Merge branch 'fix/rt5645' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[deliverable/linux.git] / drivers / infiniband / ulp / srpt / ib_srpt.c
1 /*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 *
33 */
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <scsi/scsi_proto.h>
45 #include <scsi/scsi_tcq.h>
46 #include <target/configfs_macros.h>
47 #include <target/target_core_base.h>
48 #include <target/target_core_fabric_configfs.h>
49 #include <target/target_core_fabric.h>
50 #include "ib_srpt.h"
51
52 /* Name of this kernel module. */
53 #define DRV_NAME "ib_srpt"
54 #define DRV_VERSION "2.0.0"
55 #define DRV_RELDATE "2011-02-14"
56
57 #define SRPT_ID_STRING "Linux SRP target"
58
59 #undef pr_fmt
60 #define pr_fmt(fmt) DRV_NAME " " fmt
61
62 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
63 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
64 "v" DRV_VERSION " (" DRV_RELDATE ")");
65 MODULE_LICENSE("Dual BSD/GPL");
66
67 /*
68 * Global Variables
69 */
70
71 static u64 srpt_service_guid;
72 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */
73 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */
74
75 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
76 module_param(srp_max_req_size, int, 0444);
77 MODULE_PARM_DESC(srp_max_req_size,
78 "Maximum size of SRP request messages in bytes.");
79
80 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
81 module_param(srpt_srq_size, int, 0444);
82 MODULE_PARM_DESC(srpt_srq_size,
83 "Shared receive queue (SRQ) size.");
84
85 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
86 {
87 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
88 }
89 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
90 0444);
91 MODULE_PARM_DESC(srpt_service_guid,
92 "Using this value for ioc_guid, id_ext, and cm_listen_id"
93 " instead of using the node_guid of the first HCA.");
94
95 static struct ib_client srpt_client;
96 static void srpt_release_channel(struct srpt_rdma_ch *ch);
97 static int srpt_queue_status(struct se_cmd *cmd);
98
99 /**
100 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
101 */
102 static inline
103 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
104 {
105 switch (dir) {
106 case DMA_TO_DEVICE: return DMA_FROM_DEVICE;
107 case DMA_FROM_DEVICE: return DMA_TO_DEVICE;
108 default: return dir;
109 }
110 }
111
112 /**
113 * srpt_sdev_name() - Return the name associated with the HCA.
114 *
115 * Examples are ib0, ib1, ...
116 */
117 static inline const char *srpt_sdev_name(struct srpt_device *sdev)
118 {
119 return sdev->device->name;
120 }
121
122 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
123 {
124 unsigned long flags;
125 enum rdma_ch_state state;
126
127 spin_lock_irqsave(&ch->spinlock, flags);
128 state = ch->state;
129 spin_unlock_irqrestore(&ch->spinlock, flags);
130 return state;
131 }
132
133 static enum rdma_ch_state
134 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
135 {
136 unsigned long flags;
137 enum rdma_ch_state prev;
138
139 spin_lock_irqsave(&ch->spinlock, flags);
140 prev = ch->state;
141 ch->state = new_state;
142 spin_unlock_irqrestore(&ch->spinlock, flags);
143 return prev;
144 }
145
146 /**
147 * srpt_test_and_set_ch_state() - Test and set the channel state.
148 *
149 * Returns true if and only if the channel state has been set to the new state.
150 */
151 static bool
152 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
153 enum rdma_ch_state new)
154 {
155 unsigned long flags;
156 enum rdma_ch_state prev;
157
158 spin_lock_irqsave(&ch->spinlock, flags);
159 prev = ch->state;
160 if (prev == old)
161 ch->state = new;
162 spin_unlock_irqrestore(&ch->spinlock, flags);
163 return prev == old;
164 }
165
166 /**
167 * srpt_event_handler() - Asynchronous IB event callback function.
168 *
169 * Callback function called by the InfiniBand core when an asynchronous IB
170 * event occurs. This callback may occur in interrupt context. See also
171 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
172 * Architecture Specification.
173 */
174 static void srpt_event_handler(struct ib_event_handler *handler,
175 struct ib_event *event)
176 {
177 struct srpt_device *sdev;
178 struct srpt_port *sport;
179
180 sdev = ib_get_client_data(event->device, &srpt_client);
181 if (!sdev || sdev->device != event->device)
182 return;
183
184 pr_debug("ASYNC event= %d on device= %s\n", event->event,
185 srpt_sdev_name(sdev));
186
187 switch (event->event) {
188 case IB_EVENT_PORT_ERR:
189 if (event->element.port_num <= sdev->device->phys_port_cnt) {
190 sport = &sdev->port[event->element.port_num - 1];
191 sport->lid = 0;
192 sport->sm_lid = 0;
193 }
194 break;
195 case IB_EVENT_PORT_ACTIVE:
196 case IB_EVENT_LID_CHANGE:
197 case IB_EVENT_PKEY_CHANGE:
198 case IB_EVENT_SM_CHANGE:
199 case IB_EVENT_CLIENT_REREGISTER:
200 case IB_EVENT_GID_CHANGE:
201 /* Refresh port data asynchronously. */
202 if (event->element.port_num <= sdev->device->phys_port_cnt) {
203 sport = &sdev->port[event->element.port_num - 1];
204 if (!sport->lid && !sport->sm_lid)
205 schedule_work(&sport->work);
206 }
207 break;
208 default:
209 pr_err("received unrecognized IB event %d\n",
210 event->event);
211 break;
212 }
213 }
214
215 /**
216 * srpt_srq_event() - SRQ event callback function.
217 */
218 static void srpt_srq_event(struct ib_event *event, void *ctx)
219 {
220 pr_info("SRQ event %d\n", event->event);
221 }
222
223 /**
224 * srpt_qp_event() - QP event callback function.
225 */
226 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
227 {
228 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
229 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
230
231 switch (event->event) {
232 case IB_EVENT_COMM_EST:
233 ib_cm_notify(ch->cm_id, event->event);
234 break;
235 case IB_EVENT_QP_LAST_WQE_REACHED:
236 if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
237 CH_RELEASING))
238 srpt_release_channel(ch);
239 else
240 pr_debug("%s: state %d - ignored LAST_WQE.\n",
241 ch->sess_name, srpt_get_ch_state(ch));
242 break;
243 default:
244 pr_err("received unrecognized IB QP event %d\n", event->event);
245 break;
246 }
247 }
248
249 /**
250 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
251 *
252 * @slot: one-based slot number.
253 * @value: four-bit value.
254 *
255 * Copies the lowest four bits of value in element slot of the array of four
256 * bit elements called c_list (controller list). The index slot is one-based.
257 */
258 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
259 {
260 u16 id;
261 u8 tmp;
262
263 id = (slot - 1) / 2;
264 if (slot & 0x1) {
265 tmp = c_list[id] & 0xf;
266 c_list[id] = (value << 4) | tmp;
267 } else {
268 tmp = c_list[id] & 0xf0;
269 c_list[id] = (value & 0xf) | tmp;
270 }
271 }
272
273 /**
274 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
275 *
276 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
277 * Specification.
278 */
279 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
280 {
281 struct ib_class_port_info *cif;
282
283 cif = (struct ib_class_port_info *)mad->data;
284 memset(cif, 0, sizeof *cif);
285 cif->base_version = 1;
286 cif->class_version = 1;
287 cif->resp_time_value = 20;
288
289 mad->mad_hdr.status = 0;
290 }
291
292 /**
293 * srpt_get_iou() - Write IOUnitInfo to a management datagram.
294 *
295 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
296 * Specification. See also section B.7, table B.6 in the SRP r16a document.
297 */
298 static void srpt_get_iou(struct ib_dm_mad *mad)
299 {
300 struct ib_dm_iou_info *ioui;
301 u8 slot;
302 int i;
303
304 ioui = (struct ib_dm_iou_info *)mad->data;
305 ioui->change_id = cpu_to_be16(1);
306 ioui->max_controllers = 16;
307
308 /* set present for slot 1 and empty for the rest */
309 srpt_set_ioc(ioui->controller_list, 1, 1);
310 for (i = 1, slot = 2; i < 16; i++, slot++)
311 srpt_set_ioc(ioui->controller_list, slot, 0);
312
313 mad->mad_hdr.status = 0;
314 }
315
316 /**
317 * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
318 *
319 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
320 * Architecture Specification. See also section B.7, table B.7 in the SRP
321 * r16a document.
322 */
323 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
324 struct ib_dm_mad *mad)
325 {
326 struct srpt_device *sdev = sport->sdev;
327 struct ib_dm_ioc_profile *iocp;
328
329 iocp = (struct ib_dm_ioc_profile *)mad->data;
330
331 if (!slot || slot > 16) {
332 mad->mad_hdr.status
333 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
334 return;
335 }
336
337 if (slot > 2) {
338 mad->mad_hdr.status
339 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
340 return;
341 }
342
343 memset(iocp, 0, sizeof *iocp);
344 strcpy(iocp->id_string, SRPT_ID_STRING);
345 iocp->guid = cpu_to_be64(srpt_service_guid);
346 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
347 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
348 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
349 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
350 iocp->subsys_device_id = 0x0;
351 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
352 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
353 iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
354 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
355 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
356 iocp->rdma_read_depth = 4;
357 iocp->send_size = cpu_to_be32(srp_max_req_size);
358 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
359 1U << 24));
360 iocp->num_svc_entries = 1;
361 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
362 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
363
364 mad->mad_hdr.status = 0;
365 }
366
367 /**
368 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
369 *
370 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
371 * Specification. See also section B.7, table B.8 in the SRP r16a document.
372 */
373 static void srpt_get_svc_entries(u64 ioc_guid,
374 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
375 {
376 struct ib_dm_svc_entries *svc_entries;
377
378 WARN_ON(!ioc_guid);
379
380 if (!slot || slot > 16) {
381 mad->mad_hdr.status
382 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
383 return;
384 }
385
386 if (slot > 2 || lo > hi || hi > 1) {
387 mad->mad_hdr.status
388 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
389 return;
390 }
391
392 svc_entries = (struct ib_dm_svc_entries *)mad->data;
393 memset(svc_entries, 0, sizeof *svc_entries);
394 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
395 snprintf(svc_entries->service_entries[0].name,
396 sizeof(svc_entries->service_entries[0].name),
397 "%s%016llx",
398 SRP_SERVICE_NAME_PREFIX,
399 ioc_guid);
400
401 mad->mad_hdr.status = 0;
402 }
403
404 /**
405 * srpt_mgmt_method_get() - Process a received management datagram.
406 * @sp: source port through which the MAD has been received.
407 * @rq_mad: received MAD.
408 * @rsp_mad: response MAD.
409 */
410 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
411 struct ib_dm_mad *rsp_mad)
412 {
413 u16 attr_id;
414 u32 slot;
415 u8 hi, lo;
416
417 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
418 switch (attr_id) {
419 case DM_ATTR_CLASS_PORT_INFO:
420 srpt_get_class_port_info(rsp_mad);
421 break;
422 case DM_ATTR_IOU_INFO:
423 srpt_get_iou(rsp_mad);
424 break;
425 case DM_ATTR_IOC_PROFILE:
426 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
427 srpt_get_ioc(sp, slot, rsp_mad);
428 break;
429 case DM_ATTR_SVC_ENTRIES:
430 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
431 hi = (u8) ((slot >> 8) & 0xff);
432 lo = (u8) (slot & 0xff);
433 slot = (u16) ((slot >> 16) & 0xffff);
434 srpt_get_svc_entries(srpt_service_guid,
435 slot, hi, lo, rsp_mad);
436 break;
437 default:
438 rsp_mad->mad_hdr.status =
439 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
440 break;
441 }
442 }
443
444 /**
445 * srpt_mad_send_handler() - Post MAD-send callback function.
446 */
447 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
448 struct ib_mad_send_wc *mad_wc)
449 {
450 ib_destroy_ah(mad_wc->send_buf->ah);
451 ib_free_send_mad(mad_wc->send_buf);
452 }
453
454 /**
455 * srpt_mad_recv_handler() - MAD reception callback function.
456 */
457 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
458 struct ib_mad_recv_wc *mad_wc)
459 {
460 struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
461 struct ib_ah *ah;
462 struct ib_mad_send_buf *rsp;
463 struct ib_dm_mad *dm_mad;
464
465 if (!mad_wc || !mad_wc->recv_buf.mad)
466 return;
467
468 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
469 mad_wc->recv_buf.grh, mad_agent->port_num);
470 if (IS_ERR(ah))
471 goto err;
472
473 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
474
475 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
476 mad_wc->wc->pkey_index, 0,
477 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
478 GFP_KERNEL,
479 IB_MGMT_BASE_VERSION);
480 if (IS_ERR(rsp))
481 goto err_rsp;
482
483 rsp->ah = ah;
484
485 dm_mad = rsp->mad;
486 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
487 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
488 dm_mad->mad_hdr.status = 0;
489
490 switch (mad_wc->recv_buf.mad->mad_hdr.method) {
491 case IB_MGMT_METHOD_GET:
492 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
493 break;
494 case IB_MGMT_METHOD_SET:
495 dm_mad->mad_hdr.status =
496 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
497 break;
498 default:
499 dm_mad->mad_hdr.status =
500 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
501 break;
502 }
503
504 if (!ib_post_send_mad(rsp, NULL)) {
505 ib_free_recv_mad(mad_wc);
506 /* will destroy_ah & free_send_mad in send completion */
507 return;
508 }
509
510 ib_free_send_mad(rsp);
511
512 err_rsp:
513 ib_destroy_ah(ah);
514 err:
515 ib_free_recv_mad(mad_wc);
516 }
517
518 /**
519 * srpt_refresh_port() - Configure a HCA port.
520 *
521 * Enable InfiniBand management datagram processing, update the cached sm_lid,
522 * lid and gid values, and register a callback function for processing MADs
523 * on the specified port.
524 *
525 * Note: It is safe to call this function more than once for the same port.
526 */
527 static int srpt_refresh_port(struct srpt_port *sport)
528 {
529 struct ib_mad_reg_req reg_req;
530 struct ib_port_modify port_modify;
531 struct ib_port_attr port_attr;
532 int ret;
533
534 memset(&port_modify, 0, sizeof port_modify);
535 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
536 port_modify.clr_port_cap_mask = 0;
537
538 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
539 if (ret)
540 goto err_mod_port;
541
542 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
543 if (ret)
544 goto err_query_port;
545
546 sport->sm_lid = port_attr.sm_lid;
547 sport->lid = port_attr.lid;
548
549 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
550 if (ret)
551 goto err_query_port;
552
553 if (!sport->mad_agent) {
554 memset(&reg_req, 0, sizeof reg_req);
555 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
556 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
557 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
558 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
559
560 sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
561 sport->port,
562 IB_QPT_GSI,
563 &reg_req, 0,
564 srpt_mad_send_handler,
565 srpt_mad_recv_handler,
566 sport, 0);
567 if (IS_ERR(sport->mad_agent)) {
568 ret = PTR_ERR(sport->mad_agent);
569 sport->mad_agent = NULL;
570 goto err_query_port;
571 }
572 }
573
574 return 0;
575
576 err_query_port:
577
578 port_modify.set_port_cap_mask = 0;
579 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
580 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
581
582 err_mod_port:
583
584 return ret;
585 }
586
587 /**
588 * srpt_unregister_mad_agent() - Unregister MAD callback functions.
589 *
590 * Note: It is safe to call this function more than once for the same device.
591 */
592 static void srpt_unregister_mad_agent(struct srpt_device *sdev)
593 {
594 struct ib_port_modify port_modify = {
595 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
596 };
597 struct srpt_port *sport;
598 int i;
599
600 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
601 sport = &sdev->port[i - 1];
602 WARN_ON(sport->port != i);
603 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
604 pr_err("disabling MAD processing failed.\n");
605 if (sport->mad_agent) {
606 ib_unregister_mad_agent(sport->mad_agent);
607 sport->mad_agent = NULL;
608 }
609 }
610 }
611
612 /**
613 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
614 */
615 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
616 int ioctx_size, int dma_size,
617 enum dma_data_direction dir)
618 {
619 struct srpt_ioctx *ioctx;
620
621 ioctx = kmalloc(ioctx_size, GFP_KERNEL);
622 if (!ioctx)
623 goto err;
624
625 ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
626 if (!ioctx->buf)
627 goto err_free_ioctx;
628
629 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
630 if (ib_dma_mapping_error(sdev->device, ioctx->dma))
631 goto err_free_buf;
632
633 return ioctx;
634
635 err_free_buf:
636 kfree(ioctx->buf);
637 err_free_ioctx:
638 kfree(ioctx);
639 err:
640 return NULL;
641 }
642
643 /**
644 * srpt_free_ioctx() - Free an SRPT I/O context structure.
645 */
646 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
647 int dma_size, enum dma_data_direction dir)
648 {
649 if (!ioctx)
650 return;
651
652 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
653 kfree(ioctx->buf);
654 kfree(ioctx);
655 }
656
657 /**
658 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
659 * @sdev: Device to allocate the I/O context ring for.
660 * @ring_size: Number of elements in the I/O context ring.
661 * @ioctx_size: I/O context size.
662 * @dma_size: DMA buffer size.
663 * @dir: DMA data direction.
664 */
665 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
666 int ring_size, int ioctx_size,
667 int dma_size, enum dma_data_direction dir)
668 {
669 struct srpt_ioctx **ring;
670 int i;
671
672 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
673 && ioctx_size != sizeof(struct srpt_send_ioctx));
674
675 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
676 if (!ring)
677 goto out;
678 for (i = 0; i < ring_size; ++i) {
679 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
680 if (!ring[i])
681 goto err;
682 ring[i]->index = i;
683 }
684 goto out;
685
686 err:
687 while (--i >= 0)
688 srpt_free_ioctx(sdev, ring[i], dma_size, dir);
689 kfree(ring);
690 ring = NULL;
691 out:
692 return ring;
693 }
694
695 /**
696 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
697 */
698 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
699 struct srpt_device *sdev, int ring_size,
700 int dma_size, enum dma_data_direction dir)
701 {
702 int i;
703
704 for (i = 0; i < ring_size; ++i)
705 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
706 kfree(ioctx_ring);
707 }
708
709 /**
710 * srpt_get_cmd_state() - Get the state of a SCSI command.
711 */
712 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
713 {
714 enum srpt_command_state state;
715 unsigned long flags;
716
717 BUG_ON(!ioctx);
718
719 spin_lock_irqsave(&ioctx->spinlock, flags);
720 state = ioctx->state;
721 spin_unlock_irqrestore(&ioctx->spinlock, flags);
722 return state;
723 }
724
725 /**
726 * srpt_set_cmd_state() - Set the state of a SCSI command.
727 *
728 * Does not modify the state of aborted commands. Returns the previous command
729 * state.
730 */
731 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
732 enum srpt_command_state new)
733 {
734 enum srpt_command_state previous;
735 unsigned long flags;
736
737 BUG_ON(!ioctx);
738
739 spin_lock_irqsave(&ioctx->spinlock, flags);
740 previous = ioctx->state;
741 if (previous != SRPT_STATE_DONE)
742 ioctx->state = new;
743 spin_unlock_irqrestore(&ioctx->spinlock, flags);
744
745 return previous;
746 }
747
748 /**
749 * srpt_test_and_set_cmd_state() - Test and set the state of a command.
750 *
751 * Returns true if and only if the previous command state was equal to 'old'.
752 */
753 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
754 enum srpt_command_state old,
755 enum srpt_command_state new)
756 {
757 enum srpt_command_state previous;
758 unsigned long flags;
759
760 WARN_ON(!ioctx);
761 WARN_ON(old == SRPT_STATE_DONE);
762 WARN_ON(new == SRPT_STATE_NEW);
763
764 spin_lock_irqsave(&ioctx->spinlock, flags);
765 previous = ioctx->state;
766 if (previous == old)
767 ioctx->state = new;
768 spin_unlock_irqrestore(&ioctx->spinlock, flags);
769 return previous == old;
770 }
771
772 /**
773 * srpt_post_recv() - Post an IB receive request.
774 */
775 static int srpt_post_recv(struct srpt_device *sdev,
776 struct srpt_recv_ioctx *ioctx)
777 {
778 struct ib_sge list;
779 struct ib_recv_wr wr, *bad_wr;
780
781 BUG_ON(!sdev);
782 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
783
784 list.addr = ioctx->ioctx.dma;
785 list.length = srp_max_req_size;
786 list.lkey = sdev->mr->lkey;
787
788 wr.next = NULL;
789 wr.sg_list = &list;
790 wr.num_sge = 1;
791
792 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
793 }
794
795 /**
796 * srpt_post_send() - Post an IB send request.
797 *
798 * Returns zero upon success and a non-zero value upon failure.
799 */
800 static int srpt_post_send(struct srpt_rdma_ch *ch,
801 struct srpt_send_ioctx *ioctx, int len)
802 {
803 struct ib_sge list;
804 struct ib_send_wr wr, *bad_wr;
805 struct srpt_device *sdev = ch->sport->sdev;
806 int ret;
807
808 atomic_inc(&ch->req_lim);
809
810 ret = -ENOMEM;
811 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
812 pr_warn("IB send queue full (needed 1)\n");
813 goto out;
814 }
815
816 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
817 DMA_TO_DEVICE);
818
819 list.addr = ioctx->ioctx.dma;
820 list.length = len;
821 list.lkey = sdev->mr->lkey;
822
823 wr.next = NULL;
824 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
825 wr.sg_list = &list;
826 wr.num_sge = 1;
827 wr.opcode = IB_WR_SEND;
828 wr.send_flags = IB_SEND_SIGNALED;
829
830 ret = ib_post_send(ch->qp, &wr, &bad_wr);
831
832 out:
833 if (ret < 0) {
834 atomic_inc(&ch->sq_wr_avail);
835 atomic_dec(&ch->req_lim);
836 }
837 return ret;
838 }
839
840 /**
841 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
842 * @ioctx: Pointer to the I/O context associated with the request.
843 * @srp_cmd: Pointer to the SRP_CMD request data.
844 * @dir: Pointer to the variable to which the transfer direction will be
845 * written.
846 * @data_len: Pointer to the variable to which the total data length of all
847 * descriptors in the SRP_CMD request will be written.
848 *
849 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
850 *
851 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
852 * -ENOMEM when memory allocation fails and zero upon success.
853 */
854 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
855 struct srp_cmd *srp_cmd,
856 enum dma_data_direction *dir, u64 *data_len)
857 {
858 struct srp_indirect_buf *idb;
859 struct srp_direct_buf *db;
860 unsigned add_cdb_offset;
861 int ret;
862
863 /*
864 * The pointer computations below will only be compiled correctly
865 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
866 * whether srp_cmd::add_data has been declared as a byte pointer.
867 */
868 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
869 && !__same_type(srp_cmd->add_data[0], (u8)0));
870
871 BUG_ON(!dir);
872 BUG_ON(!data_len);
873
874 ret = 0;
875 *data_len = 0;
876
877 /*
878 * The lower four bits of the buffer format field contain the DATA-IN
879 * buffer descriptor format, and the highest four bits contain the
880 * DATA-OUT buffer descriptor format.
881 */
882 *dir = DMA_NONE;
883 if (srp_cmd->buf_fmt & 0xf)
884 /* DATA-IN: transfer data from target to initiator (read). */
885 *dir = DMA_FROM_DEVICE;
886 else if (srp_cmd->buf_fmt >> 4)
887 /* DATA-OUT: transfer data from initiator to target (write). */
888 *dir = DMA_TO_DEVICE;
889
890 /*
891 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
892 * CDB LENGTH' field are reserved and the size in bytes of this field
893 * is four times the value specified in bits 3..7. Hence the "& ~3".
894 */
895 add_cdb_offset = srp_cmd->add_cdb_len & ~3;
896 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
897 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
898 ioctx->n_rbuf = 1;
899 ioctx->rbufs = &ioctx->single_rbuf;
900
901 db = (struct srp_direct_buf *)(srp_cmd->add_data
902 + add_cdb_offset);
903 memcpy(ioctx->rbufs, db, sizeof *db);
904 *data_len = be32_to_cpu(db->len);
905 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
906 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
907 idb = (struct srp_indirect_buf *)(srp_cmd->add_data
908 + add_cdb_offset);
909
910 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
911
912 if (ioctx->n_rbuf >
913 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
914 pr_err("received unsupported SRP_CMD request"
915 " type (%u out + %u in != %u / %zu)\n",
916 srp_cmd->data_out_desc_cnt,
917 srp_cmd->data_in_desc_cnt,
918 be32_to_cpu(idb->table_desc.len),
919 sizeof(*db));
920 ioctx->n_rbuf = 0;
921 ret = -EINVAL;
922 goto out;
923 }
924
925 if (ioctx->n_rbuf == 1)
926 ioctx->rbufs = &ioctx->single_rbuf;
927 else {
928 ioctx->rbufs =
929 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
930 if (!ioctx->rbufs) {
931 ioctx->n_rbuf = 0;
932 ret = -ENOMEM;
933 goto out;
934 }
935 }
936
937 db = idb->desc_list;
938 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
939 *data_len = be32_to_cpu(idb->len);
940 }
941 out:
942 return ret;
943 }
944
945 /**
946 * srpt_init_ch_qp() - Initialize queue pair attributes.
947 *
948 * Initialized the attributes of queue pair 'qp' by allowing local write,
949 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
950 */
951 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
952 {
953 struct ib_qp_attr *attr;
954 int ret;
955
956 attr = kzalloc(sizeof *attr, GFP_KERNEL);
957 if (!attr)
958 return -ENOMEM;
959
960 attr->qp_state = IB_QPS_INIT;
961 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
962 IB_ACCESS_REMOTE_WRITE;
963 attr->port_num = ch->sport->port;
964 attr->pkey_index = 0;
965
966 ret = ib_modify_qp(qp, attr,
967 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
968 IB_QP_PKEY_INDEX);
969
970 kfree(attr);
971 return ret;
972 }
973
974 /**
975 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
976 * @ch: channel of the queue pair.
977 * @qp: queue pair to change the state of.
978 *
979 * Returns zero upon success and a negative value upon failure.
980 *
981 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
982 * If this structure ever becomes larger, it might be necessary to allocate
983 * it dynamically instead of on the stack.
984 */
985 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
986 {
987 struct ib_qp_attr qp_attr;
988 int attr_mask;
989 int ret;
990
991 qp_attr.qp_state = IB_QPS_RTR;
992 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
993 if (ret)
994 goto out;
995
996 qp_attr.max_dest_rd_atomic = 4;
997
998 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
999
1000 out:
1001 return ret;
1002 }
1003
1004 /**
1005 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1006 * @ch: channel of the queue pair.
1007 * @qp: queue pair to change the state of.
1008 *
1009 * Returns zero upon success and a negative value upon failure.
1010 *
1011 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1012 * If this structure ever becomes larger, it might be necessary to allocate
1013 * it dynamically instead of on the stack.
1014 */
1015 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1016 {
1017 struct ib_qp_attr qp_attr;
1018 int attr_mask;
1019 int ret;
1020
1021 qp_attr.qp_state = IB_QPS_RTS;
1022 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1023 if (ret)
1024 goto out;
1025
1026 qp_attr.max_rd_atomic = 4;
1027
1028 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1029
1030 out:
1031 return ret;
1032 }
1033
1034 /**
1035 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1036 */
1037 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1038 {
1039 struct ib_qp_attr qp_attr;
1040
1041 qp_attr.qp_state = IB_QPS_ERR;
1042 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1043 }
1044
1045 /**
1046 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1047 */
1048 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1049 struct srpt_send_ioctx *ioctx)
1050 {
1051 struct scatterlist *sg;
1052 enum dma_data_direction dir;
1053
1054 BUG_ON(!ch);
1055 BUG_ON(!ioctx);
1056 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
1057
1058 while (ioctx->n_rdma)
1059 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
1060
1061 kfree(ioctx->rdma_ius);
1062 ioctx->rdma_ius = NULL;
1063
1064 if (ioctx->mapped_sg_count) {
1065 sg = ioctx->sg;
1066 WARN_ON(!sg);
1067 dir = ioctx->cmd.data_direction;
1068 BUG_ON(dir == DMA_NONE);
1069 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1070 opposite_dma_dir(dir));
1071 ioctx->mapped_sg_count = 0;
1072 }
1073 }
1074
1075 /**
1076 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1077 */
1078 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1079 struct srpt_send_ioctx *ioctx)
1080 {
1081 struct ib_device *dev = ch->sport->sdev->device;
1082 struct se_cmd *cmd;
1083 struct scatterlist *sg, *sg_orig;
1084 int sg_cnt;
1085 enum dma_data_direction dir;
1086 struct rdma_iu *riu;
1087 struct srp_direct_buf *db;
1088 dma_addr_t dma_addr;
1089 struct ib_sge *sge;
1090 u64 raddr;
1091 u32 rsize;
1092 u32 tsize;
1093 u32 dma_len;
1094 int count, nrdma;
1095 int i, j, k;
1096
1097 BUG_ON(!ch);
1098 BUG_ON(!ioctx);
1099 cmd = &ioctx->cmd;
1100 dir = cmd->data_direction;
1101 BUG_ON(dir == DMA_NONE);
1102
1103 ioctx->sg = sg = sg_orig = cmd->t_data_sg;
1104 ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
1105
1106 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1107 opposite_dma_dir(dir));
1108 if (unlikely(!count))
1109 return -EAGAIN;
1110
1111 ioctx->mapped_sg_count = count;
1112
1113 if (ioctx->rdma_ius && ioctx->n_rdma_ius)
1114 nrdma = ioctx->n_rdma_ius;
1115 else {
1116 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1117 + ioctx->n_rbuf;
1118
1119 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
1120 if (!ioctx->rdma_ius)
1121 goto free_mem;
1122
1123 ioctx->n_rdma_ius = nrdma;
1124 }
1125
1126 db = ioctx->rbufs;
1127 tsize = cmd->data_length;
1128 dma_len = ib_sg_dma_len(dev, &sg[0]);
1129 riu = ioctx->rdma_ius;
1130
1131 /*
1132 * For each remote desc - calculate the #ib_sge.
1133 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1134 * each remote desc rdma_iu is required a rdma wr;
1135 * else
1136 * we need to allocate extra rdma_iu to carry extra #ib_sge in
1137 * another rdma wr
1138 */
1139 for (i = 0, j = 0;
1140 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1141 rsize = be32_to_cpu(db->len);
1142 raddr = be64_to_cpu(db->va);
1143 riu->raddr = raddr;
1144 riu->rkey = be32_to_cpu(db->key);
1145 riu->sge_cnt = 0;
1146
1147 /* calculate how many sge required for this remote_buf */
1148 while (rsize > 0 && tsize > 0) {
1149
1150 if (rsize >= dma_len) {
1151 tsize -= dma_len;
1152 rsize -= dma_len;
1153 raddr += dma_len;
1154
1155 if (tsize > 0) {
1156 ++j;
1157 if (j < count) {
1158 sg = sg_next(sg);
1159 dma_len = ib_sg_dma_len(
1160 dev, sg);
1161 }
1162 }
1163 } else {
1164 tsize -= rsize;
1165 dma_len -= rsize;
1166 rsize = 0;
1167 }
1168
1169 ++riu->sge_cnt;
1170
1171 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
1172 ++ioctx->n_rdma;
1173 riu->sge =
1174 kmalloc(riu->sge_cnt * sizeof *riu->sge,
1175 GFP_KERNEL);
1176 if (!riu->sge)
1177 goto free_mem;
1178
1179 ++riu;
1180 riu->sge_cnt = 0;
1181 riu->raddr = raddr;
1182 riu->rkey = be32_to_cpu(db->key);
1183 }
1184 }
1185
1186 ++ioctx->n_rdma;
1187 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
1188 GFP_KERNEL);
1189 if (!riu->sge)
1190 goto free_mem;
1191 }
1192
1193 db = ioctx->rbufs;
1194 tsize = cmd->data_length;
1195 riu = ioctx->rdma_ius;
1196 sg = sg_orig;
1197 dma_len = ib_sg_dma_len(dev, &sg[0]);
1198 dma_addr = ib_sg_dma_address(dev, &sg[0]);
1199
1200 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1201 for (i = 0, j = 0;
1202 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1203 rsize = be32_to_cpu(db->len);
1204 sge = riu->sge;
1205 k = 0;
1206
1207 while (rsize > 0 && tsize > 0) {
1208 sge->addr = dma_addr;
1209 sge->lkey = ch->sport->sdev->mr->lkey;
1210
1211 if (rsize >= dma_len) {
1212 sge->length =
1213 (tsize < dma_len) ? tsize : dma_len;
1214 tsize -= dma_len;
1215 rsize -= dma_len;
1216
1217 if (tsize > 0) {
1218 ++j;
1219 if (j < count) {
1220 sg = sg_next(sg);
1221 dma_len = ib_sg_dma_len(
1222 dev, sg);
1223 dma_addr = ib_sg_dma_address(
1224 dev, sg);
1225 }
1226 }
1227 } else {
1228 sge->length = (tsize < rsize) ? tsize : rsize;
1229 tsize -= rsize;
1230 dma_len -= rsize;
1231 dma_addr += rsize;
1232 rsize = 0;
1233 }
1234
1235 ++k;
1236 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
1237 ++riu;
1238 sge = riu->sge;
1239 k = 0;
1240 } else if (rsize > 0 && tsize > 0)
1241 ++sge;
1242 }
1243 }
1244
1245 return 0;
1246
1247 free_mem:
1248 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1249
1250 return -ENOMEM;
1251 }
1252
1253 /**
1254 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1255 */
1256 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1257 {
1258 struct srpt_send_ioctx *ioctx;
1259 unsigned long flags;
1260
1261 BUG_ON(!ch);
1262
1263 ioctx = NULL;
1264 spin_lock_irqsave(&ch->spinlock, flags);
1265 if (!list_empty(&ch->free_list)) {
1266 ioctx = list_first_entry(&ch->free_list,
1267 struct srpt_send_ioctx, free_list);
1268 list_del(&ioctx->free_list);
1269 }
1270 spin_unlock_irqrestore(&ch->spinlock, flags);
1271
1272 if (!ioctx)
1273 return ioctx;
1274
1275 BUG_ON(ioctx->ch != ch);
1276 spin_lock_init(&ioctx->spinlock);
1277 ioctx->state = SRPT_STATE_NEW;
1278 ioctx->n_rbuf = 0;
1279 ioctx->rbufs = NULL;
1280 ioctx->n_rdma = 0;
1281 ioctx->n_rdma_ius = 0;
1282 ioctx->rdma_ius = NULL;
1283 ioctx->mapped_sg_count = 0;
1284 init_completion(&ioctx->tx_done);
1285 ioctx->queue_status_only = false;
1286 /*
1287 * transport_init_se_cmd() does not initialize all fields, so do it
1288 * here.
1289 */
1290 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1291 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1292
1293 return ioctx;
1294 }
1295
1296 /**
1297 * srpt_abort_cmd() - Abort a SCSI command.
1298 * @ioctx: I/O context associated with the SCSI command.
1299 * @context: Preferred execution context.
1300 */
1301 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1302 {
1303 enum srpt_command_state state;
1304 unsigned long flags;
1305
1306 BUG_ON(!ioctx);
1307
1308 /*
1309 * If the command is in a state where the target core is waiting for
1310 * the ib_srpt driver, change the state to the next state. Changing
1311 * the state of the command from SRPT_STATE_NEED_DATA to
1312 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1313 * function a second time.
1314 */
1315
1316 spin_lock_irqsave(&ioctx->spinlock, flags);
1317 state = ioctx->state;
1318 switch (state) {
1319 case SRPT_STATE_NEED_DATA:
1320 ioctx->state = SRPT_STATE_DATA_IN;
1321 break;
1322 case SRPT_STATE_DATA_IN:
1323 case SRPT_STATE_CMD_RSP_SENT:
1324 case SRPT_STATE_MGMT_RSP_SENT:
1325 ioctx->state = SRPT_STATE_DONE;
1326 break;
1327 default:
1328 break;
1329 }
1330 spin_unlock_irqrestore(&ioctx->spinlock, flags);
1331
1332 if (state == SRPT_STATE_DONE) {
1333 struct srpt_rdma_ch *ch = ioctx->ch;
1334
1335 BUG_ON(ch->sess == NULL);
1336
1337 target_put_sess_cmd(&ioctx->cmd);
1338 goto out;
1339 }
1340
1341 pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1342 ioctx->cmd.tag);
1343
1344 switch (state) {
1345 case SRPT_STATE_NEW:
1346 case SRPT_STATE_DATA_IN:
1347 case SRPT_STATE_MGMT:
1348 /*
1349 * Do nothing - defer abort processing until
1350 * srpt_queue_response() is invoked.
1351 */
1352 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1353 break;
1354 case SRPT_STATE_NEED_DATA:
1355 /* DMA_TO_DEVICE (write) - RDMA read error. */
1356
1357 /* XXX(hch): this is a horrible layering violation.. */
1358 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1359 ioctx->cmd.transport_state &= ~CMD_T_ACTIVE;
1360 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1361 break;
1362 case SRPT_STATE_CMD_RSP_SENT:
1363 /*
1364 * SRP_RSP sending failed or the SRP_RSP send completion has
1365 * not been received in time.
1366 */
1367 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1368 target_put_sess_cmd(&ioctx->cmd);
1369 break;
1370 case SRPT_STATE_MGMT_RSP_SENT:
1371 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1372 target_put_sess_cmd(&ioctx->cmd);
1373 break;
1374 default:
1375 WARN(1, "Unexpected command state (%d)", state);
1376 break;
1377 }
1378
1379 out:
1380 return state;
1381 }
1382
1383 /**
1384 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1385 */
1386 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
1387 {
1388 struct srpt_send_ioctx *ioctx;
1389 enum srpt_command_state state;
1390 u32 index;
1391
1392 atomic_inc(&ch->sq_wr_avail);
1393
1394 index = idx_from_wr_id(wr_id);
1395 ioctx = ch->ioctx_ring[index];
1396 state = srpt_get_cmd_state(ioctx);
1397
1398 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1399 && state != SRPT_STATE_MGMT_RSP_SENT
1400 && state != SRPT_STATE_NEED_DATA
1401 && state != SRPT_STATE_DONE);
1402
1403 /* If SRP_RSP sending failed, undo the ch->req_lim change. */
1404 if (state == SRPT_STATE_CMD_RSP_SENT
1405 || state == SRPT_STATE_MGMT_RSP_SENT)
1406 atomic_dec(&ch->req_lim);
1407
1408 srpt_abort_cmd(ioctx);
1409 }
1410
1411 /**
1412 * srpt_handle_send_comp() - Process an IB send completion notification.
1413 */
1414 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
1415 struct srpt_send_ioctx *ioctx)
1416 {
1417 enum srpt_command_state state;
1418
1419 atomic_inc(&ch->sq_wr_avail);
1420
1421 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1422
1423 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1424 && state != SRPT_STATE_MGMT_RSP_SENT
1425 && state != SRPT_STATE_DONE))
1426 pr_debug("state = %d\n", state);
1427
1428 if (state != SRPT_STATE_DONE) {
1429 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1430 transport_generic_free_cmd(&ioctx->cmd, 0);
1431 } else {
1432 pr_err("IB completion has been received too late for"
1433 " wr_id = %u.\n", ioctx->ioctx.index);
1434 }
1435 }
1436
1437 /**
1438 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1439 *
1440 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1441 * the data that has been transferred via IB RDMA had to be postponed until the
1442 * check_stop_free() callback. None of this is necessary anymore and needs to
1443 * be cleaned up.
1444 */
1445 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
1446 struct srpt_send_ioctx *ioctx,
1447 enum srpt_opcode opcode)
1448 {
1449 WARN_ON(ioctx->n_rdma <= 0);
1450 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1451
1452 if (opcode == SRPT_RDMA_READ_LAST) {
1453 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1454 SRPT_STATE_DATA_IN))
1455 target_execute_cmd(&ioctx->cmd);
1456 else
1457 pr_err("%s[%d]: wrong state = %d\n", __func__,
1458 __LINE__, srpt_get_cmd_state(ioctx));
1459 } else if (opcode == SRPT_RDMA_ABORT) {
1460 ioctx->rdma_aborted = true;
1461 } else {
1462 WARN(true, "unexpected opcode %d\n", opcode);
1463 }
1464 }
1465
1466 /**
1467 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1468 */
1469 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
1470 struct srpt_send_ioctx *ioctx,
1471 enum srpt_opcode opcode)
1472 {
1473 enum srpt_command_state state;
1474
1475 state = srpt_get_cmd_state(ioctx);
1476 switch (opcode) {
1477 case SRPT_RDMA_READ_LAST:
1478 if (ioctx->n_rdma <= 0) {
1479 pr_err("Received invalid RDMA read"
1480 " error completion with idx %d\n",
1481 ioctx->ioctx.index);
1482 break;
1483 }
1484 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1485 if (state == SRPT_STATE_NEED_DATA)
1486 srpt_abort_cmd(ioctx);
1487 else
1488 pr_err("%s[%d]: wrong state = %d\n",
1489 __func__, __LINE__, state);
1490 break;
1491 case SRPT_RDMA_WRITE_LAST:
1492 break;
1493 default:
1494 pr_err("%s[%d]: opcode = %u\n", __func__, __LINE__, opcode);
1495 break;
1496 }
1497 }
1498
1499 /**
1500 * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1501 * @ch: RDMA channel through which the request has been received.
1502 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1503 * be built in the buffer ioctx->buf points at and hence this function will
1504 * overwrite the request data.
1505 * @tag: tag of the request for which this response is being generated.
1506 * @status: value for the STATUS field of the SRP_RSP information unit.
1507 *
1508 * Returns the size in bytes of the SRP_RSP response.
1509 *
1510 * An SRP_RSP response contains a SCSI status or service response. See also
1511 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1512 * response. See also SPC-2 for more information about sense data.
1513 */
1514 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1515 struct srpt_send_ioctx *ioctx, u64 tag,
1516 int status)
1517 {
1518 struct srp_rsp *srp_rsp;
1519 const u8 *sense_data;
1520 int sense_data_len, max_sense_len;
1521
1522 /*
1523 * The lowest bit of all SAM-3 status codes is zero (see also
1524 * paragraph 5.3 in SAM-3).
1525 */
1526 WARN_ON(status & 1);
1527
1528 srp_rsp = ioctx->ioctx.buf;
1529 BUG_ON(!srp_rsp);
1530
1531 sense_data = ioctx->sense_data;
1532 sense_data_len = ioctx->cmd.scsi_sense_length;
1533 WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1534
1535 memset(srp_rsp, 0, sizeof *srp_rsp);
1536 srp_rsp->opcode = SRP_RSP;
1537 srp_rsp->req_lim_delta =
1538 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1539 srp_rsp->tag = tag;
1540 srp_rsp->status = status;
1541
1542 if (sense_data_len) {
1543 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1544 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1545 if (sense_data_len > max_sense_len) {
1546 pr_warn("truncated sense data from %d to %d"
1547 " bytes\n", sense_data_len, max_sense_len);
1548 sense_data_len = max_sense_len;
1549 }
1550
1551 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1552 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1553 memcpy(srp_rsp + 1, sense_data, sense_data_len);
1554 }
1555
1556 return sizeof(*srp_rsp) + sense_data_len;
1557 }
1558
1559 /**
1560 * srpt_build_tskmgmt_rsp() - Build a task management response.
1561 * @ch: RDMA channel through which the request has been received.
1562 * @ioctx: I/O context in which the SRP_RSP response will be built.
1563 * @rsp_code: RSP_CODE that will be stored in the response.
1564 * @tag: Tag of the request for which this response is being generated.
1565 *
1566 * Returns the size in bytes of the SRP_RSP response.
1567 *
1568 * An SRP_RSP response contains a SCSI status or service response. See also
1569 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1570 * response.
1571 */
1572 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1573 struct srpt_send_ioctx *ioctx,
1574 u8 rsp_code, u64 tag)
1575 {
1576 struct srp_rsp *srp_rsp;
1577 int resp_data_len;
1578 int resp_len;
1579
1580 resp_data_len = 4;
1581 resp_len = sizeof(*srp_rsp) + resp_data_len;
1582
1583 srp_rsp = ioctx->ioctx.buf;
1584 BUG_ON(!srp_rsp);
1585 memset(srp_rsp, 0, sizeof *srp_rsp);
1586
1587 srp_rsp->opcode = SRP_RSP;
1588 srp_rsp->req_lim_delta =
1589 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1590 srp_rsp->tag = tag;
1591
1592 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1593 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1594 srp_rsp->data[3] = rsp_code;
1595
1596 return resp_len;
1597 }
1598
1599 #define NO_SUCH_LUN ((uint64_t)-1LL)
1600
1601 /*
1602 * SCSI LUN addressing method. See also SAM-2 and the section about
1603 * eight byte LUNs.
1604 */
1605 enum scsi_lun_addr_method {
1606 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0,
1607 SCSI_LUN_ADDR_METHOD_FLAT = 1,
1608 SCSI_LUN_ADDR_METHOD_LUN = 2,
1609 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1610 };
1611
1612 /*
1613 * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1614 *
1615 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1616 * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1617 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1618 */
1619 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1620 {
1621 uint64_t res = NO_SUCH_LUN;
1622 int addressing_method;
1623
1624 if (unlikely(len < 2)) {
1625 pr_err("Illegal LUN length %d, expected 2 bytes or more\n",
1626 len);
1627 goto out;
1628 }
1629
1630 switch (len) {
1631 case 8:
1632 if ((*((__be64 *)lun) &
1633 cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1634 goto out_err;
1635 break;
1636 case 4:
1637 if (*((__be16 *)&lun[2]) != 0)
1638 goto out_err;
1639 break;
1640 case 6:
1641 if (*((__be32 *)&lun[2]) != 0)
1642 goto out_err;
1643 break;
1644 case 2:
1645 break;
1646 default:
1647 goto out_err;
1648 }
1649
1650 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1651 switch (addressing_method) {
1652 case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1653 case SCSI_LUN_ADDR_METHOD_FLAT:
1654 case SCSI_LUN_ADDR_METHOD_LUN:
1655 res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1656 break;
1657
1658 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1659 default:
1660 pr_err("Unimplemented LUN addressing method %u\n",
1661 addressing_method);
1662 break;
1663 }
1664
1665 out:
1666 return res;
1667
1668 out_err:
1669 pr_err("Support for multi-level LUNs has not yet been implemented\n");
1670 goto out;
1671 }
1672
1673 static int srpt_check_stop_free(struct se_cmd *cmd)
1674 {
1675 struct srpt_send_ioctx *ioctx = container_of(cmd,
1676 struct srpt_send_ioctx, cmd);
1677
1678 return target_put_sess_cmd(&ioctx->cmd);
1679 }
1680
1681 /**
1682 * srpt_handle_cmd() - Process SRP_CMD.
1683 */
1684 static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1685 struct srpt_recv_ioctx *recv_ioctx,
1686 struct srpt_send_ioctx *send_ioctx)
1687 {
1688 struct se_cmd *cmd;
1689 struct srp_cmd *srp_cmd;
1690 uint64_t unpacked_lun;
1691 u64 data_len;
1692 enum dma_data_direction dir;
1693 sense_reason_t ret;
1694 int rc;
1695
1696 BUG_ON(!send_ioctx);
1697
1698 srp_cmd = recv_ioctx->ioctx.buf;
1699 cmd = &send_ioctx->cmd;
1700 cmd->tag = srp_cmd->tag;
1701
1702 switch (srp_cmd->task_attr) {
1703 case SRP_CMD_SIMPLE_Q:
1704 cmd->sam_task_attr = TCM_SIMPLE_TAG;
1705 break;
1706 case SRP_CMD_ORDERED_Q:
1707 default:
1708 cmd->sam_task_attr = TCM_ORDERED_TAG;
1709 break;
1710 case SRP_CMD_HEAD_OF_Q:
1711 cmd->sam_task_attr = TCM_HEAD_TAG;
1712 break;
1713 case SRP_CMD_ACA:
1714 cmd->sam_task_attr = TCM_ACA_TAG;
1715 break;
1716 }
1717
1718 if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) {
1719 pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1720 srp_cmd->tag);
1721 ret = TCM_INVALID_CDB_FIELD;
1722 goto send_sense;
1723 }
1724
1725 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1726 sizeof(srp_cmd->lun));
1727 rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb,
1728 &send_ioctx->sense_data[0], unpacked_lun, data_len,
1729 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1730 if (rc != 0) {
1731 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1732 goto send_sense;
1733 }
1734 return 0;
1735
1736 send_sense:
1737 transport_send_check_condition_and_sense(cmd, ret, 0);
1738 return -1;
1739 }
1740
1741 /**
1742 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag.
1743 * @ch: RDMA channel of the task management request.
1744 * @fn: Task management function to perform.
1745 * @req_tag: Tag of the SRP task management request.
1746 * @mgmt_ioctx: I/O context of the task management request.
1747 *
1748 * Returns zero if the target core will process the task management
1749 * request asynchronously.
1750 *
1751 * Note: It is assumed that the initiator serializes tag-based task management
1752 * requests.
1753 */
1754 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag)
1755 {
1756 struct srpt_device *sdev;
1757 struct srpt_rdma_ch *ch;
1758 struct srpt_send_ioctx *target;
1759 int ret, i;
1760
1761 ret = -EINVAL;
1762 ch = ioctx->ch;
1763 BUG_ON(!ch);
1764 BUG_ON(!ch->sport);
1765 sdev = ch->sport->sdev;
1766 BUG_ON(!sdev);
1767 spin_lock_irq(&sdev->spinlock);
1768 for (i = 0; i < ch->rq_size; ++i) {
1769 target = ch->ioctx_ring[i];
1770 if (target->cmd.se_lun == ioctx->cmd.se_lun &&
1771 target->cmd.tag == tag &&
1772 srpt_get_cmd_state(target) != SRPT_STATE_DONE) {
1773 ret = 0;
1774 /* now let the target core abort &target->cmd; */
1775 break;
1776 }
1777 }
1778 spin_unlock_irq(&sdev->spinlock);
1779 return ret;
1780 }
1781
1782 static int srp_tmr_to_tcm(int fn)
1783 {
1784 switch (fn) {
1785 case SRP_TSK_ABORT_TASK:
1786 return TMR_ABORT_TASK;
1787 case SRP_TSK_ABORT_TASK_SET:
1788 return TMR_ABORT_TASK_SET;
1789 case SRP_TSK_CLEAR_TASK_SET:
1790 return TMR_CLEAR_TASK_SET;
1791 case SRP_TSK_LUN_RESET:
1792 return TMR_LUN_RESET;
1793 case SRP_TSK_CLEAR_ACA:
1794 return TMR_CLEAR_ACA;
1795 default:
1796 return -1;
1797 }
1798 }
1799
1800 /**
1801 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1802 *
1803 * Returns 0 if and only if the request will be processed by the target core.
1804 *
1805 * For more information about SRP_TSK_MGMT information units, see also section
1806 * 6.7 in the SRP r16a document.
1807 */
1808 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1809 struct srpt_recv_ioctx *recv_ioctx,
1810 struct srpt_send_ioctx *send_ioctx)
1811 {
1812 struct srp_tsk_mgmt *srp_tsk;
1813 struct se_cmd *cmd;
1814 struct se_session *sess = ch->sess;
1815 uint64_t unpacked_lun;
1816 uint32_t tag = 0;
1817 int tcm_tmr;
1818 int rc;
1819
1820 BUG_ON(!send_ioctx);
1821
1822 srp_tsk = recv_ioctx->ioctx.buf;
1823 cmd = &send_ioctx->cmd;
1824
1825 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1826 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1827 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1828
1829 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1830 send_ioctx->cmd.tag = srp_tsk->tag;
1831 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1832 if (tcm_tmr < 0) {
1833 send_ioctx->cmd.se_tmr_req->response =
1834 TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
1835 goto fail;
1836 }
1837 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1838 sizeof(srp_tsk->lun));
1839
1840 if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) {
1841 rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag);
1842 if (rc < 0) {
1843 send_ioctx->cmd.se_tmr_req->response =
1844 TMR_TASK_DOES_NOT_EXIST;
1845 goto fail;
1846 }
1847 tag = srp_tsk->task_tag;
1848 }
1849 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun,
1850 srp_tsk, tcm_tmr, GFP_KERNEL, tag,
1851 TARGET_SCF_ACK_KREF);
1852 if (rc != 0) {
1853 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1854 goto fail;
1855 }
1856 return;
1857 fail:
1858 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1859 }
1860
1861 /**
1862 * srpt_handle_new_iu() - Process a newly received information unit.
1863 * @ch: RDMA channel through which the information unit has been received.
1864 * @ioctx: SRPT I/O context associated with the information unit.
1865 */
1866 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1867 struct srpt_recv_ioctx *recv_ioctx,
1868 struct srpt_send_ioctx *send_ioctx)
1869 {
1870 struct srp_cmd *srp_cmd;
1871 enum rdma_ch_state ch_state;
1872
1873 BUG_ON(!ch);
1874 BUG_ON(!recv_ioctx);
1875
1876 ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1877 recv_ioctx->ioctx.dma, srp_max_req_size,
1878 DMA_FROM_DEVICE);
1879
1880 ch_state = srpt_get_ch_state(ch);
1881 if (unlikely(ch_state == CH_CONNECTING)) {
1882 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1883 goto out;
1884 }
1885
1886 if (unlikely(ch_state != CH_LIVE))
1887 goto out;
1888
1889 srp_cmd = recv_ioctx->ioctx.buf;
1890 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1891 if (!send_ioctx)
1892 send_ioctx = srpt_get_send_ioctx(ch);
1893 if (unlikely(!send_ioctx)) {
1894 list_add_tail(&recv_ioctx->wait_list,
1895 &ch->cmd_wait_list);
1896 goto out;
1897 }
1898 }
1899
1900 switch (srp_cmd->opcode) {
1901 case SRP_CMD:
1902 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1903 break;
1904 case SRP_TSK_MGMT:
1905 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1906 break;
1907 case SRP_I_LOGOUT:
1908 pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1909 break;
1910 case SRP_CRED_RSP:
1911 pr_debug("received SRP_CRED_RSP\n");
1912 break;
1913 case SRP_AER_RSP:
1914 pr_debug("received SRP_AER_RSP\n");
1915 break;
1916 case SRP_RSP:
1917 pr_err("Received SRP_RSP\n");
1918 break;
1919 default:
1920 pr_err("received IU with unknown opcode 0x%x\n",
1921 srp_cmd->opcode);
1922 break;
1923 }
1924
1925 srpt_post_recv(ch->sport->sdev, recv_ioctx);
1926 out:
1927 return;
1928 }
1929
1930 static void srpt_process_rcv_completion(struct ib_cq *cq,
1931 struct srpt_rdma_ch *ch,
1932 struct ib_wc *wc)
1933 {
1934 struct srpt_device *sdev = ch->sport->sdev;
1935 struct srpt_recv_ioctx *ioctx;
1936 u32 index;
1937
1938 index = idx_from_wr_id(wc->wr_id);
1939 if (wc->status == IB_WC_SUCCESS) {
1940 int req_lim;
1941
1942 req_lim = atomic_dec_return(&ch->req_lim);
1943 if (unlikely(req_lim < 0))
1944 pr_err("req_lim = %d < 0\n", req_lim);
1945 ioctx = sdev->ioctx_ring[index];
1946 srpt_handle_new_iu(ch, ioctx, NULL);
1947 } else {
1948 pr_info("receiving failed for idx %u with status %d\n",
1949 index, wc->status);
1950 }
1951 }
1952
1953 /**
1954 * srpt_process_send_completion() - Process an IB send completion.
1955 *
1956 * Note: Although this has not yet been observed during tests, at least in
1957 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1958 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1959 * value in each response is set to one, and it is possible that this response
1960 * makes the initiator send a new request before the send completion for that
1961 * response has been processed. This could e.g. happen if the call to
1962 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1963 * if IB retransmission causes generation of the send completion to be
1964 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1965 * are queued on cmd_wait_list. The code below processes these delayed
1966 * requests one at a time.
1967 */
1968 static void srpt_process_send_completion(struct ib_cq *cq,
1969 struct srpt_rdma_ch *ch,
1970 struct ib_wc *wc)
1971 {
1972 struct srpt_send_ioctx *send_ioctx;
1973 uint32_t index;
1974 enum srpt_opcode opcode;
1975
1976 index = idx_from_wr_id(wc->wr_id);
1977 opcode = opcode_from_wr_id(wc->wr_id);
1978 send_ioctx = ch->ioctx_ring[index];
1979 if (wc->status == IB_WC_SUCCESS) {
1980 if (opcode == SRPT_SEND)
1981 srpt_handle_send_comp(ch, send_ioctx);
1982 else {
1983 WARN_ON(opcode != SRPT_RDMA_ABORT &&
1984 wc->opcode != IB_WC_RDMA_READ);
1985 srpt_handle_rdma_comp(ch, send_ioctx, opcode);
1986 }
1987 } else {
1988 if (opcode == SRPT_SEND) {
1989 pr_info("sending response for idx %u failed"
1990 " with status %d\n", index, wc->status);
1991 srpt_handle_send_err_comp(ch, wc->wr_id);
1992 } else if (opcode != SRPT_RDMA_MID) {
1993 pr_info("RDMA t %d for idx %u failed with"
1994 " status %d\n", opcode, index, wc->status);
1995 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
1996 }
1997 }
1998
1999 while (unlikely(opcode == SRPT_SEND
2000 && !list_empty(&ch->cmd_wait_list)
2001 && srpt_get_ch_state(ch) == CH_LIVE
2002 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
2003 struct srpt_recv_ioctx *recv_ioctx;
2004
2005 recv_ioctx = list_first_entry(&ch->cmd_wait_list,
2006 struct srpt_recv_ioctx,
2007 wait_list);
2008 list_del(&recv_ioctx->wait_list);
2009 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
2010 }
2011 }
2012
2013 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
2014 {
2015 struct ib_wc *const wc = ch->wc;
2016 int i, n;
2017
2018 WARN_ON(cq != ch->cq);
2019
2020 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
2021 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
2022 for (i = 0; i < n; i++) {
2023 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
2024 srpt_process_rcv_completion(cq, ch, &wc[i]);
2025 else
2026 srpt_process_send_completion(cq, ch, &wc[i]);
2027 }
2028 }
2029 }
2030
2031 /**
2032 * srpt_completion() - IB completion queue callback function.
2033 *
2034 * Notes:
2035 * - It is guaranteed that a completion handler will never be invoked
2036 * concurrently on two different CPUs for the same completion queue. See also
2037 * Documentation/infiniband/core_locking.txt and the implementation of
2038 * handle_edge_irq() in kernel/irq/chip.c.
2039 * - When threaded IRQs are enabled, completion handlers are invoked in thread
2040 * context instead of interrupt context.
2041 */
2042 static void srpt_completion(struct ib_cq *cq, void *ctx)
2043 {
2044 struct srpt_rdma_ch *ch = ctx;
2045
2046 wake_up_interruptible(&ch->wait_queue);
2047 }
2048
2049 static int srpt_compl_thread(void *arg)
2050 {
2051 struct srpt_rdma_ch *ch;
2052
2053 /* Hibernation / freezing of the SRPT kernel thread is not supported. */
2054 current->flags |= PF_NOFREEZE;
2055
2056 ch = arg;
2057 BUG_ON(!ch);
2058 pr_info("Session %s: kernel thread %s (PID %d) started\n",
2059 ch->sess_name, ch->thread->comm, current->pid);
2060 while (!kthread_should_stop()) {
2061 wait_event_interruptible(ch->wait_queue,
2062 (srpt_process_completion(ch->cq, ch),
2063 kthread_should_stop()));
2064 }
2065 pr_info("Session %s: kernel thread %s (PID %d) stopped\n",
2066 ch->sess_name, ch->thread->comm, current->pid);
2067 return 0;
2068 }
2069
2070 /**
2071 * srpt_create_ch_ib() - Create receive and send completion queues.
2072 */
2073 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
2074 {
2075 struct ib_qp_init_attr *qp_init;
2076 struct srpt_port *sport = ch->sport;
2077 struct srpt_device *sdev = sport->sdev;
2078 u32 srp_sq_size = sport->port_attrib.srp_sq_size;
2079 struct ib_cq_init_attr cq_attr = {};
2080 int ret;
2081
2082 WARN_ON(ch->rq_size < 1);
2083
2084 ret = -ENOMEM;
2085 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
2086 if (!qp_init)
2087 goto out;
2088
2089 retry:
2090 cq_attr.cqe = ch->rq_size + srp_sq_size;
2091 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
2092 &cq_attr);
2093 if (IS_ERR(ch->cq)) {
2094 ret = PTR_ERR(ch->cq);
2095 pr_err("failed to create CQ cqe= %d ret= %d\n",
2096 ch->rq_size + srp_sq_size, ret);
2097 goto out;
2098 }
2099
2100 qp_init->qp_context = (void *)ch;
2101 qp_init->event_handler
2102 = (void(*)(struct ib_event *, void*))srpt_qp_event;
2103 qp_init->send_cq = ch->cq;
2104 qp_init->recv_cq = ch->cq;
2105 qp_init->srq = sdev->srq;
2106 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
2107 qp_init->qp_type = IB_QPT_RC;
2108 qp_init->cap.max_send_wr = srp_sq_size;
2109 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
2110
2111 ch->qp = ib_create_qp(sdev->pd, qp_init);
2112 if (IS_ERR(ch->qp)) {
2113 ret = PTR_ERR(ch->qp);
2114 if (ret == -ENOMEM) {
2115 srp_sq_size /= 2;
2116 if (srp_sq_size >= MIN_SRPT_SQ_SIZE) {
2117 ib_destroy_cq(ch->cq);
2118 goto retry;
2119 }
2120 }
2121 pr_err("failed to create_qp ret= %d\n", ret);
2122 goto err_destroy_cq;
2123 }
2124
2125 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
2126
2127 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2128 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
2129 qp_init->cap.max_send_wr, ch->cm_id);
2130
2131 ret = srpt_init_ch_qp(ch, ch->qp);
2132 if (ret)
2133 goto err_destroy_qp;
2134
2135 init_waitqueue_head(&ch->wait_queue);
2136
2137 pr_debug("creating thread for session %s\n", ch->sess_name);
2138
2139 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
2140 if (IS_ERR(ch->thread)) {
2141 pr_err("failed to create kernel thread %ld\n",
2142 PTR_ERR(ch->thread));
2143 ch->thread = NULL;
2144 goto err_destroy_qp;
2145 }
2146
2147 out:
2148 kfree(qp_init);
2149 return ret;
2150
2151 err_destroy_qp:
2152 ib_destroy_qp(ch->qp);
2153 err_destroy_cq:
2154 ib_destroy_cq(ch->cq);
2155 goto out;
2156 }
2157
2158 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2159 {
2160 if (ch->thread)
2161 kthread_stop(ch->thread);
2162
2163 ib_destroy_qp(ch->qp);
2164 ib_destroy_cq(ch->cq);
2165 }
2166
2167 /**
2168 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2169 *
2170 * Reset the QP and make sure all resources associated with the channel will
2171 * be deallocated at an appropriate time.
2172 *
2173 * Note: The caller must hold ch->sport->sdev->spinlock.
2174 */
2175 static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2176 {
2177 enum rdma_ch_state prev_state;
2178 unsigned long flags;
2179
2180 spin_lock_irqsave(&ch->spinlock, flags);
2181 prev_state = ch->state;
2182 switch (prev_state) {
2183 case CH_CONNECTING:
2184 case CH_LIVE:
2185 ch->state = CH_DISCONNECTING;
2186 break;
2187 default:
2188 break;
2189 }
2190 spin_unlock_irqrestore(&ch->spinlock, flags);
2191
2192 switch (prev_state) {
2193 case CH_CONNECTING:
2194 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2195 NULL, 0);
2196 /* fall through */
2197 case CH_LIVE:
2198 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2199 pr_err("sending CM DREQ failed.\n");
2200 break;
2201 case CH_DISCONNECTING:
2202 break;
2203 case CH_DRAINING:
2204 case CH_RELEASING:
2205 break;
2206 }
2207 }
2208
2209 /**
2210 * srpt_close_ch() - Close an RDMA channel.
2211 */
2212 static void srpt_close_ch(struct srpt_rdma_ch *ch)
2213 {
2214 struct srpt_device *sdev;
2215
2216 sdev = ch->sport->sdev;
2217 spin_lock_irq(&sdev->spinlock);
2218 __srpt_close_ch(ch);
2219 spin_unlock_irq(&sdev->spinlock);
2220 }
2221
2222 /**
2223 * srpt_shutdown_session() - Whether or not a session may be shut down.
2224 */
2225 static int srpt_shutdown_session(struct se_session *se_sess)
2226 {
2227 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
2228 unsigned long flags;
2229
2230 spin_lock_irqsave(&ch->spinlock, flags);
2231 if (ch->in_shutdown) {
2232 spin_unlock_irqrestore(&ch->spinlock, flags);
2233 return true;
2234 }
2235
2236 ch->in_shutdown = true;
2237 target_sess_cmd_list_set_waiting(se_sess);
2238 spin_unlock_irqrestore(&ch->spinlock, flags);
2239
2240 return true;
2241 }
2242
2243 /**
2244 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2245 * @cm_id: Pointer to the CM ID of the channel to be drained.
2246 *
2247 * Note: Must be called from inside srpt_cm_handler to avoid a race between
2248 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2249 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2250 * waits until all target sessions for the associated IB device have been
2251 * unregistered and target session registration involves a call to
2252 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2253 * this function has finished).
2254 */
2255 static void srpt_drain_channel(struct ib_cm_id *cm_id)
2256 {
2257 struct srpt_device *sdev;
2258 struct srpt_rdma_ch *ch;
2259 int ret;
2260 bool do_reset = false;
2261
2262 WARN_ON_ONCE(irqs_disabled());
2263
2264 sdev = cm_id->context;
2265 BUG_ON(!sdev);
2266 spin_lock_irq(&sdev->spinlock);
2267 list_for_each_entry(ch, &sdev->rch_list, list) {
2268 if (ch->cm_id == cm_id) {
2269 do_reset = srpt_test_and_set_ch_state(ch,
2270 CH_CONNECTING, CH_DRAINING) ||
2271 srpt_test_and_set_ch_state(ch,
2272 CH_LIVE, CH_DRAINING) ||
2273 srpt_test_and_set_ch_state(ch,
2274 CH_DISCONNECTING, CH_DRAINING);
2275 break;
2276 }
2277 }
2278 spin_unlock_irq(&sdev->spinlock);
2279
2280 if (do_reset) {
2281 if (ch->sess)
2282 srpt_shutdown_session(ch->sess);
2283
2284 ret = srpt_ch_qp_err(ch);
2285 if (ret < 0)
2286 pr_err("Setting queue pair in error state"
2287 " failed: %d\n", ret);
2288 }
2289 }
2290
2291 /**
2292 * srpt_find_channel() - Look up an RDMA channel.
2293 * @cm_id: Pointer to the CM ID of the channel to be looked up.
2294 *
2295 * Return NULL if no matching RDMA channel has been found.
2296 */
2297 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2298 struct ib_cm_id *cm_id)
2299 {
2300 struct srpt_rdma_ch *ch;
2301 bool found;
2302
2303 WARN_ON_ONCE(irqs_disabled());
2304 BUG_ON(!sdev);
2305
2306 found = false;
2307 spin_lock_irq(&sdev->spinlock);
2308 list_for_each_entry(ch, &sdev->rch_list, list) {
2309 if (ch->cm_id == cm_id) {
2310 found = true;
2311 break;
2312 }
2313 }
2314 spin_unlock_irq(&sdev->spinlock);
2315
2316 return found ? ch : NULL;
2317 }
2318
2319 /**
2320 * srpt_release_channel() - Release channel resources.
2321 *
2322 * Schedules the actual release because:
2323 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2324 * trigger a deadlock.
2325 * - It is not safe to call TCM transport_* functions from interrupt context.
2326 */
2327 static void srpt_release_channel(struct srpt_rdma_ch *ch)
2328 {
2329 schedule_work(&ch->release_work);
2330 }
2331
2332 static void srpt_release_channel_work(struct work_struct *w)
2333 {
2334 struct srpt_rdma_ch *ch;
2335 struct srpt_device *sdev;
2336 struct se_session *se_sess;
2337
2338 ch = container_of(w, struct srpt_rdma_ch, release_work);
2339 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2340 ch->release_done);
2341
2342 sdev = ch->sport->sdev;
2343 BUG_ON(!sdev);
2344
2345 se_sess = ch->sess;
2346 BUG_ON(!se_sess);
2347
2348 target_wait_for_sess_cmds(se_sess);
2349
2350 transport_deregister_session_configfs(se_sess);
2351 transport_deregister_session(se_sess);
2352 ch->sess = NULL;
2353
2354 ib_destroy_cm_id(ch->cm_id);
2355
2356 srpt_destroy_ch_ib(ch);
2357
2358 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2359 ch->sport->sdev, ch->rq_size,
2360 ch->rsp_size, DMA_TO_DEVICE);
2361
2362 spin_lock_irq(&sdev->spinlock);
2363 list_del(&ch->list);
2364 spin_unlock_irq(&sdev->spinlock);
2365
2366 if (ch->release_done)
2367 complete(ch->release_done);
2368
2369 wake_up(&sdev->ch_releaseQ);
2370
2371 kfree(ch);
2372 }
2373
2374 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
2375 u8 i_port_id[16])
2376 {
2377 struct srpt_node_acl *nacl;
2378
2379 list_for_each_entry(nacl, &sport->port_acl_list, list)
2380 if (memcmp(nacl->i_port_id, i_port_id,
2381 sizeof(nacl->i_port_id)) == 0)
2382 return nacl;
2383
2384 return NULL;
2385 }
2386
2387 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
2388 u8 i_port_id[16])
2389 {
2390 struct srpt_node_acl *nacl;
2391
2392 spin_lock_irq(&sport->port_acl_lock);
2393 nacl = __srpt_lookup_acl(sport, i_port_id);
2394 spin_unlock_irq(&sport->port_acl_lock);
2395
2396 return nacl;
2397 }
2398
2399 /**
2400 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2401 *
2402 * Ownership of the cm_id is transferred to the target session if this
2403 * functions returns zero. Otherwise the caller remains the owner of cm_id.
2404 */
2405 static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2406 struct ib_cm_req_event_param *param,
2407 void *private_data)
2408 {
2409 struct srpt_device *sdev = cm_id->context;
2410 struct srpt_port *sport = &sdev->port[param->port - 1];
2411 struct srp_login_req *req;
2412 struct srp_login_rsp *rsp;
2413 struct srp_login_rej *rej;
2414 struct ib_cm_rep_param *rep_param;
2415 struct srpt_rdma_ch *ch, *tmp_ch;
2416 struct srpt_node_acl *nacl;
2417 u32 it_iu_len;
2418 int i;
2419 int ret = 0;
2420
2421 WARN_ON_ONCE(irqs_disabled());
2422
2423 if (WARN_ON(!sdev || !private_data))
2424 return -EINVAL;
2425
2426 req = (struct srp_login_req *)private_data;
2427
2428 it_iu_len = be32_to_cpu(req->req_it_iu_len);
2429
2430 pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2431 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2432 " (guid=0x%llx:0x%llx)\n",
2433 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2434 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2435 be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2436 be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2437 it_iu_len,
2438 param->port,
2439 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2440 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2441
2442 rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2443 rej = kzalloc(sizeof *rej, GFP_KERNEL);
2444 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2445
2446 if (!rsp || !rej || !rep_param) {
2447 ret = -ENOMEM;
2448 goto out;
2449 }
2450
2451 if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2452 rej->reason = cpu_to_be32(
2453 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2454 ret = -EINVAL;
2455 pr_err("rejected SRP_LOGIN_REQ because its"
2456 " length (%d bytes) is out of range (%d .. %d)\n",
2457 it_iu_len, 64, srp_max_req_size);
2458 goto reject;
2459 }
2460
2461 if (!sport->enabled) {
2462 rej->reason = cpu_to_be32(
2463 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2464 ret = -EINVAL;
2465 pr_err("rejected SRP_LOGIN_REQ because the target port"
2466 " has not yet been enabled\n");
2467 goto reject;
2468 }
2469
2470 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2471 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2472
2473 spin_lock_irq(&sdev->spinlock);
2474
2475 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2476 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2477 && !memcmp(ch->t_port_id, req->target_port_id, 16)
2478 && param->port == ch->sport->port
2479 && param->listen_id == ch->sport->sdev->cm_id
2480 && ch->cm_id) {
2481 enum rdma_ch_state ch_state;
2482
2483 ch_state = srpt_get_ch_state(ch);
2484 if (ch_state != CH_CONNECTING
2485 && ch_state != CH_LIVE)
2486 continue;
2487
2488 /* found an existing channel */
2489 pr_debug("Found existing channel %s"
2490 " cm_id= %p state= %d\n",
2491 ch->sess_name, ch->cm_id, ch_state);
2492
2493 __srpt_close_ch(ch);
2494
2495 rsp->rsp_flags =
2496 SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2497 }
2498 }
2499
2500 spin_unlock_irq(&sdev->spinlock);
2501
2502 } else
2503 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2504
2505 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2506 || *(__be64 *)(req->target_port_id + 8) !=
2507 cpu_to_be64(srpt_service_guid)) {
2508 rej->reason = cpu_to_be32(
2509 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2510 ret = -ENOMEM;
2511 pr_err("rejected SRP_LOGIN_REQ because it"
2512 " has an invalid target port identifier.\n");
2513 goto reject;
2514 }
2515
2516 ch = kzalloc(sizeof *ch, GFP_KERNEL);
2517 if (!ch) {
2518 rej->reason = cpu_to_be32(
2519 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2520 pr_err("rejected SRP_LOGIN_REQ because no memory.\n");
2521 ret = -ENOMEM;
2522 goto reject;
2523 }
2524
2525 INIT_WORK(&ch->release_work, srpt_release_channel_work);
2526 memcpy(ch->i_port_id, req->initiator_port_id, 16);
2527 memcpy(ch->t_port_id, req->target_port_id, 16);
2528 ch->sport = &sdev->port[param->port - 1];
2529 ch->cm_id = cm_id;
2530 /*
2531 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2532 * for the SRP protocol to the command queue size.
2533 */
2534 ch->rq_size = SRPT_RQ_SIZE;
2535 spin_lock_init(&ch->spinlock);
2536 ch->state = CH_CONNECTING;
2537 INIT_LIST_HEAD(&ch->cmd_wait_list);
2538 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2539
2540 ch->ioctx_ring = (struct srpt_send_ioctx **)
2541 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2542 sizeof(*ch->ioctx_ring[0]),
2543 ch->rsp_size, DMA_TO_DEVICE);
2544 if (!ch->ioctx_ring)
2545 goto free_ch;
2546
2547 INIT_LIST_HEAD(&ch->free_list);
2548 for (i = 0; i < ch->rq_size; i++) {
2549 ch->ioctx_ring[i]->ch = ch;
2550 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2551 }
2552
2553 ret = srpt_create_ch_ib(ch);
2554 if (ret) {
2555 rej->reason = cpu_to_be32(
2556 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2557 pr_err("rejected SRP_LOGIN_REQ because creating"
2558 " a new RDMA channel failed.\n");
2559 goto free_ring;
2560 }
2561
2562 ret = srpt_ch_qp_rtr(ch, ch->qp);
2563 if (ret) {
2564 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2565 pr_err("rejected SRP_LOGIN_REQ because enabling"
2566 " RTR failed (error code = %d)\n", ret);
2567 goto destroy_ib;
2568 }
2569 /*
2570 * Use the initator port identifier as the session name.
2571 */
2572 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2573 be64_to_cpu(*(__be64 *)ch->i_port_id),
2574 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2575
2576 pr_debug("registering session %s\n", ch->sess_name);
2577
2578 nacl = srpt_lookup_acl(sport, ch->i_port_id);
2579 if (!nacl) {
2580 pr_info("Rejected login because no ACL has been"
2581 " configured yet for initiator %s.\n", ch->sess_name);
2582 rej->reason = cpu_to_be32(
2583 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2584 goto destroy_ib;
2585 }
2586
2587 ch->sess = transport_init_session(TARGET_PROT_NORMAL);
2588 if (IS_ERR(ch->sess)) {
2589 rej->reason = cpu_to_be32(
2590 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2591 pr_debug("Failed to create session\n");
2592 goto deregister_session;
2593 }
2594 ch->sess->se_node_acl = &nacl->nacl;
2595 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
2596
2597 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2598 ch->sess_name, ch->cm_id);
2599
2600 /* create srp_login_response */
2601 rsp->opcode = SRP_LOGIN_RSP;
2602 rsp->tag = req->tag;
2603 rsp->max_it_iu_len = req->req_it_iu_len;
2604 rsp->max_ti_iu_len = req->req_it_iu_len;
2605 ch->max_ti_iu_len = it_iu_len;
2606 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2607 | SRP_BUF_FORMAT_INDIRECT);
2608 rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2609 atomic_set(&ch->req_lim, ch->rq_size);
2610 atomic_set(&ch->req_lim_delta, 0);
2611
2612 /* create cm reply */
2613 rep_param->qp_num = ch->qp->qp_num;
2614 rep_param->private_data = (void *)rsp;
2615 rep_param->private_data_len = sizeof *rsp;
2616 rep_param->rnr_retry_count = 7;
2617 rep_param->flow_control = 1;
2618 rep_param->failover_accepted = 0;
2619 rep_param->srq = 1;
2620 rep_param->responder_resources = 4;
2621 rep_param->initiator_depth = 4;
2622
2623 ret = ib_send_cm_rep(cm_id, rep_param);
2624 if (ret) {
2625 pr_err("sending SRP_LOGIN_REQ response failed"
2626 " (error code = %d)\n", ret);
2627 goto release_channel;
2628 }
2629
2630 spin_lock_irq(&sdev->spinlock);
2631 list_add_tail(&ch->list, &sdev->rch_list);
2632 spin_unlock_irq(&sdev->spinlock);
2633
2634 goto out;
2635
2636 release_channel:
2637 srpt_set_ch_state(ch, CH_RELEASING);
2638 transport_deregister_session_configfs(ch->sess);
2639
2640 deregister_session:
2641 transport_deregister_session(ch->sess);
2642 ch->sess = NULL;
2643
2644 destroy_ib:
2645 srpt_destroy_ch_ib(ch);
2646
2647 free_ring:
2648 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2649 ch->sport->sdev, ch->rq_size,
2650 ch->rsp_size, DMA_TO_DEVICE);
2651 free_ch:
2652 kfree(ch);
2653
2654 reject:
2655 rej->opcode = SRP_LOGIN_REJ;
2656 rej->tag = req->tag;
2657 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2658 | SRP_BUF_FORMAT_INDIRECT);
2659
2660 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2661 (void *)rej, sizeof *rej);
2662
2663 out:
2664 kfree(rep_param);
2665 kfree(rsp);
2666 kfree(rej);
2667
2668 return ret;
2669 }
2670
2671 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2672 {
2673 pr_info("Received IB REJ for cm_id %p.\n", cm_id);
2674 srpt_drain_channel(cm_id);
2675 }
2676
2677 /**
2678 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2679 *
2680 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2681 * and that the recipient may begin transmitting (RTU = ready to use).
2682 */
2683 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2684 {
2685 struct srpt_rdma_ch *ch;
2686 int ret;
2687
2688 ch = srpt_find_channel(cm_id->context, cm_id);
2689 BUG_ON(!ch);
2690
2691 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2692 struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2693
2694 ret = srpt_ch_qp_rts(ch, ch->qp);
2695
2696 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2697 wait_list) {
2698 list_del(&ioctx->wait_list);
2699 srpt_handle_new_iu(ch, ioctx, NULL);
2700 }
2701 if (ret)
2702 srpt_close_ch(ch);
2703 }
2704 }
2705
2706 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2707 {
2708 pr_info("Received IB TimeWait exit for cm_id %p.\n", cm_id);
2709 srpt_drain_channel(cm_id);
2710 }
2711
2712 static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2713 {
2714 pr_info("Received IB REP error for cm_id %p.\n", cm_id);
2715 srpt_drain_channel(cm_id);
2716 }
2717
2718 /**
2719 * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2720 */
2721 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2722 {
2723 struct srpt_rdma_ch *ch;
2724 unsigned long flags;
2725 bool send_drep = false;
2726
2727 ch = srpt_find_channel(cm_id->context, cm_id);
2728 BUG_ON(!ch);
2729
2730 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2731
2732 spin_lock_irqsave(&ch->spinlock, flags);
2733 switch (ch->state) {
2734 case CH_CONNECTING:
2735 case CH_LIVE:
2736 send_drep = true;
2737 ch->state = CH_DISCONNECTING;
2738 break;
2739 case CH_DISCONNECTING:
2740 case CH_DRAINING:
2741 case CH_RELEASING:
2742 WARN(true, "unexpected channel state %d\n", ch->state);
2743 break;
2744 }
2745 spin_unlock_irqrestore(&ch->spinlock, flags);
2746
2747 if (send_drep) {
2748 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2749 pr_err("Sending IB DREP failed.\n");
2750 pr_info("Received DREQ and sent DREP for session %s.\n",
2751 ch->sess_name);
2752 }
2753 }
2754
2755 /**
2756 * srpt_cm_drep_recv() - Process reception of a DREP message.
2757 */
2758 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2759 {
2760 pr_info("Received InfiniBand DREP message for cm_id %p.\n", cm_id);
2761 srpt_drain_channel(cm_id);
2762 }
2763
2764 /**
2765 * srpt_cm_handler() - IB connection manager callback function.
2766 *
2767 * A non-zero return value will cause the caller destroy the CM ID.
2768 *
2769 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2770 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2771 * a non-zero value in any other case will trigger a race with the
2772 * ib_destroy_cm_id() call in srpt_release_channel().
2773 */
2774 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2775 {
2776 int ret;
2777
2778 ret = 0;
2779 switch (event->event) {
2780 case IB_CM_REQ_RECEIVED:
2781 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2782 event->private_data);
2783 break;
2784 case IB_CM_REJ_RECEIVED:
2785 srpt_cm_rej_recv(cm_id);
2786 break;
2787 case IB_CM_RTU_RECEIVED:
2788 case IB_CM_USER_ESTABLISHED:
2789 srpt_cm_rtu_recv(cm_id);
2790 break;
2791 case IB_CM_DREQ_RECEIVED:
2792 srpt_cm_dreq_recv(cm_id);
2793 break;
2794 case IB_CM_DREP_RECEIVED:
2795 srpt_cm_drep_recv(cm_id);
2796 break;
2797 case IB_CM_TIMEWAIT_EXIT:
2798 srpt_cm_timewait_exit(cm_id);
2799 break;
2800 case IB_CM_REP_ERROR:
2801 srpt_cm_rep_error(cm_id);
2802 break;
2803 case IB_CM_DREQ_ERROR:
2804 pr_info("Received IB DREQ ERROR event.\n");
2805 break;
2806 case IB_CM_MRA_RECEIVED:
2807 pr_info("Received IB MRA event\n");
2808 break;
2809 default:
2810 pr_err("received unrecognized IB CM event %d\n", event->event);
2811 break;
2812 }
2813
2814 return ret;
2815 }
2816
2817 /**
2818 * srpt_perform_rdmas() - Perform IB RDMA.
2819 *
2820 * Returns zero upon success or a negative number upon failure.
2821 */
2822 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2823 struct srpt_send_ioctx *ioctx)
2824 {
2825 struct ib_send_wr wr;
2826 struct ib_send_wr *bad_wr;
2827 struct rdma_iu *riu;
2828 int i;
2829 int ret;
2830 int sq_wr_avail;
2831 enum dma_data_direction dir;
2832 const int n_rdma = ioctx->n_rdma;
2833
2834 dir = ioctx->cmd.data_direction;
2835 if (dir == DMA_TO_DEVICE) {
2836 /* write */
2837 ret = -ENOMEM;
2838 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2839 if (sq_wr_avail < 0) {
2840 pr_warn("IB send queue full (needed %d)\n",
2841 n_rdma);
2842 goto out;
2843 }
2844 }
2845
2846 ioctx->rdma_aborted = false;
2847 ret = 0;
2848 riu = ioctx->rdma_ius;
2849 memset(&wr, 0, sizeof wr);
2850
2851 for (i = 0; i < n_rdma; ++i, ++riu) {
2852 if (dir == DMA_FROM_DEVICE) {
2853 wr.opcode = IB_WR_RDMA_WRITE;
2854 wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2855 SRPT_RDMA_WRITE_LAST :
2856 SRPT_RDMA_MID,
2857 ioctx->ioctx.index);
2858 } else {
2859 wr.opcode = IB_WR_RDMA_READ;
2860 wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2861 SRPT_RDMA_READ_LAST :
2862 SRPT_RDMA_MID,
2863 ioctx->ioctx.index);
2864 }
2865 wr.next = NULL;
2866 wr.wr.rdma.remote_addr = riu->raddr;
2867 wr.wr.rdma.rkey = riu->rkey;
2868 wr.num_sge = riu->sge_cnt;
2869 wr.sg_list = riu->sge;
2870
2871 /* only get completion event for the last rdma write */
2872 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
2873 wr.send_flags = IB_SEND_SIGNALED;
2874
2875 ret = ib_post_send(ch->qp, &wr, &bad_wr);
2876 if (ret)
2877 break;
2878 }
2879
2880 if (ret)
2881 pr_err("%s[%d]: ib_post_send() returned %d for %d/%d\n",
2882 __func__, __LINE__, ret, i, n_rdma);
2883 if (ret && i > 0) {
2884 wr.num_sge = 0;
2885 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
2886 wr.send_flags = IB_SEND_SIGNALED;
2887 while (ch->state == CH_LIVE &&
2888 ib_post_send(ch->qp, &wr, &bad_wr) != 0) {
2889 pr_info("Trying to abort failed RDMA transfer [%d]\n",
2890 ioctx->ioctx.index);
2891 msleep(1000);
2892 }
2893 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
2894 pr_info("Waiting until RDMA abort finished [%d]\n",
2895 ioctx->ioctx.index);
2896 msleep(1000);
2897 }
2898 }
2899 out:
2900 if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2901 atomic_add(n_rdma, &ch->sq_wr_avail);
2902 return ret;
2903 }
2904
2905 /**
2906 * srpt_xfer_data() - Start data transfer from initiator to target.
2907 */
2908 static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2909 struct srpt_send_ioctx *ioctx)
2910 {
2911 int ret;
2912
2913 ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2914 if (ret) {
2915 pr_err("%s[%d] ret=%d\n", __func__, __LINE__, ret);
2916 goto out;
2917 }
2918
2919 ret = srpt_perform_rdmas(ch, ioctx);
2920 if (ret) {
2921 if (ret == -EAGAIN || ret == -ENOMEM)
2922 pr_info("%s[%d] queue full -- ret=%d\n",
2923 __func__, __LINE__, ret);
2924 else
2925 pr_err("%s[%d] fatal error -- ret=%d\n",
2926 __func__, __LINE__, ret);
2927 goto out_unmap;
2928 }
2929
2930 out:
2931 return ret;
2932 out_unmap:
2933 srpt_unmap_sg_to_ib_sge(ch, ioctx);
2934 goto out;
2935 }
2936
2937 static int srpt_write_pending_status(struct se_cmd *se_cmd)
2938 {
2939 struct srpt_send_ioctx *ioctx;
2940
2941 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2942 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2943 }
2944
2945 /*
2946 * srpt_write_pending() - Start data transfer from initiator to target (write).
2947 */
2948 static int srpt_write_pending(struct se_cmd *se_cmd)
2949 {
2950 struct srpt_rdma_ch *ch;
2951 struct srpt_send_ioctx *ioctx;
2952 enum srpt_command_state new_state;
2953 enum rdma_ch_state ch_state;
2954 int ret;
2955
2956 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2957
2958 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2959 WARN_ON(new_state == SRPT_STATE_DONE);
2960
2961 ch = ioctx->ch;
2962 BUG_ON(!ch);
2963
2964 ch_state = srpt_get_ch_state(ch);
2965 switch (ch_state) {
2966 case CH_CONNECTING:
2967 WARN(true, "unexpected channel state %d\n", ch_state);
2968 ret = -EINVAL;
2969 goto out;
2970 case CH_LIVE:
2971 break;
2972 case CH_DISCONNECTING:
2973 case CH_DRAINING:
2974 case CH_RELEASING:
2975 pr_debug("cmd with tag %lld: channel disconnecting\n",
2976 ioctx->cmd.tag);
2977 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2978 ret = -EINVAL;
2979 goto out;
2980 }
2981 ret = srpt_xfer_data(ch, ioctx);
2982
2983 out:
2984 return ret;
2985 }
2986
2987 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2988 {
2989 switch (tcm_mgmt_status) {
2990 case TMR_FUNCTION_COMPLETE:
2991 return SRP_TSK_MGMT_SUCCESS;
2992 case TMR_FUNCTION_REJECTED:
2993 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2994 }
2995 return SRP_TSK_MGMT_FAILED;
2996 }
2997
2998 /**
2999 * srpt_queue_response() - Transmits the response to a SCSI command.
3000 *
3001 * Callback function called by the TCM core. Must not block since it can be
3002 * invoked on the context of the IB completion handler.
3003 */
3004 static void srpt_queue_response(struct se_cmd *cmd)
3005 {
3006 struct srpt_rdma_ch *ch;
3007 struct srpt_send_ioctx *ioctx;
3008 enum srpt_command_state state;
3009 unsigned long flags;
3010 int ret;
3011 enum dma_data_direction dir;
3012 int resp_len;
3013 u8 srp_tm_status;
3014
3015 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3016 ch = ioctx->ch;
3017 BUG_ON(!ch);
3018
3019 spin_lock_irqsave(&ioctx->spinlock, flags);
3020 state = ioctx->state;
3021 switch (state) {
3022 case SRPT_STATE_NEW:
3023 case SRPT_STATE_DATA_IN:
3024 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
3025 break;
3026 case SRPT_STATE_MGMT:
3027 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
3028 break;
3029 default:
3030 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
3031 ch, ioctx->ioctx.index, ioctx->state);
3032 break;
3033 }
3034 spin_unlock_irqrestore(&ioctx->spinlock, flags);
3035
3036 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
3037 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
3038 atomic_inc(&ch->req_lim_delta);
3039 srpt_abort_cmd(ioctx);
3040 return;
3041 }
3042
3043 dir = ioctx->cmd.data_direction;
3044
3045 /* For read commands, transfer the data to the initiator. */
3046 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
3047 !ioctx->queue_status_only) {
3048 ret = srpt_xfer_data(ch, ioctx);
3049 if (ret) {
3050 pr_err("xfer_data failed for tag %llu\n",
3051 ioctx->cmd.tag);
3052 return;
3053 }
3054 }
3055
3056 if (state != SRPT_STATE_MGMT)
3057 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
3058 cmd->scsi_status);
3059 else {
3060 srp_tm_status
3061 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
3062 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
3063 ioctx->cmd.tag);
3064 }
3065 ret = srpt_post_send(ch, ioctx, resp_len);
3066 if (ret) {
3067 pr_err("sending cmd response failed for tag %llu\n",
3068 ioctx->cmd.tag);
3069 srpt_unmap_sg_to_ib_sge(ch, ioctx);
3070 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
3071 target_put_sess_cmd(&ioctx->cmd);
3072 }
3073 }
3074
3075 static int srpt_queue_data_in(struct se_cmd *cmd)
3076 {
3077 srpt_queue_response(cmd);
3078 return 0;
3079 }
3080
3081 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
3082 {
3083 srpt_queue_response(cmd);
3084 }
3085
3086 static void srpt_aborted_task(struct se_cmd *cmd)
3087 {
3088 struct srpt_send_ioctx *ioctx = container_of(cmd,
3089 struct srpt_send_ioctx, cmd);
3090
3091 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
3092 }
3093
3094 static int srpt_queue_status(struct se_cmd *cmd)
3095 {
3096 struct srpt_send_ioctx *ioctx;
3097
3098 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3099 BUG_ON(ioctx->sense_data != cmd->sense_buffer);
3100 if (cmd->se_cmd_flags &
3101 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
3102 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
3103 ioctx->queue_status_only = true;
3104 srpt_queue_response(cmd);
3105 return 0;
3106 }
3107
3108 static void srpt_refresh_port_work(struct work_struct *work)
3109 {
3110 struct srpt_port *sport = container_of(work, struct srpt_port, work);
3111
3112 srpt_refresh_port(sport);
3113 }
3114
3115 static int srpt_ch_list_empty(struct srpt_device *sdev)
3116 {
3117 int res;
3118
3119 spin_lock_irq(&sdev->spinlock);
3120 res = list_empty(&sdev->rch_list);
3121 spin_unlock_irq(&sdev->spinlock);
3122
3123 return res;
3124 }
3125
3126 /**
3127 * srpt_release_sdev() - Free the channel resources associated with a target.
3128 */
3129 static int srpt_release_sdev(struct srpt_device *sdev)
3130 {
3131 struct srpt_rdma_ch *ch, *tmp_ch;
3132 int res;
3133
3134 WARN_ON_ONCE(irqs_disabled());
3135
3136 BUG_ON(!sdev);
3137
3138 spin_lock_irq(&sdev->spinlock);
3139 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
3140 __srpt_close_ch(ch);
3141 spin_unlock_irq(&sdev->spinlock);
3142
3143 res = wait_event_interruptible(sdev->ch_releaseQ,
3144 srpt_ch_list_empty(sdev));
3145 if (res)
3146 pr_err("%s: interrupted.\n", __func__);
3147
3148 return 0;
3149 }
3150
3151 static struct srpt_port *__srpt_lookup_port(const char *name)
3152 {
3153 struct ib_device *dev;
3154 struct srpt_device *sdev;
3155 struct srpt_port *sport;
3156 int i;
3157
3158 list_for_each_entry(sdev, &srpt_dev_list, list) {
3159 dev = sdev->device;
3160 if (!dev)
3161 continue;
3162
3163 for (i = 0; i < dev->phys_port_cnt; i++) {
3164 sport = &sdev->port[i];
3165
3166 if (!strcmp(sport->port_guid, name))
3167 return sport;
3168 }
3169 }
3170
3171 return NULL;
3172 }
3173
3174 static struct srpt_port *srpt_lookup_port(const char *name)
3175 {
3176 struct srpt_port *sport;
3177
3178 spin_lock(&srpt_dev_lock);
3179 sport = __srpt_lookup_port(name);
3180 spin_unlock(&srpt_dev_lock);
3181
3182 return sport;
3183 }
3184
3185 /**
3186 * srpt_add_one() - Infiniband device addition callback function.
3187 */
3188 static void srpt_add_one(struct ib_device *device)
3189 {
3190 struct srpt_device *sdev;
3191 struct srpt_port *sport;
3192 struct ib_srq_init_attr srq_attr;
3193 int i;
3194
3195 pr_debug("device = %p, device->dma_ops = %p\n", device,
3196 device->dma_ops);
3197
3198 sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3199 if (!sdev)
3200 goto err;
3201
3202 sdev->device = device;
3203 INIT_LIST_HEAD(&sdev->rch_list);
3204 init_waitqueue_head(&sdev->ch_releaseQ);
3205 spin_lock_init(&sdev->spinlock);
3206
3207 if (ib_query_device(device, &sdev->dev_attr))
3208 goto free_dev;
3209
3210 sdev->pd = ib_alloc_pd(device);
3211 if (IS_ERR(sdev->pd))
3212 goto free_dev;
3213
3214 sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE);
3215 if (IS_ERR(sdev->mr))
3216 goto err_pd;
3217
3218 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
3219
3220 srq_attr.event_handler = srpt_srq_event;
3221 srq_attr.srq_context = (void *)sdev;
3222 srq_attr.attr.max_wr = sdev->srq_size;
3223 srq_attr.attr.max_sge = 1;
3224 srq_attr.attr.srq_limit = 0;
3225 srq_attr.srq_type = IB_SRQT_BASIC;
3226
3227 sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3228 if (IS_ERR(sdev->srq))
3229 goto err_mr;
3230
3231 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3232 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
3233 device->name);
3234
3235 if (!srpt_service_guid)
3236 srpt_service_guid = be64_to_cpu(device->node_guid);
3237
3238 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3239 if (IS_ERR(sdev->cm_id))
3240 goto err_srq;
3241
3242 /* print out target login information */
3243 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3244 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3245 srpt_service_guid, srpt_service_guid);
3246
3247 /*
3248 * We do not have a consistent service_id (ie. also id_ext of target_id)
3249 * to identify this target. We currently use the guid of the first HCA
3250 * in the system as service_id; therefore, the target_id will change
3251 * if this HCA is gone bad and replaced by different HCA
3252 */
3253 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL))
3254 goto err_cm;
3255
3256 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3257 srpt_event_handler);
3258 if (ib_register_event_handler(&sdev->event_handler))
3259 goto err_cm;
3260
3261 sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3262 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3263 sizeof(*sdev->ioctx_ring[0]),
3264 srp_max_req_size, DMA_FROM_DEVICE);
3265 if (!sdev->ioctx_ring)
3266 goto err_event;
3267
3268 for (i = 0; i < sdev->srq_size; ++i)
3269 srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3270
3271 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
3272
3273 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3274 sport = &sdev->port[i - 1];
3275 sport->sdev = sdev;
3276 sport->port = i;
3277 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3278 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3279 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3280 INIT_WORK(&sport->work, srpt_refresh_port_work);
3281 INIT_LIST_HEAD(&sport->port_acl_list);
3282 spin_lock_init(&sport->port_acl_lock);
3283
3284 if (srpt_refresh_port(sport)) {
3285 pr_err("MAD registration failed for %s-%d.\n",
3286 srpt_sdev_name(sdev), i);
3287 goto err_ring;
3288 }
3289 snprintf(sport->port_guid, sizeof(sport->port_guid),
3290 "0x%016llx%016llx",
3291 be64_to_cpu(sport->gid.global.subnet_prefix),
3292 be64_to_cpu(sport->gid.global.interface_id));
3293 }
3294
3295 spin_lock(&srpt_dev_lock);
3296 list_add_tail(&sdev->list, &srpt_dev_list);
3297 spin_unlock(&srpt_dev_lock);
3298
3299 out:
3300 ib_set_client_data(device, &srpt_client, sdev);
3301 pr_debug("added %s.\n", device->name);
3302 return;
3303
3304 err_ring:
3305 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3306 sdev->srq_size, srp_max_req_size,
3307 DMA_FROM_DEVICE);
3308 err_event:
3309 ib_unregister_event_handler(&sdev->event_handler);
3310 err_cm:
3311 ib_destroy_cm_id(sdev->cm_id);
3312 err_srq:
3313 ib_destroy_srq(sdev->srq);
3314 err_mr:
3315 ib_dereg_mr(sdev->mr);
3316 err_pd:
3317 ib_dealloc_pd(sdev->pd);
3318 free_dev:
3319 kfree(sdev);
3320 err:
3321 sdev = NULL;
3322 pr_info("%s(%s) failed.\n", __func__, device->name);
3323 goto out;
3324 }
3325
3326 /**
3327 * srpt_remove_one() - InfiniBand device removal callback function.
3328 */
3329 static void srpt_remove_one(struct ib_device *device)
3330 {
3331 struct srpt_device *sdev;
3332 int i;
3333
3334 sdev = ib_get_client_data(device, &srpt_client);
3335 if (!sdev) {
3336 pr_info("%s(%s): nothing to do.\n", __func__, device->name);
3337 return;
3338 }
3339
3340 srpt_unregister_mad_agent(sdev);
3341
3342 ib_unregister_event_handler(&sdev->event_handler);
3343
3344 /* Cancel any work queued by the just unregistered IB event handler. */
3345 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3346 cancel_work_sync(&sdev->port[i].work);
3347
3348 ib_destroy_cm_id(sdev->cm_id);
3349
3350 /*
3351 * Unregistering a target must happen after destroying sdev->cm_id
3352 * such that no new SRP_LOGIN_REQ information units can arrive while
3353 * destroying the target.
3354 */
3355 spin_lock(&srpt_dev_lock);
3356 list_del(&sdev->list);
3357 spin_unlock(&srpt_dev_lock);
3358 srpt_release_sdev(sdev);
3359
3360 ib_destroy_srq(sdev->srq);
3361 ib_dereg_mr(sdev->mr);
3362 ib_dealloc_pd(sdev->pd);
3363
3364 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3365 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3366 sdev->ioctx_ring = NULL;
3367 kfree(sdev);
3368 }
3369
3370 static struct ib_client srpt_client = {
3371 .name = DRV_NAME,
3372 .add = srpt_add_one,
3373 .remove = srpt_remove_one
3374 };
3375
3376 static int srpt_check_true(struct se_portal_group *se_tpg)
3377 {
3378 return 1;
3379 }
3380
3381 static int srpt_check_false(struct se_portal_group *se_tpg)
3382 {
3383 return 0;
3384 }
3385
3386 static char *srpt_get_fabric_name(void)
3387 {
3388 return "srpt";
3389 }
3390
3391 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3392 {
3393 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3394
3395 return sport->port_guid;
3396 }
3397
3398 static u16 srpt_get_tag(struct se_portal_group *tpg)
3399 {
3400 return 1;
3401 }
3402
3403 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3404 {
3405 return 1;
3406 }
3407
3408 static void srpt_release_cmd(struct se_cmd *se_cmd)
3409 {
3410 struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3411 struct srpt_send_ioctx, cmd);
3412 struct srpt_rdma_ch *ch = ioctx->ch;
3413 unsigned long flags;
3414
3415 WARN_ON(ioctx->state != SRPT_STATE_DONE);
3416 WARN_ON(ioctx->mapped_sg_count != 0);
3417
3418 if (ioctx->n_rbuf > 1) {
3419 kfree(ioctx->rbufs);
3420 ioctx->rbufs = NULL;
3421 ioctx->n_rbuf = 0;
3422 }
3423
3424 spin_lock_irqsave(&ch->spinlock, flags);
3425 list_add(&ioctx->free_list, &ch->free_list);
3426 spin_unlock_irqrestore(&ch->spinlock, flags);
3427 }
3428
3429 /**
3430 * srpt_close_session() - Forcibly close a session.
3431 *
3432 * Callback function invoked by the TCM core to clean up sessions associated
3433 * with a node ACL when the user invokes
3434 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3435 */
3436 static void srpt_close_session(struct se_session *se_sess)
3437 {
3438 DECLARE_COMPLETION_ONSTACK(release_done);
3439 struct srpt_rdma_ch *ch;
3440 struct srpt_device *sdev;
3441 unsigned long res;
3442
3443 ch = se_sess->fabric_sess_ptr;
3444 WARN_ON(ch->sess != se_sess);
3445
3446 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3447
3448 sdev = ch->sport->sdev;
3449 spin_lock_irq(&sdev->spinlock);
3450 BUG_ON(ch->release_done);
3451 ch->release_done = &release_done;
3452 __srpt_close_ch(ch);
3453 spin_unlock_irq(&sdev->spinlock);
3454
3455 res = wait_for_completion_timeout(&release_done, 60 * HZ);
3456 WARN_ON(res == 0);
3457 }
3458
3459 /**
3460 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3461 *
3462 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3463 * This object represents an arbitrary integer used to uniquely identify a
3464 * particular attached remote initiator port to a particular SCSI target port
3465 * within a particular SCSI target device within a particular SCSI instance.
3466 */
3467 static u32 srpt_sess_get_index(struct se_session *se_sess)
3468 {
3469 return 0;
3470 }
3471
3472 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3473 {
3474 }
3475
3476 /* Note: only used from inside debug printk's by the TCM core. */
3477 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3478 {
3479 struct srpt_send_ioctx *ioctx;
3480
3481 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3482 return srpt_get_cmd_state(ioctx);
3483 }
3484
3485 /**
3486 * srpt_parse_i_port_id() - Parse an initiator port ID.
3487 * @name: ASCII representation of a 128-bit initiator port ID.
3488 * @i_port_id: Binary 128-bit port ID.
3489 */
3490 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3491 {
3492 const char *p;
3493 unsigned len, count, leading_zero_bytes;
3494 int ret, rc;
3495
3496 p = name;
3497 if (strncasecmp(p, "0x", 2) == 0)
3498 p += 2;
3499 ret = -EINVAL;
3500 len = strlen(p);
3501 if (len % 2)
3502 goto out;
3503 count = min(len / 2, 16U);
3504 leading_zero_bytes = 16 - count;
3505 memset(i_port_id, 0, leading_zero_bytes);
3506 rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
3507 if (rc < 0)
3508 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
3509 ret = 0;
3510 out:
3511 return ret;
3512 }
3513
3514 /*
3515 * configfs callback function invoked for
3516 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3517 */
3518 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3519 {
3520 struct srpt_port *sport =
3521 container_of(se_nacl->se_tpg, struct srpt_port, port_tpg_1);
3522 struct srpt_node_acl *nacl =
3523 container_of(se_nacl, struct srpt_node_acl, nacl);
3524 u8 i_port_id[16];
3525
3526 if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3527 pr_err("invalid initiator port ID %s\n", name);
3528 return -EINVAL;
3529 }
3530
3531 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
3532 nacl->sport = sport;
3533
3534 spin_lock_irq(&sport->port_acl_lock);
3535 list_add_tail(&nacl->list, &sport->port_acl_list);
3536 spin_unlock_irq(&sport->port_acl_lock);
3537
3538 return 0;
3539 }
3540
3541 /*
3542 * configfs callback function invoked for
3543 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3544 */
3545 static void srpt_cleanup_nodeacl(struct se_node_acl *se_nacl)
3546 {
3547 struct srpt_node_acl *nacl =
3548 container_of(se_nacl, struct srpt_node_acl, nacl);
3549 struct srpt_port *sport = nacl->sport;
3550
3551 spin_lock_irq(&sport->port_acl_lock);
3552 list_del(&nacl->list);
3553 spin_unlock_irq(&sport->port_acl_lock);
3554 }
3555
3556 static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size(
3557 struct se_portal_group *se_tpg,
3558 char *page)
3559 {
3560 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3561
3562 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3563 }
3564
3565 static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size(
3566 struct se_portal_group *se_tpg,
3567 const char *page,
3568 size_t count)
3569 {
3570 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3571 unsigned long val;
3572 int ret;
3573
3574 ret = kstrtoul(page, 0, &val);
3575 if (ret < 0) {
3576 pr_err("kstrtoul() failed with ret: %d\n", ret);
3577 return -EINVAL;
3578 }
3579 if (val > MAX_SRPT_RDMA_SIZE) {
3580 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3581 MAX_SRPT_RDMA_SIZE);
3582 return -EINVAL;
3583 }
3584 if (val < DEFAULT_MAX_RDMA_SIZE) {
3585 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3586 val, DEFAULT_MAX_RDMA_SIZE);
3587 return -EINVAL;
3588 }
3589 sport->port_attrib.srp_max_rdma_size = val;
3590
3591 return count;
3592 }
3593
3594 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR);
3595
3596 static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size(
3597 struct se_portal_group *se_tpg,
3598 char *page)
3599 {
3600 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3601
3602 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3603 }
3604
3605 static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size(
3606 struct se_portal_group *se_tpg,
3607 const char *page,
3608 size_t count)
3609 {
3610 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3611 unsigned long val;
3612 int ret;
3613
3614 ret = kstrtoul(page, 0, &val);
3615 if (ret < 0) {
3616 pr_err("kstrtoul() failed with ret: %d\n", ret);
3617 return -EINVAL;
3618 }
3619 if (val > MAX_SRPT_RSP_SIZE) {
3620 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3621 MAX_SRPT_RSP_SIZE);
3622 return -EINVAL;
3623 }
3624 if (val < MIN_MAX_RSP_SIZE) {
3625 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3626 MIN_MAX_RSP_SIZE);
3627 return -EINVAL;
3628 }
3629 sport->port_attrib.srp_max_rsp_size = val;
3630
3631 return count;
3632 }
3633
3634 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR);
3635
3636 static ssize_t srpt_tpg_attrib_show_srp_sq_size(
3637 struct se_portal_group *se_tpg,
3638 char *page)
3639 {
3640 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3641
3642 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3643 }
3644
3645 static ssize_t srpt_tpg_attrib_store_srp_sq_size(
3646 struct se_portal_group *se_tpg,
3647 const char *page,
3648 size_t count)
3649 {
3650 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3651 unsigned long val;
3652 int ret;
3653
3654 ret = kstrtoul(page, 0, &val);
3655 if (ret < 0) {
3656 pr_err("kstrtoul() failed with ret: %d\n", ret);
3657 return -EINVAL;
3658 }
3659 if (val > MAX_SRPT_SRQ_SIZE) {
3660 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3661 MAX_SRPT_SRQ_SIZE);
3662 return -EINVAL;
3663 }
3664 if (val < MIN_SRPT_SRQ_SIZE) {
3665 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3666 MIN_SRPT_SRQ_SIZE);
3667 return -EINVAL;
3668 }
3669 sport->port_attrib.srp_sq_size = val;
3670
3671 return count;
3672 }
3673
3674 TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR);
3675
3676 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3677 &srpt_tpg_attrib_srp_max_rdma_size.attr,
3678 &srpt_tpg_attrib_srp_max_rsp_size.attr,
3679 &srpt_tpg_attrib_srp_sq_size.attr,
3680 NULL,
3681 };
3682
3683 static ssize_t srpt_tpg_show_enable(
3684 struct se_portal_group *se_tpg,
3685 char *page)
3686 {
3687 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3688
3689 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3690 }
3691
3692 static ssize_t srpt_tpg_store_enable(
3693 struct se_portal_group *se_tpg,
3694 const char *page,
3695 size_t count)
3696 {
3697 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3698 unsigned long tmp;
3699 int ret;
3700
3701 ret = kstrtoul(page, 0, &tmp);
3702 if (ret < 0) {
3703 pr_err("Unable to extract srpt_tpg_store_enable\n");
3704 return -EINVAL;
3705 }
3706
3707 if ((tmp != 0) && (tmp != 1)) {
3708 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3709 return -EINVAL;
3710 }
3711 if (tmp == 1)
3712 sport->enabled = true;
3713 else
3714 sport->enabled = false;
3715
3716 return count;
3717 }
3718
3719 TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR);
3720
3721 static struct configfs_attribute *srpt_tpg_attrs[] = {
3722 &srpt_tpg_enable.attr,
3723 NULL,
3724 };
3725
3726 /**
3727 * configfs callback invoked for
3728 * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3729 */
3730 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3731 struct config_group *group,
3732 const char *name)
3733 {
3734 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3735 int res;
3736
3737 /* Initialize sport->port_wwn and sport->port_tpg_1 */
3738 res = core_tpg_register(&sport->port_wwn, &sport->port_tpg_1, SCSI_PROTOCOL_SRP);
3739 if (res)
3740 return ERR_PTR(res);
3741
3742 return &sport->port_tpg_1;
3743 }
3744
3745 /**
3746 * configfs callback invoked for
3747 * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3748 */
3749 static void srpt_drop_tpg(struct se_portal_group *tpg)
3750 {
3751 struct srpt_port *sport = container_of(tpg,
3752 struct srpt_port, port_tpg_1);
3753
3754 sport->enabled = false;
3755 core_tpg_deregister(&sport->port_tpg_1);
3756 }
3757
3758 /**
3759 * configfs callback invoked for
3760 * mkdir /sys/kernel/config/target/$driver/$port
3761 */
3762 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3763 struct config_group *group,
3764 const char *name)
3765 {
3766 struct srpt_port *sport;
3767 int ret;
3768
3769 sport = srpt_lookup_port(name);
3770 pr_debug("make_tport(%s)\n", name);
3771 ret = -EINVAL;
3772 if (!sport)
3773 goto err;
3774
3775 return &sport->port_wwn;
3776
3777 err:
3778 return ERR_PTR(ret);
3779 }
3780
3781 /**
3782 * configfs callback invoked for
3783 * rmdir /sys/kernel/config/target/$driver/$port
3784 */
3785 static void srpt_drop_tport(struct se_wwn *wwn)
3786 {
3787 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3788
3789 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3790 }
3791
3792 static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf,
3793 char *buf)
3794 {
3795 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3796 }
3797
3798 TF_WWN_ATTR_RO(srpt, version);
3799
3800 static struct configfs_attribute *srpt_wwn_attrs[] = {
3801 &srpt_wwn_version.attr,
3802 NULL,
3803 };
3804
3805 static const struct target_core_fabric_ops srpt_template = {
3806 .module = THIS_MODULE,
3807 .name = "srpt",
3808 .node_acl_size = sizeof(struct srpt_node_acl),
3809 .get_fabric_name = srpt_get_fabric_name,
3810 .tpg_get_wwn = srpt_get_fabric_wwn,
3811 .tpg_get_tag = srpt_get_tag,
3812 .tpg_check_demo_mode = srpt_check_false,
3813 .tpg_check_demo_mode_cache = srpt_check_true,
3814 .tpg_check_demo_mode_write_protect = srpt_check_true,
3815 .tpg_check_prod_mode_write_protect = srpt_check_false,
3816 .tpg_get_inst_index = srpt_tpg_get_inst_index,
3817 .release_cmd = srpt_release_cmd,
3818 .check_stop_free = srpt_check_stop_free,
3819 .shutdown_session = srpt_shutdown_session,
3820 .close_session = srpt_close_session,
3821 .sess_get_index = srpt_sess_get_index,
3822 .sess_get_initiator_sid = NULL,
3823 .write_pending = srpt_write_pending,
3824 .write_pending_status = srpt_write_pending_status,
3825 .set_default_node_attributes = srpt_set_default_node_attrs,
3826 .get_cmd_state = srpt_get_tcm_cmd_state,
3827 .queue_data_in = srpt_queue_data_in,
3828 .queue_status = srpt_queue_status,
3829 .queue_tm_rsp = srpt_queue_tm_rsp,
3830 .aborted_task = srpt_aborted_task,
3831 /*
3832 * Setup function pointers for generic logic in
3833 * target_core_fabric_configfs.c
3834 */
3835 .fabric_make_wwn = srpt_make_tport,
3836 .fabric_drop_wwn = srpt_drop_tport,
3837 .fabric_make_tpg = srpt_make_tpg,
3838 .fabric_drop_tpg = srpt_drop_tpg,
3839 .fabric_init_nodeacl = srpt_init_nodeacl,
3840 .fabric_cleanup_nodeacl = srpt_cleanup_nodeacl,
3841
3842 .tfc_wwn_attrs = srpt_wwn_attrs,
3843 .tfc_tpg_base_attrs = srpt_tpg_attrs,
3844 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs,
3845 };
3846
3847 /**
3848 * srpt_init_module() - Kernel module initialization.
3849 *
3850 * Note: Since ib_register_client() registers callback functions, and since at
3851 * least one of these callback functions (srpt_add_one()) calls target core
3852 * functions, this driver must be registered with the target core before
3853 * ib_register_client() is called.
3854 */
3855 static int __init srpt_init_module(void)
3856 {
3857 int ret;
3858
3859 ret = -EINVAL;
3860 if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3861 pr_err("invalid value %d for kernel module parameter"
3862 " srp_max_req_size -- must be at least %d.\n",
3863 srp_max_req_size, MIN_MAX_REQ_SIZE);
3864 goto out;
3865 }
3866
3867 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3868 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3869 pr_err("invalid value %d for kernel module parameter"
3870 " srpt_srq_size -- must be in the range [%d..%d].\n",
3871 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3872 goto out;
3873 }
3874
3875 ret = target_register_template(&srpt_template);
3876 if (ret)
3877 goto out;
3878
3879 ret = ib_register_client(&srpt_client);
3880 if (ret) {
3881 pr_err("couldn't register IB client\n");
3882 goto out_unregister_target;
3883 }
3884
3885 return 0;
3886
3887 out_unregister_target:
3888 target_unregister_template(&srpt_template);
3889 out:
3890 return ret;
3891 }
3892
3893 static void __exit srpt_cleanup_module(void)
3894 {
3895 ib_unregister_client(&srpt_client);
3896 target_unregister_template(&srpt_template);
3897 }
3898
3899 module_init(srpt_init_module);
3900 module_exit(srpt_cleanup_module);
This page took 0.114644 seconds and 5 git commands to generate.