Pull trivial into release branch
[deliverable/linux.git] / drivers / infiniband / hw / ipath / ipath_driver.c
1 /*
2 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #include <linux/spinlock.h>
34 #include <linux/idr.h>
35 #include <linux/pci.h>
36 #include <linux/delay.h>
37 #include <linux/netdevice.h>
38 #include <linux/vmalloc.h>
39
40 #include "ipath_kernel.h"
41 #include "ips_common.h"
42 #include "ipath_layer.h"
43
44 static void ipath_update_pio_bufs(struct ipath_devdata *);
45
46 const char *ipath_get_unit_name(int unit)
47 {
48 static char iname[16];
49 snprintf(iname, sizeof iname, "infinipath%u", unit);
50 return iname;
51 }
52
53 EXPORT_SYMBOL_GPL(ipath_get_unit_name);
54
55 #define DRIVER_LOAD_MSG "PathScale " IPATH_DRV_NAME " loaded: "
56 #define PFX IPATH_DRV_NAME ": "
57
58 /*
59 * The size has to be longer than this string, so we can append
60 * board/chip information to it in the init code.
61 */
62 const char ipath_core_version[] = IPATH_IDSTR "\n";
63
64 static struct idr unit_table;
65 DEFINE_SPINLOCK(ipath_devs_lock);
66 LIST_HEAD(ipath_dev_list);
67
68 wait_queue_head_t ipath_sma_state_wait;
69
70 unsigned ipath_debug = __IPATH_INFO;
71
72 module_param_named(debug, ipath_debug, uint, S_IWUSR | S_IRUGO);
73 MODULE_PARM_DESC(debug, "mask for debug prints");
74 EXPORT_SYMBOL_GPL(ipath_debug);
75
76 MODULE_LICENSE("GPL");
77 MODULE_AUTHOR("PathScale <support@pathscale.com>");
78 MODULE_DESCRIPTION("Pathscale InfiniPath driver");
79
80 const char *ipath_ibcstatus_str[] = {
81 "Disabled",
82 "LinkUp",
83 "PollActive",
84 "PollQuiet",
85 "SleepDelay",
86 "SleepQuiet",
87 "LState6", /* unused */
88 "LState7", /* unused */
89 "CfgDebounce",
90 "CfgRcvfCfg",
91 "CfgWaitRmt",
92 "CfgIdle",
93 "RecovRetrain",
94 "LState0xD", /* unused */
95 "RecovWaitRmt",
96 "RecovIdle",
97 };
98
99 /*
100 * These variables are initialized in the chip-specific files
101 * but are defined here.
102 */
103 u16 ipath_gpio_sda_num, ipath_gpio_scl_num;
104 u64 ipath_gpio_sda, ipath_gpio_scl;
105 u64 infinipath_i_bitsextant;
106 ipath_err_t infinipath_e_bitsextant, infinipath_hwe_bitsextant;
107 u32 infinipath_i_rcvavail_mask, infinipath_i_rcvurg_mask;
108
109 static void __devexit ipath_remove_one(struct pci_dev *);
110 static int __devinit ipath_init_one(struct pci_dev *,
111 const struct pci_device_id *);
112
113 /* Only needed for registration, nothing else needs this info */
114 #define PCI_VENDOR_ID_PATHSCALE 0x1fc1
115 #define PCI_DEVICE_ID_INFINIPATH_HT 0xd
116 #define PCI_DEVICE_ID_INFINIPATH_PE800 0x10
117
118 static const struct pci_device_id ipath_pci_tbl[] = {
119 { PCI_DEVICE(PCI_VENDOR_ID_PATHSCALE, PCI_DEVICE_ID_INFINIPATH_HT) },
120 { PCI_DEVICE(PCI_VENDOR_ID_PATHSCALE, PCI_DEVICE_ID_INFINIPATH_PE800) },
121 { 0, }
122 };
123
124 MODULE_DEVICE_TABLE(pci, ipath_pci_tbl);
125
126 static struct pci_driver ipath_driver = {
127 .name = IPATH_DRV_NAME,
128 .probe = ipath_init_one,
129 .remove = __devexit_p(ipath_remove_one),
130 .id_table = ipath_pci_tbl,
131 };
132
133 /*
134 * This is where port 0's rcvhdrtail register is written back; we also
135 * want nothing else sharing the cache line, so make it a cache line
136 * in size. Used for all units.
137 */
138 volatile __le64 *ipath_port0_rcvhdrtail;
139 dma_addr_t ipath_port0_rcvhdrtail_dma;
140 static int port0_rcvhdrtail_refs;
141
142 static inline void read_bars(struct ipath_devdata *dd, struct pci_dev *dev,
143 u32 *bar0, u32 *bar1)
144 {
145 int ret;
146
147 ret = pci_read_config_dword(dev, PCI_BASE_ADDRESS_0, bar0);
148 if (ret)
149 ipath_dev_err(dd, "failed to read bar0 before enable: "
150 "error %d\n", -ret);
151
152 ret = pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, bar1);
153 if (ret)
154 ipath_dev_err(dd, "failed to read bar1 before enable: "
155 "error %d\n", -ret);
156
157 ipath_dbg("Read bar0 %x bar1 %x\n", *bar0, *bar1);
158 }
159
160 static void ipath_free_devdata(struct pci_dev *pdev,
161 struct ipath_devdata *dd)
162 {
163 unsigned long flags;
164
165 pci_set_drvdata(pdev, NULL);
166
167 if (dd->ipath_unit != -1) {
168 spin_lock_irqsave(&ipath_devs_lock, flags);
169 idr_remove(&unit_table, dd->ipath_unit);
170 list_del(&dd->ipath_list);
171 spin_unlock_irqrestore(&ipath_devs_lock, flags);
172 }
173 dma_free_coherent(&pdev->dev, sizeof(*dd), dd, dd->ipath_dma_addr);
174 }
175
176 static struct ipath_devdata *ipath_alloc_devdata(struct pci_dev *pdev)
177 {
178 unsigned long flags;
179 struct ipath_devdata *dd;
180 dma_addr_t dma_addr;
181 int ret;
182
183 if (!idr_pre_get(&unit_table, GFP_KERNEL)) {
184 dd = ERR_PTR(-ENOMEM);
185 goto bail;
186 }
187
188 dd = dma_alloc_coherent(&pdev->dev, sizeof(*dd), &dma_addr,
189 GFP_KERNEL);
190
191 if (!dd) {
192 dd = ERR_PTR(-ENOMEM);
193 goto bail;
194 }
195
196 dd->ipath_dma_addr = dma_addr;
197 dd->ipath_unit = -1;
198
199 spin_lock_irqsave(&ipath_devs_lock, flags);
200
201 ret = idr_get_new(&unit_table, dd, &dd->ipath_unit);
202 if (ret < 0) {
203 printk(KERN_ERR IPATH_DRV_NAME
204 ": Could not allocate unit ID: error %d\n", -ret);
205 ipath_free_devdata(pdev, dd);
206 dd = ERR_PTR(ret);
207 goto bail_unlock;
208 }
209
210 dd->pcidev = pdev;
211 pci_set_drvdata(pdev, dd);
212
213 list_add(&dd->ipath_list, &ipath_dev_list);
214
215 bail_unlock:
216 spin_unlock_irqrestore(&ipath_devs_lock, flags);
217
218 bail:
219 return dd;
220 }
221
222 static inline struct ipath_devdata *__ipath_lookup(int unit)
223 {
224 return idr_find(&unit_table, unit);
225 }
226
227 struct ipath_devdata *ipath_lookup(int unit)
228 {
229 struct ipath_devdata *dd;
230 unsigned long flags;
231
232 spin_lock_irqsave(&ipath_devs_lock, flags);
233 dd = __ipath_lookup(unit);
234 spin_unlock_irqrestore(&ipath_devs_lock, flags);
235
236 return dd;
237 }
238
239 int ipath_count_units(int *npresentp, int *nupp, u32 *maxportsp)
240 {
241 int nunits, npresent, nup;
242 struct ipath_devdata *dd;
243 unsigned long flags;
244 u32 maxports;
245
246 nunits = npresent = nup = maxports = 0;
247
248 spin_lock_irqsave(&ipath_devs_lock, flags);
249
250 list_for_each_entry(dd, &ipath_dev_list, ipath_list) {
251 nunits++;
252 if ((dd->ipath_flags & IPATH_PRESENT) && dd->ipath_kregbase)
253 npresent++;
254 if (dd->ipath_lid &&
255 !(dd->ipath_flags & (IPATH_DISABLED | IPATH_LINKDOWN
256 | IPATH_LINKUNK)))
257 nup++;
258 if (dd->ipath_cfgports > maxports)
259 maxports = dd->ipath_cfgports;
260 }
261
262 spin_unlock_irqrestore(&ipath_devs_lock, flags);
263
264 if (npresentp)
265 *npresentp = npresent;
266 if (nupp)
267 *nupp = nup;
268 if (maxportsp)
269 *maxportsp = maxports;
270
271 return nunits;
272 }
273
274 static int init_port0_rcvhdrtail(struct pci_dev *pdev)
275 {
276 int ret;
277
278 mutex_lock(&ipath_mutex);
279
280 if (!ipath_port0_rcvhdrtail) {
281 ipath_port0_rcvhdrtail =
282 dma_alloc_coherent(&pdev->dev,
283 IPATH_PORT0_RCVHDRTAIL_SIZE,
284 &ipath_port0_rcvhdrtail_dma,
285 GFP_KERNEL);
286
287 if (!ipath_port0_rcvhdrtail) {
288 ret = -ENOMEM;
289 goto bail;
290 }
291 }
292 port0_rcvhdrtail_refs++;
293 ret = 0;
294
295 bail:
296 mutex_unlock(&ipath_mutex);
297
298 return ret;
299 }
300
301 static void cleanup_port0_rcvhdrtail(struct pci_dev *pdev)
302 {
303 mutex_lock(&ipath_mutex);
304
305 if (!--port0_rcvhdrtail_refs) {
306 dma_free_coherent(&pdev->dev, IPATH_PORT0_RCVHDRTAIL_SIZE,
307 (void *) ipath_port0_rcvhdrtail,
308 ipath_port0_rcvhdrtail_dma);
309 ipath_port0_rcvhdrtail = NULL;
310 }
311
312 mutex_unlock(&ipath_mutex);
313 }
314
315 /*
316 * These next two routines are placeholders in case we don't have per-arch
317 * code for controlling write combining. If explicit control of write
318 * combining is not available, performance will probably be awful.
319 */
320
321 int __attribute__((weak)) ipath_enable_wc(struct ipath_devdata *dd)
322 {
323 return -EOPNOTSUPP;
324 }
325
326 void __attribute__((weak)) ipath_disable_wc(struct ipath_devdata *dd)
327 {
328 }
329
330 static int __devinit ipath_init_one(struct pci_dev *pdev,
331 const struct pci_device_id *ent)
332 {
333 int ret, len, j;
334 struct ipath_devdata *dd;
335 unsigned long long addr;
336 u32 bar0 = 0, bar1 = 0;
337 u8 rev;
338
339 ret = init_port0_rcvhdrtail(pdev);
340 if (ret < 0) {
341 printk(KERN_ERR IPATH_DRV_NAME
342 ": Could not allocate port0_rcvhdrtail: error %d\n",
343 -ret);
344 goto bail;
345 }
346
347 dd = ipath_alloc_devdata(pdev);
348 if (IS_ERR(dd)) {
349 ret = PTR_ERR(dd);
350 printk(KERN_ERR IPATH_DRV_NAME
351 ": Could not allocate devdata: error %d\n", -ret);
352 goto bail_rcvhdrtail;
353 }
354
355 ipath_cdbg(VERBOSE, "initializing unit #%u\n", dd->ipath_unit);
356
357 read_bars(dd, pdev, &bar0, &bar1);
358
359 ret = pci_enable_device(pdev);
360 if (ret) {
361 /* This can happen iff:
362 *
363 * We did a chip reset, and then failed to reprogram the
364 * BAR, or the chip reset due to an internal error. We then
365 * unloaded the driver and reloaded it.
366 *
367 * Both reset cases set the BAR back to initial state. For
368 * the latter case, the AER sticky error bit at offset 0x718
369 * should be set, but the Linux kernel doesn't yet know
370 * about that, it appears. If the original BAR was retained
371 * in the kernel data structures, this may be OK.
372 */
373 ipath_dev_err(dd, "enable unit %d failed: error %d\n",
374 dd->ipath_unit, -ret);
375 goto bail_devdata;
376 }
377 addr = pci_resource_start(pdev, 0);
378 len = pci_resource_len(pdev, 0);
379 ipath_cdbg(VERBOSE, "regbase (0) %llx len %d irq %x, vend %x/%x "
380 "driver_data %lx\n", addr, len, pdev->irq, ent->vendor,
381 ent->device, ent->driver_data);
382
383 read_bars(dd, pdev, &bar0, &bar1);
384
385 if (!bar1 && !(bar0 & ~0xf)) {
386 if (addr) {
387 dev_info(&pdev->dev, "BAR is 0 (probable RESET), "
388 "rewriting as %llx\n", addr);
389 ret = pci_write_config_dword(
390 pdev, PCI_BASE_ADDRESS_0, addr);
391 if (ret) {
392 ipath_dev_err(dd, "rewrite of BAR0 "
393 "failed: err %d\n", -ret);
394 goto bail_disable;
395 }
396 ret = pci_write_config_dword(
397 pdev, PCI_BASE_ADDRESS_1, addr >> 32);
398 if (ret) {
399 ipath_dev_err(dd, "rewrite of BAR1 "
400 "failed: err %d\n", -ret);
401 goto bail_disable;
402 }
403 } else {
404 ipath_dev_err(dd, "BAR is 0 (probable RESET), "
405 "not usable until reboot\n");
406 ret = -ENODEV;
407 goto bail_disable;
408 }
409 }
410
411 ret = pci_request_regions(pdev, IPATH_DRV_NAME);
412 if (ret) {
413 dev_info(&pdev->dev, "pci_request_regions unit %u fails: "
414 "err %d\n", dd->ipath_unit, -ret);
415 goto bail_disable;
416 }
417
418 ret = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
419 if (ret) {
420 /*
421 * if the 64 bit setup fails, try 32 bit. Some systems
422 * do not setup 64 bit maps on systems with 2GB or less
423 * memory installed.
424 */
425 ret = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
426 if (ret) {
427 dev_info(&pdev->dev, "pci_set_dma_mask unit %u "
428 "fails: %d\n", dd->ipath_unit, ret);
429 goto bail_regions;
430 }
431 else
432 ipath_dbg("No 64bit DMA mask, used 32 bit mask\n");
433 }
434
435 pci_set_master(pdev);
436
437 /*
438 * Save BARs to rewrite after device reset. Save all 64 bits of
439 * BAR, just in case.
440 */
441 dd->ipath_pcibar0 = addr;
442 dd->ipath_pcibar1 = addr >> 32;
443 dd->ipath_deviceid = ent->device; /* save for later use */
444 dd->ipath_vendorid = ent->vendor;
445
446 /* setup the chip-specific functions, as early as possible. */
447 switch (ent->device) {
448 case PCI_DEVICE_ID_INFINIPATH_HT:
449 ipath_init_ht400_funcs(dd);
450 break;
451 case PCI_DEVICE_ID_INFINIPATH_PE800:
452 ipath_init_pe800_funcs(dd);
453 break;
454 default:
455 ipath_dev_err(dd, "Found unknown PathScale deviceid 0x%x, "
456 "failing\n", ent->device);
457 return -ENODEV;
458 }
459
460 for (j = 0; j < 6; j++) {
461 if (!pdev->resource[j].start)
462 continue;
463 ipath_cdbg(VERBOSE, "BAR %d start %lx, end %lx, len %lx\n",
464 j, pdev->resource[j].start,
465 pdev->resource[j].end,
466 pci_resource_len(pdev, j));
467 }
468
469 if (!addr) {
470 ipath_dev_err(dd, "No valid address in BAR 0!\n");
471 ret = -ENODEV;
472 goto bail_regions;
473 }
474
475 dd->ipath_deviceid = ent->device; /* save for later use */
476 dd->ipath_vendorid = ent->vendor;
477
478 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, &rev);
479 if (ret) {
480 ipath_dev_err(dd, "Failed to read PCI revision ID unit "
481 "%u: err %d\n", dd->ipath_unit, -ret);
482 goto bail_regions; /* shouldn't ever happen */
483 }
484 dd->ipath_pcirev = rev;
485
486 dd->ipath_kregbase = ioremap_nocache(addr, len);
487
488 if (!dd->ipath_kregbase) {
489 ipath_dbg("Unable to map io addr %llx to kvirt, failing\n",
490 addr);
491 ret = -ENOMEM;
492 goto bail_iounmap;
493 }
494 dd->ipath_kregend = (u64 __iomem *)
495 ((void __iomem *)dd->ipath_kregbase + len);
496 dd->ipath_physaddr = addr; /* used for io_remap, etc. */
497 /* for user mmap */
498 dd->ipath_kregvirt = (u64 __iomem *) phys_to_virt(addr);
499 ipath_cdbg(VERBOSE, "mapped io addr %llx to kregbase %p "
500 "kregvirt %p\n", addr, dd->ipath_kregbase,
501 dd->ipath_kregvirt);
502
503 /*
504 * clear ipath_flags here instead of in ipath_init_chip as it is set
505 * by ipath_setup_htconfig.
506 */
507 dd->ipath_flags = 0;
508
509 if (dd->ipath_f_bus(dd, pdev))
510 ipath_dev_err(dd, "Failed to setup config space; "
511 "continuing anyway\n");
512
513 /*
514 * set up our interrupt handler; SA_SHIRQ probably not needed,
515 * since MSI interrupts shouldn't be shared but won't hurt for now.
516 * check 0 irq after we return from chip-specific bus setup, since
517 * that can affect this due to setup
518 */
519 if (!pdev->irq)
520 ipath_dev_err(dd, "irq is 0, BIOS error? Interrupts won't "
521 "work\n");
522 else {
523 ret = request_irq(pdev->irq, ipath_intr, SA_SHIRQ,
524 IPATH_DRV_NAME, dd);
525 if (ret) {
526 ipath_dev_err(dd, "Couldn't setup irq handler, "
527 "irq=%u: %d\n", pdev->irq, ret);
528 goto bail_iounmap;
529 }
530 }
531
532 ret = ipath_init_chip(dd, 0); /* do the chip-specific init */
533 if (ret)
534 goto bail_iounmap;
535
536 ret = ipath_enable_wc(dd);
537
538 if (ret) {
539 ipath_dev_err(dd, "Write combining not enabled "
540 "(err %d): performance may be poor\n",
541 -ret);
542 ret = 0;
543 }
544
545 ipath_device_create_group(&pdev->dev, dd);
546 ipathfs_add_device(dd);
547 ipath_user_add(dd);
548 ipath_layer_add(dd);
549
550 goto bail;
551
552 bail_iounmap:
553 iounmap((volatile void __iomem *) dd->ipath_kregbase);
554
555 bail_regions:
556 pci_release_regions(pdev);
557
558 bail_disable:
559 pci_disable_device(pdev);
560
561 bail_devdata:
562 ipath_free_devdata(pdev, dd);
563
564 bail_rcvhdrtail:
565 cleanup_port0_rcvhdrtail(pdev);
566
567 bail:
568 return ret;
569 }
570
571 static void __devexit ipath_remove_one(struct pci_dev *pdev)
572 {
573 struct ipath_devdata *dd;
574
575 ipath_cdbg(VERBOSE, "removing, pdev=%p\n", pdev);
576 if (!pdev)
577 return;
578
579 dd = pci_get_drvdata(pdev);
580 ipath_layer_del(dd);
581 ipath_user_del(dd);
582 ipathfs_remove_device(dd);
583 ipath_device_remove_group(&pdev->dev, dd);
584 ipath_cdbg(VERBOSE, "Releasing pci memory regions, dd %p, "
585 "unit %u\n", dd, (u32) dd->ipath_unit);
586 if (dd->ipath_kregbase) {
587 ipath_cdbg(VERBOSE, "Unmapping kregbase %p\n",
588 dd->ipath_kregbase);
589 iounmap((volatile void __iomem *) dd->ipath_kregbase);
590 dd->ipath_kregbase = NULL;
591 }
592 pci_release_regions(pdev);
593 ipath_cdbg(VERBOSE, "calling pci_disable_device\n");
594 pci_disable_device(pdev);
595
596 ipath_free_devdata(pdev, dd);
597 cleanup_port0_rcvhdrtail(pdev);
598 }
599
600 /* general driver use */
601 DEFINE_MUTEX(ipath_mutex);
602
603 static DEFINE_SPINLOCK(ipath_pioavail_lock);
604
605 /**
606 * ipath_disarm_piobufs - cancel a range of PIO buffers
607 * @dd: the infinipath device
608 * @first: the first PIO buffer to cancel
609 * @cnt: the number of PIO buffers to cancel
610 *
611 * cancel a range of PIO buffers, used when they might be armed, but
612 * not triggered. Used at init to ensure buffer state, and also user
613 * process close, in case it died while writing to a PIO buffer
614 * Also after errors.
615 */
616 void ipath_disarm_piobufs(struct ipath_devdata *dd, unsigned first,
617 unsigned cnt)
618 {
619 unsigned i, last = first + cnt;
620 u64 sendctrl, sendorig;
621
622 ipath_cdbg(PKT, "disarm %u PIObufs first=%u\n", cnt, first);
623 sendorig = dd->ipath_sendctrl | INFINIPATH_S_DISARM;
624 for (i = first; i < last; i++) {
625 sendctrl = sendorig |
626 (i << INFINIPATH_S_DISARMPIOBUF_SHIFT);
627 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
628 sendctrl);
629 }
630
631 /*
632 * Write it again with current value, in case ipath_sendctrl changed
633 * while we were looping; no critical bits that would require
634 * locking.
635 *
636 * Write a 0, and then the original value, reading scratch in
637 * between. This seems to avoid a chip timing race that causes
638 * pioavail updates to memory to stop.
639 */
640 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
641 0);
642 sendorig = ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
643 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
644 dd->ipath_sendctrl);
645 }
646
647 /**
648 * ipath_wait_linkstate - wait for an IB link state change to occur
649 * @dd: the infinipath device
650 * @state: the state to wait for
651 * @msecs: the number of milliseconds to wait
652 *
653 * wait up to msecs milliseconds for IB link state change to occur for
654 * now, take the easy polling route. Currently used only by
655 * ipath_layer_set_linkstate. Returns 0 if state reached, otherwise
656 * -ETIMEDOUT state can have multiple states set, for any of several
657 * transitions.
658 */
659 int ipath_wait_linkstate(struct ipath_devdata *dd, u32 state, int msecs)
660 {
661 dd->ipath_sma_state_wanted = state;
662 wait_event_interruptible_timeout(ipath_sma_state_wait,
663 (dd->ipath_flags & state),
664 msecs_to_jiffies(msecs));
665 dd->ipath_sma_state_wanted = 0;
666
667 if (!(dd->ipath_flags & state)) {
668 u64 val;
669 ipath_cdbg(SMA, "Didn't reach linkstate %s within %u ms\n",
670 /* test INIT ahead of DOWN, both can be set */
671 (state & IPATH_LINKINIT) ? "INIT" :
672 ((state & IPATH_LINKDOWN) ? "DOWN" :
673 ((state & IPATH_LINKARMED) ? "ARM" : "ACTIVE")),
674 msecs);
675 val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus);
676 ipath_cdbg(VERBOSE, "ibcc=%llx ibcstatus=%llx (%s)\n",
677 (unsigned long long) ipath_read_kreg64(
678 dd, dd->ipath_kregs->kr_ibcctrl),
679 (unsigned long long) val,
680 ipath_ibcstatus_str[val & 0xf]);
681 }
682 return (dd->ipath_flags & state) ? 0 : -ETIMEDOUT;
683 }
684
685 void ipath_decode_err(char *buf, size_t blen, ipath_err_t err)
686 {
687 *buf = '\0';
688 if (err & INFINIPATH_E_RHDRLEN)
689 strlcat(buf, "rhdrlen ", blen);
690 if (err & INFINIPATH_E_RBADTID)
691 strlcat(buf, "rbadtid ", blen);
692 if (err & INFINIPATH_E_RBADVERSION)
693 strlcat(buf, "rbadversion ", blen);
694 if (err & INFINIPATH_E_RHDR)
695 strlcat(buf, "rhdr ", blen);
696 if (err & INFINIPATH_E_RLONGPKTLEN)
697 strlcat(buf, "rlongpktlen ", blen);
698 if (err & INFINIPATH_E_RSHORTPKTLEN)
699 strlcat(buf, "rshortpktlen ", blen);
700 if (err & INFINIPATH_E_RMAXPKTLEN)
701 strlcat(buf, "rmaxpktlen ", blen);
702 if (err & INFINIPATH_E_RMINPKTLEN)
703 strlcat(buf, "rminpktlen ", blen);
704 if (err & INFINIPATH_E_RFORMATERR)
705 strlcat(buf, "rformaterr ", blen);
706 if (err & INFINIPATH_E_RUNSUPVL)
707 strlcat(buf, "runsupvl ", blen);
708 if (err & INFINIPATH_E_RUNEXPCHAR)
709 strlcat(buf, "runexpchar ", blen);
710 if (err & INFINIPATH_E_RIBFLOW)
711 strlcat(buf, "ribflow ", blen);
712 if (err & INFINIPATH_E_REBP)
713 strlcat(buf, "EBP ", blen);
714 if (err & INFINIPATH_E_SUNDERRUN)
715 strlcat(buf, "sunderrun ", blen);
716 if (err & INFINIPATH_E_SPIOARMLAUNCH)
717 strlcat(buf, "spioarmlaunch ", blen);
718 if (err & INFINIPATH_E_SUNEXPERRPKTNUM)
719 strlcat(buf, "sunexperrpktnum ", blen);
720 if (err & INFINIPATH_E_SDROPPEDDATAPKT)
721 strlcat(buf, "sdroppeddatapkt ", blen);
722 if (err & INFINIPATH_E_SDROPPEDSMPPKT)
723 strlcat(buf, "sdroppedsmppkt ", blen);
724 if (err & INFINIPATH_E_SMAXPKTLEN)
725 strlcat(buf, "smaxpktlen ", blen);
726 if (err & INFINIPATH_E_SMINPKTLEN)
727 strlcat(buf, "sminpktlen ", blen);
728 if (err & INFINIPATH_E_SUNSUPVL)
729 strlcat(buf, "sunsupVL ", blen);
730 if (err & INFINIPATH_E_SPKTLEN)
731 strlcat(buf, "spktlen ", blen);
732 if (err & INFINIPATH_E_INVALIDADDR)
733 strlcat(buf, "invalidaddr ", blen);
734 if (err & INFINIPATH_E_RICRC)
735 strlcat(buf, "CRC ", blen);
736 if (err & INFINIPATH_E_RVCRC)
737 strlcat(buf, "VCRC ", blen);
738 if (err & INFINIPATH_E_RRCVEGRFULL)
739 strlcat(buf, "rcvegrfull ", blen);
740 if (err & INFINIPATH_E_RRCVHDRFULL)
741 strlcat(buf, "rcvhdrfull ", blen);
742 if (err & INFINIPATH_E_IBSTATUSCHANGED)
743 strlcat(buf, "ibcstatuschg ", blen);
744 if (err & INFINIPATH_E_RIBLOSTLINK)
745 strlcat(buf, "riblostlink ", blen);
746 if (err & INFINIPATH_E_HARDWARE)
747 strlcat(buf, "hardware ", blen);
748 if (err & INFINIPATH_E_RESET)
749 strlcat(buf, "reset ", blen);
750 }
751
752 /**
753 * get_rhf_errstring - decode RHF errors
754 * @err: the err number
755 * @msg: the output buffer
756 * @len: the length of the output buffer
757 *
758 * only used one place now, may want more later
759 */
760 static void get_rhf_errstring(u32 err, char *msg, size_t len)
761 {
762 /* if no errors, and so don't need to check what's first */
763 *msg = '\0';
764
765 if (err & INFINIPATH_RHF_H_ICRCERR)
766 strlcat(msg, "icrcerr ", len);
767 if (err & INFINIPATH_RHF_H_VCRCERR)
768 strlcat(msg, "vcrcerr ", len);
769 if (err & INFINIPATH_RHF_H_PARITYERR)
770 strlcat(msg, "parityerr ", len);
771 if (err & INFINIPATH_RHF_H_LENERR)
772 strlcat(msg, "lenerr ", len);
773 if (err & INFINIPATH_RHF_H_MTUERR)
774 strlcat(msg, "mtuerr ", len);
775 if (err & INFINIPATH_RHF_H_IHDRERR)
776 /* infinipath hdr checksum error */
777 strlcat(msg, "ipathhdrerr ", len);
778 if (err & INFINIPATH_RHF_H_TIDERR)
779 strlcat(msg, "tiderr ", len);
780 if (err & INFINIPATH_RHF_H_MKERR)
781 /* bad port, offset, etc. */
782 strlcat(msg, "invalid ipathhdr ", len);
783 if (err & INFINIPATH_RHF_H_IBERR)
784 strlcat(msg, "iberr ", len);
785 if (err & INFINIPATH_RHF_L_SWA)
786 strlcat(msg, "swA ", len);
787 if (err & INFINIPATH_RHF_L_SWB)
788 strlcat(msg, "swB ", len);
789 }
790
791 /**
792 * ipath_get_egrbuf - get an eager buffer
793 * @dd: the infinipath device
794 * @bufnum: the eager buffer to get
795 * @err: unused
796 *
797 * must only be called if ipath_pd[port] is known to be allocated
798 */
799 static inline void *ipath_get_egrbuf(struct ipath_devdata *dd, u32 bufnum,
800 int err)
801 {
802 return dd->ipath_port0_skbs ?
803 (void *)dd->ipath_port0_skbs[bufnum]->data : NULL;
804 }
805
806 /**
807 * ipath_alloc_skb - allocate an skb and buffer with possible constraints
808 * @dd: the infinipath device
809 * @gfp_mask: the sk_buff SFP mask
810 */
811 struct sk_buff *ipath_alloc_skb(struct ipath_devdata *dd,
812 gfp_t gfp_mask)
813 {
814 struct sk_buff *skb;
815 u32 len;
816
817 /*
818 * Only fully supported way to handle this is to allocate lots
819 * extra, align as needed, and then do skb_reserve(). That wastes
820 * a lot of memory... I'll have to hack this into infinipath_copy
821 * also.
822 */
823
824 /*
825 * We need 4 extra bytes for unaligned transfer copying
826 */
827 if (dd->ipath_flags & IPATH_4BYTE_TID) {
828 /* we need a 4KB multiple alignment, and there is no way
829 * to do it except to allocate extra and then skb_reserve
830 * enough to bring it up to the right alignment.
831 */
832 len = dd->ipath_ibmaxlen + 4 + (1 << 11) - 1;
833 }
834 else
835 len = dd->ipath_ibmaxlen + 4;
836 skb = __dev_alloc_skb(len, gfp_mask);
837 if (!skb) {
838 ipath_dev_err(dd, "Failed to allocate skbuff, length %u\n",
839 len);
840 goto bail;
841 }
842 if (dd->ipath_flags & IPATH_4BYTE_TID) {
843 u32 una = ((1 << 11) - 1) & (unsigned long)(skb->data + 4);
844 if (una)
845 skb_reserve(skb, 4 + (1 << 11) - una);
846 else
847 skb_reserve(skb, 4);
848 } else
849 skb_reserve(skb, 4);
850
851 bail:
852 return skb;
853 }
854
855 /**
856 * ipath_rcv_layer - receive a packet for the layered (ethernet) driver
857 * @dd: the infinipath device
858 * @etail: the sk_buff number
859 * @tlen: the total packet length
860 * @hdr: the ethernet header
861 *
862 * Separate routine for better overall optimization
863 */
864 static void ipath_rcv_layer(struct ipath_devdata *dd, u32 etail,
865 u32 tlen, struct ether_header *hdr)
866 {
867 u32 elen;
868 u8 pad, *bthbytes;
869 struct sk_buff *skb, *nskb;
870
871 if (dd->ipath_port0_skbs && hdr->sub_opcode == OPCODE_ENCAP) {
872 /*
873 * Allocate a new sk_buff to replace the one we give
874 * to the network stack.
875 */
876 nskb = ipath_alloc_skb(dd, GFP_ATOMIC);
877 if (!nskb) {
878 /* count OK packets that we drop */
879 ipath_stats.sps_krdrops++;
880 return;
881 }
882
883 bthbytes = (u8 *) hdr->bth;
884 pad = (bthbytes[1] >> 4) & 3;
885 /* +CRC32 */
886 elen = tlen - (sizeof(*hdr) + pad + sizeof(u32));
887
888 skb = dd->ipath_port0_skbs[etail];
889 dd->ipath_port0_skbs[etail] = nskb;
890 skb_put(skb, elen);
891
892 dd->ipath_f_put_tid(dd, etail + (u64 __iomem *)
893 ((char __iomem *) dd->ipath_kregbase
894 + dd->ipath_rcvegrbase), 0,
895 virt_to_phys(nskb->data));
896
897 __ipath_layer_rcv(dd, hdr, skb);
898
899 /* another ether packet received */
900 ipath_stats.sps_ether_rpkts++;
901 }
902 else if (hdr->sub_opcode == OPCODE_LID_ARP)
903 __ipath_layer_rcv_lid(dd, hdr);
904 }
905
906 /*
907 * ipath_kreceive - receive a packet
908 * @dd: the infinipath device
909 *
910 * called from interrupt handler for errors or receive interrupt
911 */
912 void ipath_kreceive(struct ipath_devdata *dd)
913 {
914 u64 *rc;
915 void *ebuf;
916 const u32 rsize = dd->ipath_rcvhdrentsize; /* words */
917 const u32 maxcnt = dd->ipath_rcvhdrcnt * rsize; /* words */
918 u32 etail = -1, l, hdrqtail;
919 struct ips_message_header *hdr;
920 u32 eflags, i, etype, tlen, pkttot = 0;
921 static u64 totcalls; /* stats, may eventually remove */
922 char emsg[128];
923
924 if (!dd->ipath_hdrqtailptr) {
925 ipath_dev_err(dd,
926 "hdrqtailptr not set, can't do receives\n");
927 goto bail;
928 }
929
930 /* There is already a thread processing this queue. */
931 if (test_and_set_bit(0, &dd->ipath_rcv_pending))
932 goto bail;
933
934 if (dd->ipath_port0head ==
935 (u32)le64_to_cpu(*dd->ipath_hdrqtailptr))
936 goto done;
937
938 gotmore:
939 /*
940 * read only once at start. If in flood situation, this helps
941 * performance slightly. If more arrive while we are processing,
942 * we'll come back here and do them
943 */
944 hdrqtail = (u32)le64_to_cpu(*dd->ipath_hdrqtailptr);
945
946 for (i = 0, l = dd->ipath_port0head; l != hdrqtail; i++) {
947 u32 qp;
948 u8 *bthbytes;
949
950 rc = (u64 *) (dd->ipath_pd[0]->port_rcvhdrq + (l << 2));
951 hdr = (struct ips_message_header *)&rc[1];
952 /*
953 * could make a network order version of IPATH_KD_QP, and
954 * do the obvious shift before masking to speed this up.
955 */
956 qp = ntohl(hdr->bth[1]) & 0xffffff;
957 bthbytes = (u8 *) hdr->bth;
958
959 eflags = ips_get_hdr_err_flags((__le32 *) rc);
960 etype = ips_get_rcv_type((__le32 *) rc);
961 /* total length */
962 tlen = ips_get_length_in_bytes((__le32 *) rc);
963 ebuf = NULL;
964 if (etype != RCVHQ_RCV_TYPE_EXPECTED) {
965 /*
966 * it turns out that the chips uses an eager buffer
967 * for all non-expected packets, whether it "needs"
968 * one or not. So always get the index, but don't
969 * set ebuf (so we try to copy data) unless the
970 * length requires it.
971 */
972 etail = ips_get_index((__le32 *) rc);
973 if (tlen > sizeof(*hdr) ||
974 etype == RCVHQ_RCV_TYPE_NON_KD)
975 ebuf = ipath_get_egrbuf(dd, etail, 0);
976 }
977
978 /*
979 * both tiderr and ipathhdrerr are set for all plain IB
980 * packets; only ipathhdrerr should be set.
981 */
982
983 if (etype != RCVHQ_RCV_TYPE_NON_KD && etype !=
984 RCVHQ_RCV_TYPE_ERROR && ips_get_ipath_ver(
985 hdr->iph.ver_port_tid_offset) !=
986 IPS_PROTO_VERSION) {
987 ipath_cdbg(PKT, "Bad InfiniPath protocol version "
988 "%x\n", etype);
989 }
990
991 if (eflags & ~(INFINIPATH_RHF_H_TIDERR |
992 INFINIPATH_RHF_H_IHDRERR)) {
993 get_rhf_errstring(eflags, emsg, sizeof emsg);
994 ipath_cdbg(PKT, "RHFerrs %x hdrqtail=%x typ=%u "
995 "tlen=%x opcode=%x egridx=%x: %s\n",
996 eflags, l, etype, tlen, bthbytes[0],
997 ips_get_index((__le32 *) rc), emsg);
998 } else if (etype == RCVHQ_RCV_TYPE_NON_KD) {
999 int ret = __ipath_verbs_rcv(dd, rc + 1,
1000 ebuf, tlen);
1001 if (ret == -ENODEV)
1002 ipath_cdbg(VERBOSE,
1003 "received IB packet, "
1004 "not SMA (QP=%x)\n", qp);
1005 } else if (etype == RCVHQ_RCV_TYPE_EAGER) {
1006 if (qp == IPATH_KD_QP &&
1007 bthbytes[0] == ipath_layer_rcv_opcode &&
1008 ebuf)
1009 ipath_rcv_layer(dd, etail, tlen,
1010 (struct ether_header *)hdr);
1011 else
1012 ipath_cdbg(PKT, "typ %x, opcode %x (eager, "
1013 "qp=%x), len %x; ignored\n",
1014 etype, bthbytes[0], qp, tlen);
1015 }
1016 else if (etype == RCVHQ_RCV_TYPE_EXPECTED)
1017 ipath_dbg("Bug: Expected TID, opcode %x; ignored\n",
1018 be32_to_cpu(hdr->bth[0]) & 0xff);
1019 else if (eflags & (INFINIPATH_RHF_H_TIDERR |
1020 INFINIPATH_RHF_H_IHDRERR)) {
1021 /*
1022 * This is a type 3 packet, only the LRH is in the
1023 * rcvhdrq, the rest of the header is in the eager
1024 * buffer.
1025 */
1026 u8 opcode;
1027 if (ebuf) {
1028 bthbytes = (u8 *) ebuf;
1029 opcode = *bthbytes;
1030 }
1031 else
1032 opcode = 0;
1033 get_rhf_errstring(eflags, emsg, sizeof emsg);
1034 ipath_dbg("Err %x (%s), opcode %x, egrbuf %x, "
1035 "len %x\n", eflags, emsg, opcode, etail,
1036 tlen);
1037 } else {
1038 /*
1039 * error packet, type of error unknown.
1040 * Probably type 3, but we don't know, so don't
1041 * even try to print the opcode, etc.
1042 */
1043 ipath_dbg("Error Pkt, but no eflags! egrbuf %x, "
1044 "len %x\nhdrq@%lx;hdrq+%x rhf: %llx; "
1045 "hdr %llx %llx %llx %llx %llx\n",
1046 etail, tlen, (unsigned long) rc, l,
1047 (unsigned long long) rc[0],
1048 (unsigned long long) rc[1],
1049 (unsigned long long) rc[2],
1050 (unsigned long long) rc[3],
1051 (unsigned long long) rc[4],
1052 (unsigned long long) rc[5]);
1053 }
1054 l += rsize;
1055 if (l >= maxcnt)
1056 l = 0;
1057 /*
1058 * update for each packet, to help prevent overflows if we
1059 * have lots of packets.
1060 */
1061 (void)ipath_write_ureg(dd, ur_rcvhdrhead,
1062 dd->ipath_rhdrhead_intr_off | l, 0);
1063 if (etype != RCVHQ_RCV_TYPE_EXPECTED)
1064 (void)ipath_write_ureg(dd, ur_rcvegrindexhead,
1065 etail, 0);
1066 }
1067
1068 pkttot += i;
1069
1070 dd->ipath_port0head = l;
1071
1072 if (hdrqtail != (u32)le64_to_cpu(*dd->ipath_hdrqtailptr))
1073 /* more arrived while we handled first batch */
1074 goto gotmore;
1075
1076 if (pkttot > ipath_stats.sps_maxpkts_call)
1077 ipath_stats.sps_maxpkts_call = pkttot;
1078 ipath_stats.sps_port0pkts += pkttot;
1079 ipath_stats.sps_avgpkts_call =
1080 ipath_stats.sps_port0pkts / ++totcalls;
1081
1082 done:
1083 clear_bit(0, &dd->ipath_rcv_pending);
1084 smp_mb__after_clear_bit();
1085
1086 bail:;
1087 }
1088
1089 /**
1090 * ipath_update_pio_bufs - update shadow copy of the PIO availability map
1091 * @dd: the infinipath device
1092 *
1093 * called whenever our local copy indicates we have run out of send buffers
1094 * NOTE: This can be called from interrupt context by some code
1095 * and from non-interrupt context by ipath_getpiobuf().
1096 */
1097
1098 static void ipath_update_pio_bufs(struct ipath_devdata *dd)
1099 {
1100 unsigned long flags;
1101 int i;
1102 const unsigned piobregs = (unsigned)dd->ipath_pioavregs;
1103
1104 /* If the generation (check) bits have changed, then we update the
1105 * busy bit for the corresponding PIO buffer. This algorithm will
1106 * modify positions to the value they already have in some cases
1107 * (i.e., no change), but it's faster than changing only the bits
1108 * that have changed.
1109 *
1110 * We would like to do this atomicly, to avoid spinlocks in the
1111 * critical send path, but that's not really possible, given the
1112 * type of changes, and that this routine could be called on
1113 * multiple cpu's simultaneously, so we lock in this routine only,
1114 * to avoid conflicting updates; all we change is the shadow, and
1115 * it's a single 64 bit memory location, so by definition the update
1116 * is atomic in terms of what other cpu's can see in testing the
1117 * bits. The spin_lock overhead isn't too bad, since it only
1118 * happens when all buffers are in use, so only cpu overhead, not
1119 * latency or bandwidth is affected.
1120 */
1121 #define _IPATH_ALL_CHECKBITS 0x5555555555555555ULL
1122 if (!dd->ipath_pioavailregs_dma) {
1123 ipath_dbg("Update shadow pioavail, but regs_dma NULL!\n");
1124 return;
1125 }
1126 if (ipath_debug & __IPATH_VERBDBG) {
1127 /* only if packet debug and verbose */
1128 volatile __le64 *dma = dd->ipath_pioavailregs_dma;
1129 unsigned long *shadow = dd->ipath_pioavailshadow;
1130
1131 ipath_cdbg(PKT, "Refill avail, dma0=%llx shad0=%lx, "
1132 "d1=%llx s1=%lx, d2=%llx s2=%lx, d3=%llx "
1133 "s3=%lx\n",
1134 (unsigned long long) le64_to_cpu(dma[0]),
1135 shadow[0],
1136 (unsigned long long) le64_to_cpu(dma[1]),
1137 shadow[1],
1138 (unsigned long long) le64_to_cpu(dma[2]),
1139 shadow[2],
1140 (unsigned long long) le64_to_cpu(dma[3]),
1141 shadow[3]);
1142 if (piobregs > 4)
1143 ipath_cdbg(
1144 PKT, "2nd group, dma4=%llx shad4=%lx, "
1145 "d5=%llx s5=%lx, d6=%llx s6=%lx, "
1146 "d7=%llx s7=%lx\n",
1147 (unsigned long long) le64_to_cpu(dma[4]),
1148 shadow[4],
1149 (unsigned long long) le64_to_cpu(dma[5]),
1150 shadow[5],
1151 (unsigned long long) le64_to_cpu(dma[6]),
1152 shadow[6],
1153 (unsigned long long) le64_to_cpu(dma[7]),
1154 shadow[7]);
1155 }
1156 spin_lock_irqsave(&ipath_pioavail_lock, flags);
1157 for (i = 0; i < piobregs; i++) {
1158 u64 pchbusy, pchg, piov, pnew;
1159 /*
1160 * Chip Errata: bug 6641; even and odd qwords>3 are swapped
1161 */
1162 if (i > 3) {
1163 if (i & 1)
1164 piov = le64_to_cpu(
1165 dd->ipath_pioavailregs_dma[i - 1]);
1166 else
1167 piov = le64_to_cpu(
1168 dd->ipath_pioavailregs_dma[i + 1]);
1169 } else
1170 piov = le64_to_cpu(dd->ipath_pioavailregs_dma[i]);
1171 pchg = _IPATH_ALL_CHECKBITS &
1172 ~(dd->ipath_pioavailshadow[i] ^ piov);
1173 pchbusy = pchg << INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT;
1174 if (pchg && (pchbusy & dd->ipath_pioavailshadow[i])) {
1175 pnew = dd->ipath_pioavailshadow[i] & ~pchbusy;
1176 pnew |= piov & pchbusy;
1177 dd->ipath_pioavailshadow[i] = pnew;
1178 }
1179 }
1180 spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
1181 }
1182
1183 /**
1184 * ipath_setrcvhdrsize - set the receive header size
1185 * @dd: the infinipath device
1186 * @rhdrsize: the receive header size
1187 *
1188 * called from user init code, and also layered driver init
1189 */
1190 int ipath_setrcvhdrsize(struct ipath_devdata *dd, unsigned rhdrsize)
1191 {
1192 int ret = 0;
1193
1194 if (dd->ipath_flags & IPATH_RCVHDRSZ_SET) {
1195 if (dd->ipath_rcvhdrsize != rhdrsize) {
1196 dev_info(&dd->pcidev->dev,
1197 "Error: can't set protocol header "
1198 "size %u, already %u\n",
1199 rhdrsize, dd->ipath_rcvhdrsize);
1200 ret = -EAGAIN;
1201 } else
1202 ipath_cdbg(VERBOSE, "Reuse same protocol header "
1203 "size %u\n", dd->ipath_rcvhdrsize);
1204 } else if (rhdrsize > (dd->ipath_rcvhdrentsize -
1205 (sizeof(u64) / sizeof(u32)))) {
1206 ipath_dbg("Error: can't set protocol header size %u "
1207 "(> max %u)\n", rhdrsize,
1208 dd->ipath_rcvhdrentsize -
1209 (u32) (sizeof(u64) / sizeof(u32)));
1210 ret = -EOVERFLOW;
1211 } else {
1212 dd->ipath_flags |= IPATH_RCVHDRSZ_SET;
1213 dd->ipath_rcvhdrsize = rhdrsize;
1214 ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvhdrsize,
1215 dd->ipath_rcvhdrsize);
1216 ipath_cdbg(VERBOSE, "Set protocol header size to %u\n",
1217 dd->ipath_rcvhdrsize);
1218 }
1219 return ret;
1220 }
1221
1222 /**
1223 * ipath_getpiobuf - find an available pio buffer
1224 * @dd: the infinipath device
1225 * @pbufnum: the buffer number is placed here
1226 *
1227 * do appropriate marking as busy, etc.
1228 * returns buffer number if one found (>=0), negative number is error.
1229 * Used by ipath_sma_send_pkt and ipath_layer_send
1230 */
1231 u32 __iomem *ipath_getpiobuf(struct ipath_devdata *dd, u32 * pbufnum)
1232 {
1233 int i, j, starti, updated = 0;
1234 unsigned piobcnt, iter;
1235 unsigned long flags;
1236 unsigned long *shadow = dd->ipath_pioavailshadow;
1237 u32 __iomem *buf;
1238
1239 piobcnt = (unsigned)(dd->ipath_piobcnt2k
1240 + dd->ipath_piobcnt4k);
1241 starti = dd->ipath_lastport_piobuf;
1242 iter = piobcnt - starti;
1243 if (dd->ipath_upd_pio_shadow) {
1244 /*
1245 * Minor optimization. If we had no buffers on last call,
1246 * start out by doing the update; continue and do scan even
1247 * if no buffers were updated, to be paranoid
1248 */
1249 ipath_update_pio_bufs(dd);
1250 /* we scanned here, don't do it at end of scan */
1251 updated = 1;
1252 i = starti;
1253 } else
1254 i = dd->ipath_lastpioindex;
1255
1256 rescan:
1257 /*
1258 * while test_and_set_bit() is atomic, we do that and then the
1259 * change_bit(), and the pair is not. See if this is the cause
1260 * of the remaining armlaunch errors.
1261 */
1262 spin_lock_irqsave(&ipath_pioavail_lock, flags);
1263 for (j = 0; j < iter; j++, i++) {
1264 if (i >= piobcnt)
1265 i = starti;
1266 /*
1267 * To avoid bus lock overhead, we first find a candidate
1268 * buffer, then do the test and set, and continue if that
1269 * fails.
1270 */
1271 if (test_bit((2 * i) + 1, shadow) ||
1272 test_and_set_bit((2 * i) + 1, shadow))
1273 continue;
1274 /* flip generation bit */
1275 change_bit(2 * i, shadow);
1276 break;
1277 }
1278 spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
1279
1280 if (j == iter) {
1281 volatile __le64 *dma = dd->ipath_pioavailregs_dma;
1282
1283 /*
1284 * first time through; shadow exhausted, but may be real
1285 * buffers available, so go see; if any updated, rescan
1286 * (once)
1287 */
1288 if (!updated) {
1289 ipath_update_pio_bufs(dd);
1290 updated = 1;
1291 i = starti;
1292 goto rescan;
1293 }
1294 dd->ipath_upd_pio_shadow = 1;
1295 /*
1296 * not atomic, but if we lose one once in a while, that's OK
1297 */
1298 ipath_stats.sps_nopiobufs++;
1299 if (!(++dd->ipath_consec_nopiobuf % 100000)) {
1300 ipath_dbg(
1301 "%u pio sends with no bufavail; dmacopy: "
1302 "%llx %llx %llx %llx; shadow: "
1303 "%lx %lx %lx %lx\n",
1304 dd->ipath_consec_nopiobuf,
1305 (unsigned long long) le64_to_cpu(dma[0]),
1306 (unsigned long long) le64_to_cpu(dma[1]),
1307 (unsigned long long) le64_to_cpu(dma[2]),
1308 (unsigned long long) le64_to_cpu(dma[3]),
1309 shadow[0], shadow[1], shadow[2],
1310 shadow[3]);
1311 /*
1312 * 4 buffers per byte, 4 registers above, cover rest
1313 * below
1314 */
1315 if ((dd->ipath_piobcnt2k + dd->ipath_piobcnt4k) >
1316 (sizeof(shadow[0]) * 4 * 4))
1317 ipath_dbg("2nd group: dmacopy: %llx %llx "
1318 "%llx %llx; shadow: %lx %lx "
1319 "%lx %lx\n",
1320 (unsigned long long)
1321 le64_to_cpu(dma[4]),
1322 (unsigned long long)
1323 le64_to_cpu(dma[5]),
1324 (unsigned long long)
1325 le64_to_cpu(dma[6]),
1326 (unsigned long long)
1327 le64_to_cpu(dma[7]),
1328 shadow[4], shadow[5],
1329 shadow[6], shadow[7]);
1330 }
1331 buf = NULL;
1332 goto bail;
1333 }
1334
1335 if (updated)
1336 /*
1337 * ran out of bufs, now some (at least this one we just
1338 * got) are now available, so tell the layered driver.
1339 */
1340 __ipath_layer_intr(dd, IPATH_LAYER_INT_SEND_CONTINUE);
1341
1342 /*
1343 * set next starting place. Since it's just an optimization,
1344 * it doesn't matter who wins on this, so no locking
1345 */
1346 dd->ipath_lastpioindex = i + 1;
1347 if (dd->ipath_upd_pio_shadow)
1348 dd->ipath_upd_pio_shadow = 0;
1349 if (dd->ipath_consec_nopiobuf)
1350 dd->ipath_consec_nopiobuf = 0;
1351 if (i < dd->ipath_piobcnt2k)
1352 buf = (u32 __iomem *) (dd->ipath_pio2kbase +
1353 i * dd->ipath_palign);
1354 else
1355 buf = (u32 __iomem *)
1356 (dd->ipath_pio4kbase +
1357 (i - dd->ipath_piobcnt2k) * dd->ipath_4kalign);
1358 ipath_cdbg(VERBOSE, "Return piobuf%u %uk @ %p\n",
1359 i, (i < dd->ipath_piobcnt2k) ? 2 : 4, buf);
1360 if (pbufnum)
1361 *pbufnum = i;
1362
1363 bail:
1364 return buf;
1365 }
1366
1367 /**
1368 * ipath_create_rcvhdrq - create a receive header queue
1369 * @dd: the infinipath device
1370 * @pd: the port data
1371 *
1372 * this *must* be physically contiguous memory, and for now,
1373 * that limits it to what kmalloc can do.
1374 */
1375 int ipath_create_rcvhdrq(struct ipath_devdata *dd,
1376 struct ipath_portdata *pd)
1377 {
1378 int ret = 0, amt;
1379
1380 amt = ALIGN(dd->ipath_rcvhdrcnt * dd->ipath_rcvhdrentsize *
1381 sizeof(u32), PAGE_SIZE);
1382 if (!pd->port_rcvhdrq) {
1383 /*
1384 * not using REPEAT isn't viable; at 128KB, we can easily
1385 * fail this. The problem with REPEAT is we can block here
1386 * "forever". There isn't an inbetween, unfortunately. We
1387 * could reduce the risk by never freeing the rcvhdrq except
1388 * at unload, but even then, the first time a port is used,
1389 * we could delay for some time...
1390 */
1391 gfp_t gfp_flags = GFP_USER | __GFP_COMP;
1392
1393 pd->port_rcvhdrq = dma_alloc_coherent(
1394 &dd->pcidev->dev, amt, &pd->port_rcvhdrq_phys,
1395 gfp_flags);
1396
1397 if (!pd->port_rcvhdrq) {
1398 ipath_dev_err(dd, "attempt to allocate %d bytes "
1399 "for port %u rcvhdrq failed\n",
1400 amt, pd->port_port);
1401 ret = -ENOMEM;
1402 goto bail;
1403 }
1404
1405 pd->port_rcvhdrq_size = amt;
1406
1407 ipath_cdbg(VERBOSE, "%d pages at %p (phys %lx) size=%lu "
1408 "for port %u rcvhdr Q\n",
1409 amt >> PAGE_SHIFT, pd->port_rcvhdrq,
1410 (unsigned long) pd->port_rcvhdrq_phys,
1411 (unsigned long) pd->port_rcvhdrq_size,
1412 pd->port_port);
1413 } else {
1414 /*
1415 * clear for security, sanity, and/or debugging, each
1416 * time we reuse
1417 */
1418 memset(pd->port_rcvhdrq, 0, amt);
1419 }
1420
1421 /*
1422 * tell chip each time we init it, even if we are re-using previous
1423 * memory (we zero it at process close)
1424 */
1425 ipath_cdbg(VERBOSE, "writing port %d rcvhdraddr as %lx\n",
1426 pd->port_port, (unsigned long) pd->port_rcvhdrq_phys);
1427 ipath_write_kreg_port(dd, dd->ipath_kregs->kr_rcvhdraddr,
1428 pd->port_port, pd->port_rcvhdrq_phys);
1429
1430 ret = 0;
1431 bail:
1432 return ret;
1433 }
1434
1435 int ipath_waitfor_complete(struct ipath_devdata *dd, ipath_kreg reg_id,
1436 u64 bits_to_wait_for, u64 * valp)
1437 {
1438 unsigned long timeout;
1439 u64 lastval, val;
1440 int ret;
1441
1442 lastval = ipath_read_kreg64(dd, reg_id);
1443 /* wait a ridiculously long time */
1444 timeout = jiffies + msecs_to_jiffies(5);
1445 do {
1446 val = ipath_read_kreg64(dd, reg_id);
1447 /* set so they have something, even on failures. */
1448 *valp = val;
1449 if ((val & bits_to_wait_for) == bits_to_wait_for) {
1450 ret = 0;
1451 break;
1452 }
1453 if (val != lastval)
1454 ipath_cdbg(VERBOSE, "Changed from %llx to %llx, "
1455 "waiting for %llx bits\n",
1456 (unsigned long long) lastval,
1457 (unsigned long long) val,
1458 (unsigned long long) bits_to_wait_for);
1459 cond_resched();
1460 if (time_after(jiffies, timeout)) {
1461 ipath_dbg("Didn't get bits %llx in register 0x%x, "
1462 "got %llx\n",
1463 (unsigned long long) bits_to_wait_for,
1464 reg_id, (unsigned long long) *valp);
1465 ret = -ENODEV;
1466 break;
1467 }
1468 } while (1);
1469
1470 return ret;
1471 }
1472
1473 /**
1474 * ipath_waitfor_mdio_cmdready - wait for last command to complete
1475 * @dd: the infinipath device
1476 *
1477 * Like ipath_waitfor_complete(), but we wait for the CMDVALID bit to go
1478 * away indicating the last command has completed. It doesn't return data
1479 */
1480 int ipath_waitfor_mdio_cmdready(struct ipath_devdata *dd)
1481 {
1482 unsigned long timeout;
1483 u64 val;
1484 int ret;
1485
1486 /* wait a ridiculously long time */
1487 timeout = jiffies + msecs_to_jiffies(5);
1488 do {
1489 val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_mdio);
1490 if (!(val & IPATH_MDIO_CMDVALID)) {
1491 ret = 0;
1492 break;
1493 }
1494 cond_resched();
1495 if (time_after(jiffies, timeout)) {
1496 ipath_dbg("CMDVALID stuck in mdio reg? (%llx)\n",
1497 (unsigned long long) val);
1498 ret = -ENODEV;
1499 break;
1500 }
1501 } while (1);
1502
1503 return ret;
1504 }
1505
1506 void ipath_set_ib_lstate(struct ipath_devdata *dd, int which)
1507 {
1508 static const char *what[4] = {
1509 [0] = "DOWN",
1510 [INFINIPATH_IBCC_LINKCMD_INIT] = "INIT",
1511 [INFINIPATH_IBCC_LINKCMD_ARMED] = "ARMED",
1512 [INFINIPATH_IBCC_LINKCMD_ACTIVE] = "ACTIVE"
1513 };
1514 ipath_cdbg(SMA, "Trying to move unit %u to %s, current ltstate "
1515 "is %s\n", dd->ipath_unit,
1516 what[(which >> INFINIPATH_IBCC_LINKCMD_SHIFT) &
1517 INFINIPATH_IBCC_LINKCMD_MASK],
1518 ipath_ibcstatus_str[
1519 (ipath_read_kreg64
1520 (dd, dd->ipath_kregs->kr_ibcstatus) >>
1521 INFINIPATH_IBCS_LINKTRAININGSTATE_SHIFT) &
1522 INFINIPATH_IBCS_LINKTRAININGSTATE_MASK]);
1523
1524 ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
1525 dd->ipath_ibcctrl | which);
1526 }
1527
1528 /**
1529 * ipath_read_kreg64_port - read a device's per-port 64-bit kernel register
1530 * @dd: the infinipath device
1531 * @regno: the register number to read
1532 * @port: the port containing the register
1533 *
1534 * Registers that vary with the chip implementation constants (port)
1535 * use this routine.
1536 */
1537 u64 ipath_read_kreg64_port(const struct ipath_devdata *dd, ipath_kreg regno,
1538 unsigned port)
1539 {
1540 u16 where;
1541
1542 if (port < dd->ipath_portcnt &&
1543 (regno == dd->ipath_kregs->kr_rcvhdraddr ||
1544 regno == dd->ipath_kregs->kr_rcvhdrtailaddr))
1545 where = regno + port;
1546 else
1547 where = -1;
1548
1549 return ipath_read_kreg64(dd, where);
1550 }
1551
1552 /**
1553 * ipath_write_kreg_port - write a device's per-port 64-bit kernel register
1554 * @dd: the infinipath device
1555 * @regno: the register number to write
1556 * @port: the port containing the register
1557 * @value: the value to write
1558 *
1559 * Registers that vary with the chip implementation constants (port)
1560 * use this routine.
1561 */
1562 void ipath_write_kreg_port(const struct ipath_devdata *dd, ipath_kreg regno,
1563 unsigned port, u64 value)
1564 {
1565 u16 where;
1566
1567 if (port < dd->ipath_portcnt &&
1568 (regno == dd->ipath_kregs->kr_rcvhdraddr ||
1569 regno == dd->ipath_kregs->kr_rcvhdrtailaddr))
1570 where = regno + port;
1571 else
1572 where = -1;
1573
1574 ipath_write_kreg(dd, where, value);
1575 }
1576
1577 /**
1578 * ipath_shutdown_device - shut down a device
1579 * @dd: the infinipath device
1580 *
1581 * This is called to make the device quiet when we are about to
1582 * unload the driver, and also when the device is administratively
1583 * disabled. It does not free any data structures.
1584 * Everything it does has to be setup again by ipath_init_chip(dd,1)
1585 */
1586 void ipath_shutdown_device(struct ipath_devdata *dd)
1587 {
1588 u64 val;
1589
1590 ipath_dbg("Shutting down the device\n");
1591
1592 dd->ipath_flags |= IPATH_LINKUNK;
1593 dd->ipath_flags &= ~(IPATH_INITTED | IPATH_LINKDOWN |
1594 IPATH_LINKINIT | IPATH_LINKARMED |
1595 IPATH_LINKACTIVE);
1596 *dd->ipath_statusp &= ~(IPATH_STATUS_IB_CONF |
1597 IPATH_STATUS_IB_READY);
1598
1599 /* mask interrupts, but not errors */
1600 ipath_write_kreg(dd, dd->ipath_kregs->kr_intmask, 0ULL);
1601
1602 dd->ipath_rcvctrl = 0;
1603 ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvctrl,
1604 dd->ipath_rcvctrl);
1605
1606 /*
1607 * gracefully stop all sends allowing any in progress to trickle out
1608 * first.
1609 */
1610 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl, 0ULL);
1611 /* flush it */
1612 val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
1613 /*
1614 * enough for anything that's going to trickle out to have actually
1615 * done so.
1616 */
1617 udelay(5);
1618
1619 /*
1620 * abort any armed or launched PIO buffers that didn't go. (self
1621 * clearing). Will cause any packet currently being transmitted to
1622 * go out with an EBP, and may also cause a short packet error on
1623 * the receiver.
1624 */
1625 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
1626 INFINIPATH_S_ABORT);
1627
1628 ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKINITCMD_DISABLE <<
1629 INFINIPATH_IBCC_LINKINITCMD_SHIFT);
1630
1631 /*
1632 * we are shutting down, so tell the layered driver. We don't do
1633 * this on just a link state change, much like ethernet, a cable
1634 * unplug, etc. doesn't change driver state
1635 */
1636 ipath_layer_intr(dd, IPATH_LAYER_INT_IF_DOWN);
1637
1638 /* disable IBC */
1639 dd->ipath_control &= ~INFINIPATH_C_LINKENABLE;
1640 ipath_write_kreg(dd, dd->ipath_kregs->kr_control,
1641 dd->ipath_control);
1642
1643 /*
1644 * clear SerdesEnable and turn the leds off; do this here because
1645 * we are unloading, so don't count on interrupts to move along
1646 * Turn the LEDs off explictly for the same reason.
1647 */
1648 dd->ipath_f_quiet_serdes(dd);
1649 dd->ipath_f_setextled(dd, 0, 0);
1650
1651 if (dd->ipath_stats_timer_active) {
1652 del_timer_sync(&dd->ipath_stats_timer);
1653 dd->ipath_stats_timer_active = 0;
1654 }
1655
1656 /*
1657 * clear all interrupts and errors, so that the next time the driver
1658 * is loaded or device is enabled, we know that whatever is set
1659 * happened while we were unloaded
1660 */
1661 ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrclear,
1662 ~0ULL & ~INFINIPATH_HWE_MEMBISTFAILED);
1663 ipath_write_kreg(dd, dd->ipath_kregs->kr_errorclear, -1LL);
1664 ipath_write_kreg(dd, dd->ipath_kregs->kr_intclear, -1LL);
1665 }
1666
1667 /**
1668 * ipath_free_pddata - free a port's allocated data
1669 * @dd: the infinipath device
1670 * @port: the port
1671 * @freehdrq: free the port data structure if true
1672 *
1673 * when closing, free up any allocated data for a port, if the
1674 * reference count goes to zero
1675 * Note: this also optionally frees the portdata itself!
1676 * Any changes here have to be matched up with the reinit case
1677 * of ipath_init_chip(), which calls this routine on reinit after reset.
1678 */
1679 void ipath_free_pddata(struct ipath_devdata *dd, u32 port, int freehdrq)
1680 {
1681 struct ipath_portdata *pd = dd->ipath_pd[port];
1682
1683 if (!pd)
1684 return;
1685 if (freehdrq)
1686 /*
1687 * only clear and free portdata if we are going to also
1688 * release the hdrq, otherwise we leak the hdrq on each
1689 * open/close cycle
1690 */
1691 dd->ipath_pd[port] = NULL;
1692 if (freehdrq && pd->port_rcvhdrq) {
1693 ipath_cdbg(VERBOSE, "free closed port %d rcvhdrq @ %p "
1694 "(size=%lu)\n", pd->port_port, pd->port_rcvhdrq,
1695 (unsigned long) pd->port_rcvhdrq_size);
1696 dma_free_coherent(&dd->pcidev->dev, pd->port_rcvhdrq_size,
1697 pd->port_rcvhdrq, pd->port_rcvhdrq_phys);
1698 pd->port_rcvhdrq = NULL;
1699 }
1700 if (port && pd->port_rcvegrbuf) {
1701 /* always free this */
1702 if (pd->port_rcvegrbuf) {
1703 unsigned e;
1704
1705 for (e = 0; e < pd->port_rcvegrbuf_chunks; e++) {
1706 void *base = pd->port_rcvegrbuf[e];
1707 size_t size = pd->port_rcvegrbuf_size;
1708
1709 ipath_cdbg(VERBOSE, "egrbuf free(%p, %lu), "
1710 "chunk %u/%u\n", base,
1711 (unsigned long) size,
1712 e, pd->port_rcvegrbuf_chunks);
1713 dma_free_coherent(
1714 &dd->pcidev->dev, size, base,
1715 pd->port_rcvegrbuf_phys[e]);
1716 }
1717 vfree(pd->port_rcvegrbuf);
1718 pd->port_rcvegrbuf = NULL;
1719 vfree(pd->port_rcvegrbuf_phys);
1720 pd->port_rcvegrbuf_phys = NULL;
1721 }
1722 pd->port_rcvegrbuf_chunks = 0;
1723 } else if (port == 0 && dd->ipath_port0_skbs) {
1724 unsigned e;
1725 struct sk_buff **skbs = dd->ipath_port0_skbs;
1726
1727 dd->ipath_port0_skbs = NULL;
1728 ipath_cdbg(VERBOSE, "free closed port %d ipath_port0_skbs "
1729 "@ %p\n", pd->port_port, skbs);
1730 for (e = 0; e < dd->ipath_rcvegrcnt; e++)
1731 if (skbs[e])
1732 dev_kfree_skb(skbs[e]);
1733 vfree(skbs);
1734 }
1735 if (freehdrq) {
1736 kfree(pd->port_tid_pg_list);
1737 kfree(pd);
1738 }
1739 }
1740
1741 static int __init infinipath_init(void)
1742 {
1743 int ret;
1744
1745 ipath_dbg(KERN_INFO DRIVER_LOAD_MSG "%s", ipath_core_version);
1746
1747 /*
1748 * These must be called before the driver is registered with
1749 * the PCI subsystem.
1750 */
1751 idr_init(&unit_table);
1752 if (!idr_pre_get(&unit_table, GFP_KERNEL)) {
1753 ret = -ENOMEM;
1754 goto bail;
1755 }
1756
1757 ret = pci_register_driver(&ipath_driver);
1758 if (ret < 0) {
1759 printk(KERN_ERR IPATH_DRV_NAME
1760 ": Unable to register driver: error %d\n", -ret);
1761 goto bail_unit;
1762 }
1763
1764 ret = ipath_driver_create_group(&ipath_driver.driver);
1765 if (ret < 0) {
1766 printk(KERN_ERR IPATH_DRV_NAME ": Unable to create driver "
1767 "sysfs entries: error %d\n", -ret);
1768 goto bail_pci;
1769 }
1770
1771 ret = ipath_init_ipathfs();
1772 if (ret < 0) {
1773 printk(KERN_ERR IPATH_DRV_NAME ": Unable to create "
1774 "ipathfs: error %d\n", -ret);
1775 goto bail_group;
1776 }
1777
1778 goto bail;
1779
1780 bail_group:
1781 ipath_driver_remove_group(&ipath_driver.driver);
1782
1783 bail_pci:
1784 pci_unregister_driver(&ipath_driver);
1785
1786 bail_unit:
1787 idr_destroy(&unit_table);
1788
1789 bail:
1790 return ret;
1791 }
1792
1793 static void cleanup_device(struct ipath_devdata *dd)
1794 {
1795 int port;
1796
1797 ipath_shutdown_device(dd);
1798
1799 if (*dd->ipath_statusp & IPATH_STATUS_CHIP_PRESENT) {
1800 /* can't do anything more with chip; needs re-init */
1801 *dd->ipath_statusp &= ~IPATH_STATUS_CHIP_PRESENT;
1802 if (dd->ipath_kregbase) {
1803 /*
1804 * if we haven't already cleaned up before these are
1805 * to ensure any register reads/writes "fail" until
1806 * re-init
1807 */
1808 dd->ipath_kregbase = NULL;
1809 dd->ipath_kregvirt = NULL;
1810 dd->ipath_uregbase = 0;
1811 dd->ipath_sregbase = 0;
1812 dd->ipath_cregbase = 0;
1813 dd->ipath_kregsize = 0;
1814 }
1815 ipath_disable_wc(dd);
1816 }
1817
1818 if (dd->ipath_pioavailregs_dma) {
1819 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
1820 (void *) dd->ipath_pioavailregs_dma,
1821 dd->ipath_pioavailregs_phys);
1822 dd->ipath_pioavailregs_dma = NULL;
1823 }
1824
1825 if (dd->ipath_pageshadow) {
1826 struct page **tmpp = dd->ipath_pageshadow;
1827 int i, cnt = 0;
1828
1829 ipath_cdbg(VERBOSE, "Unlocking any expTID pages still "
1830 "locked\n");
1831 for (port = 0; port < dd->ipath_cfgports; port++) {
1832 int port_tidbase = port * dd->ipath_rcvtidcnt;
1833 int maxtid = port_tidbase + dd->ipath_rcvtidcnt;
1834 for (i = port_tidbase; i < maxtid; i++) {
1835 if (!tmpp[i])
1836 continue;
1837 ipath_release_user_pages(&tmpp[i], 1);
1838 tmpp[i] = NULL;
1839 cnt++;
1840 }
1841 }
1842 if (cnt) {
1843 ipath_stats.sps_pageunlocks += cnt;
1844 ipath_cdbg(VERBOSE, "There were still %u expTID "
1845 "entries locked\n", cnt);
1846 }
1847 if (ipath_stats.sps_pagelocks ||
1848 ipath_stats.sps_pageunlocks)
1849 ipath_cdbg(VERBOSE, "%llu pages locked, %llu "
1850 "unlocked via ipath_m{un}lock\n",
1851 (unsigned long long)
1852 ipath_stats.sps_pagelocks,
1853 (unsigned long long)
1854 ipath_stats.sps_pageunlocks);
1855
1856 ipath_cdbg(VERBOSE, "Free shadow page tid array at %p\n",
1857 dd->ipath_pageshadow);
1858 vfree(dd->ipath_pageshadow);
1859 dd->ipath_pageshadow = NULL;
1860 }
1861
1862 /*
1863 * free any resources still in use (usually just kernel ports)
1864 * at unload
1865 */
1866 for (port = 0; port < dd->ipath_cfgports; port++)
1867 ipath_free_pddata(dd, port, 1);
1868 kfree(dd->ipath_pd);
1869 /*
1870 * debuggability, in case some cleanup path tries to use it
1871 * after this
1872 */
1873 dd->ipath_pd = NULL;
1874 }
1875
1876 static void __exit infinipath_cleanup(void)
1877 {
1878 struct ipath_devdata *dd, *tmp;
1879 unsigned long flags;
1880
1881 ipath_exit_ipathfs();
1882
1883 ipath_driver_remove_group(&ipath_driver.driver);
1884
1885 spin_lock_irqsave(&ipath_devs_lock, flags);
1886
1887 /*
1888 * turn off rcv, send, and interrupts for all ports, all drivers
1889 * should also hard reset the chip here?
1890 * free up port 0 (kernel) rcvhdr, egr bufs, and eventually tid bufs
1891 * for all versions of the driver, if they were allocated
1892 */
1893 list_for_each_entry_safe(dd, tmp, &ipath_dev_list, ipath_list) {
1894 spin_unlock_irqrestore(&ipath_devs_lock, flags);
1895
1896 if (dd->ipath_kregbase)
1897 cleanup_device(dd);
1898
1899 if (dd->pcidev) {
1900 if (dd->pcidev->irq) {
1901 ipath_cdbg(VERBOSE,
1902 "unit %u free_irq of irq %x\n",
1903 dd->ipath_unit, dd->pcidev->irq);
1904 free_irq(dd->pcidev->irq, dd);
1905 } else
1906 ipath_dbg("irq is 0, not doing free_irq "
1907 "for unit %u\n", dd->ipath_unit);
1908
1909 /*
1910 * we check for NULL here, because it's outside
1911 * the kregbase check, and we need to call it
1912 * after the free_irq. Thus it's possible that
1913 * the function pointers were never initialized.
1914 */
1915 if (dd->ipath_f_cleanup)
1916 /* clean up chip-specific stuff */
1917 dd->ipath_f_cleanup(dd);
1918
1919 dd->pcidev = NULL;
1920 }
1921 spin_lock_irqsave(&ipath_devs_lock, flags);
1922 }
1923
1924 spin_unlock_irqrestore(&ipath_devs_lock, flags);
1925
1926 ipath_cdbg(VERBOSE, "Unregistering pci driver\n");
1927 pci_unregister_driver(&ipath_driver);
1928
1929 idr_destroy(&unit_table);
1930 }
1931
1932 /**
1933 * ipath_reset_device - reset the chip if possible
1934 * @unit: the device to reset
1935 *
1936 * Whether or not reset is successful, we attempt to re-initialize the chip
1937 * (that is, much like a driver unload/reload). We clear the INITTED flag
1938 * so that the various entry points will fail until we reinitialize. For
1939 * now, we only allow this if no user ports are open that use chip resources
1940 */
1941 int ipath_reset_device(int unit)
1942 {
1943 int ret, i;
1944 struct ipath_devdata *dd = ipath_lookup(unit);
1945
1946 if (!dd) {
1947 ret = -ENODEV;
1948 goto bail;
1949 }
1950
1951 dev_info(&dd->pcidev->dev, "Reset on unit %u requested\n", unit);
1952
1953 if (!dd->ipath_kregbase || !(dd->ipath_flags & IPATH_PRESENT)) {
1954 dev_info(&dd->pcidev->dev, "Invalid unit number %u or "
1955 "not initialized or not present\n", unit);
1956 ret = -ENXIO;
1957 goto bail;
1958 }
1959
1960 if (dd->ipath_pd)
1961 for (i = 1; i < dd->ipath_cfgports; i++) {
1962 if (dd->ipath_pd[i] && dd->ipath_pd[i]->port_cnt) {
1963 ipath_dbg("unit %u port %d is in use "
1964 "(PID %u cmd %s), can't reset\n",
1965 unit, i,
1966 dd->ipath_pd[i]->port_pid,
1967 dd->ipath_pd[i]->port_comm);
1968 ret = -EBUSY;
1969 goto bail;
1970 }
1971 }
1972
1973 dd->ipath_flags &= ~IPATH_INITTED;
1974 ret = dd->ipath_f_reset(dd);
1975 if (ret != 1)
1976 ipath_dbg("reset was not successful\n");
1977 ipath_dbg("Trying to reinitialize unit %u after reset attempt\n",
1978 unit);
1979 ret = ipath_init_chip(dd, 1);
1980 if (ret)
1981 ipath_dev_err(dd, "Reinitialize unit %u after "
1982 "reset failed with %d\n", unit, ret);
1983 else
1984 dev_info(&dd->pcidev->dev, "Reinitialized unit %u after "
1985 "resetting\n", unit);
1986
1987 bail:
1988 return ret;
1989 }
1990
1991 module_init(infinipath_init);
1992 module_exit(infinipath_cleanup);
This page took 0.070618 seconds and 6 git commands to generate.