" for 32-bit counters */
12176 if (dev_cntrs[i].flags & CNTR_32BIT)
12177 sz += bit_type_32_sz;
12178 dev_cntrs[i].offset = dd->ndevcntrs;
12179 dd->ndevcntrs++;
12180 }
12181 }
12182
12183 /* allocate space for the counter values */
12184 dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12185 if (!dd->cntrs)
12186 goto bail;
12187
12188 dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12189 if (!dd->scntrs)
12190 goto bail;
12191
12192 /* allocate space for the counter names */
12193 dd->cntrnameslen = sz;
12194 dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12195 if (!dd->cntrnames)
12196 goto bail;
12197
12198 /* fill in the names */
12199 for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12200 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12201 /* Nothing */
12202 } else if (dev_cntrs[i].flags & CNTR_VL) {
12203 for (j = 0; j < C_VL_COUNT; j++) {
12204 snprintf(name, C_MAX_NAME, "%s%d",
12205 dev_cntrs[i].name,
12206 vl_from_idx(j));
12207 memcpy(p, name, strlen(name));
12208 p += strlen(name);
12209
12210 /* Counter is 32 bits */
12211 if (dev_cntrs[i].flags & CNTR_32BIT) {
12212 memcpy(p, bit_type_32, bit_type_32_sz);
12213 p += bit_type_32_sz;
12214 }
12215
12216 *p++ = '\n';
12217 }
12218 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12219 for (j = 0; j < dd->chip_sdma_engines; j++) {
12220 snprintf(name, C_MAX_NAME, "%s%d",
12221 dev_cntrs[i].name, j);
12222 memcpy(p, name, strlen(name));
12223 p += strlen(name);
12224
12225 /* Counter is 32 bits */
12226 if (dev_cntrs[i].flags & CNTR_32BIT) {
12227 memcpy(p, bit_type_32, bit_type_32_sz);
12228 p += bit_type_32_sz;
12229 }
12230
12231 *p++ = '\n';
12232 }
12233 } else {
12234 memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12235 p += strlen(dev_cntrs[i].name);
12236
12237 /* Counter is 32 bits */
12238 if (dev_cntrs[i].flags & CNTR_32BIT) {
12239 memcpy(p, bit_type_32, bit_type_32_sz);
12240 p += bit_type_32_sz;
12241 }
12242
12243 *p++ = '\n';
12244 }
12245 }
12246
12247 /*********************/
12248 /* per port counters */
12249 /*********************/
12250
12251 /*
12252 * Go through the counters for the overflows and disable the ones we
12253 * don't need. This varies based on platform so we need to do it
12254 * dynamically here.
12255 */
12256 rcv_ctxts = dd->num_rcv_contexts;
12257 for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12258 i <= C_RCV_HDR_OVF_LAST; i++) {
12259 port_cntrs[i].flags |= CNTR_DISABLED;
12260 }
12261
12262 /* size port counter names and determine how many we have*/
12263 sz = 0;
12264 dd->nportcntrs = 0;
12265 for (i = 0; i < PORT_CNTR_LAST; i++) {
12266 if (port_cntrs[i].flags & CNTR_DISABLED) {
12267 hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12268 continue;
12269 }
12270
12271 if (port_cntrs[i].flags & CNTR_VL) {
12272 port_cntrs[i].offset = dd->nportcntrs;
12273 for (j = 0; j < C_VL_COUNT; j++) {
12274 snprintf(name, C_MAX_NAME, "%s%d",
12275 port_cntrs[i].name, vl_from_idx(j));
12276 sz += strlen(name);
12277 /* Add ",32" for 32-bit counters */
12278 if (port_cntrs[i].flags & CNTR_32BIT)
12279 sz += bit_type_32_sz;
12280 sz++;
12281 dd->nportcntrs++;
12282 }
12283 } else {
12284 /* +1 for newline */
12285 sz += strlen(port_cntrs[i].name) + 1;
12286 /* Add ",32" for 32-bit counters */
12287 if (port_cntrs[i].flags & CNTR_32BIT)
12288 sz += bit_type_32_sz;
12289 port_cntrs[i].offset = dd->nportcntrs;
12290 dd->nportcntrs++;
12291 }
12292 }
12293
12294 /* allocate space for the counter names */
12295 dd->portcntrnameslen = sz;
12296 dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12297 if (!dd->portcntrnames)
12298 goto bail;
12299
12300 /* fill in port cntr names */
12301 for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12302 if (port_cntrs[i].flags & CNTR_DISABLED)
12303 continue;
12304
12305 if (port_cntrs[i].flags & CNTR_VL) {
12306 for (j = 0; j < C_VL_COUNT; j++) {
12307 snprintf(name, C_MAX_NAME, "%s%d",
12308 port_cntrs[i].name, vl_from_idx(j));
12309 memcpy(p, name, strlen(name));
12310 p += strlen(name);
12311
12312 /* Counter is 32 bits */
12313 if (port_cntrs[i].flags & CNTR_32BIT) {
12314 memcpy(p, bit_type_32, bit_type_32_sz);
12315 p += bit_type_32_sz;
12316 }
12317
12318 *p++ = '\n';
12319 }
12320 } else {
12321 memcpy(p, port_cntrs[i].name,
12322 strlen(port_cntrs[i].name));
12323 p += strlen(port_cntrs[i].name);
12324
12325 /* Counter is 32 bits */
12326 if (port_cntrs[i].flags & CNTR_32BIT) {
12327 memcpy(p, bit_type_32, bit_type_32_sz);
12328 p += bit_type_32_sz;
12329 }
12330
12331 *p++ = '\n';
12332 }
12333 }
12334
12335 /* allocate per port storage for counter values */
12336 ppd = (struct hfi1_pportdata *)(dd + 1);
12337 for (i = 0; i < dd->num_pports; i++, ppd++) {
12338 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12339 if (!ppd->cntrs)
12340 goto bail;
12341
12342 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12343 if (!ppd->scntrs)
12344 goto bail;
12345 }
12346
12347 /* CPU counters need to be allocated and zeroed */
12348 if (init_cpu_counters(dd))
12349 goto bail;
12350
12351 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12352 return 0;
12353 bail:
12354 free_cntrs(dd);
12355 return -ENOMEM;
12356 }
12357
12358 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12359 {
12360 switch (chip_lstate) {
12361 default:
12362 dd_dev_err(dd,
12363 "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12364 chip_lstate);
12365 /* fall through */
12366 case LSTATE_DOWN:
12367 return IB_PORT_DOWN;
12368 case LSTATE_INIT:
12369 return IB_PORT_INIT;
12370 case LSTATE_ARMED:
12371 return IB_PORT_ARMED;
12372 case LSTATE_ACTIVE:
12373 return IB_PORT_ACTIVE;
12374 }
12375 }
12376
12377 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12378 {
12379 /* look at the HFI meta-states only */
12380 switch (chip_pstate & 0xf0) {
12381 default:
12382 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12383 chip_pstate);
12384 /* fall through */
12385 case PLS_DISABLED:
12386 return IB_PORTPHYSSTATE_DISABLED;
12387 case PLS_OFFLINE:
12388 return OPA_PORTPHYSSTATE_OFFLINE;
12389 case PLS_POLLING:
12390 return IB_PORTPHYSSTATE_POLLING;
12391 case PLS_CONFIGPHY:
12392 return IB_PORTPHYSSTATE_TRAINING;
12393 case PLS_LINKUP:
12394 return IB_PORTPHYSSTATE_LINKUP;
12395 case PLS_PHYTEST:
12396 return IB_PORTPHYSSTATE_PHY_TEST;
12397 }
12398 }
12399
12400 /* return the OPA port logical state name */
12401 const char *opa_lstate_name(u32 lstate)
12402 {
12403 static const char * const port_logical_names[] = {
12404 "PORT_NOP",
12405 "PORT_DOWN",
12406 "PORT_INIT",
12407 "PORT_ARMED",
12408 "PORT_ACTIVE",
12409 "PORT_ACTIVE_DEFER",
12410 };
12411 if (lstate < ARRAY_SIZE(port_logical_names))
12412 return port_logical_names[lstate];
12413 return "unknown";
12414 }
12415
12416 /* return the OPA port physical state name */
12417 const char *opa_pstate_name(u32 pstate)
12418 {
12419 static const char * const port_physical_names[] = {
12420 "PHYS_NOP",
12421 "reserved1",
12422 "PHYS_POLL",
12423 "PHYS_DISABLED",
12424 "PHYS_TRAINING",
12425 "PHYS_LINKUP",
12426 "PHYS_LINK_ERR_RECOVER",
12427 "PHYS_PHY_TEST",
12428 "reserved8",
12429 "PHYS_OFFLINE",
12430 "PHYS_GANGED",
12431 "PHYS_TEST",
12432 };
12433 if (pstate < ARRAY_SIZE(port_physical_names))
12434 return port_physical_names[pstate];
12435 return "unknown";
12436 }
12437
12438 /*
12439 * Read the hardware link state and set the driver's cached value of it.
12440 * Return the (new) current value.
12441 */
12442 u32 get_logical_state(struct hfi1_pportdata *ppd)
12443 {
12444 u32 new_state;
12445
12446 new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd));
12447 if (new_state != ppd->lstate) {
12448 dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12449 opa_lstate_name(new_state), new_state);
12450 ppd->lstate = new_state;
12451 }
12452 /*
12453 * Set port status flags in the page mapped into userspace
12454 * memory. Do it here to ensure a reliable state - this is
12455 * the only function called by all state handling code.
12456 * Always set the flags due to the fact that the cache value
12457 * might have been changed explicitly outside of this
12458 * function.
12459 */
12460 if (ppd->statusp) {
12461 switch (ppd->lstate) {
12462 case IB_PORT_DOWN:
12463 case IB_PORT_INIT:
12464 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12465 HFI1_STATUS_IB_READY);
12466 break;
12467 case IB_PORT_ARMED:
12468 *ppd->statusp |= HFI1_STATUS_IB_CONF;
12469 break;
12470 case IB_PORT_ACTIVE:
12471 *ppd->statusp |= HFI1_STATUS_IB_READY;
12472 break;
12473 }
12474 }
12475 return ppd->lstate;
12476 }
12477
12478 /**
12479 * wait_logical_linkstate - wait for an IB link state change to occur
12480 * @ppd: port device
12481 * @state: the state to wait for
12482 * @msecs: the number of milliseconds to wait
12483 *
12484 * Wait up to msecs milliseconds for IB link state change to occur.
12485 * For now, take the easy polling route.
12486 * Returns 0 if state reached, otherwise -ETIMEDOUT.
12487 */
12488 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12489 int msecs)
12490 {
12491 unsigned long timeout;
12492
12493 timeout = jiffies + msecs_to_jiffies(msecs);
12494 while (1) {
12495 if (get_logical_state(ppd) == state)
12496 return 0;
12497 if (time_after(jiffies, timeout))
12498 break;
12499 msleep(20);
12500 }
12501 dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state);
12502
12503 return -ETIMEDOUT;
12504 }
12505
12506 u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd)
12507 {
12508 u32 pstate;
12509 u32 ib_pstate;
12510
12511 pstate = read_physical_state(ppd->dd);
12512 ib_pstate = chip_to_opa_pstate(ppd->dd, pstate);
12513 if (ppd->last_pstate != ib_pstate) {
12514 dd_dev_info(ppd->dd,
12515 "%s: physical state changed to %s (0x%x), phy 0x%x\n",
12516 __func__, opa_pstate_name(ib_pstate), ib_pstate,
12517 pstate);
12518 ppd->last_pstate = ib_pstate;
12519 }
12520 return ib_pstate;
12521 }
12522
12523 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12524 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12525
12526 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12527 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12528
12529 int hfi1_init_ctxt(struct send_context *sc)
12530 {
12531 if (sc) {
12532 struct hfi1_devdata *dd = sc->dd;
12533 u64 reg;
12534 u8 set = (sc->type == SC_USER ?
12535 HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12536 HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12537 reg = read_kctxt_csr(dd, sc->hw_context,
12538 SEND_CTXT_CHECK_ENABLE);
12539 if (set)
12540 CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12541 else
12542 SET_STATIC_RATE_CONTROL_SMASK(reg);
12543 write_kctxt_csr(dd, sc->hw_context,
12544 SEND_CTXT_CHECK_ENABLE, reg);
12545 }
12546 return 0;
12547 }
12548
12549 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12550 {
12551 int ret = 0;
12552 u64 reg;
12553
12554 if (dd->icode != ICODE_RTL_SILICON) {
12555 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12556 dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12557 __func__);
12558 return -EINVAL;
12559 }
12560 reg = read_csr(dd, ASIC_STS_THERM);
12561 temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12562 ASIC_STS_THERM_CURR_TEMP_MASK);
12563 temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12564 ASIC_STS_THERM_LO_TEMP_MASK);
12565 temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12566 ASIC_STS_THERM_HI_TEMP_MASK);
12567 temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12568 ASIC_STS_THERM_CRIT_TEMP_MASK);
12569 /* triggers is a 3-bit value - 1 bit per trigger. */
12570 temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12571
12572 return ret;
12573 }
12574
12575 /* ========================================================================= */
12576
12577 /*
12578 * Enable/disable chip from delivering interrupts.
12579 */
12580 void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12581 {
12582 int i;
12583
12584 /*
12585 * In HFI, the mask needs to be 1 to allow interrupts.
12586 */
12587 if (enable) {
12588 /* enable all interrupts */
12589 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12590 write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0);
12591
12592 init_qsfp_int(dd);
12593 } else {
12594 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12595 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
12596 }
12597 }
12598
12599 /*
12600 * Clear all interrupt sources on the chip.
12601 */
12602 static void clear_all_interrupts(struct hfi1_devdata *dd)
12603 {
12604 int i;
12605
12606 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12607 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
12608
12609 write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
12610 write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
12611 write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
12612 write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
12613 write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
12614 write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
12615 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
12616 for (i = 0; i < dd->chip_send_contexts; i++)
12617 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
12618 for (i = 0; i < dd->chip_sdma_engines; i++)
12619 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
12620
12621 write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
12622 write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
12623 write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
12624 }
12625
12626 /* Move to pcie.c? */
12627 static void disable_intx(struct pci_dev *pdev)
12628 {
12629 pci_intx(pdev, 0);
12630 }
12631
12632 static void clean_up_interrupts(struct hfi1_devdata *dd)
12633 {
12634 int i;
12635
12636 /* remove irqs - must happen before disabling/turning off */
12637 if (dd->num_msix_entries) {
12638 /* MSI-X */
12639 struct hfi1_msix_entry *me = dd->msix_entries;
12640
12641 for (i = 0; i < dd->num_msix_entries; i++, me++) {
12642 if (!me->arg) /* => no irq, no affinity */
12643 continue;
12644 hfi1_put_irq_affinity(dd, &dd->msix_entries[i]);
12645 free_irq(me->msix.vector, me->arg);
12646 }
12647 } else {
12648 /* INTx */
12649 if (dd->requested_intx_irq) {
12650 free_irq(dd->pcidev->irq, dd);
12651 dd->requested_intx_irq = 0;
12652 }
12653 }
12654
12655 /* turn off interrupts */
12656 if (dd->num_msix_entries) {
12657 /* MSI-X */
12658 pci_disable_msix(dd->pcidev);
12659 } else {
12660 /* INTx */
12661 disable_intx(dd->pcidev);
12662 }
12663
12664 /* clean structures */
12665 kfree(dd->msix_entries);
12666 dd->msix_entries = NULL;
12667 dd->num_msix_entries = 0;
12668 }
12669
12670 /*
12671 * Remap the interrupt source from the general handler to the given MSI-X
12672 * interrupt.
12673 */
12674 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
12675 {
12676 u64 reg;
12677 int m, n;
12678
12679 /* clear from the handled mask of the general interrupt */
12680 m = isrc / 64;
12681 n = isrc % 64;
12682 dd->gi_mask[m] &= ~((u64)1 << n);
12683
12684 /* direct the chip source to the given MSI-X interrupt */
12685 m = isrc / 8;
12686 n = isrc % 8;
12687 reg = read_csr(dd, CCE_INT_MAP + (8 * m));
12688 reg &= ~((u64)0xff << (8 * n));
12689 reg |= ((u64)msix_intr & 0xff) << (8 * n);
12690 write_csr(dd, CCE_INT_MAP + (8 * m), reg);
12691 }
12692
12693 static void remap_sdma_interrupts(struct hfi1_devdata *dd,
12694 int engine, int msix_intr)
12695 {
12696 /*
12697 * SDMA engine interrupt sources grouped by type, rather than
12698 * engine. Per-engine interrupts are as follows:
12699 * SDMA
12700 * SDMAProgress
12701 * SDMAIdle
12702 */
12703 remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
12704 msix_intr);
12705 remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
12706 msix_intr);
12707 remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
12708 msix_intr);
12709 }
12710
12711 static int request_intx_irq(struct hfi1_devdata *dd)
12712 {
12713 int ret;
12714
12715 snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
12716 dd->unit);
12717 ret = request_irq(dd->pcidev->irq, general_interrupt,
12718 IRQF_SHARED, dd->intx_name, dd);
12719 if (ret)
12720 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
12721 ret);
12722 else
12723 dd->requested_intx_irq = 1;
12724 return ret;
12725 }
12726
12727 static int request_msix_irqs(struct hfi1_devdata *dd)
12728 {
12729 int first_general, last_general;
12730 int first_sdma, last_sdma;
12731 int first_rx, last_rx;
12732 int i, ret = 0;
12733
12734 /* calculate the ranges we are going to use */
12735 first_general = 0;
12736 last_general = first_general + 1;
12737 first_sdma = last_general;
12738 last_sdma = first_sdma + dd->num_sdma;
12739 first_rx = last_sdma;
12740 last_rx = first_rx + dd->n_krcv_queues;
12741
12742 /*
12743 * Sanity check - the code expects all SDMA chip source
12744 * interrupts to be in the same CSR, starting at bit 0. Verify
12745 * that this is true by checking the bit location of the start.
12746 */
12747 BUILD_BUG_ON(IS_SDMA_START % 64);
12748
12749 for (i = 0; i < dd->num_msix_entries; i++) {
12750 struct hfi1_msix_entry *me = &dd->msix_entries[i];
12751 const char *err_info;
12752 irq_handler_t handler;
12753 irq_handler_t thread = NULL;
12754 void *arg;
12755 int idx;
12756 struct hfi1_ctxtdata *rcd = NULL;
12757 struct sdma_engine *sde = NULL;
12758
12759 /* obtain the arguments to request_irq */
12760 if (first_general <= i && i < last_general) {
12761 idx = i - first_general;
12762 handler = general_interrupt;
12763 arg = dd;
12764 snprintf(me->name, sizeof(me->name),
12765 DRIVER_NAME "_%d", dd->unit);
12766 err_info = "general";
12767 me->type = IRQ_GENERAL;
12768 } else if (first_sdma <= i && i < last_sdma) {
12769 idx = i - first_sdma;
12770 sde = &dd->per_sdma[idx];
12771 handler = sdma_interrupt;
12772 arg = sde;
12773 snprintf(me->name, sizeof(me->name),
12774 DRIVER_NAME "_%d sdma%d", dd->unit, idx);
12775 err_info = "sdma";
12776 remap_sdma_interrupts(dd, idx, i);
12777 me->type = IRQ_SDMA;
12778 } else if (first_rx <= i && i < last_rx) {
12779 idx = i - first_rx;
12780 rcd = dd->rcd[idx];
12781 /* no interrupt if no rcd */
12782 if (!rcd)
12783 continue;
12784 /*
12785 * Set the interrupt register and mask for this
12786 * context's interrupt.
12787 */
12788 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
12789 rcd->imask = ((u64)1) <<
12790 ((IS_RCVAVAIL_START + idx) % 64);
12791 handler = receive_context_interrupt;
12792 thread = receive_context_thread;
12793 arg = rcd;
12794 snprintf(me->name, sizeof(me->name),
12795 DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
12796 err_info = "receive context";
12797 remap_intr(dd, IS_RCVAVAIL_START + idx, i);
12798 me->type = IRQ_RCVCTXT;
12799 } else {
12800 /* not in our expected range - complain, then
12801 * ignore it
12802 */
12803 dd_dev_err(dd,
12804 "Unexpected extra MSI-X interrupt %d\n", i);
12805 continue;
12806 }
12807 /* no argument, no interrupt */
12808 if (!arg)
12809 continue;
12810 /* make sure the name is terminated */
12811 me->name[sizeof(me->name) - 1] = 0;
12812
12813 ret = request_threaded_irq(me->msix.vector, handler, thread, 0,
12814 me->name, arg);
12815 if (ret) {
12816 dd_dev_err(dd,
12817 "unable to allocate %s interrupt, vector %d, index %d, err %d\n",
12818 err_info, me->msix.vector, idx, ret);
12819 return ret;
12820 }
12821 /*
12822 * assign arg after request_irq call, so it will be
12823 * cleaned up
12824 */
12825 me->arg = arg;
12826
12827 ret = hfi1_get_irq_affinity(dd, me);
12828 if (ret)
12829 dd_dev_err(dd,
12830 "unable to pin IRQ %d\n", ret);
12831 }
12832
12833 return ret;
12834 }
12835
12836 /*
12837 * Set the general handler to accept all interrupts, remap all
12838 * chip interrupts back to MSI-X 0.
12839 */
12840 static void reset_interrupts(struct hfi1_devdata *dd)
12841 {
12842 int i;
12843
12844 /* all interrupts handled by the general handler */
12845 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12846 dd->gi_mask[i] = ~(u64)0;
12847
12848 /* all chip interrupts map to MSI-X 0 */
12849 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
12850 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
12851 }
12852
12853 static int set_up_interrupts(struct hfi1_devdata *dd)
12854 {
12855 struct hfi1_msix_entry *entries;
12856 u32 total, request;
12857 int i, ret;
12858 int single_interrupt = 0; /* we expect to have all the interrupts */
12859
12860 /*
12861 * Interrupt count:
12862 * 1 general, "slow path" interrupt (includes the SDMA engines
12863 * slow source, SDMACleanupDone)
12864 * N interrupts - one per used SDMA engine
12865 * M interrupt - one per kernel receive context
12866 */
12867 total = 1 + dd->num_sdma + dd->n_krcv_queues;
12868
12869 entries = kcalloc(total, sizeof(*entries), GFP_KERNEL);
12870 if (!entries) {
12871 ret = -ENOMEM;
12872 goto fail;
12873 }
12874 /* 1-1 MSI-X entry assignment */
12875 for (i = 0; i < total; i++)
12876 entries[i].msix.entry = i;
12877
12878 /* ask for MSI-X interrupts */
12879 request = total;
12880 request_msix(dd, &request, entries);
12881
12882 if (request == 0) {
12883 /* using INTx */
12884 /* dd->num_msix_entries already zero */
12885 kfree(entries);
12886 single_interrupt = 1;
12887 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
12888 } else {
12889 /* using MSI-X */
12890 dd->num_msix_entries = request;
12891 dd->msix_entries = entries;
12892
12893 if (request != total) {
12894 /* using MSI-X, with reduced interrupts */
12895 dd_dev_err(
12896 dd,
12897 "cannot handle reduced interrupt case, want %u, got %u\n",
12898 total, request);
12899 ret = -EINVAL;
12900 goto fail;
12901 }
12902 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
12903 }
12904
12905 /* mask all interrupts */
12906 set_intr_state(dd, 0);
12907 /* clear all pending interrupts */
12908 clear_all_interrupts(dd);
12909
12910 /* reset general handler mask, chip MSI-X mappings */
12911 reset_interrupts(dd);
12912
12913 if (single_interrupt)
12914 ret = request_intx_irq(dd);
12915 else
12916 ret = request_msix_irqs(dd);
12917 if (ret)
12918 goto fail;
12919
12920 return 0;
12921
12922 fail:
12923 clean_up_interrupts(dd);
12924 return ret;
12925 }
12926
12927 /*
12928 * Set up context values in dd. Sets:
12929 *
12930 * num_rcv_contexts - number of contexts being used
12931 * n_krcv_queues - number of kernel contexts
12932 * first_user_ctxt - first non-kernel context in array of contexts
12933 * freectxts - number of free user contexts
12934 * num_send_contexts - number of PIO send contexts being used
12935 */
12936 static int set_up_context_variables(struct hfi1_devdata *dd)
12937 {
12938 unsigned long num_kernel_contexts;
12939 int total_contexts;
12940 int ret;
12941 unsigned ngroups;
12942 int qos_rmt_count;
12943 int user_rmt_reduced;
12944
12945 /*
12946 * Kernel receive contexts:
12947 * - Context 0 - control context (VL15/multicast/error)
12948 * - Context 1 - first kernel context
12949 * - Context 2 - second kernel context
12950 * ...
12951 */
12952 if (n_krcvqs)
12953 /*
12954 * n_krcvqs is the sum of module parameter kernel receive
12955 * contexts, krcvqs[]. It does not include the control
12956 * context, so add that.
12957 */
12958 num_kernel_contexts = n_krcvqs + 1;
12959 else
12960 num_kernel_contexts = DEFAULT_KRCVQS + 1;
12961 /*
12962 * Every kernel receive context needs an ACK send context.
12963 * one send context is allocated for each VL{0-7} and VL15
12964 */
12965 if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
12966 dd_dev_err(dd,
12967 "Reducing # kernel rcv contexts to: %d, from %lu\n",
12968 (int)(dd->chip_send_contexts - num_vls - 1),
12969 num_kernel_contexts);
12970 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
12971 }
12972 /*
12973 * User contexts:
12974 * - default to 1 user context per real (non-HT) CPU core if
12975 * num_user_contexts is negative
12976 */
12977 if (num_user_contexts < 0)
12978 num_user_contexts =
12979 cpumask_weight(&node_affinity.real_cpu_mask);
12980
12981 total_contexts = num_kernel_contexts + num_user_contexts;
12982
12983 /*
12984 * Adjust the counts given a global max.
12985 */
12986 if (total_contexts > dd->chip_rcv_contexts) {
12987 dd_dev_err(dd,
12988 "Reducing # user receive contexts to: %d, from %d\n",
12989 (int)(dd->chip_rcv_contexts - num_kernel_contexts),
12990 (int)num_user_contexts);
12991 num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
12992 /* recalculate */
12993 total_contexts = num_kernel_contexts + num_user_contexts;
12994 }
12995
12996 /* each user context requires an entry in the RMT */
12997 qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
12998 if (qos_rmt_count + num_user_contexts > NUM_MAP_ENTRIES) {
12999 user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
13000 dd_dev_err(dd,
13001 "RMT size is reducing the number of user receive contexts from %d to %d\n",
13002 (int)num_user_contexts,
13003 user_rmt_reduced);
13004 /* recalculate */
13005 num_user_contexts = user_rmt_reduced;
13006 total_contexts = num_kernel_contexts + num_user_contexts;
13007 }
13008
13009 /* the first N are kernel contexts, the rest are user contexts */
13010 dd->num_rcv_contexts = total_contexts;
13011 dd->n_krcv_queues = num_kernel_contexts;
13012 dd->first_user_ctxt = num_kernel_contexts;
13013 dd->num_user_contexts = num_user_contexts;
13014 dd->freectxts = num_user_contexts;
13015 dd_dev_info(dd,
13016 "rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
13017 (int)dd->chip_rcv_contexts,
13018 (int)dd->num_rcv_contexts,
13019 (int)dd->n_krcv_queues,
13020 (int)dd->num_rcv_contexts - dd->n_krcv_queues);
13021
13022 /*
13023 * Receive array allocation:
13024 * All RcvArray entries are divided into groups of 8. This
13025 * is required by the hardware and will speed up writes to
13026 * consecutive entries by using write-combining of the entire
13027 * cacheline.
13028 *
13029 * The number of groups are evenly divided among all contexts.
13030 * any left over groups will be given to the first N user
13031 * contexts.
13032 */
13033 dd->rcv_entries.group_size = RCV_INCREMENT;
13034 ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
13035 dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13036 dd->rcv_entries.nctxt_extra = ngroups -
13037 (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13038 dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13039 dd->rcv_entries.ngroups,
13040 dd->rcv_entries.nctxt_extra);
13041 if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13042 MAX_EAGER_ENTRIES * 2) {
13043 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13044 dd->rcv_entries.group_size;
13045 dd_dev_info(dd,
13046 "RcvArray group count too high, change to %u\n",
13047 dd->rcv_entries.ngroups);
13048 dd->rcv_entries.nctxt_extra = 0;
13049 }
13050 /*
13051 * PIO send contexts
13052 */
13053 ret = init_sc_pools_and_sizes(dd);
13054 if (ret >= 0) { /* success */
13055 dd->num_send_contexts = ret;
13056 dd_dev_info(
13057 dd,
13058 "send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13059 dd->chip_send_contexts,
13060 dd->num_send_contexts,
13061 dd->sc_sizes[SC_KERNEL].count,
13062 dd->sc_sizes[SC_ACK].count,
13063 dd->sc_sizes[SC_USER].count,
13064 dd->sc_sizes[SC_VL15].count);
13065 ret = 0; /* success */
13066 }
13067
13068 return ret;
13069 }
13070
13071 /*
13072 * Set the device/port partition key table. The MAD code
13073 * will ensure that, at least, the partial management
13074 * partition key is present in the table.
13075 */
13076 static void set_partition_keys(struct hfi1_pportdata *ppd)
13077 {
13078 struct hfi1_devdata *dd = ppd->dd;
13079 u64 reg = 0;
13080 int i;
13081
13082 dd_dev_info(dd, "Setting partition keys\n");
13083 for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13084 reg |= (ppd->pkeys[i] &
13085 RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13086 ((i % 4) *
13087 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13088 /* Each register holds 4 PKey values. */
13089 if ((i % 4) == 3) {
13090 write_csr(dd, RCV_PARTITION_KEY +
13091 ((i - 3) * 2), reg);
13092 reg = 0;
13093 }
13094 }
13095
13096 /* Always enable HW pkeys check when pkeys table is set */
13097 add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13098 }
13099
13100 /*
13101 * These CSRs and memories are uninitialized on reset and must be
13102 * written before reading to set the ECC/parity bits.
13103 *
13104 * NOTE: All user context CSRs that are not mmaped write-only
13105 * (e.g. the TID flows) must be initialized even if the driver never
13106 * reads them.
13107 */
13108 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13109 {
13110 int i, j;
13111
13112 /* CceIntMap */
13113 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13114 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13115
13116 /* SendCtxtCreditReturnAddr */
13117 for (i = 0; i < dd->chip_send_contexts; i++)
13118 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13119
13120 /* PIO Send buffers */
13121 /* SDMA Send buffers */
13122 /*
13123 * These are not normally read, and (presently) have no method
13124 * to be read, so are not pre-initialized
13125 */
13126
13127 /* RcvHdrAddr */
13128 /* RcvHdrTailAddr */
13129 /* RcvTidFlowTable */
13130 for (i = 0; i < dd->chip_rcv_contexts; i++) {
13131 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13132 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13133 for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13134 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13135 }
13136
13137 /* RcvArray */
13138 for (i = 0; i < dd->chip_rcv_array_count; i++)
13139 write_csr(dd, RCV_ARRAY + (8 * i),
13140 RCV_ARRAY_RT_WRITE_ENABLE_SMASK);
13141
13142 /* RcvQPMapTable */
13143 for (i = 0; i < 32; i++)
13144 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13145 }
13146
13147 /*
13148 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13149 */
13150 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13151 u64 ctrl_bits)
13152 {
13153 unsigned long timeout;
13154 u64 reg;
13155
13156 /* is the condition present? */
13157 reg = read_csr(dd, CCE_STATUS);
13158 if ((reg & status_bits) == 0)
13159 return;
13160
13161 /* clear the condition */
13162 write_csr(dd, CCE_CTRL, ctrl_bits);
13163
13164 /* wait for the condition to clear */
13165 timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13166 while (1) {
13167 reg = read_csr(dd, CCE_STATUS);
13168 if ((reg & status_bits) == 0)
13169 return;
13170 if (time_after(jiffies, timeout)) {
13171 dd_dev_err(dd,
13172 "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13173 status_bits, reg & status_bits);
13174 return;
13175 }
13176 udelay(1);
13177 }
13178 }
13179
13180 /* set CCE CSRs to chip reset defaults */
13181 static void reset_cce_csrs(struct hfi1_devdata *dd)
13182 {
13183 int i;
13184
13185 /* CCE_REVISION read-only */
13186 /* CCE_REVISION2 read-only */
13187 /* CCE_CTRL - bits clear automatically */
13188 /* CCE_STATUS read-only, use CceCtrl to clear */
13189 clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13190 clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13191 clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13192 for (i = 0; i < CCE_NUM_SCRATCH; i++)
13193 write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13194 /* CCE_ERR_STATUS read-only */
13195 write_csr(dd, CCE_ERR_MASK, 0);
13196 write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13197 /* CCE_ERR_FORCE leave alone */
13198 for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13199 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13200 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13201 /* CCE_PCIE_CTRL leave alone */
13202 for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13203 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13204 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13205 CCE_MSIX_TABLE_UPPER_RESETCSR);
13206 }
13207 for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13208 /* CCE_MSIX_PBA read-only */
13209 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13210 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13211 }
13212 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13213 write_csr(dd, CCE_INT_MAP, 0);
13214 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13215 /* CCE_INT_STATUS read-only */
13216 write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13217 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13218 /* CCE_INT_FORCE leave alone */
13219 /* CCE_INT_BLOCKED read-only */
13220 }
13221 for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13222 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13223 }
13224
13225 /* set MISC CSRs to chip reset defaults */
13226 static void reset_misc_csrs(struct hfi1_devdata *dd)
13227 {
13228 int i;
13229
13230 for (i = 0; i < 32; i++) {
13231 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13232 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13233 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13234 }
13235 /*
13236 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13237 * only be written 128-byte chunks
13238 */
13239 /* init RSA engine to clear lingering errors */
13240 write_csr(dd, MISC_CFG_RSA_CMD, 1);
13241 write_csr(dd, MISC_CFG_RSA_MU, 0);
13242 write_csr(dd, MISC_CFG_FW_CTRL, 0);
13243 /* MISC_STS_8051_DIGEST read-only */
13244 /* MISC_STS_SBM_DIGEST read-only */
13245 /* MISC_STS_PCIE_DIGEST read-only */
13246 /* MISC_STS_FAB_DIGEST read-only */
13247 /* MISC_ERR_STATUS read-only */
13248 write_csr(dd, MISC_ERR_MASK, 0);
13249 write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13250 /* MISC_ERR_FORCE leave alone */
13251 }
13252
13253 /* set TXE CSRs to chip reset defaults */
13254 static void reset_txe_csrs(struct hfi1_devdata *dd)
13255 {
13256 int i;
13257
13258 /*
13259 * TXE Kernel CSRs
13260 */
13261 write_csr(dd, SEND_CTRL, 0);
13262 __cm_reset(dd, 0); /* reset CM internal state */
13263 /* SEND_CONTEXTS read-only */
13264 /* SEND_DMA_ENGINES read-only */
13265 /* SEND_PIO_MEM_SIZE read-only */
13266 /* SEND_DMA_MEM_SIZE read-only */
13267 write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13268 pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */
13269 /* SEND_PIO_ERR_STATUS read-only */
13270 write_csr(dd, SEND_PIO_ERR_MASK, 0);
13271 write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13272 /* SEND_PIO_ERR_FORCE leave alone */
13273 /* SEND_DMA_ERR_STATUS read-only */
13274 write_csr(dd, SEND_DMA_ERR_MASK, 0);
13275 write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13276 /* SEND_DMA_ERR_FORCE leave alone */
13277 /* SEND_EGRESS_ERR_STATUS read-only */
13278 write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13279 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13280 /* SEND_EGRESS_ERR_FORCE leave alone */
13281 write_csr(dd, SEND_BTH_QP, 0);
13282 write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13283 write_csr(dd, SEND_SC2VLT0, 0);
13284 write_csr(dd, SEND_SC2VLT1, 0);
13285 write_csr(dd, SEND_SC2VLT2, 0);
13286 write_csr(dd, SEND_SC2VLT3, 0);
13287 write_csr(dd, SEND_LEN_CHECK0, 0);
13288 write_csr(dd, SEND_LEN_CHECK1, 0);
13289 /* SEND_ERR_STATUS read-only */
13290 write_csr(dd, SEND_ERR_MASK, 0);
13291 write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13292 /* SEND_ERR_FORCE read-only */
13293 for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13294 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13295 for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13296 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13297 for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
13298 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13299 for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13300 write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13301 for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13302 write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13303 write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13304 write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13305 /* SEND_CM_CREDIT_USED_STATUS read-only */
13306 write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13307 write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13308 write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13309 write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13310 write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13311 for (i = 0; i < TXE_NUM_DATA_VL; i++)
13312 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13313 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13314 /* SEND_CM_CREDIT_USED_VL read-only */
13315 /* SEND_CM_CREDIT_USED_VL15 read-only */
13316 /* SEND_EGRESS_CTXT_STATUS read-only */
13317 /* SEND_EGRESS_SEND_DMA_STATUS read-only */
13318 write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13319 /* SEND_EGRESS_ERR_INFO read-only */
13320 /* SEND_EGRESS_ERR_SOURCE read-only */
13321
13322 /*
13323 * TXE Per-Context CSRs
13324 */
13325 for (i = 0; i < dd->chip_send_contexts; i++) {
13326 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13327 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13328 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13329 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13330 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13331 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13332 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13333 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13334 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13335 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13336 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13337 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13338 }
13339
13340 /*
13341 * TXE Per-SDMA CSRs
13342 */
13343 for (i = 0; i < dd->chip_sdma_engines; i++) {
13344 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13345 /* SEND_DMA_STATUS read-only */
13346 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13347 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13348 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13349 /* SEND_DMA_HEAD read-only */
13350 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13351 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13352 /* SEND_DMA_IDLE_CNT read-only */
13353 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13354 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13355 /* SEND_DMA_DESC_FETCHED_CNT read-only */
13356 /* SEND_DMA_ENG_ERR_STATUS read-only */
13357 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13358 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13359 /* SEND_DMA_ENG_ERR_FORCE leave alone */
13360 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13361 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13362 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13363 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13364 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13365 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13366 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13367 }
13368 }
13369
13370 /*
13371 * Expect on entry:
13372 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13373 */
13374 static void init_rbufs(struct hfi1_devdata *dd)
13375 {
13376 u64 reg;
13377 int count;
13378
13379 /*
13380 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13381 * clear.
13382 */
13383 count = 0;
13384 while (1) {
13385 reg = read_csr(dd, RCV_STATUS);
13386 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13387 | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13388 break;
13389 /*
13390 * Give up after 1ms - maximum wait time.
13391 *
13392 * RBuf size is 148KiB. Slowest possible is PCIe Gen1 x1 at
13393 * 250MB/s bandwidth. Lower rate to 66% for overhead to get:
13394 * 148 KB / (66% * 250MB/s) = 920us
13395 */
13396 if (count++ > 500) {
13397 dd_dev_err(dd,
13398 "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13399 __func__, reg);
13400 break;
13401 }
13402 udelay(2); /* do not busy-wait the CSR */
13403 }
13404
13405 /* start the init - expect RcvCtrl to be 0 */
13406 write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13407
13408 /*
13409 * Read to force the write of Rcvtrl.RxRbufInit. There is a brief
13410 * period after the write before RcvStatus.RxRbufInitDone is valid.
13411 * The delay in the first run through the loop below is sufficient and
13412 * required before the first read of RcvStatus.RxRbufInintDone.
13413 */
13414 read_csr(dd, RCV_CTRL);
13415
13416 /* wait for the init to finish */
13417 count = 0;
13418 while (1) {
13419 /* delay is required first time through - see above */
13420 udelay(2); /* do not busy-wait the CSR */
13421 reg = read_csr(dd, RCV_STATUS);
13422 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13423 break;
13424
13425 /* give up after 100us - slowest possible at 33MHz is 73us */
13426 if (count++ > 50) {
13427 dd_dev_err(dd,
13428 "%s: RcvStatus.RxRbufInit not set, continuing\n",
13429 __func__);
13430 break;
13431 }
13432 }
13433 }
13434
13435 /* set RXE CSRs to chip reset defaults */
13436 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13437 {
13438 int i, j;
13439
13440 /*
13441 * RXE Kernel CSRs
13442 */
13443 write_csr(dd, RCV_CTRL, 0);
13444 init_rbufs(dd);
13445 /* RCV_STATUS read-only */
13446 /* RCV_CONTEXTS read-only */
13447 /* RCV_ARRAY_CNT read-only */
13448 /* RCV_BUF_SIZE read-only */
13449 write_csr(dd, RCV_BTH_QP, 0);
13450 write_csr(dd, RCV_MULTICAST, 0);
13451 write_csr(dd, RCV_BYPASS, 0);
13452 write_csr(dd, RCV_VL15, 0);
13453 /* this is a clear-down */
13454 write_csr(dd, RCV_ERR_INFO,
13455 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13456 /* RCV_ERR_STATUS read-only */
13457 write_csr(dd, RCV_ERR_MASK, 0);
13458 write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13459 /* RCV_ERR_FORCE leave alone */
13460 for (i = 0; i < 32; i++)
13461 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13462 for (i = 0; i < 4; i++)
13463 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13464 for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13465 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13466 for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13467 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13468 for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++) {
13469 write_csr(dd, RCV_RSM_CFG + (8 * i), 0);
13470 write_csr(dd, RCV_RSM_SELECT + (8 * i), 0);
13471 write_csr(dd, RCV_RSM_MATCH + (8 * i), 0);
13472 }
13473 for (i = 0; i < 32; i++)
13474 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13475
13476 /*
13477 * RXE Kernel and User Per-Context CSRs
13478 */
13479 for (i = 0; i < dd->chip_rcv_contexts; i++) {
13480 /* kernel */
13481 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13482 /* RCV_CTXT_STATUS read-only */
13483 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13484 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13485 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13486 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13487 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13488 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13489 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13490 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13491 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13492 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13493
13494 /* user */
13495 /* RCV_HDR_TAIL read-only */
13496 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13497 /* RCV_EGR_INDEX_TAIL read-only */
13498 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13499 /* RCV_EGR_OFFSET_TAIL read-only */
13500 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13501 write_uctxt_csr(dd, i,
13502 RCV_TID_FLOW_TABLE + (8 * j), 0);
13503 }
13504 }
13505 }
13506
13507 /*
13508 * Set sc2vl tables.
13509 *
13510 * They power on to zeros, so to avoid send context errors
13511 * they need to be set:
13512 *
13513 * SC 0-7 -> VL 0-7 (respectively)
13514 * SC 15 -> VL 15
13515 * otherwise
13516 * -> VL 0
13517 */
13518 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13519 {
13520 int i;
13521 /* init per architecture spec, constrained by hardware capability */
13522
13523 /* HFI maps sent packets */
13524 write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13525 0,
13526 0, 0, 1, 1,
13527 2, 2, 3, 3,
13528 4, 4, 5, 5,
13529 6, 6, 7, 7));
13530 write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13531 1,
13532 8, 0, 9, 0,
13533 10, 0, 11, 0,
13534 12, 0, 13, 0,
13535 14, 0, 15, 15));
13536 write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13537 2,
13538 16, 0, 17, 0,
13539 18, 0, 19, 0,
13540 20, 0, 21, 0,
13541 22, 0, 23, 0));
13542 write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13543 3,
13544 24, 0, 25, 0,
13545 26, 0, 27, 0,
13546 28, 0, 29, 0,
13547 30, 0, 31, 0));
13548
13549 /* DC maps received packets */
13550 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13551 15_0,
13552 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,
13553 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13554 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13555 31_16,
13556 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13557 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13558
13559 /* initialize the cached sc2vl values consistently with h/w */
13560 for (i = 0; i < 32; i++) {
13561 if (i < 8 || i == 15)
13562 *((u8 *)(dd->sc2vl) + i) = (u8)i;
13563 else
13564 *((u8 *)(dd->sc2vl) + i) = 0;
13565 }
13566 }
13567
13568 /*
13569 * Read chip sizes and then reset parts to sane, disabled, values. We cannot
13570 * depend on the chip going through a power-on reset - a driver may be loaded
13571 * and unloaded many times.
13572 *
13573 * Do not write any CSR values to the chip in this routine - there may be
13574 * a reset following the (possible) FLR in this routine.
13575 *
13576 */
13577 static void init_chip(struct hfi1_devdata *dd)
13578 {
13579 int i;
13580
13581 /*
13582 * Put the HFI CSRs in a known state.
13583 * Combine this with a DC reset.
13584 *
13585 * Stop the device from doing anything while we do a
13586 * reset. We know there are no other active users of
13587 * the device since we are now in charge. Turn off
13588 * off all outbound and inbound traffic and make sure
13589 * the device does not generate any interrupts.
13590 */
13591
13592 /* disable send contexts and SDMA engines */
13593 write_csr(dd, SEND_CTRL, 0);
13594 for (i = 0; i < dd->chip_send_contexts; i++)
13595 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13596 for (i = 0; i < dd->chip_sdma_engines; i++)
13597 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13598 /* disable port (turn off RXE inbound traffic) and contexts */
13599 write_csr(dd, RCV_CTRL, 0);
13600 for (i = 0; i < dd->chip_rcv_contexts; i++)
13601 write_csr(dd, RCV_CTXT_CTRL, 0);
13602 /* mask all interrupt sources */
13603 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13604 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
13605
13606 /*
13607 * DC Reset: do a full DC reset before the register clear.
13608 * A recommended length of time to hold is one CSR read,
13609 * so reread the CceDcCtrl. Then, hold the DC in reset
13610 * across the clear.
13611 */
13612 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
13613 (void)read_csr(dd, CCE_DC_CTRL);
13614
13615 if (use_flr) {
13616 /*
13617 * A FLR will reset the SPC core and part of the PCIe.
13618 * The parts that need to be restored have already been
13619 * saved.
13620 */
13621 dd_dev_info(dd, "Resetting CSRs with FLR\n");
13622
13623 /* do the FLR, the DC reset will remain */
13624 hfi1_pcie_flr(dd);
13625
13626 /* restore command and BARs */
13627 restore_pci_variables(dd);
13628
13629 if (is_ax(dd)) {
13630 dd_dev_info(dd, "Resetting CSRs with FLR\n");
13631 hfi1_pcie_flr(dd);
13632 restore_pci_variables(dd);
13633 }
13634 } else {
13635 dd_dev_info(dd, "Resetting CSRs with writes\n");
13636 reset_cce_csrs(dd);
13637 reset_txe_csrs(dd);
13638 reset_rxe_csrs(dd);
13639 reset_misc_csrs(dd);
13640 }
13641 /* clear the DC reset */
13642 write_csr(dd, CCE_DC_CTRL, 0);
13643
13644 /* Set the LED off */
13645 setextled(dd, 0);
13646
13647 /*
13648 * Clear the QSFP reset.
13649 * An FLR enforces a 0 on all out pins. The driver does not touch
13650 * ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and
13651 * anything plugged constantly in reset, if it pays attention
13652 * to RESET_N.
13653 * Prime examples of this are optical cables. Set all pins high.
13654 * I2CCLK and I2CDAT will change per direction, and INT_N and
13655 * MODPRS_N are input only and their value is ignored.
13656 */
13657 write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
13658 write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
13659 init_chip_resources(dd);
13660 }
13661
13662 static void init_early_variables(struct hfi1_devdata *dd)
13663 {
13664 int i;
13665
13666 /* assign link credit variables */
13667 dd->vau = CM_VAU;
13668 dd->link_credits = CM_GLOBAL_CREDITS;
13669 if (is_ax(dd))
13670 dd->link_credits--;
13671 dd->vcu = cu_to_vcu(hfi1_cu);
13672 /* enough room for 8 MAD packets plus header - 17K */
13673 dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
13674 if (dd->vl15_init > dd->link_credits)
13675 dd->vl15_init = dd->link_credits;
13676
13677 write_uninitialized_csrs_and_memories(dd);
13678
13679 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
13680 for (i = 0; i < dd->num_pports; i++) {
13681 struct hfi1_pportdata *ppd = &dd->pport[i];
13682
13683 set_partition_keys(ppd);
13684 }
13685 init_sc2vl_tables(dd);
13686 }
13687
13688 static void init_kdeth_qp(struct hfi1_devdata *dd)
13689 {
13690 /* user changed the KDETH_QP */
13691 if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
13692 /* out of range or illegal value */
13693 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
13694 kdeth_qp = 0;
13695 }
13696 if (kdeth_qp == 0) /* not set, or failed range check */
13697 kdeth_qp = DEFAULT_KDETH_QP;
13698
13699 write_csr(dd, SEND_BTH_QP,
13700 (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
13701 SEND_BTH_QP_KDETH_QP_SHIFT);
13702
13703 write_csr(dd, RCV_BTH_QP,
13704 (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
13705 RCV_BTH_QP_KDETH_QP_SHIFT);
13706 }
13707
13708 /**
13709 * init_qpmap_table
13710 * @dd - device data
13711 * @first_ctxt - first context
13712 * @last_ctxt - first context
13713 *
13714 * This return sets the qpn mapping table that
13715 * is indexed by qpn[8:1].
13716 *
13717 * The routine will round robin the 256 settings
13718 * from first_ctxt to last_ctxt.
13719 *
13720 * The first/last looks ahead to having specialized
13721 * receive contexts for mgmt and bypass. Normal
13722 * verbs traffic will assumed to be on a range
13723 * of receive contexts.
13724 */
13725 static void init_qpmap_table(struct hfi1_devdata *dd,
13726 u32 first_ctxt,
13727 u32 last_ctxt)
13728 {
13729 u64 reg = 0;
13730 u64 regno = RCV_QP_MAP_TABLE;
13731 int i;
13732 u64 ctxt = first_ctxt;
13733
13734 for (i = 0; i < 256; i++) {
13735 reg |= ctxt << (8 * (i % 8));
13736 ctxt++;
13737 if (ctxt > last_ctxt)
13738 ctxt = first_ctxt;
13739 if (i % 8 == 7) {
13740 write_csr(dd, regno, reg);
13741 reg = 0;
13742 regno += 8;
13743 }
13744 }
13745
13746 add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
13747 | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
13748 }
13749
13750 struct rsm_map_table {
13751 u64 map[NUM_MAP_REGS];
13752 unsigned int used;
13753 };
13754
13755 struct rsm_rule_data {
13756 u8 offset;
13757 u8 pkt_type;
13758 u32 field1_off;
13759 u32 field2_off;
13760 u32 index1_off;
13761 u32 index1_width;
13762 u32 index2_off;
13763 u32 index2_width;
13764 u32 mask1;
13765 u32 value1;
13766 u32 mask2;
13767 u32 value2;
13768 };
13769
13770 /*
13771 * Return an initialized RMT map table for users to fill in. OK if it
13772 * returns NULL, indicating no table.
13773 */
13774 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
13775 {
13776 struct rsm_map_table *rmt;
13777 u8 rxcontext = is_ax(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */
13778
13779 rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
13780 if (rmt) {
13781 memset(rmt->map, rxcontext, sizeof(rmt->map));
13782 rmt->used = 0;
13783 }
13784
13785 return rmt;
13786 }
13787
13788 /*
13789 * Write the final RMT map table to the chip and free the table. OK if
13790 * table is NULL.
13791 */
13792 static void complete_rsm_map_table(struct hfi1_devdata *dd,
13793 struct rsm_map_table *rmt)
13794 {
13795 int i;
13796
13797 if (rmt) {
13798 /* write table to chip */
13799 for (i = 0; i < NUM_MAP_REGS; i++)
13800 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
13801
13802 /* enable RSM */
13803 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
13804 }
13805 }
13806
13807 /*
13808 * Add a receive side mapping rule.
13809 */
13810 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
13811 struct rsm_rule_data *rrd)
13812 {
13813 write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
13814 (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
13815 1ull << rule_index | /* enable bit */
13816 (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
13817 write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
13818 (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
13819 (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
13820 (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
13821 (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
13822 (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
13823 (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
13824 write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
13825 (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
13826 (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
13827 (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
13828 (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
13829 }
13830
13831 /* return the number of RSM map table entries that will be used for QOS */
13832 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
13833 unsigned int *np)
13834 {
13835 int i;
13836 unsigned int m, n;
13837 u8 max_by_vl = 0;
13838
13839 /* is QOS active at all? */
13840 if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
13841 num_vls == 1 ||
13842 krcvqsset <= 1)
13843 goto no_qos;
13844
13845 /* determine bits for qpn */
13846 for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
13847 if (krcvqs[i] > max_by_vl)
13848 max_by_vl = krcvqs[i];
13849 if (max_by_vl > 32)
13850 goto no_qos;
13851 m = ilog2(__roundup_pow_of_two(max_by_vl));
13852
13853 /* determine bits for vl */
13854 n = ilog2(__roundup_pow_of_two(num_vls));
13855
13856 /* reject if too much is used */
13857 if ((m + n) > 7)
13858 goto no_qos;
13859
13860 if (mp)
13861 *mp = m;
13862 if (np)
13863 *np = n;
13864
13865 return 1 << (m + n);
13866
13867 no_qos:
13868 if (mp)
13869 *mp = 0;
13870 if (np)
13871 *np = 0;
13872 return 0;
13873 }
13874
13875 /**
13876 * init_qos - init RX qos
13877 * @dd - device data
13878 * @rmt - RSM map table
13879 *
13880 * This routine initializes Rule 0 and the RSM map table to implement
13881 * quality of service (qos).
13882 *
13883 * If all of the limit tests succeed, qos is applied based on the array
13884 * interpretation of krcvqs where entry 0 is VL0.
13885 *
13886 * The number of vl bits (n) and the number of qpn bits (m) are computed to
13887 * feed both the RSM map table and the single rule.
13888 */
13889 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
13890 {
13891 struct rsm_rule_data rrd;
13892 unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
13893 unsigned int rmt_entries;
13894 u64 reg;
13895
13896 if (!rmt)
13897 goto bail;
13898 rmt_entries = qos_rmt_entries(dd, &m, &n);
13899 if (rmt_entries == 0)
13900 goto bail;
13901 qpns_per_vl = 1 << m;
13902
13903 /* enough room in the map table? */
13904 rmt_entries = 1 << (m + n);
13905 if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
13906 goto bail;
13907
13908 /* add qos entries to the the RSM map table */
13909 for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
13910 unsigned tctxt;
13911
13912 for (qpn = 0, tctxt = ctxt;
13913 krcvqs[i] && qpn < qpns_per_vl; qpn++) {
13914 unsigned idx, regoff, regidx;
13915
13916 /* generate the index the hardware will produce */
13917 idx = rmt->used + ((qpn << n) ^ i);
13918 regoff = (idx % 8) * 8;
13919 regidx = idx / 8;
13920 /* replace default with context number */
13921 reg = rmt->map[regidx];
13922 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
13923 << regoff);
13924 reg |= (u64)(tctxt++) << regoff;
13925 rmt->map[regidx] = reg;
13926 if (tctxt == ctxt + krcvqs[i])
13927 tctxt = ctxt;
13928 }
13929 ctxt += krcvqs[i];
13930 }
13931
13932 rrd.offset = rmt->used;
13933 rrd.pkt_type = 2;
13934 rrd.field1_off = LRH_BTH_MATCH_OFFSET;
13935 rrd.field2_off = LRH_SC_MATCH_OFFSET;
13936 rrd.index1_off = LRH_SC_SELECT_OFFSET;
13937 rrd.index1_width = n;
13938 rrd.index2_off = QPN_SELECT_OFFSET;
13939 rrd.index2_width = m + n;
13940 rrd.mask1 = LRH_BTH_MASK;
13941 rrd.value1 = LRH_BTH_VALUE;
13942 rrd.mask2 = LRH_SC_MASK;
13943 rrd.value2 = LRH_SC_VALUE;
13944
13945 /* add rule 0 */
13946 add_rsm_rule(dd, 0, &rrd);
13947
13948 /* mark RSM map entries as used */
13949 rmt->used += rmt_entries;
13950 /* map everything else to the mcast/err/vl15 context */
13951 init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
13952 dd->qos_shift = n + 1;
13953 return;
13954 bail:
13955 dd->qos_shift = 1;
13956 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
13957 }
13958
13959 static void init_user_fecn_handling(struct hfi1_devdata *dd,
13960 struct rsm_map_table *rmt)
13961 {
13962 struct rsm_rule_data rrd;
13963 u64 reg;
13964 int i, idx, regoff, regidx;
13965 u8 offset;
13966
13967 /* there needs to be enough room in the map table */
13968 if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
13969 dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
13970 return;
13971 }
13972
13973 /*
13974 * RSM will extract the destination context as an index into the
13975 * map table. The destination contexts are a sequential block
13976 * in the range first_user_ctxt...num_rcv_contexts-1 (inclusive).
13977 * Map entries are accessed as offset + extracted value. Adjust
13978 * the added offset so this sequence can be placed anywhere in
13979 * the table - as long as the entries themselves do not wrap.
13980 * There are only enough bits in offset for the table size, so
13981 * start with that to allow for a "negative" offset.
13982 */
13983 offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
13984 (int)dd->first_user_ctxt);
13985
13986 for (i = dd->first_user_ctxt, idx = rmt->used;
13987 i < dd->num_rcv_contexts; i++, idx++) {
13988 /* replace with identity mapping */
13989 regoff = (idx % 8) * 8;
13990 regidx = idx / 8;
13991 reg = rmt->map[regidx];
13992 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
13993 reg |= (u64)i << regoff;
13994 rmt->map[regidx] = reg;
13995 }
13996
13997 /*
13998 * For RSM intercept of Expected FECN packets:
13999 * o packet type 0 - expected
14000 * o match on F (bit 95), using select/match 1, and
14001 * o match on SH (bit 133), using select/match 2.
14002 *
14003 * Use index 1 to extract the 8-bit receive context from DestQP
14004 * (start at bit 64). Use that as the RSM map table index.
14005 */
14006 rrd.offset = offset;
14007 rrd.pkt_type = 0;
14008 rrd.field1_off = 95;
14009 rrd.field2_off = 133;
14010 rrd.index1_off = 64;
14011 rrd.index1_width = 8;
14012 rrd.index2_off = 0;
14013 rrd.index2_width = 0;
14014 rrd.mask1 = 1;
14015 rrd.value1 = 1;
14016 rrd.mask2 = 1;
14017 rrd.value2 = 1;
14018
14019 /* add rule 1 */
14020 add_rsm_rule(dd, 1, &rrd);
14021
14022 rmt->used += dd->num_user_contexts;
14023 }
14024
14025 static void init_rxe(struct hfi1_devdata *dd)
14026 {
14027 struct rsm_map_table *rmt;
14028
14029 /* enable all receive errors */
14030 write_csr(dd, RCV_ERR_MASK, ~0ull);
14031
14032 rmt = alloc_rsm_map_table(dd);
14033 /* set up QOS, including the QPN map table */
14034 init_qos(dd, rmt);
14035 init_user_fecn_handling(dd, rmt);
14036 complete_rsm_map_table(dd, rmt);
14037 kfree(rmt);
14038
14039 /*
14040 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14041 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14042 * space, PciCfgCap2.MaxPayloadSize in HFI). There is only one
14043 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14044 * Max_PayLoad_Size set to its minimum of 128.
14045 *
14046 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14047 * (64 bytes). Max_Payload_Size is possibly modified upward in
14048 * tune_pcie_caps() which is called after this routine.
14049 */
14050 }
14051
14052 static void init_other(struct hfi1_devdata *dd)
14053 {
14054 /* enable all CCE errors */
14055 write_csr(dd, CCE_ERR_MASK, ~0ull);
14056 /* enable *some* Misc errors */
14057 write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14058 /* enable all DC errors, except LCB */
14059 write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14060 write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14061 }
14062
14063 /*
14064 * Fill out the given AU table using the given CU. A CU is defined in terms
14065 * AUs. The table is a an encoding: given the index, how many AUs does that
14066 * represent?
14067 *
14068 * NOTE: Assumes that the register layout is the same for the
14069 * local and remote tables.
14070 */
14071 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14072 u32 csr0to3, u32 csr4to7)
14073 {
14074 write_csr(dd, csr0to3,
14075 0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14076 1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14077 2ull * cu <<
14078 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14079 4ull * cu <<
14080 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14081 write_csr(dd, csr4to7,
14082 8ull * cu <<
14083 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14084 16ull * cu <<
14085 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14086 32ull * cu <<
14087 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14088 64ull * cu <<
14089 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14090 }
14091
14092 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14093 {
14094 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14095 SEND_CM_LOCAL_AU_TABLE4_TO7);
14096 }
14097
14098 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14099 {
14100 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14101 SEND_CM_REMOTE_AU_TABLE4_TO7);
14102 }
14103
14104 static void init_txe(struct hfi1_devdata *dd)
14105 {
14106 int i;
14107
14108 /* enable all PIO, SDMA, general, and Egress errors */
14109 write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14110 write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14111 write_csr(dd, SEND_ERR_MASK, ~0ull);
14112 write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14113
14114 /* enable all per-context and per-SDMA engine errors */
14115 for (i = 0; i < dd->chip_send_contexts; i++)
14116 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14117 for (i = 0; i < dd->chip_sdma_engines; i++)
14118 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14119
14120 /* set the local CU to AU mapping */
14121 assign_local_cm_au_table(dd, dd->vcu);
14122
14123 /*
14124 * Set reasonable default for Credit Return Timer
14125 * Don't set on Simulator - causes it to choke.
14126 */
14127 if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14128 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14129 }
14130
14131 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey)
14132 {
14133 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
14134 unsigned sctxt;
14135 int ret = 0;
14136 u64 reg;
14137
14138 if (!rcd || !rcd->sc) {
14139 ret = -EINVAL;
14140 goto done;
14141 }
14142 sctxt = rcd->sc->hw_context;
14143 reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14144 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14145 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14146 /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14147 if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14148 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14149 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14150 /*
14151 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14152 */
14153 if (!is_ax(dd)) {
14154 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14155 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14156 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14157 }
14158
14159 /* Enable J_KEY check on receive context. */
14160 reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14161 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14162 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14163 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg);
14164 done:
14165 return ret;
14166 }
14167
14168 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt)
14169 {
14170 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
14171 unsigned sctxt;
14172 int ret = 0;
14173 u64 reg;
14174
14175 if (!rcd || !rcd->sc) {
14176 ret = -EINVAL;
14177 goto done;
14178 }
14179 sctxt = rcd->sc->hw_context;
14180 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14181 /*
14182 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14183 * This check would not have been enabled for A0 h/w, see
14184 * set_ctxt_jkey().
14185 */
14186 if (!is_ax(dd)) {
14187 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14188 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14189 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14190 }
14191 /* Turn off the J_KEY on the receive side */
14192 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0);
14193 done:
14194 return ret;
14195 }
14196
14197 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey)
14198 {
14199 struct hfi1_ctxtdata *rcd;
14200 unsigned sctxt;
14201 int ret = 0;
14202 u64 reg;
14203
14204 if (ctxt < dd->num_rcv_contexts) {
14205 rcd = dd->rcd[ctxt];
14206 } else {
14207 ret = -EINVAL;
14208 goto done;
14209 }
14210 if (!rcd || !rcd->sc) {
14211 ret = -EINVAL;
14212 goto done;
14213 }
14214 sctxt = rcd->sc->hw_context;
14215 reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14216 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14217 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14218 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14219 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14220 reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14221 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14222 done:
14223 return ret;
14224 }
14225
14226 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt)
14227 {
14228 struct hfi1_ctxtdata *rcd;
14229 unsigned sctxt;
14230 int ret = 0;
14231 u64 reg;
14232
14233 if (ctxt < dd->num_rcv_contexts) {
14234 rcd = dd->rcd[ctxt];
14235 } else {
14236 ret = -EINVAL;
14237 goto done;
14238 }
14239 if (!rcd || !rcd->sc) {
14240 ret = -EINVAL;
14241 goto done;
14242 }
14243 sctxt = rcd->sc->hw_context;
14244 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14245 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14246 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14247 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14248 done:
14249 return ret;
14250 }
14251
14252 /*
14253 * Start doing the clean up the the chip. Our clean up happens in multiple
14254 * stages and this is just the first.
14255 */
14256 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14257 {
14258 aspm_exit(dd);
14259 free_cntrs(dd);
14260 free_rcverr(dd);
14261 clean_up_interrupts(dd);
14262 finish_chip_resources(dd);
14263 }
14264
14265 #define HFI_BASE_GUID(dev) \
14266 ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14267
14268 /*
14269 * Information can be shared between the two HFIs on the same ASIC
14270 * in the same OS. This function finds the peer device and sets
14271 * up a shared structure.
14272 */
14273 static int init_asic_data(struct hfi1_devdata *dd)
14274 {
14275 unsigned long flags;
14276 struct hfi1_devdata *tmp, *peer = NULL;
14277 struct hfi1_asic_data *asic_data;
14278 int ret = 0;
14279
14280 /* pre-allocate the asic structure in case we are the first device */
14281 asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14282 if (!asic_data)
14283 return -ENOMEM;
14284
14285 spin_lock_irqsave(&hfi1_devs_lock, flags);
14286 /* Find our peer device */
14287 list_for_each_entry(tmp, &hfi1_dev_list, list) {
14288 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14289 dd->unit != tmp->unit) {
14290 peer = tmp;
14291 break;
14292 }
14293 }
14294
14295 if (peer) {
14296 /* use already allocated structure */
14297 dd->asic_data = peer->asic_data;
14298 kfree(asic_data);
14299 } else {
14300 dd->asic_data = asic_data;
14301 mutex_init(&dd->asic_data->asic_resource_mutex);
14302 }
14303 dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14304 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
14305
14306 /* first one through - set up i2c devices */
14307 if (!peer)
14308 ret = set_up_i2c(dd, dd->asic_data);
14309
14310 return ret;
14311 }
14312
14313 /*
14314 * Set dd->boardname. Use a generic name if a name is not returned from
14315 * EFI variable space.
14316 *
14317 * Return 0 on success, -ENOMEM if space could not be allocated.
14318 */
14319 static int obtain_boardname(struct hfi1_devdata *dd)
14320 {
14321 /* generic board description */
14322 const char generic[] =
14323 "Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14324 unsigned long size;
14325 int ret;
14326
14327 ret = read_hfi1_efi_var(dd, "description", &size,
14328 (void **)&dd->boardname);
14329 if (ret) {
14330 dd_dev_info(dd, "Board description not found\n");
14331 /* use generic description */
14332 dd->boardname = kstrdup(generic, GFP_KERNEL);
14333 if (!dd->boardname)
14334 return -ENOMEM;
14335 }
14336 return 0;
14337 }
14338
14339 /*
14340 * Check the interrupt registers to make sure that they are mapped correctly.
14341 * It is intended to help user identify any mismapping by VMM when the driver
14342 * is running in a VM. This function should only be called before interrupt
14343 * is set up properly.
14344 *
14345 * Return 0 on success, -EINVAL on failure.
14346 */
14347 static int check_int_registers(struct hfi1_devdata *dd)
14348 {
14349 u64 reg;
14350 u64 all_bits = ~(u64)0;
14351 u64 mask;
14352
14353 /* Clear CceIntMask[0] to avoid raising any interrupts */
14354 mask = read_csr(dd, CCE_INT_MASK);
14355 write_csr(dd, CCE_INT_MASK, 0ull);
14356 reg = read_csr(dd, CCE_INT_MASK);
14357 if (reg)
14358 goto err_exit;
14359
14360 /* Clear all interrupt status bits */
14361 write_csr(dd, CCE_INT_CLEAR, all_bits);
14362 reg = read_csr(dd, CCE_INT_STATUS);
14363 if (reg)
14364 goto err_exit;
14365
14366 /* Set all interrupt status bits */
14367 write_csr(dd, CCE_INT_FORCE, all_bits);
14368 reg = read_csr(dd, CCE_INT_STATUS);
14369 if (reg != all_bits)
14370 goto err_exit;
14371
14372 /* Restore the interrupt mask */
14373 write_csr(dd, CCE_INT_CLEAR, all_bits);
14374 write_csr(dd, CCE_INT_MASK, mask);
14375
14376 return 0;
14377 err_exit:
14378 write_csr(dd, CCE_INT_MASK, mask);
14379 dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14380 return -EINVAL;
14381 }
14382
14383 /**
14384 * Allocate and initialize the device structure for the hfi.
14385 * @dev: the pci_dev for hfi1_ib device
14386 * @ent: pci_device_id struct for this dev
14387 *
14388 * Also allocates, initializes, and returns the devdata struct for this
14389 * device instance
14390 *
14391 * This is global, and is called directly at init to set up the
14392 * chip-specific function pointers for later use.
14393 */
14394 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
14395 const struct pci_device_id *ent)
14396 {
14397 struct hfi1_devdata *dd;
14398 struct hfi1_pportdata *ppd;
14399 u64 reg;
14400 int i, ret;
14401 static const char * const inames[] = { /* implementation names */
14402 "RTL silicon",
14403 "RTL VCS simulation",
14404 "RTL FPGA emulation",
14405 "Functional simulator"
14406 };
14407 struct pci_dev *parent = pdev->bus->self;
14408
14409 dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
14410 sizeof(struct hfi1_pportdata));
14411 if (IS_ERR(dd))
14412 goto bail;
14413 ppd = dd->pport;
14414 for (i = 0; i < dd->num_pports; i++, ppd++) {
14415 int vl;
14416 /* init common fields */
14417 hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14418 /* DC supports 4 link widths */
14419 ppd->link_width_supported =
14420 OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14421 OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14422 ppd->link_width_downgrade_supported =
14423 ppd->link_width_supported;
14424 /* start out enabling only 4X */
14425 ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14426 ppd->link_width_downgrade_enabled =
14427 ppd->link_width_downgrade_supported;
14428 /* link width active is 0 when link is down */
14429 /* link width downgrade active is 0 when link is down */
14430
14431 if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14432 num_vls > HFI1_MAX_VLS_SUPPORTED) {
14433 hfi1_early_err(&pdev->dev,
14434 "Invalid num_vls %u, using %u VLs\n",
14435 num_vls, HFI1_MAX_VLS_SUPPORTED);
14436 num_vls = HFI1_MAX_VLS_SUPPORTED;
14437 }
14438 ppd->vls_supported = num_vls;
14439 ppd->vls_operational = ppd->vls_supported;
14440 ppd->actual_vls_operational = ppd->vls_supported;
14441 /* Set the default MTU. */
14442 for (vl = 0; vl < num_vls; vl++)
14443 dd->vld[vl].mtu = hfi1_max_mtu;
14444 dd->vld[15].mtu = MAX_MAD_PACKET;
14445 /*
14446 * Set the initial values to reasonable default, will be set
14447 * for real when link is up.
14448 */
14449 ppd->lstate = IB_PORT_DOWN;
14450 ppd->overrun_threshold = 0x4;
14451 ppd->phy_error_threshold = 0xf;
14452 ppd->port_crc_mode_enabled = link_crc_mask;
14453 /* initialize supported LTP CRC mode */
14454 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14455 /* initialize enabled LTP CRC mode */
14456 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14457 /* start in offline */
14458 ppd->host_link_state = HLS_DN_OFFLINE;
14459 init_vl_arb_caches(ppd);
14460 ppd->last_pstate = 0xff; /* invalid value */
14461 }
14462
14463 dd->link_default = HLS_DN_POLL;
14464
14465 /*
14466 * Do remaining PCIe setup and save PCIe values in dd.
14467 * Any error printing is already done by the init code.
14468 * On return, we have the chip mapped.
14469 */
14470 ret = hfi1_pcie_ddinit(dd, pdev, ent);
14471 if (ret < 0)
14472 goto bail_free;
14473
14474 /* verify that reads actually work, save revision for reset check */
14475 dd->revision = read_csr(dd, CCE_REVISION);
14476 if (dd->revision == ~(u64)0) {
14477 dd_dev_err(dd, "cannot read chip CSRs\n");
14478 ret = -EINVAL;
14479 goto bail_cleanup;
14480 }
14481 dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14482 & CCE_REVISION_CHIP_REV_MAJOR_MASK;
14483 dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14484 & CCE_REVISION_CHIP_REV_MINOR_MASK;
14485
14486 /*
14487 * Check interrupt registers mapping if the driver has no access to
14488 * the upstream component. In this case, it is likely that the driver
14489 * is running in a VM.
14490 */
14491 if (!parent) {
14492 ret = check_int_registers(dd);
14493 if (ret)
14494 goto bail_cleanup;
14495 }
14496
14497 /*
14498 * obtain the hardware ID - NOT related to unit, which is a
14499 * software enumeration
14500 */
14501 reg = read_csr(dd, CCE_REVISION2);
14502 dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
14503 & CCE_REVISION2_HFI_ID_MASK;
14504 /* the variable size will remove unwanted bits */
14505 dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
14506 dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
14507 dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
14508 dd->icode < ARRAY_SIZE(inames) ?
14509 inames[dd->icode] : "unknown", (int)dd->irev);
14510
14511 /* speeds the hardware can support */
14512 dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
14513 /* speeds allowed to run at */
14514 dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
14515 /* give a reasonable active value, will be set on link up */
14516 dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
14517
14518 dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
14519 dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
14520 dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
14521 dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
14522 dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
14523 /* fix up link widths for emulation _p */
14524 ppd = dd->pport;
14525 if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
14526 ppd->link_width_supported =
14527 ppd->link_width_enabled =
14528 ppd->link_width_downgrade_supported =
14529 ppd->link_width_downgrade_enabled =
14530 OPA_LINK_WIDTH_1X;
14531 }
14532 /* insure num_vls isn't larger than number of sdma engines */
14533 if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
14534 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
14535 num_vls, dd->chip_sdma_engines);
14536 num_vls = dd->chip_sdma_engines;
14537 ppd->vls_supported = dd->chip_sdma_engines;
14538 ppd->vls_operational = ppd->vls_supported;
14539 }
14540
14541 /*
14542 * Convert the ns parameter to the 64 * cclocks used in the CSR.
14543 * Limit the max if larger than the field holds. If timeout is
14544 * non-zero, then the calculated field will be at least 1.
14545 *
14546 * Must be after icode is set up - the cclock rate depends
14547 * on knowing the hardware being used.
14548 */
14549 dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
14550 if (dd->rcv_intr_timeout_csr >
14551 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
14552 dd->rcv_intr_timeout_csr =
14553 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
14554 else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
14555 dd->rcv_intr_timeout_csr = 1;
14556
14557 /* needs to be done before we look for the peer device */
14558 read_guid(dd);
14559
14560 /* set up shared ASIC data with peer device */
14561 ret = init_asic_data(dd);
14562 if (ret)
14563 goto bail_cleanup;
14564
14565 /* obtain chip sizes, reset chip CSRs */
14566 init_chip(dd);
14567
14568 /* read in the PCIe link speed information */
14569 ret = pcie_speeds(dd);
14570 if (ret)
14571 goto bail_cleanup;
14572
14573 /* Needs to be called before hfi1_firmware_init */
14574 get_platform_config(dd);
14575
14576 /* read in firmware */
14577 ret = hfi1_firmware_init(dd);
14578 if (ret)
14579 goto bail_cleanup;
14580
14581 /*
14582 * In general, the PCIe Gen3 transition must occur after the
14583 * chip has been idled (so it won't initiate any PCIe transactions
14584 * e.g. an interrupt) and before the driver changes any registers
14585 * (the transition will reset the registers).
14586 *
14587 * In particular, place this call after:
14588 * - init_chip() - the chip will not initiate any PCIe transactions
14589 * - pcie_speeds() - reads the current link speed
14590 * - hfi1_firmware_init() - the needed firmware is ready to be
14591 * downloaded
14592 */
14593 ret = do_pcie_gen3_transition(dd);
14594 if (ret)
14595 goto bail_cleanup;
14596
14597 /* start setting dd values and adjusting CSRs */
14598 init_early_variables(dd);
14599
14600 parse_platform_config(dd);
14601
14602 ret = obtain_boardname(dd);
14603 if (ret)
14604 goto bail_cleanup;
14605
14606 snprintf(dd->boardversion, BOARD_VERS_MAX,
14607 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
14608 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
14609 (u32)dd->majrev,
14610 (u32)dd->minrev,
14611 (dd->revision >> CCE_REVISION_SW_SHIFT)
14612 & CCE_REVISION_SW_MASK);
14613
14614 ret = set_up_context_variables(dd);
14615 if (ret)
14616 goto bail_cleanup;
14617
14618 /* set initial RXE CSRs */
14619 init_rxe(dd);
14620 /* set initial TXE CSRs */
14621 init_txe(dd);
14622 /* set initial non-RXE, non-TXE CSRs */
14623 init_other(dd);
14624 /* set up KDETH QP prefix in both RX and TX CSRs */
14625 init_kdeth_qp(dd);
14626
14627 ret = hfi1_dev_affinity_init(dd);
14628 if (ret)
14629 goto bail_cleanup;
14630
14631 /* send contexts must be set up before receive contexts */
14632 ret = init_send_contexts(dd);
14633 if (ret)
14634 goto bail_cleanup;
14635
14636 ret = hfi1_create_ctxts(dd);
14637 if (ret)
14638 goto bail_cleanup;
14639
14640 dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
14641 /*
14642 * rcd[0] is guaranteed to be valid by this point. Also, all
14643 * context are using the same value, as per the module parameter.
14644 */
14645 dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
14646
14647 ret = init_pervl_scs(dd);
14648 if (ret)
14649 goto bail_cleanup;
14650
14651 /* sdma init */
14652 for (i = 0; i < dd->num_pports; ++i) {
14653 ret = sdma_init(dd, i);
14654 if (ret)
14655 goto bail_cleanup;
14656 }
14657
14658 /* use contexts created by hfi1_create_ctxts */
14659 ret = set_up_interrupts(dd);
14660 if (ret)
14661 goto bail_cleanup;
14662
14663 /* set up LCB access - must be after set_up_interrupts() */
14664 init_lcb_access(dd);
14665
14666 /*
14667 * Serial number is created from the base guid:
14668 * [27:24] = base guid [38:35]
14669 * [23: 0] = base guid [23: 0]
14670 */
14671 snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
14672 (dd->base_guid & 0xFFFFFF) |
14673 ((dd->base_guid >> 11) & 0xF000000));
14674
14675 dd->oui1 = dd->base_guid >> 56 & 0xFF;
14676 dd->oui2 = dd->base_guid >> 48 & 0xFF;
14677 dd->oui3 = dd->base_guid >> 40 & 0xFF;
14678
14679 ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
14680 if (ret)
14681 goto bail_clear_intr;
14682
14683 thermal_init(dd);
14684
14685 ret = init_cntrs(dd);
14686 if (ret)
14687 goto bail_clear_intr;
14688
14689 ret = init_rcverr(dd);
14690 if (ret)
14691 goto bail_free_cntrs;
14692
14693 ret = eprom_init(dd);
14694 if (ret)
14695 goto bail_free_rcverr;
14696
14697 goto bail;
14698
14699 bail_free_rcverr:
14700 free_rcverr(dd);
14701 bail_free_cntrs:
14702 free_cntrs(dd);
14703 bail_clear_intr:
14704 clean_up_interrupts(dd);
14705 bail_cleanup:
14706 hfi1_pcie_ddcleanup(dd);
14707 bail_free:
14708 hfi1_free_devdata(dd);
14709 dd = ERR_PTR(ret);
14710 bail:
14711 return dd;
14712 }
14713
14714 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
14715 u32 dw_len)
14716 {
14717 u32 delta_cycles;
14718 u32 current_egress_rate = ppd->current_egress_rate;
14719 /* rates here are in units of 10^6 bits/sec */
14720
14721 if (desired_egress_rate == -1)
14722 return 0; /* shouldn't happen */
14723
14724 if (desired_egress_rate >= current_egress_rate)
14725 return 0; /* we can't help go faster, only slower */
14726
14727 delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
14728 egress_cycles(dw_len * 4, current_egress_rate);
14729
14730 return (u16)delta_cycles;
14731 }
14732
14733 /**
14734 * create_pbc - build a pbc for transmission
14735 * @flags: special case flags or-ed in built pbc
14736 * @srate: static rate
14737 * @vl: vl
14738 * @dwlen: dword length (header words + data words + pbc words)
14739 *
14740 * Create a PBC with the given flags, rate, VL, and length.
14741 *
14742 * NOTE: The PBC created will not insert any HCRC - all callers but one are
14743 * for verbs, which does not use this PSM feature. The lone other caller
14744 * is for the diagnostic interface which calls this if the user does not
14745 * supply their own PBC.
14746 */
14747 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
14748 u32 dw_len)
14749 {
14750 u64 pbc, delay = 0;
14751
14752 if (unlikely(srate_mbs))
14753 delay = delay_cycles(ppd, srate_mbs, dw_len);
14754
14755 pbc = flags
14756 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
14757 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
14758 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
14759 | (dw_len & PBC_LENGTH_DWS_MASK)
14760 << PBC_LENGTH_DWS_SHIFT;
14761
14762 return pbc;
14763 }
14764
14765 #define SBUS_THERMAL 0x4f
14766 #define SBUS_THERM_MONITOR_MODE 0x1
14767
14768 #define THERM_FAILURE(dev, ret, reason) \
14769 dd_dev_err((dd), \
14770 "Thermal sensor initialization failed: %s (%d)\n", \
14771 (reason), (ret))
14772
14773 /*
14774 * Initialize the thermal sensor.
14775 *
14776 * After initialization, enable polling of thermal sensor through
14777 * SBus interface. In order for this to work, the SBus Master
14778 * firmware has to be loaded due to the fact that the HW polling
14779 * logic uses SBus interrupts, which are not supported with
14780 * default firmware. Otherwise, no data will be returned through
14781 * the ASIC_STS_THERM CSR.
14782 */
14783 static int thermal_init(struct hfi1_devdata *dd)
14784 {
14785 int ret = 0;
14786
14787 if (dd->icode != ICODE_RTL_SILICON ||
14788 check_chip_resource(dd, CR_THERM_INIT, NULL))
14789 return ret;
14790
14791 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
14792 if (ret) {
14793 THERM_FAILURE(dd, ret, "Acquire SBus");
14794 return ret;
14795 }
14796
14797 dd_dev_info(dd, "Initializing thermal sensor\n");
14798 /* Disable polling of thermal readings */
14799 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
14800 msleep(100);
14801 /* Thermal Sensor Initialization */
14802 /* Step 1: Reset the Thermal SBus Receiver */
14803 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14804 RESET_SBUS_RECEIVER, 0);
14805 if (ret) {
14806 THERM_FAILURE(dd, ret, "Bus Reset");
14807 goto done;
14808 }
14809 /* Step 2: Set Reset bit in Thermal block */
14810 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14811 WRITE_SBUS_RECEIVER, 0x1);
14812 if (ret) {
14813 THERM_FAILURE(dd, ret, "Therm Block Reset");
14814 goto done;
14815 }
14816 /* Step 3: Write clock divider value (100MHz -> 2MHz) */
14817 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
14818 WRITE_SBUS_RECEIVER, 0x32);
14819 if (ret) {
14820 THERM_FAILURE(dd, ret, "Write Clock Div");
14821 goto done;
14822 }
14823 /* Step 4: Select temperature mode */
14824 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
14825 WRITE_SBUS_RECEIVER,
14826 SBUS_THERM_MONITOR_MODE);
14827 if (ret) {
14828 THERM_FAILURE(dd, ret, "Write Mode Sel");
14829 goto done;
14830 }
14831 /* Step 5: De-assert block reset and start conversion */
14832 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14833 WRITE_SBUS_RECEIVER, 0x2);
14834 if (ret) {
14835 THERM_FAILURE(dd, ret, "Write Reset Deassert");
14836 goto done;
14837 }
14838 /* Step 5.1: Wait for first conversion (21.5ms per spec) */
14839 msleep(22);
14840
14841 /* Enable polling of thermal readings */
14842 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
14843
14844 /* Set initialized flag */
14845 ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
14846 if (ret)
14847 THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
14848
14849 done:
14850 release_chip_resource(dd, CR_SBUS);
14851 return ret;
14852 }
14853
14854 static void handle_temp_err(struct hfi1_devdata *dd)
14855 {
14856 struct hfi1_pportdata *ppd = &dd->pport[0];
14857 /*
14858 * Thermal Critical Interrupt
14859 * Put the device into forced freeze mode, take link down to
14860 * offline, and put DC into reset.
14861 */
14862 dd_dev_emerg(dd,
14863 "Critical temperature reached! Forcing device into freeze mode!\n");
14864 dd->flags |= HFI1_FORCED_FREEZE;
14865 start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
14866 /*
14867 * Shut DC down as much and as quickly as possible.
14868 *
14869 * Step 1: Take the link down to OFFLINE. This will cause the
14870 * 8051 to put the Serdes in reset. However, we don't want to
14871 * go through the entire link state machine since we want to
14872 * shutdown ASAP. Furthermore, this is not a graceful shutdown
14873 * but rather an attempt to save the chip.
14874 * Code below is almost the same as quiet_serdes() but avoids
14875 * all the extra work and the sleeps.
14876 */
14877 ppd->driver_link_ready = 0;
14878 ppd->link_enabled = 0;
14879 set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
14880 PLS_OFFLINE);
14881 /*
14882 * Step 2: Shutdown LCB and 8051
14883 * After shutdown, do not restore DC_CFG_RESET value.
14884 */
14885 dc_shutdown(dd);
14886 }
This page took 0.393809 seconds and 6 git commands to generate.