Merge git://git.kernel.org/pub/scm/linux/kernel/git/linville/wireless-next into for...
[deliverable/linux.git] / drivers / infiniband / hw / mthca / mthca_memfree.c
1 /*
2 * Copyright (c) 2004, 2005 Topspin Communications. All rights reserved.
3 * Copyright (c) 2005 Cisco Systems. All rights reserved.
4 * Copyright (c) 2005 Mellanox Technologies. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #include <linux/mm.h>
36 #include <linux/scatterlist.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39
40 #include <asm/page.h>
41
42 #include "mthca_memfree.h"
43 #include "mthca_dev.h"
44 #include "mthca_cmd.h"
45
46 /*
47 * We allocate in as big chunks as we can, up to a maximum of 256 KB
48 * per chunk.
49 */
50 enum {
51 MTHCA_ICM_ALLOC_SIZE = 1 << 18,
52 MTHCA_TABLE_CHUNK_SIZE = 1 << 18
53 };
54
55 struct mthca_user_db_table {
56 struct mutex mutex;
57 struct {
58 u64 uvirt;
59 struct scatterlist mem;
60 int refcount;
61 } page[0];
62 };
63
64 static void mthca_free_icm_pages(struct mthca_dev *dev, struct mthca_icm_chunk *chunk)
65 {
66 int i;
67
68 if (chunk->nsg > 0)
69 pci_unmap_sg(dev->pdev, chunk->mem, chunk->npages,
70 PCI_DMA_BIDIRECTIONAL);
71
72 for (i = 0; i < chunk->npages; ++i)
73 __free_pages(sg_page(&chunk->mem[i]),
74 get_order(chunk->mem[i].length));
75 }
76
77 static void mthca_free_icm_coherent(struct mthca_dev *dev, struct mthca_icm_chunk *chunk)
78 {
79 int i;
80
81 for (i = 0; i < chunk->npages; ++i) {
82 dma_free_coherent(&dev->pdev->dev, chunk->mem[i].length,
83 lowmem_page_address(sg_page(&chunk->mem[i])),
84 sg_dma_address(&chunk->mem[i]));
85 }
86 }
87
88 void mthca_free_icm(struct mthca_dev *dev, struct mthca_icm *icm, int coherent)
89 {
90 struct mthca_icm_chunk *chunk, *tmp;
91
92 if (!icm)
93 return;
94
95 list_for_each_entry_safe(chunk, tmp, &icm->chunk_list, list) {
96 if (coherent)
97 mthca_free_icm_coherent(dev, chunk);
98 else
99 mthca_free_icm_pages(dev, chunk);
100
101 kfree(chunk);
102 }
103
104 kfree(icm);
105 }
106
107 static int mthca_alloc_icm_pages(struct scatterlist *mem, int order, gfp_t gfp_mask)
108 {
109 struct page *page;
110
111 /*
112 * Use __GFP_ZERO because buggy firmware assumes ICM pages are
113 * cleared, and subtle failures are seen if they aren't.
114 */
115 page = alloc_pages(gfp_mask | __GFP_ZERO, order);
116 if (!page)
117 return -ENOMEM;
118
119 sg_set_page(mem, page, PAGE_SIZE << order, 0);
120 return 0;
121 }
122
123 static int mthca_alloc_icm_coherent(struct device *dev, struct scatterlist *mem,
124 int order, gfp_t gfp_mask)
125 {
126 void *buf = dma_alloc_coherent(dev, PAGE_SIZE << order, &sg_dma_address(mem),
127 gfp_mask);
128 if (!buf)
129 return -ENOMEM;
130
131 sg_set_buf(mem, buf, PAGE_SIZE << order);
132 BUG_ON(mem->offset);
133 sg_dma_len(mem) = PAGE_SIZE << order;
134 return 0;
135 }
136
137 struct mthca_icm *mthca_alloc_icm(struct mthca_dev *dev, int npages,
138 gfp_t gfp_mask, int coherent)
139 {
140 struct mthca_icm *icm;
141 struct mthca_icm_chunk *chunk = NULL;
142 int cur_order;
143 int ret;
144
145 /* We use sg_set_buf for coherent allocs, which assumes low memory */
146 BUG_ON(coherent && (gfp_mask & __GFP_HIGHMEM));
147
148 icm = kmalloc(sizeof *icm, gfp_mask & ~(__GFP_HIGHMEM | __GFP_NOWARN));
149 if (!icm)
150 return icm;
151
152 icm->refcount = 0;
153 INIT_LIST_HEAD(&icm->chunk_list);
154
155 cur_order = get_order(MTHCA_ICM_ALLOC_SIZE);
156
157 while (npages > 0) {
158 if (!chunk) {
159 chunk = kmalloc(sizeof *chunk,
160 gfp_mask & ~(__GFP_HIGHMEM | __GFP_NOWARN));
161 if (!chunk)
162 goto fail;
163
164 sg_init_table(chunk->mem, MTHCA_ICM_CHUNK_LEN);
165 chunk->npages = 0;
166 chunk->nsg = 0;
167 list_add_tail(&chunk->list, &icm->chunk_list);
168 }
169
170 while (1 << cur_order > npages)
171 --cur_order;
172
173 if (coherent)
174 ret = mthca_alloc_icm_coherent(&dev->pdev->dev,
175 &chunk->mem[chunk->npages],
176 cur_order, gfp_mask);
177 else
178 ret = mthca_alloc_icm_pages(&chunk->mem[chunk->npages],
179 cur_order, gfp_mask);
180
181 if (!ret) {
182 ++chunk->npages;
183
184 if (coherent)
185 ++chunk->nsg;
186 else if (chunk->npages == MTHCA_ICM_CHUNK_LEN) {
187 chunk->nsg = pci_map_sg(dev->pdev, chunk->mem,
188 chunk->npages,
189 PCI_DMA_BIDIRECTIONAL);
190
191 if (chunk->nsg <= 0)
192 goto fail;
193 }
194
195 if (chunk->npages == MTHCA_ICM_CHUNK_LEN)
196 chunk = NULL;
197
198 npages -= 1 << cur_order;
199 } else {
200 --cur_order;
201 if (cur_order < 0)
202 goto fail;
203 }
204 }
205
206 if (!coherent && chunk) {
207 chunk->nsg = pci_map_sg(dev->pdev, chunk->mem,
208 chunk->npages,
209 PCI_DMA_BIDIRECTIONAL);
210
211 if (chunk->nsg <= 0)
212 goto fail;
213 }
214
215 return icm;
216
217 fail:
218 mthca_free_icm(dev, icm, coherent);
219 return NULL;
220 }
221
222 int mthca_table_get(struct mthca_dev *dev, struct mthca_icm_table *table, int obj)
223 {
224 int i = (obj & (table->num_obj - 1)) * table->obj_size / MTHCA_TABLE_CHUNK_SIZE;
225 int ret = 0;
226
227 mutex_lock(&table->mutex);
228
229 if (table->icm[i]) {
230 ++table->icm[i]->refcount;
231 goto out;
232 }
233
234 table->icm[i] = mthca_alloc_icm(dev, MTHCA_TABLE_CHUNK_SIZE >> PAGE_SHIFT,
235 (table->lowmem ? GFP_KERNEL : GFP_HIGHUSER) |
236 __GFP_NOWARN, table->coherent);
237 if (!table->icm[i]) {
238 ret = -ENOMEM;
239 goto out;
240 }
241
242 if (mthca_MAP_ICM(dev, table->icm[i],
243 table->virt + i * MTHCA_TABLE_CHUNK_SIZE)) {
244 mthca_free_icm(dev, table->icm[i], table->coherent);
245 table->icm[i] = NULL;
246 ret = -ENOMEM;
247 goto out;
248 }
249
250 ++table->icm[i]->refcount;
251
252 out:
253 mutex_unlock(&table->mutex);
254 return ret;
255 }
256
257 void mthca_table_put(struct mthca_dev *dev, struct mthca_icm_table *table, int obj)
258 {
259 int i;
260
261 if (!mthca_is_memfree(dev))
262 return;
263
264 i = (obj & (table->num_obj - 1)) * table->obj_size / MTHCA_TABLE_CHUNK_SIZE;
265
266 mutex_lock(&table->mutex);
267
268 if (--table->icm[i]->refcount == 0) {
269 mthca_UNMAP_ICM(dev, table->virt + i * MTHCA_TABLE_CHUNK_SIZE,
270 MTHCA_TABLE_CHUNK_SIZE / MTHCA_ICM_PAGE_SIZE);
271 mthca_free_icm(dev, table->icm[i], table->coherent);
272 table->icm[i] = NULL;
273 }
274
275 mutex_unlock(&table->mutex);
276 }
277
278 void *mthca_table_find(struct mthca_icm_table *table, int obj, dma_addr_t *dma_handle)
279 {
280 int idx, offset, dma_offset, i;
281 struct mthca_icm_chunk *chunk;
282 struct mthca_icm *icm;
283 struct page *page = NULL;
284
285 if (!table->lowmem)
286 return NULL;
287
288 mutex_lock(&table->mutex);
289
290 idx = (obj & (table->num_obj - 1)) * table->obj_size;
291 icm = table->icm[idx / MTHCA_TABLE_CHUNK_SIZE];
292 dma_offset = offset = idx % MTHCA_TABLE_CHUNK_SIZE;
293
294 if (!icm)
295 goto out;
296
297 list_for_each_entry(chunk, &icm->chunk_list, list) {
298 for (i = 0; i < chunk->npages; ++i) {
299 if (dma_handle && dma_offset >= 0) {
300 if (sg_dma_len(&chunk->mem[i]) > dma_offset)
301 *dma_handle = sg_dma_address(&chunk->mem[i]) +
302 dma_offset;
303 dma_offset -= sg_dma_len(&chunk->mem[i]);
304 }
305 /* DMA mapping can merge pages but not split them,
306 * so if we found the page, dma_handle has already
307 * been assigned to. */
308 if (chunk->mem[i].length > offset) {
309 page = sg_page(&chunk->mem[i]);
310 goto out;
311 }
312 offset -= chunk->mem[i].length;
313 }
314 }
315
316 out:
317 mutex_unlock(&table->mutex);
318 return page ? lowmem_page_address(page) + offset : NULL;
319 }
320
321 int mthca_table_get_range(struct mthca_dev *dev, struct mthca_icm_table *table,
322 int start, int end)
323 {
324 int inc = MTHCA_TABLE_CHUNK_SIZE / table->obj_size;
325 int i, err;
326
327 for (i = start; i <= end; i += inc) {
328 err = mthca_table_get(dev, table, i);
329 if (err)
330 goto fail;
331 }
332
333 return 0;
334
335 fail:
336 while (i > start) {
337 i -= inc;
338 mthca_table_put(dev, table, i);
339 }
340
341 return err;
342 }
343
344 void mthca_table_put_range(struct mthca_dev *dev, struct mthca_icm_table *table,
345 int start, int end)
346 {
347 int i;
348
349 if (!mthca_is_memfree(dev))
350 return;
351
352 for (i = start; i <= end; i += MTHCA_TABLE_CHUNK_SIZE / table->obj_size)
353 mthca_table_put(dev, table, i);
354 }
355
356 struct mthca_icm_table *mthca_alloc_icm_table(struct mthca_dev *dev,
357 u64 virt, int obj_size,
358 int nobj, int reserved,
359 int use_lowmem, int use_coherent)
360 {
361 struct mthca_icm_table *table;
362 int obj_per_chunk;
363 int num_icm;
364 unsigned chunk_size;
365 int i;
366
367 obj_per_chunk = MTHCA_TABLE_CHUNK_SIZE / obj_size;
368 num_icm = DIV_ROUND_UP(nobj, obj_per_chunk);
369
370 table = kmalloc(sizeof *table + num_icm * sizeof *table->icm, GFP_KERNEL);
371 if (!table)
372 return NULL;
373
374 table->virt = virt;
375 table->num_icm = num_icm;
376 table->num_obj = nobj;
377 table->obj_size = obj_size;
378 table->lowmem = use_lowmem;
379 table->coherent = use_coherent;
380 mutex_init(&table->mutex);
381
382 for (i = 0; i < num_icm; ++i)
383 table->icm[i] = NULL;
384
385 for (i = 0; i * MTHCA_TABLE_CHUNK_SIZE < reserved * obj_size; ++i) {
386 chunk_size = MTHCA_TABLE_CHUNK_SIZE;
387 if ((i + 1) * MTHCA_TABLE_CHUNK_SIZE > nobj * obj_size)
388 chunk_size = nobj * obj_size - i * MTHCA_TABLE_CHUNK_SIZE;
389
390 table->icm[i] = mthca_alloc_icm(dev, chunk_size >> PAGE_SHIFT,
391 (use_lowmem ? GFP_KERNEL : GFP_HIGHUSER) |
392 __GFP_NOWARN, use_coherent);
393 if (!table->icm[i])
394 goto err;
395 if (mthca_MAP_ICM(dev, table->icm[i],
396 virt + i * MTHCA_TABLE_CHUNK_SIZE)) {
397 mthca_free_icm(dev, table->icm[i], table->coherent);
398 table->icm[i] = NULL;
399 goto err;
400 }
401
402 /*
403 * Add a reference to this ICM chunk so that it never
404 * gets freed (since it contains reserved firmware objects).
405 */
406 ++table->icm[i]->refcount;
407 }
408
409 return table;
410
411 err:
412 for (i = 0; i < num_icm; ++i)
413 if (table->icm[i]) {
414 mthca_UNMAP_ICM(dev, virt + i * MTHCA_TABLE_CHUNK_SIZE,
415 MTHCA_TABLE_CHUNK_SIZE / MTHCA_ICM_PAGE_SIZE);
416 mthca_free_icm(dev, table->icm[i], table->coherent);
417 }
418
419 kfree(table);
420
421 return NULL;
422 }
423
424 void mthca_free_icm_table(struct mthca_dev *dev, struct mthca_icm_table *table)
425 {
426 int i;
427
428 for (i = 0; i < table->num_icm; ++i)
429 if (table->icm[i]) {
430 mthca_UNMAP_ICM(dev,
431 table->virt + i * MTHCA_TABLE_CHUNK_SIZE,
432 MTHCA_TABLE_CHUNK_SIZE / MTHCA_ICM_PAGE_SIZE);
433 mthca_free_icm(dev, table->icm[i], table->coherent);
434 }
435
436 kfree(table);
437 }
438
439 static u64 mthca_uarc_virt(struct mthca_dev *dev, struct mthca_uar *uar, int page)
440 {
441 return dev->uar_table.uarc_base +
442 uar->index * dev->uar_table.uarc_size +
443 page * MTHCA_ICM_PAGE_SIZE;
444 }
445
446 int mthca_map_user_db(struct mthca_dev *dev, struct mthca_uar *uar,
447 struct mthca_user_db_table *db_tab, int index, u64 uaddr)
448 {
449 struct page *pages[1];
450 int ret = 0;
451 int i;
452
453 if (!mthca_is_memfree(dev))
454 return 0;
455
456 if (index < 0 || index > dev->uar_table.uarc_size / 8)
457 return -EINVAL;
458
459 mutex_lock(&db_tab->mutex);
460
461 i = index / MTHCA_DB_REC_PER_PAGE;
462
463 if ((db_tab->page[i].refcount >= MTHCA_DB_REC_PER_PAGE) ||
464 (db_tab->page[i].uvirt && db_tab->page[i].uvirt != uaddr) ||
465 (uaddr & 4095)) {
466 ret = -EINVAL;
467 goto out;
468 }
469
470 if (db_tab->page[i].refcount) {
471 ++db_tab->page[i].refcount;
472 goto out;
473 }
474
475 ret = get_user_pages(current, current->mm, uaddr & PAGE_MASK, 1, 1, 0,
476 pages, NULL);
477 if (ret < 0)
478 goto out;
479
480 sg_set_page(&db_tab->page[i].mem, pages[0], MTHCA_ICM_PAGE_SIZE,
481 uaddr & ~PAGE_MASK);
482
483 ret = pci_map_sg(dev->pdev, &db_tab->page[i].mem, 1, PCI_DMA_TODEVICE);
484 if (ret < 0) {
485 put_page(pages[0]);
486 goto out;
487 }
488
489 ret = mthca_MAP_ICM_page(dev, sg_dma_address(&db_tab->page[i].mem),
490 mthca_uarc_virt(dev, uar, i));
491 if (ret) {
492 pci_unmap_sg(dev->pdev, &db_tab->page[i].mem, 1, PCI_DMA_TODEVICE);
493 put_page(sg_page(&db_tab->page[i].mem));
494 goto out;
495 }
496
497 db_tab->page[i].uvirt = uaddr;
498 db_tab->page[i].refcount = 1;
499
500 out:
501 mutex_unlock(&db_tab->mutex);
502 return ret;
503 }
504
505 void mthca_unmap_user_db(struct mthca_dev *dev, struct mthca_uar *uar,
506 struct mthca_user_db_table *db_tab, int index)
507 {
508 if (!mthca_is_memfree(dev))
509 return;
510
511 /*
512 * To make our bookkeeping simpler, we don't unmap DB
513 * pages until we clean up the whole db table.
514 */
515
516 mutex_lock(&db_tab->mutex);
517
518 --db_tab->page[index / MTHCA_DB_REC_PER_PAGE].refcount;
519
520 mutex_unlock(&db_tab->mutex);
521 }
522
523 struct mthca_user_db_table *mthca_init_user_db_tab(struct mthca_dev *dev)
524 {
525 struct mthca_user_db_table *db_tab;
526 int npages;
527 int i;
528
529 if (!mthca_is_memfree(dev))
530 return NULL;
531
532 npages = dev->uar_table.uarc_size / MTHCA_ICM_PAGE_SIZE;
533 db_tab = kmalloc(sizeof *db_tab + npages * sizeof *db_tab->page, GFP_KERNEL);
534 if (!db_tab)
535 return ERR_PTR(-ENOMEM);
536
537 mutex_init(&db_tab->mutex);
538 for (i = 0; i < npages; ++i) {
539 db_tab->page[i].refcount = 0;
540 db_tab->page[i].uvirt = 0;
541 sg_init_table(&db_tab->page[i].mem, 1);
542 }
543
544 return db_tab;
545 }
546
547 void mthca_cleanup_user_db_tab(struct mthca_dev *dev, struct mthca_uar *uar,
548 struct mthca_user_db_table *db_tab)
549 {
550 int i;
551
552 if (!mthca_is_memfree(dev))
553 return;
554
555 for (i = 0; i < dev->uar_table.uarc_size / MTHCA_ICM_PAGE_SIZE; ++i) {
556 if (db_tab->page[i].uvirt) {
557 mthca_UNMAP_ICM(dev, mthca_uarc_virt(dev, uar, i), 1);
558 pci_unmap_sg(dev->pdev, &db_tab->page[i].mem, 1, PCI_DMA_TODEVICE);
559 put_page(sg_page(&db_tab->page[i].mem));
560 }
561 }
562
563 kfree(db_tab);
564 }
565
566 int mthca_alloc_db(struct mthca_dev *dev, enum mthca_db_type type,
567 u32 qn, __be32 **db)
568 {
569 int group;
570 int start, end, dir;
571 int i, j;
572 struct mthca_db_page *page;
573 int ret = 0;
574
575 mutex_lock(&dev->db_tab->mutex);
576
577 switch (type) {
578 case MTHCA_DB_TYPE_CQ_ARM:
579 case MTHCA_DB_TYPE_SQ:
580 group = 0;
581 start = 0;
582 end = dev->db_tab->max_group1;
583 dir = 1;
584 break;
585
586 case MTHCA_DB_TYPE_CQ_SET_CI:
587 case MTHCA_DB_TYPE_RQ:
588 case MTHCA_DB_TYPE_SRQ:
589 group = 1;
590 start = dev->db_tab->npages - 1;
591 end = dev->db_tab->min_group2;
592 dir = -1;
593 break;
594
595 default:
596 ret = -EINVAL;
597 goto out;
598 }
599
600 for (i = start; i != end; i += dir)
601 if (dev->db_tab->page[i].db_rec &&
602 !bitmap_full(dev->db_tab->page[i].used,
603 MTHCA_DB_REC_PER_PAGE)) {
604 page = dev->db_tab->page + i;
605 goto found;
606 }
607
608 for (i = start; i != end; i += dir)
609 if (!dev->db_tab->page[i].db_rec) {
610 page = dev->db_tab->page + i;
611 goto alloc;
612 }
613
614 if (dev->db_tab->max_group1 >= dev->db_tab->min_group2 - 1) {
615 ret = -ENOMEM;
616 goto out;
617 }
618
619 if (group == 0)
620 ++dev->db_tab->max_group1;
621 else
622 --dev->db_tab->min_group2;
623
624 page = dev->db_tab->page + end;
625
626 alloc:
627 page->db_rec = dma_alloc_coherent(&dev->pdev->dev, MTHCA_ICM_PAGE_SIZE,
628 &page->mapping, GFP_KERNEL);
629 if (!page->db_rec) {
630 ret = -ENOMEM;
631 goto out;
632 }
633 memset(page->db_rec, 0, MTHCA_ICM_PAGE_SIZE);
634
635 ret = mthca_MAP_ICM_page(dev, page->mapping,
636 mthca_uarc_virt(dev, &dev->driver_uar, i));
637 if (ret) {
638 dma_free_coherent(&dev->pdev->dev, MTHCA_ICM_PAGE_SIZE,
639 page->db_rec, page->mapping);
640 goto out;
641 }
642
643 bitmap_zero(page->used, MTHCA_DB_REC_PER_PAGE);
644
645 found:
646 j = find_first_zero_bit(page->used, MTHCA_DB_REC_PER_PAGE);
647 set_bit(j, page->used);
648
649 if (group == 1)
650 j = MTHCA_DB_REC_PER_PAGE - 1 - j;
651
652 ret = i * MTHCA_DB_REC_PER_PAGE + j;
653
654 page->db_rec[j] = cpu_to_be64((qn << 8) | (type << 5));
655
656 *db = (__be32 *) &page->db_rec[j];
657
658 out:
659 mutex_unlock(&dev->db_tab->mutex);
660
661 return ret;
662 }
663
664 void mthca_free_db(struct mthca_dev *dev, int type, int db_index)
665 {
666 int i, j;
667 struct mthca_db_page *page;
668
669 i = db_index / MTHCA_DB_REC_PER_PAGE;
670 j = db_index % MTHCA_DB_REC_PER_PAGE;
671
672 page = dev->db_tab->page + i;
673
674 mutex_lock(&dev->db_tab->mutex);
675
676 page->db_rec[j] = 0;
677 if (i >= dev->db_tab->min_group2)
678 j = MTHCA_DB_REC_PER_PAGE - 1 - j;
679 clear_bit(j, page->used);
680
681 if (bitmap_empty(page->used, MTHCA_DB_REC_PER_PAGE) &&
682 i >= dev->db_tab->max_group1 - 1) {
683 mthca_UNMAP_ICM(dev, mthca_uarc_virt(dev, &dev->driver_uar, i), 1);
684
685 dma_free_coherent(&dev->pdev->dev, MTHCA_ICM_PAGE_SIZE,
686 page->db_rec, page->mapping);
687 page->db_rec = NULL;
688
689 if (i == dev->db_tab->max_group1) {
690 --dev->db_tab->max_group1;
691 /* XXX may be able to unmap more pages now */
692 }
693 if (i == dev->db_tab->min_group2)
694 ++dev->db_tab->min_group2;
695 }
696
697 mutex_unlock(&dev->db_tab->mutex);
698 }
699
700 int mthca_init_db_tab(struct mthca_dev *dev)
701 {
702 int i;
703
704 if (!mthca_is_memfree(dev))
705 return 0;
706
707 dev->db_tab = kmalloc(sizeof *dev->db_tab, GFP_KERNEL);
708 if (!dev->db_tab)
709 return -ENOMEM;
710
711 mutex_init(&dev->db_tab->mutex);
712
713 dev->db_tab->npages = dev->uar_table.uarc_size / MTHCA_ICM_PAGE_SIZE;
714 dev->db_tab->max_group1 = 0;
715 dev->db_tab->min_group2 = dev->db_tab->npages - 1;
716
717 dev->db_tab->page = kmalloc(dev->db_tab->npages *
718 sizeof *dev->db_tab->page,
719 GFP_KERNEL);
720 if (!dev->db_tab->page) {
721 kfree(dev->db_tab);
722 return -ENOMEM;
723 }
724
725 for (i = 0; i < dev->db_tab->npages; ++i)
726 dev->db_tab->page[i].db_rec = NULL;
727
728 return 0;
729 }
730
731 void mthca_cleanup_db_tab(struct mthca_dev *dev)
732 {
733 int i;
734
735 if (!mthca_is_memfree(dev))
736 return;
737
738 /*
739 * Because we don't always free our UARC pages when they
740 * become empty to make mthca_free_db() simpler we need to
741 * make a sweep through the doorbell pages and free any
742 * leftover pages now.
743 */
744 for (i = 0; i < dev->db_tab->npages; ++i) {
745 if (!dev->db_tab->page[i].db_rec)
746 continue;
747
748 if (!bitmap_empty(dev->db_tab->page[i].used, MTHCA_DB_REC_PER_PAGE))
749 mthca_warn(dev, "Kernel UARC page %d not empty\n", i);
750
751 mthca_UNMAP_ICM(dev, mthca_uarc_virt(dev, &dev->driver_uar, i), 1);
752
753 dma_free_coherent(&dev->pdev->dev, MTHCA_ICM_PAGE_SIZE,
754 dev->db_tab->page[i].db_rec,
755 dev->db_tab->page[i].mapping);
756 }
757
758 kfree(dev->db_tab->page);
759 kfree(dev->db_tab);
760 }
This page took 0.059939 seconds and 6 git commands to generate.