target: move transport ID handling to the core
[deliverable/linux.git] / drivers / infiniband / ulp / srpt / ib_srpt.c
1 /*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 *
33 */
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <scsi/scsi_tcq.h>
45 #include <target/configfs_macros.h>
46 #include <target/target_core_base.h>
47 #include <target/target_core_fabric_configfs.h>
48 #include <target/target_core_fabric.h>
49 #include <target/target_core_configfs.h>
50 #include "ib_srpt.h"
51
52 /* Name of this kernel module. */
53 #define DRV_NAME "ib_srpt"
54 #define DRV_VERSION "2.0.0"
55 #define DRV_RELDATE "2011-02-14"
56
57 #define SRPT_ID_STRING "Linux SRP target"
58
59 #undef pr_fmt
60 #define pr_fmt(fmt) DRV_NAME " " fmt
61
62 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
63 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
64 "v" DRV_VERSION " (" DRV_RELDATE ")");
65 MODULE_LICENSE("Dual BSD/GPL");
66
67 /*
68 * Global Variables
69 */
70
71 static u64 srpt_service_guid;
72 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */
73 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */
74
75 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
76 module_param(srp_max_req_size, int, 0444);
77 MODULE_PARM_DESC(srp_max_req_size,
78 "Maximum size of SRP request messages in bytes.");
79
80 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
81 module_param(srpt_srq_size, int, 0444);
82 MODULE_PARM_DESC(srpt_srq_size,
83 "Shared receive queue (SRQ) size.");
84
85 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
86 {
87 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
88 }
89 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
90 0444);
91 MODULE_PARM_DESC(srpt_service_guid,
92 "Using this value for ioc_guid, id_ext, and cm_listen_id"
93 " instead of using the node_guid of the first HCA.");
94
95 static struct ib_client srpt_client;
96 static const struct target_core_fabric_ops srpt_template;
97 static void srpt_release_channel(struct srpt_rdma_ch *ch);
98 static int srpt_queue_status(struct se_cmd *cmd);
99
100 /**
101 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
102 */
103 static inline
104 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
105 {
106 switch (dir) {
107 case DMA_TO_DEVICE: return DMA_FROM_DEVICE;
108 case DMA_FROM_DEVICE: return DMA_TO_DEVICE;
109 default: return dir;
110 }
111 }
112
113 /**
114 * srpt_sdev_name() - Return the name associated with the HCA.
115 *
116 * Examples are ib0, ib1, ...
117 */
118 static inline const char *srpt_sdev_name(struct srpt_device *sdev)
119 {
120 return sdev->device->name;
121 }
122
123 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
124 {
125 unsigned long flags;
126 enum rdma_ch_state state;
127
128 spin_lock_irqsave(&ch->spinlock, flags);
129 state = ch->state;
130 spin_unlock_irqrestore(&ch->spinlock, flags);
131 return state;
132 }
133
134 static enum rdma_ch_state
135 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
136 {
137 unsigned long flags;
138 enum rdma_ch_state prev;
139
140 spin_lock_irqsave(&ch->spinlock, flags);
141 prev = ch->state;
142 ch->state = new_state;
143 spin_unlock_irqrestore(&ch->spinlock, flags);
144 return prev;
145 }
146
147 /**
148 * srpt_test_and_set_ch_state() - Test and set the channel state.
149 *
150 * Returns true if and only if the channel state has been set to the new state.
151 */
152 static bool
153 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
154 enum rdma_ch_state new)
155 {
156 unsigned long flags;
157 enum rdma_ch_state prev;
158
159 spin_lock_irqsave(&ch->spinlock, flags);
160 prev = ch->state;
161 if (prev == old)
162 ch->state = new;
163 spin_unlock_irqrestore(&ch->spinlock, flags);
164 return prev == old;
165 }
166
167 /**
168 * srpt_event_handler() - Asynchronous IB event callback function.
169 *
170 * Callback function called by the InfiniBand core when an asynchronous IB
171 * event occurs. This callback may occur in interrupt context. See also
172 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
173 * Architecture Specification.
174 */
175 static void srpt_event_handler(struct ib_event_handler *handler,
176 struct ib_event *event)
177 {
178 struct srpt_device *sdev;
179 struct srpt_port *sport;
180
181 sdev = ib_get_client_data(event->device, &srpt_client);
182 if (!sdev || sdev->device != event->device)
183 return;
184
185 pr_debug("ASYNC event= %d on device= %s\n", event->event,
186 srpt_sdev_name(sdev));
187
188 switch (event->event) {
189 case IB_EVENT_PORT_ERR:
190 if (event->element.port_num <= sdev->device->phys_port_cnt) {
191 sport = &sdev->port[event->element.port_num - 1];
192 sport->lid = 0;
193 sport->sm_lid = 0;
194 }
195 break;
196 case IB_EVENT_PORT_ACTIVE:
197 case IB_EVENT_LID_CHANGE:
198 case IB_EVENT_PKEY_CHANGE:
199 case IB_EVENT_SM_CHANGE:
200 case IB_EVENT_CLIENT_REREGISTER:
201 case IB_EVENT_GID_CHANGE:
202 /* Refresh port data asynchronously. */
203 if (event->element.port_num <= sdev->device->phys_port_cnt) {
204 sport = &sdev->port[event->element.port_num - 1];
205 if (!sport->lid && !sport->sm_lid)
206 schedule_work(&sport->work);
207 }
208 break;
209 default:
210 pr_err("received unrecognized IB event %d\n",
211 event->event);
212 break;
213 }
214 }
215
216 /**
217 * srpt_srq_event() - SRQ event callback function.
218 */
219 static void srpt_srq_event(struct ib_event *event, void *ctx)
220 {
221 pr_info("SRQ event %d\n", event->event);
222 }
223
224 /**
225 * srpt_qp_event() - QP event callback function.
226 */
227 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
228 {
229 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
230 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
231
232 switch (event->event) {
233 case IB_EVENT_COMM_EST:
234 ib_cm_notify(ch->cm_id, event->event);
235 break;
236 case IB_EVENT_QP_LAST_WQE_REACHED:
237 if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
238 CH_RELEASING))
239 srpt_release_channel(ch);
240 else
241 pr_debug("%s: state %d - ignored LAST_WQE.\n",
242 ch->sess_name, srpt_get_ch_state(ch));
243 break;
244 default:
245 pr_err("received unrecognized IB QP event %d\n", event->event);
246 break;
247 }
248 }
249
250 /**
251 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
252 *
253 * @slot: one-based slot number.
254 * @value: four-bit value.
255 *
256 * Copies the lowest four bits of value in element slot of the array of four
257 * bit elements called c_list (controller list). The index slot is one-based.
258 */
259 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
260 {
261 u16 id;
262 u8 tmp;
263
264 id = (slot - 1) / 2;
265 if (slot & 0x1) {
266 tmp = c_list[id] & 0xf;
267 c_list[id] = (value << 4) | tmp;
268 } else {
269 tmp = c_list[id] & 0xf0;
270 c_list[id] = (value & 0xf) | tmp;
271 }
272 }
273
274 /**
275 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
276 *
277 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
278 * Specification.
279 */
280 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
281 {
282 struct ib_class_port_info *cif;
283
284 cif = (struct ib_class_port_info *)mad->data;
285 memset(cif, 0, sizeof *cif);
286 cif->base_version = 1;
287 cif->class_version = 1;
288 cif->resp_time_value = 20;
289
290 mad->mad_hdr.status = 0;
291 }
292
293 /**
294 * srpt_get_iou() - Write IOUnitInfo to a management datagram.
295 *
296 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
297 * Specification. See also section B.7, table B.6 in the SRP r16a document.
298 */
299 static void srpt_get_iou(struct ib_dm_mad *mad)
300 {
301 struct ib_dm_iou_info *ioui;
302 u8 slot;
303 int i;
304
305 ioui = (struct ib_dm_iou_info *)mad->data;
306 ioui->change_id = __constant_cpu_to_be16(1);
307 ioui->max_controllers = 16;
308
309 /* set present for slot 1 and empty for the rest */
310 srpt_set_ioc(ioui->controller_list, 1, 1);
311 for (i = 1, slot = 2; i < 16; i++, slot++)
312 srpt_set_ioc(ioui->controller_list, slot, 0);
313
314 mad->mad_hdr.status = 0;
315 }
316
317 /**
318 * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
319 *
320 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
321 * Architecture Specification. See also section B.7, table B.7 in the SRP
322 * r16a document.
323 */
324 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
325 struct ib_dm_mad *mad)
326 {
327 struct srpt_device *sdev = sport->sdev;
328 struct ib_dm_ioc_profile *iocp;
329
330 iocp = (struct ib_dm_ioc_profile *)mad->data;
331
332 if (!slot || slot > 16) {
333 mad->mad_hdr.status
334 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
335 return;
336 }
337
338 if (slot > 2) {
339 mad->mad_hdr.status
340 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
341 return;
342 }
343
344 memset(iocp, 0, sizeof *iocp);
345 strcpy(iocp->id_string, SRPT_ID_STRING);
346 iocp->guid = cpu_to_be64(srpt_service_guid);
347 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
348 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
349 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
350 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
351 iocp->subsys_device_id = 0x0;
352 iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
353 iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS);
354 iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL);
355 iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION);
356 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
357 iocp->rdma_read_depth = 4;
358 iocp->send_size = cpu_to_be32(srp_max_req_size);
359 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
360 1U << 24));
361 iocp->num_svc_entries = 1;
362 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
363 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
364
365 mad->mad_hdr.status = 0;
366 }
367
368 /**
369 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
370 *
371 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
372 * Specification. See also section B.7, table B.8 in the SRP r16a document.
373 */
374 static void srpt_get_svc_entries(u64 ioc_guid,
375 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
376 {
377 struct ib_dm_svc_entries *svc_entries;
378
379 WARN_ON(!ioc_guid);
380
381 if (!slot || slot > 16) {
382 mad->mad_hdr.status
383 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
384 return;
385 }
386
387 if (slot > 2 || lo > hi || hi > 1) {
388 mad->mad_hdr.status
389 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
390 return;
391 }
392
393 svc_entries = (struct ib_dm_svc_entries *)mad->data;
394 memset(svc_entries, 0, sizeof *svc_entries);
395 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
396 snprintf(svc_entries->service_entries[0].name,
397 sizeof(svc_entries->service_entries[0].name),
398 "%s%016llx",
399 SRP_SERVICE_NAME_PREFIX,
400 ioc_guid);
401
402 mad->mad_hdr.status = 0;
403 }
404
405 /**
406 * srpt_mgmt_method_get() - Process a received management datagram.
407 * @sp: source port through which the MAD has been received.
408 * @rq_mad: received MAD.
409 * @rsp_mad: response MAD.
410 */
411 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
412 struct ib_dm_mad *rsp_mad)
413 {
414 u16 attr_id;
415 u32 slot;
416 u8 hi, lo;
417
418 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
419 switch (attr_id) {
420 case DM_ATTR_CLASS_PORT_INFO:
421 srpt_get_class_port_info(rsp_mad);
422 break;
423 case DM_ATTR_IOU_INFO:
424 srpt_get_iou(rsp_mad);
425 break;
426 case DM_ATTR_IOC_PROFILE:
427 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
428 srpt_get_ioc(sp, slot, rsp_mad);
429 break;
430 case DM_ATTR_SVC_ENTRIES:
431 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
432 hi = (u8) ((slot >> 8) & 0xff);
433 lo = (u8) (slot & 0xff);
434 slot = (u16) ((slot >> 16) & 0xffff);
435 srpt_get_svc_entries(srpt_service_guid,
436 slot, hi, lo, rsp_mad);
437 break;
438 default:
439 rsp_mad->mad_hdr.status =
440 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
441 break;
442 }
443 }
444
445 /**
446 * srpt_mad_send_handler() - Post MAD-send callback function.
447 */
448 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
449 struct ib_mad_send_wc *mad_wc)
450 {
451 ib_destroy_ah(mad_wc->send_buf->ah);
452 ib_free_send_mad(mad_wc->send_buf);
453 }
454
455 /**
456 * srpt_mad_recv_handler() - MAD reception callback function.
457 */
458 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
459 struct ib_mad_recv_wc *mad_wc)
460 {
461 struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
462 struct ib_ah *ah;
463 struct ib_mad_send_buf *rsp;
464 struct ib_dm_mad *dm_mad;
465
466 if (!mad_wc || !mad_wc->recv_buf.mad)
467 return;
468
469 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
470 mad_wc->recv_buf.grh, mad_agent->port_num);
471 if (IS_ERR(ah))
472 goto err;
473
474 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
475
476 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
477 mad_wc->wc->pkey_index, 0,
478 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
479 GFP_KERNEL);
480 if (IS_ERR(rsp))
481 goto err_rsp;
482
483 rsp->ah = ah;
484
485 dm_mad = rsp->mad;
486 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
487 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
488 dm_mad->mad_hdr.status = 0;
489
490 switch (mad_wc->recv_buf.mad->mad_hdr.method) {
491 case IB_MGMT_METHOD_GET:
492 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
493 break;
494 case IB_MGMT_METHOD_SET:
495 dm_mad->mad_hdr.status =
496 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
497 break;
498 default:
499 dm_mad->mad_hdr.status =
500 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
501 break;
502 }
503
504 if (!ib_post_send_mad(rsp, NULL)) {
505 ib_free_recv_mad(mad_wc);
506 /* will destroy_ah & free_send_mad in send completion */
507 return;
508 }
509
510 ib_free_send_mad(rsp);
511
512 err_rsp:
513 ib_destroy_ah(ah);
514 err:
515 ib_free_recv_mad(mad_wc);
516 }
517
518 /**
519 * srpt_refresh_port() - Configure a HCA port.
520 *
521 * Enable InfiniBand management datagram processing, update the cached sm_lid,
522 * lid and gid values, and register a callback function for processing MADs
523 * on the specified port.
524 *
525 * Note: It is safe to call this function more than once for the same port.
526 */
527 static int srpt_refresh_port(struct srpt_port *sport)
528 {
529 struct ib_mad_reg_req reg_req;
530 struct ib_port_modify port_modify;
531 struct ib_port_attr port_attr;
532 int ret;
533
534 memset(&port_modify, 0, sizeof port_modify);
535 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
536 port_modify.clr_port_cap_mask = 0;
537
538 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
539 if (ret)
540 goto err_mod_port;
541
542 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
543 if (ret)
544 goto err_query_port;
545
546 sport->sm_lid = port_attr.sm_lid;
547 sport->lid = port_attr.lid;
548
549 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
550 if (ret)
551 goto err_query_port;
552
553 if (!sport->mad_agent) {
554 memset(&reg_req, 0, sizeof reg_req);
555 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
556 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
557 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
558 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
559
560 sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
561 sport->port,
562 IB_QPT_GSI,
563 &reg_req, 0,
564 srpt_mad_send_handler,
565 srpt_mad_recv_handler,
566 sport, 0);
567 if (IS_ERR(sport->mad_agent)) {
568 ret = PTR_ERR(sport->mad_agent);
569 sport->mad_agent = NULL;
570 goto err_query_port;
571 }
572 }
573
574 return 0;
575
576 err_query_port:
577
578 port_modify.set_port_cap_mask = 0;
579 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
580 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
581
582 err_mod_port:
583
584 return ret;
585 }
586
587 /**
588 * srpt_unregister_mad_agent() - Unregister MAD callback functions.
589 *
590 * Note: It is safe to call this function more than once for the same device.
591 */
592 static void srpt_unregister_mad_agent(struct srpt_device *sdev)
593 {
594 struct ib_port_modify port_modify = {
595 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
596 };
597 struct srpt_port *sport;
598 int i;
599
600 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
601 sport = &sdev->port[i - 1];
602 WARN_ON(sport->port != i);
603 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
604 pr_err("disabling MAD processing failed.\n");
605 if (sport->mad_agent) {
606 ib_unregister_mad_agent(sport->mad_agent);
607 sport->mad_agent = NULL;
608 }
609 }
610 }
611
612 /**
613 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
614 */
615 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
616 int ioctx_size, int dma_size,
617 enum dma_data_direction dir)
618 {
619 struct srpt_ioctx *ioctx;
620
621 ioctx = kmalloc(ioctx_size, GFP_KERNEL);
622 if (!ioctx)
623 goto err;
624
625 ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
626 if (!ioctx->buf)
627 goto err_free_ioctx;
628
629 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
630 if (ib_dma_mapping_error(sdev->device, ioctx->dma))
631 goto err_free_buf;
632
633 return ioctx;
634
635 err_free_buf:
636 kfree(ioctx->buf);
637 err_free_ioctx:
638 kfree(ioctx);
639 err:
640 return NULL;
641 }
642
643 /**
644 * srpt_free_ioctx() - Free an SRPT I/O context structure.
645 */
646 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
647 int dma_size, enum dma_data_direction dir)
648 {
649 if (!ioctx)
650 return;
651
652 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
653 kfree(ioctx->buf);
654 kfree(ioctx);
655 }
656
657 /**
658 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
659 * @sdev: Device to allocate the I/O context ring for.
660 * @ring_size: Number of elements in the I/O context ring.
661 * @ioctx_size: I/O context size.
662 * @dma_size: DMA buffer size.
663 * @dir: DMA data direction.
664 */
665 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
666 int ring_size, int ioctx_size,
667 int dma_size, enum dma_data_direction dir)
668 {
669 struct srpt_ioctx **ring;
670 int i;
671
672 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
673 && ioctx_size != sizeof(struct srpt_send_ioctx));
674
675 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
676 if (!ring)
677 goto out;
678 for (i = 0; i < ring_size; ++i) {
679 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
680 if (!ring[i])
681 goto err;
682 ring[i]->index = i;
683 }
684 goto out;
685
686 err:
687 while (--i >= 0)
688 srpt_free_ioctx(sdev, ring[i], dma_size, dir);
689 kfree(ring);
690 ring = NULL;
691 out:
692 return ring;
693 }
694
695 /**
696 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
697 */
698 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
699 struct srpt_device *sdev, int ring_size,
700 int dma_size, enum dma_data_direction dir)
701 {
702 int i;
703
704 for (i = 0; i < ring_size; ++i)
705 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
706 kfree(ioctx_ring);
707 }
708
709 /**
710 * srpt_get_cmd_state() - Get the state of a SCSI command.
711 */
712 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
713 {
714 enum srpt_command_state state;
715 unsigned long flags;
716
717 BUG_ON(!ioctx);
718
719 spin_lock_irqsave(&ioctx->spinlock, flags);
720 state = ioctx->state;
721 spin_unlock_irqrestore(&ioctx->spinlock, flags);
722 return state;
723 }
724
725 /**
726 * srpt_set_cmd_state() - Set the state of a SCSI command.
727 *
728 * Does not modify the state of aborted commands. Returns the previous command
729 * state.
730 */
731 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
732 enum srpt_command_state new)
733 {
734 enum srpt_command_state previous;
735 unsigned long flags;
736
737 BUG_ON(!ioctx);
738
739 spin_lock_irqsave(&ioctx->spinlock, flags);
740 previous = ioctx->state;
741 if (previous != SRPT_STATE_DONE)
742 ioctx->state = new;
743 spin_unlock_irqrestore(&ioctx->spinlock, flags);
744
745 return previous;
746 }
747
748 /**
749 * srpt_test_and_set_cmd_state() - Test and set the state of a command.
750 *
751 * Returns true if and only if the previous command state was equal to 'old'.
752 */
753 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
754 enum srpt_command_state old,
755 enum srpt_command_state new)
756 {
757 enum srpt_command_state previous;
758 unsigned long flags;
759
760 WARN_ON(!ioctx);
761 WARN_ON(old == SRPT_STATE_DONE);
762 WARN_ON(new == SRPT_STATE_NEW);
763
764 spin_lock_irqsave(&ioctx->spinlock, flags);
765 previous = ioctx->state;
766 if (previous == old)
767 ioctx->state = new;
768 spin_unlock_irqrestore(&ioctx->spinlock, flags);
769 return previous == old;
770 }
771
772 /**
773 * srpt_post_recv() - Post an IB receive request.
774 */
775 static int srpt_post_recv(struct srpt_device *sdev,
776 struct srpt_recv_ioctx *ioctx)
777 {
778 struct ib_sge list;
779 struct ib_recv_wr wr, *bad_wr;
780
781 BUG_ON(!sdev);
782 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
783
784 list.addr = ioctx->ioctx.dma;
785 list.length = srp_max_req_size;
786 list.lkey = sdev->mr->lkey;
787
788 wr.next = NULL;
789 wr.sg_list = &list;
790 wr.num_sge = 1;
791
792 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
793 }
794
795 /**
796 * srpt_post_send() - Post an IB send request.
797 *
798 * Returns zero upon success and a non-zero value upon failure.
799 */
800 static int srpt_post_send(struct srpt_rdma_ch *ch,
801 struct srpt_send_ioctx *ioctx, int len)
802 {
803 struct ib_sge list;
804 struct ib_send_wr wr, *bad_wr;
805 struct srpt_device *sdev = ch->sport->sdev;
806 int ret;
807
808 atomic_inc(&ch->req_lim);
809
810 ret = -ENOMEM;
811 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
812 pr_warn("IB send queue full (needed 1)\n");
813 goto out;
814 }
815
816 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
817 DMA_TO_DEVICE);
818
819 list.addr = ioctx->ioctx.dma;
820 list.length = len;
821 list.lkey = sdev->mr->lkey;
822
823 wr.next = NULL;
824 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
825 wr.sg_list = &list;
826 wr.num_sge = 1;
827 wr.opcode = IB_WR_SEND;
828 wr.send_flags = IB_SEND_SIGNALED;
829
830 ret = ib_post_send(ch->qp, &wr, &bad_wr);
831
832 out:
833 if (ret < 0) {
834 atomic_inc(&ch->sq_wr_avail);
835 atomic_dec(&ch->req_lim);
836 }
837 return ret;
838 }
839
840 /**
841 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
842 * @ioctx: Pointer to the I/O context associated with the request.
843 * @srp_cmd: Pointer to the SRP_CMD request data.
844 * @dir: Pointer to the variable to which the transfer direction will be
845 * written.
846 * @data_len: Pointer to the variable to which the total data length of all
847 * descriptors in the SRP_CMD request will be written.
848 *
849 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
850 *
851 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
852 * -ENOMEM when memory allocation fails and zero upon success.
853 */
854 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
855 struct srp_cmd *srp_cmd,
856 enum dma_data_direction *dir, u64 *data_len)
857 {
858 struct srp_indirect_buf *idb;
859 struct srp_direct_buf *db;
860 unsigned add_cdb_offset;
861 int ret;
862
863 /*
864 * The pointer computations below will only be compiled correctly
865 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
866 * whether srp_cmd::add_data has been declared as a byte pointer.
867 */
868 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
869 && !__same_type(srp_cmd->add_data[0], (u8)0));
870
871 BUG_ON(!dir);
872 BUG_ON(!data_len);
873
874 ret = 0;
875 *data_len = 0;
876
877 /*
878 * The lower four bits of the buffer format field contain the DATA-IN
879 * buffer descriptor format, and the highest four bits contain the
880 * DATA-OUT buffer descriptor format.
881 */
882 *dir = DMA_NONE;
883 if (srp_cmd->buf_fmt & 0xf)
884 /* DATA-IN: transfer data from target to initiator (read). */
885 *dir = DMA_FROM_DEVICE;
886 else if (srp_cmd->buf_fmt >> 4)
887 /* DATA-OUT: transfer data from initiator to target (write). */
888 *dir = DMA_TO_DEVICE;
889
890 /*
891 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
892 * CDB LENGTH' field are reserved and the size in bytes of this field
893 * is four times the value specified in bits 3..7. Hence the "& ~3".
894 */
895 add_cdb_offset = srp_cmd->add_cdb_len & ~3;
896 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
897 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
898 ioctx->n_rbuf = 1;
899 ioctx->rbufs = &ioctx->single_rbuf;
900
901 db = (struct srp_direct_buf *)(srp_cmd->add_data
902 + add_cdb_offset);
903 memcpy(ioctx->rbufs, db, sizeof *db);
904 *data_len = be32_to_cpu(db->len);
905 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
906 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
907 idb = (struct srp_indirect_buf *)(srp_cmd->add_data
908 + add_cdb_offset);
909
910 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
911
912 if (ioctx->n_rbuf >
913 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
914 pr_err("received unsupported SRP_CMD request"
915 " type (%u out + %u in != %u / %zu)\n",
916 srp_cmd->data_out_desc_cnt,
917 srp_cmd->data_in_desc_cnt,
918 be32_to_cpu(idb->table_desc.len),
919 sizeof(*db));
920 ioctx->n_rbuf = 0;
921 ret = -EINVAL;
922 goto out;
923 }
924
925 if (ioctx->n_rbuf == 1)
926 ioctx->rbufs = &ioctx->single_rbuf;
927 else {
928 ioctx->rbufs =
929 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
930 if (!ioctx->rbufs) {
931 ioctx->n_rbuf = 0;
932 ret = -ENOMEM;
933 goto out;
934 }
935 }
936
937 db = idb->desc_list;
938 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
939 *data_len = be32_to_cpu(idb->len);
940 }
941 out:
942 return ret;
943 }
944
945 /**
946 * srpt_init_ch_qp() - Initialize queue pair attributes.
947 *
948 * Initialized the attributes of queue pair 'qp' by allowing local write,
949 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
950 */
951 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
952 {
953 struct ib_qp_attr *attr;
954 int ret;
955
956 attr = kzalloc(sizeof *attr, GFP_KERNEL);
957 if (!attr)
958 return -ENOMEM;
959
960 attr->qp_state = IB_QPS_INIT;
961 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
962 IB_ACCESS_REMOTE_WRITE;
963 attr->port_num = ch->sport->port;
964 attr->pkey_index = 0;
965
966 ret = ib_modify_qp(qp, attr,
967 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
968 IB_QP_PKEY_INDEX);
969
970 kfree(attr);
971 return ret;
972 }
973
974 /**
975 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
976 * @ch: channel of the queue pair.
977 * @qp: queue pair to change the state of.
978 *
979 * Returns zero upon success and a negative value upon failure.
980 *
981 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
982 * If this structure ever becomes larger, it might be necessary to allocate
983 * it dynamically instead of on the stack.
984 */
985 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
986 {
987 struct ib_qp_attr qp_attr;
988 int attr_mask;
989 int ret;
990
991 qp_attr.qp_state = IB_QPS_RTR;
992 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
993 if (ret)
994 goto out;
995
996 qp_attr.max_dest_rd_atomic = 4;
997
998 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
999
1000 out:
1001 return ret;
1002 }
1003
1004 /**
1005 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1006 * @ch: channel of the queue pair.
1007 * @qp: queue pair to change the state of.
1008 *
1009 * Returns zero upon success and a negative value upon failure.
1010 *
1011 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1012 * If this structure ever becomes larger, it might be necessary to allocate
1013 * it dynamically instead of on the stack.
1014 */
1015 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1016 {
1017 struct ib_qp_attr qp_attr;
1018 int attr_mask;
1019 int ret;
1020
1021 qp_attr.qp_state = IB_QPS_RTS;
1022 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1023 if (ret)
1024 goto out;
1025
1026 qp_attr.max_rd_atomic = 4;
1027
1028 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1029
1030 out:
1031 return ret;
1032 }
1033
1034 /**
1035 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1036 */
1037 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1038 {
1039 struct ib_qp_attr qp_attr;
1040
1041 qp_attr.qp_state = IB_QPS_ERR;
1042 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1043 }
1044
1045 /**
1046 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1047 */
1048 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1049 struct srpt_send_ioctx *ioctx)
1050 {
1051 struct scatterlist *sg;
1052 enum dma_data_direction dir;
1053
1054 BUG_ON(!ch);
1055 BUG_ON(!ioctx);
1056 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
1057
1058 while (ioctx->n_rdma)
1059 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
1060
1061 kfree(ioctx->rdma_ius);
1062 ioctx->rdma_ius = NULL;
1063
1064 if (ioctx->mapped_sg_count) {
1065 sg = ioctx->sg;
1066 WARN_ON(!sg);
1067 dir = ioctx->cmd.data_direction;
1068 BUG_ON(dir == DMA_NONE);
1069 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1070 opposite_dma_dir(dir));
1071 ioctx->mapped_sg_count = 0;
1072 }
1073 }
1074
1075 /**
1076 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1077 */
1078 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1079 struct srpt_send_ioctx *ioctx)
1080 {
1081 struct ib_device *dev = ch->sport->sdev->device;
1082 struct se_cmd *cmd;
1083 struct scatterlist *sg, *sg_orig;
1084 int sg_cnt;
1085 enum dma_data_direction dir;
1086 struct rdma_iu *riu;
1087 struct srp_direct_buf *db;
1088 dma_addr_t dma_addr;
1089 struct ib_sge *sge;
1090 u64 raddr;
1091 u32 rsize;
1092 u32 tsize;
1093 u32 dma_len;
1094 int count, nrdma;
1095 int i, j, k;
1096
1097 BUG_ON(!ch);
1098 BUG_ON(!ioctx);
1099 cmd = &ioctx->cmd;
1100 dir = cmd->data_direction;
1101 BUG_ON(dir == DMA_NONE);
1102
1103 ioctx->sg = sg = sg_orig = cmd->t_data_sg;
1104 ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
1105
1106 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1107 opposite_dma_dir(dir));
1108 if (unlikely(!count))
1109 return -EAGAIN;
1110
1111 ioctx->mapped_sg_count = count;
1112
1113 if (ioctx->rdma_ius && ioctx->n_rdma_ius)
1114 nrdma = ioctx->n_rdma_ius;
1115 else {
1116 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1117 + ioctx->n_rbuf;
1118
1119 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
1120 if (!ioctx->rdma_ius)
1121 goto free_mem;
1122
1123 ioctx->n_rdma_ius = nrdma;
1124 }
1125
1126 db = ioctx->rbufs;
1127 tsize = cmd->data_length;
1128 dma_len = ib_sg_dma_len(dev, &sg[0]);
1129 riu = ioctx->rdma_ius;
1130
1131 /*
1132 * For each remote desc - calculate the #ib_sge.
1133 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1134 * each remote desc rdma_iu is required a rdma wr;
1135 * else
1136 * we need to allocate extra rdma_iu to carry extra #ib_sge in
1137 * another rdma wr
1138 */
1139 for (i = 0, j = 0;
1140 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1141 rsize = be32_to_cpu(db->len);
1142 raddr = be64_to_cpu(db->va);
1143 riu->raddr = raddr;
1144 riu->rkey = be32_to_cpu(db->key);
1145 riu->sge_cnt = 0;
1146
1147 /* calculate how many sge required for this remote_buf */
1148 while (rsize > 0 && tsize > 0) {
1149
1150 if (rsize >= dma_len) {
1151 tsize -= dma_len;
1152 rsize -= dma_len;
1153 raddr += dma_len;
1154
1155 if (tsize > 0) {
1156 ++j;
1157 if (j < count) {
1158 sg = sg_next(sg);
1159 dma_len = ib_sg_dma_len(
1160 dev, sg);
1161 }
1162 }
1163 } else {
1164 tsize -= rsize;
1165 dma_len -= rsize;
1166 rsize = 0;
1167 }
1168
1169 ++riu->sge_cnt;
1170
1171 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
1172 ++ioctx->n_rdma;
1173 riu->sge =
1174 kmalloc(riu->sge_cnt * sizeof *riu->sge,
1175 GFP_KERNEL);
1176 if (!riu->sge)
1177 goto free_mem;
1178
1179 ++riu;
1180 riu->sge_cnt = 0;
1181 riu->raddr = raddr;
1182 riu->rkey = be32_to_cpu(db->key);
1183 }
1184 }
1185
1186 ++ioctx->n_rdma;
1187 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
1188 GFP_KERNEL);
1189 if (!riu->sge)
1190 goto free_mem;
1191 }
1192
1193 db = ioctx->rbufs;
1194 tsize = cmd->data_length;
1195 riu = ioctx->rdma_ius;
1196 sg = sg_orig;
1197 dma_len = ib_sg_dma_len(dev, &sg[0]);
1198 dma_addr = ib_sg_dma_address(dev, &sg[0]);
1199
1200 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1201 for (i = 0, j = 0;
1202 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1203 rsize = be32_to_cpu(db->len);
1204 sge = riu->sge;
1205 k = 0;
1206
1207 while (rsize > 0 && tsize > 0) {
1208 sge->addr = dma_addr;
1209 sge->lkey = ch->sport->sdev->mr->lkey;
1210
1211 if (rsize >= dma_len) {
1212 sge->length =
1213 (tsize < dma_len) ? tsize : dma_len;
1214 tsize -= dma_len;
1215 rsize -= dma_len;
1216
1217 if (tsize > 0) {
1218 ++j;
1219 if (j < count) {
1220 sg = sg_next(sg);
1221 dma_len = ib_sg_dma_len(
1222 dev, sg);
1223 dma_addr = ib_sg_dma_address(
1224 dev, sg);
1225 }
1226 }
1227 } else {
1228 sge->length = (tsize < rsize) ? tsize : rsize;
1229 tsize -= rsize;
1230 dma_len -= rsize;
1231 dma_addr += rsize;
1232 rsize = 0;
1233 }
1234
1235 ++k;
1236 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
1237 ++riu;
1238 sge = riu->sge;
1239 k = 0;
1240 } else if (rsize > 0 && tsize > 0)
1241 ++sge;
1242 }
1243 }
1244
1245 return 0;
1246
1247 free_mem:
1248 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1249
1250 return -ENOMEM;
1251 }
1252
1253 /**
1254 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1255 */
1256 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1257 {
1258 struct srpt_send_ioctx *ioctx;
1259 unsigned long flags;
1260
1261 BUG_ON(!ch);
1262
1263 ioctx = NULL;
1264 spin_lock_irqsave(&ch->spinlock, flags);
1265 if (!list_empty(&ch->free_list)) {
1266 ioctx = list_first_entry(&ch->free_list,
1267 struct srpt_send_ioctx, free_list);
1268 list_del(&ioctx->free_list);
1269 }
1270 spin_unlock_irqrestore(&ch->spinlock, flags);
1271
1272 if (!ioctx)
1273 return ioctx;
1274
1275 BUG_ON(ioctx->ch != ch);
1276 spin_lock_init(&ioctx->spinlock);
1277 ioctx->state = SRPT_STATE_NEW;
1278 ioctx->n_rbuf = 0;
1279 ioctx->rbufs = NULL;
1280 ioctx->n_rdma = 0;
1281 ioctx->n_rdma_ius = 0;
1282 ioctx->rdma_ius = NULL;
1283 ioctx->mapped_sg_count = 0;
1284 init_completion(&ioctx->tx_done);
1285 ioctx->queue_status_only = false;
1286 /*
1287 * transport_init_se_cmd() does not initialize all fields, so do it
1288 * here.
1289 */
1290 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1291 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1292
1293 return ioctx;
1294 }
1295
1296 /**
1297 * srpt_abort_cmd() - Abort a SCSI command.
1298 * @ioctx: I/O context associated with the SCSI command.
1299 * @context: Preferred execution context.
1300 */
1301 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1302 {
1303 enum srpt_command_state state;
1304 unsigned long flags;
1305
1306 BUG_ON(!ioctx);
1307
1308 /*
1309 * If the command is in a state where the target core is waiting for
1310 * the ib_srpt driver, change the state to the next state. Changing
1311 * the state of the command from SRPT_STATE_NEED_DATA to
1312 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1313 * function a second time.
1314 */
1315
1316 spin_lock_irqsave(&ioctx->spinlock, flags);
1317 state = ioctx->state;
1318 switch (state) {
1319 case SRPT_STATE_NEED_DATA:
1320 ioctx->state = SRPT_STATE_DATA_IN;
1321 break;
1322 case SRPT_STATE_DATA_IN:
1323 case SRPT_STATE_CMD_RSP_SENT:
1324 case SRPT_STATE_MGMT_RSP_SENT:
1325 ioctx->state = SRPT_STATE_DONE;
1326 break;
1327 default:
1328 break;
1329 }
1330 spin_unlock_irqrestore(&ioctx->spinlock, flags);
1331
1332 if (state == SRPT_STATE_DONE) {
1333 struct srpt_rdma_ch *ch = ioctx->ch;
1334
1335 BUG_ON(ch->sess == NULL);
1336
1337 target_put_sess_cmd(&ioctx->cmd);
1338 goto out;
1339 }
1340
1341 pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1342 ioctx->tag);
1343
1344 switch (state) {
1345 case SRPT_STATE_NEW:
1346 case SRPT_STATE_DATA_IN:
1347 case SRPT_STATE_MGMT:
1348 /*
1349 * Do nothing - defer abort processing until
1350 * srpt_queue_response() is invoked.
1351 */
1352 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1353 break;
1354 case SRPT_STATE_NEED_DATA:
1355 /* DMA_TO_DEVICE (write) - RDMA read error. */
1356
1357 /* XXX(hch): this is a horrible layering violation.. */
1358 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1359 ioctx->cmd.transport_state &= ~CMD_T_ACTIVE;
1360 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1361 break;
1362 case SRPT_STATE_CMD_RSP_SENT:
1363 /*
1364 * SRP_RSP sending failed or the SRP_RSP send completion has
1365 * not been received in time.
1366 */
1367 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1368 target_put_sess_cmd(&ioctx->cmd);
1369 break;
1370 case SRPT_STATE_MGMT_RSP_SENT:
1371 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1372 target_put_sess_cmd(&ioctx->cmd);
1373 break;
1374 default:
1375 WARN(1, "Unexpected command state (%d)", state);
1376 break;
1377 }
1378
1379 out:
1380 return state;
1381 }
1382
1383 /**
1384 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1385 */
1386 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
1387 {
1388 struct srpt_send_ioctx *ioctx;
1389 enum srpt_command_state state;
1390 struct se_cmd *cmd;
1391 u32 index;
1392
1393 atomic_inc(&ch->sq_wr_avail);
1394
1395 index = idx_from_wr_id(wr_id);
1396 ioctx = ch->ioctx_ring[index];
1397 state = srpt_get_cmd_state(ioctx);
1398 cmd = &ioctx->cmd;
1399
1400 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1401 && state != SRPT_STATE_MGMT_RSP_SENT
1402 && state != SRPT_STATE_NEED_DATA
1403 && state != SRPT_STATE_DONE);
1404
1405 /* If SRP_RSP sending failed, undo the ch->req_lim change. */
1406 if (state == SRPT_STATE_CMD_RSP_SENT
1407 || state == SRPT_STATE_MGMT_RSP_SENT)
1408 atomic_dec(&ch->req_lim);
1409
1410 srpt_abort_cmd(ioctx);
1411 }
1412
1413 /**
1414 * srpt_handle_send_comp() - Process an IB send completion notification.
1415 */
1416 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
1417 struct srpt_send_ioctx *ioctx)
1418 {
1419 enum srpt_command_state state;
1420
1421 atomic_inc(&ch->sq_wr_avail);
1422
1423 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1424
1425 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1426 && state != SRPT_STATE_MGMT_RSP_SENT
1427 && state != SRPT_STATE_DONE))
1428 pr_debug("state = %d\n", state);
1429
1430 if (state != SRPT_STATE_DONE) {
1431 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1432 transport_generic_free_cmd(&ioctx->cmd, 0);
1433 } else {
1434 pr_err("IB completion has been received too late for"
1435 " wr_id = %u.\n", ioctx->ioctx.index);
1436 }
1437 }
1438
1439 /**
1440 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1441 *
1442 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1443 * the data that has been transferred via IB RDMA had to be postponed until the
1444 * check_stop_free() callback. None of this is necessary anymore and needs to
1445 * be cleaned up.
1446 */
1447 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
1448 struct srpt_send_ioctx *ioctx,
1449 enum srpt_opcode opcode)
1450 {
1451 WARN_ON(ioctx->n_rdma <= 0);
1452 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1453
1454 if (opcode == SRPT_RDMA_READ_LAST) {
1455 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1456 SRPT_STATE_DATA_IN))
1457 target_execute_cmd(&ioctx->cmd);
1458 else
1459 pr_err("%s[%d]: wrong state = %d\n", __func__,
1460 __LINE__, srpt_get_cmd_state(ioctx));
1461 } else if (opcode == SRPT_RDMA_ABORT) {
1462 ioctx->rdma_aborted = true;
1463 } else {
1464 WARN(true, "unexpected opcode %d\n", opcode);
1465 }
1466 }
1467
1468 /**
1469 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1470 */
1471 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
1472 struct srpt_send_ioctx *ioctx,
1473 enum srpt_opcode opcode)
1474 {
1475 struct se_cmd *cmd;
1476 enum srpt_command_state state;
1477
1478 cmd = &ioctx->cmd;
1479 state = srpt_get_cmd_state(ioctx);
1480 switch (opcode) {
1481 case SRPT_RDMA_READ_LAST:
1482 if (ioctx->n_rdma <= 0) {
1483 pr_err("Received invalid RDMA read"
1484 " error completion with idx %d\n",
1485 ioctx->ioctx.index);
1486 break;
1487 }
1488 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1489 if (state == SRPT_STATE_NEED_DATA)
1490 srpt_abort_cmd(ioctx);
1491 else
1492 pr_err("%s[%d]: wrong state = %d\n",
1493 __func__, __LINE__, state);
1494 break;
1495 case SRPT_RDMA_WRITE_LAST:
1496 break;
1497 default:
1498 pr_err("%s[%d]: opcode = %u\n", __func__, __LINE__, opcode);
1499 break;
1500 }
1501 }
1502
1503 /**
1504 * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1505 * @ch: RDMA channel through which the request has been received.
1506 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1507 * be built in the buffer ioctx->buf points at and hence this function will
1508 * overwrite the request data.
1509 * @tag: tag of the request for which this response is being generated.
1510 * @status: value for the STATUS field of the SRP_RSP information unit.
1511 *
1512 * Returns the size in bytes of the SRP_RSP response.
1513 *
1514 * An SRP_RSP response contains a SCSI status or service response. See also
1515 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1516 * response. See also SPC-2 for more information about sense data.
1517 */
1518 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1519 struct srpt_send_ioctx *ioctx, u64 tag,
1520 int status)
1521 {
1522 struct srp_rsp *srp_rsp;
1523 const u8 *sense_data;
1524 int sense_data_len, max_sense_len;
1525
1526 /*
1527 * The lowest bit of all SAM-3 status codes is zero (see also
1528 * paragraph 5.3 in SAM-3).
1529 */
1530 WARN_ON(status & 1);
1531
1532 srp_rsp = ioctx->ioctx.buf;
1533 BUG_ON(!srp_rsp);
1534
1535 sense_data = ioctx->sense_data;
1536 sense_data_len = ioctx->cmd.scsi_sense_length;
1537 WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1538
1539 memset(srp_rsp, 0, sizeof *srp_rsp);
1540 srp_rsp->opcode = SRP_RSP;
1541 srp_rsp->req_lim_delta =
1542 __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1543 srp_rsp->tag = tag;
1544 srp_rsp->status = status;
1545
1546 if (sense_data_len) {
1547 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1548 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1549 if (sense_data_len > max_sense_len) {
1550 pr_warn("truncated sense data from %d to %d"
1551 " bytes\n", sense_data_len, max_sense_len);
1552 sense_data_len = max_sense_len;
1553 }
1554
1555 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1556 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1557 memcpy(srp_rsp + 1, sense_data, sense_data_len);
1558 }
1559
1560 return sizeof(*srp_rsp) + sense_data_len;
1561 }
1562
1563 /**
1564 * srpt_build_tskmgmt_rsp() - Build a task management response.
1565 * @ch: RDMA channel through which the request has been received.
1566 * @ioctx: I/O context in which the SRP_RSP response will be built.
1567 * @rsp_code: RSP_CODE that will be stored in the response.
1568 * @tag: Tag of the request for which this response is being generated.
1569 *
1570 * Returns the size in bytes of the SRP_RSP response.
1571 *
1572 * An SRP_RSP response contains a SCSI status or service response. See also
1573 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1574 * response.
1575 */
1576 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1577 struct srpt_send_ioctx *ioctx,
1578 u8 rsp_code, u64 tag)
1579 {
1580 struct srp_rsp *srp_rsp;
1581 int resp_data_len;
1582 int resp_len;
1583
1584 resp_data_len = 4;
1585 resp_len = sizeof(*srp_rsp) + resp_data_len;
1586
1587 srp_rsp = ioctx->ioctx.buf;
1588 BUG_ON(!srp_rsp);
1589 memset(srp_rsp, 0, sizeof *srp_rsp);
1590
1591 srp_rsp->opcode = SRP_RSP;
1592 srp_rsp->req_lim_delta = __constant_cpu_to_be32(1
1593 + atomic_xchg(&ch->req_lim_delta, 0));
1594 srp_rsp->tag = tag;
1595
1596 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1597 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1598 srp_rsp->data[3] = rsp_code;
1599
1600 return resp_len;
1601 }
1602
1603 #define NO_SUCH_LUN ((uint64_t)-1LL)
1604
1605 /*
1606 * SCSI LUN addressing method. See also SAM-2 and the section about
1607 * eight byte LUNs.
1608 */
1609 enum scsi_lun_addr_method {
1610 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0,
1611 SCSI_LUN_ADDR_METHOD_FLAT = 1,
1612 SCSI_LUN_ADDR_METHOD_LUN = 2,
1613 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1614 };
1615
1616 /*
1617 * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1618 *
1619 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1620 * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1621 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1622 */
1623 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1624 {
1625 uint64_t res = NO_SUCH_LUN;
1626 int addressing_method;
1627
1628 if (unlikely(len < 2)) {
1629 pr_err("Illegal LUN length %d, expected 2 bytes or more\n",
1630 len);
1631 goto out;
1632 }
1633
1634 switch (len) {
1635 case 8:
1636 if ((*((__be64 *)lun) &
1637 __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1638 goto out_err;
1639 break;
1640 case 4:
1641 if (*((__be16 *)&lun[2]) != 0)
1642 goto out_err;
1643 break;
1644 case 6:
1645 if (*((__be32 *)&lun[2]) != 0)
1646 goto out_err;
1647 break;
1648 case 2:
1649 break;
1650 default:
1651 goto out_err;
1652 }
1653
1654 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1655 switch (addressing_method) {
1656 case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1657 case SCSI_LUN_ADDR_METHOD_FLAT:
1658 case SCSI_LUN_ADDR_METHOD_LUN:
1659 res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1660 break;
1661
1662 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1663 default:
1664 pr_err("Unimplemented LUN addressing method %u\n",
1665 addressing_method);
1666 break;
1667 }
1668
1669 out:
1670 return res;
1671
1672 out_err:
1673 pr_err("Support for multi-level LUNs has not yet been implemented\n");
1674 goto out;
1675 }
1676
1677 static int srpt_check_stop_free(struct se_cmd *cmd)
1678 {
1679 struct srpt_send_ioctx *ioctx = container_of(cmd,
1680 struct srpt_send_ioctx, cmd);
1681
1682 return target_put_sess_cmd(&ioctx->cmd);
1683 }
1684
1685 /**
1686 * srpt_handle_cmd() - Process SRP_CMD.
1687 */
1688 static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1689 struct srpt_recv_ioctx *recv_ioctx,
1690 struct srpt_send_ioctx *send_ioctx)
1691 {
1692 struct se_cmd *cmd;
1693 struct srp_cmd *srp_cmd;
1694 uint64_t unpacked_lun;
1695 u64 data_len;
1696 enum dma_data_direction dir;
1697 sense_reason_t ret;
1698 int rc;
1699
1700 BUG_ON(!send_ioctx);
1701
1702 srp_cmd = recv_ioctx->ioctx.buf;
1703 cmd = &send_ioctx->cmd;
1704 send_ioctx->tag = srp_cmd->tag;
1705
1706 switch (srp_cmd->task_attr) {
1707 case SRP_CMD_SIMPLE_Q:
1708 cmd->sam_task_attr = TCM_SIMPLE_TAG;
1709 break;
1710 case SRP_CMD_ORDERED_Q:
1711 default:
1712 cmd->sam_task_attr = TCM_ORDERED_TAG;
1713 break;
1714 case SRP_CMD_HEAD_OF_Q:
1715 cmd->sam_task_attr = TCM_HEAD_TAG;
1716 break;
1717 case SRP_CMD_ACA:
1718 cmd->sam_task_attr = TCM_ACA_TAG;
1719 break;
1720 }
1721
1722 if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) {
1723 pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1724 srp_cmd->tag);
1725 ret = TCM_INVALID_CDB_FIELD;
1726 goto send_sense;
1727 }
1728
1729 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1730 sizeof(srp_cmd->lun));
1731 rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb,
1732 &send_ioctx->sense_data[0], unpacked_lun, data_len,
1733 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1734 if (rc != 0) {
1735 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1736 goto send_sense;
1737 }
1738 return 0;
1739
1740 send_sense:
1741 transport_send_check_condition_and_sense(cmd, ret, 0);
1742 return -1;
1743 }
1744
1745 /**
1746 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag.
1747 * @ch: RDMA channel of the task management request.
1748 * @fn: Task management function to perform.
1749 * @req_tag: Tag of the SRP task management request.
1750 * @mgmt_ioctx: I/O context of the task management request.
1751 *
1752 * Returns zero if the target core will process the task management
1753 * request asynchronously.
1754 *
1755 * Note: It is assumed that the initiator serializes tag-based task management
1756 * requests.
1757 */
1758 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag)
1759 {
1760 struct srpt_device *sdev;
1761 struct srpt_rdma_ch *ch;
1762 struct srpt_send_ioctx *target;
1763 int ret, i;
1764
1765 ret = -EINVAL;
1766 ch = ioctx->ch;
1767 BUG_ON(!ch);
1768 BUG_ON(!ch->sport);
1769 sdev = ch->sport->sdev;
1770 BUG_ON(!sdev);
1771 spin_lock_irq(&sdev->spinlock);
1772 for (i = 0; i < ch->rq_size; ++i) {
1773 target = ch->ioctx_ring[i];
1774 if (target->cmd.se_lun == ioctx->cmd.se_lun &&
1775 target->tag == tag &&
1776 srpt_get_cmd_state(target) != SRPT_STATE_DONE) {
1777 ret = 0;
1778 /* now let the target core abort &target->cmd; */
1779 break;
1780 }
1781 }
1782 spin_unlock_irq(&sdev->spinlock);
1783 return ret;
1784 }
1785
1786 static int srp_tmr_to_tcm(int fn)
1787 {
1788 switch (fn) {
1789 case SRP_TSK_ABORT_TASK:
1790 return TMR_ABORT_TASK;
1791 case SRP_TSK_ABORT_TASK_SET:
1792 return TMR_ABORT_TASK_SET;
1793 case SRP_TSK_CLEAR_TASK_SET:
1794 return TMR_CLEAR_TASK_SET;
1795 case SRP_TSK_LUN_RESET:
1796 return TMR_LUN_RESET;
1797 case SRP_TSK_CLEAR_ACA:
1798 return TMR_CLEAR_ACA;
1799 default:
1800 return -1;
1801 }
1802 }
1803
1804 /**
1805 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1806 *
1807 * Returns 0 if and only if the request will be processed by the target core.
1808 *
1809 * For more information about SRP_TSK_MGMT information units, see also section
1810 * 6.7 in the SRP r16a document.
1811 */
1812 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1813 struct srpt_recv_ioctx *recv_ioctx,
1814 struct srpt_send_ioctx *send_ioctx)
1815 {
1816 struct srp_tsk_mgmt *srp_tsk;
1817 struct se_cmd *cmd;
1818 struct se_session *sess = ch->sess;
1819 uint64_t unpacked_lun;
1820 uint32_t tag = 0;
1821 int tcm_tmr;
1822 int rc;
1823
1824 BUG_ON(!send_ioctx);
1825
1826 srp_tsk = recv_ioctx->ioctx.buf;
1827 cmd = &send_ioctx->cmd;
1828
1829 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1830 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1831 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1832
1833 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1834 send_ioctx->tag = srp_tsk->tag;
1835 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1836 if (tcm_tmr < 0) {
1837 send_ioctx->cmd.se_tmr_req->response =
1838 TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
1839 goto fail;
1840 }
1841 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1842 sizeof(srp_tsk->lun));
1843
1844 if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) {
1845 rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag);
1846 if (rc < 0) {
1847 send_ioctx->cmd.se_tmr_req->response =
1848 TMR_TASK_DOES_NOT_EXIST;
1849 goto fail;
1850 }
1851 tag = srp_tsk->task_tag;
1852 }
1853 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun,
1854 srp_tsk, tcm_tmr, GFP_KERNEL, tag,
1855 TARGET_SCF_ACK_KREF);
1856 if (rc != 0) {
1857 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1858 goto fail;
1859 }
1860 return;
1861 fail:
1862 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1863 }
1864
1865 /**
1866 * srpt_handle_new_iu() - Process a newly received information unit.
1867 * @ch: RDMA channel through which the information unit has been received.
1868 * @ioctx: SRPT I/O context associated with the information unit.
1869 */
1870 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1871 struct srpt_recv_ioctx *recv_ioctx,
1872 struct srpt_send_ioctx *send_ioctx)
1873 {
1874 struct srp_cmd *srp_cmd;
1875 enum rdma_ch_state ch_state;
1876
1877 BUG_ON(!ch);
1878 BUG_ON(!recv_ioctx);
1879
1880 ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1881 recv_ioctx->ioctx.dma, srp_max_req_size,
1882 DMA_FROM_DEVICE);
1883
1884 ch_state = srpt_get_ch_state(ch);
1885 if (unlikely(ch_state == CH_CONNECTING)) {
1886 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1887 goto out;
1888 }
1889
1890 if (unlikely(ch_state != CH_LIVE))
1891 goto out;
1892
1893 srp_cmd = recv_ioctx->ioctx.buf;
1894 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1895 if (!send_ioctx)
1896 send_ioctx = srpt_get_send_ioctx(ch);
1897 if (unlikely(!send_ioctx)) {
1898 list_add_tail(&recv_ioctx->wait_list,
1899 &ch->cmd_wait_list);
1900 goto out;
1901 }
1902 }
1903
1904 switch (srp_cmd->opcode) {
1905 case SRP_CMD:
1906 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1907 break;
1908 case SRP_TSK_MGMT:
1909 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1910 break;
1911 case SRP_I_LOGOUT:
1912 pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1913 break;
1914 case SRP_CRED_RSP:
1915 pr_debug("received SRP_CRED_RSP\n");
1916 break;
1917 case SRP_AER_RSP:
1918 pr_debug("received SRP_AER_RSP\n");
1919 break;
1920 case SRP_RSP:
1921 pr_err("Received SRP_RSP\n");
1922 break;
1923 default:
1924 pr_err("received IU with unknown opcode 0x%x\n",
1925 srp_cmd->opcode);
1926 break;
1927 }
1928
1929 srpt_post_recv(ch->sport->sdev, recv_ioctx);
1930 out:
1931 return;
1932 }
1933
1934 static void srpt_process_rcv_completion(struct ib_cq *cq,
1935 struct srpt_rdma_ch *ch,
1936 struct ib_wc *wc)
1937 {
1938 struct srpt_device *sdev = ch->sport->sdev;
1939 struct srpt_recv_ioctx *ioctx;
1940 u32 index;
1941
1942 index = idx_from_wr_id(wc->wr_id);
1943 if (wc->status == IB_WC_SUCCESS) {
1944 int req_lim;
1945
1946 req_lim = atomic_dec_return(&ch->req_lim);
1947 if (unlikely(req_lim < 0))
1948 pr_err("req_lim = %d < 0\n", req_lim);
1949 ioctx = sdev->ioctx_ring[index];
1950 srpt_handle_new_iu(ch, ioctx, NULL);
1951 } else {
1952 pr_info("receiving failed for idx %u with status %d\n",
1953 index, wc->status);
1954 }
1955 }
1956
1957 /**
1958 * srpt_process_send_completion() - Process an IB send completion.
1959 *
1960 * Note: Although this has not yet been observed during tests, at least in
1961 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1962 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1963 * value in each response is set to one, and it is possible that this response
1964 * makes the initiator send a new request before the send completion for that
1965 * response has been processed. This could e.g. happen if the call to
1966 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1967 * if IB retransmission causes generation of the send completion to be
1968 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1969 * are queued on cmd_wait_list. The code below processes these delayed
1970 * requests one at a time.
1971 */
1972 static void srpt_process_send_completion(struct ib_cq *cq,
1973 struct srpt_rdma_ch *ch,
1974 struct ib_wc *wc)
1975 {
1976 struct srpt_send_ioctx *send_ioctx;
1977 uint32_t index;
1978 enum srpt_opcode opcode;
1979
1980 index = idx_from_wr_id(wc->wr_id);
1981 opcode = opcode_from_wr_id(wc->wr_id);
1982 send_ioctx = ch->ioctx_ring[index];
1983 if (wc->status == IB_WC_SUCCESS) {
1984 if (opcode == SRPT_SEND)
1985 srpt_handle_send_comp(ch, send_ioctx);
1986 else {
1987 WARN_ON(opcode != SRPT_RDMA_ABORT &&
1988 wc->opcode != IB_WC_RDMA_READ);
1989 srpt_handle_rdma_comp(ch, send_ioctx, opcode);
1990 }
1991 } else {
1992 if (opcode == SRPT_SEND) {
1993 pr_info("sending response for idx %u failed"
1994 " with status %d\n", index, wc->status);
1995 srpt_handle_send_err_comp(ch, wc->wr_id);
1996 } else if (opcode != SRPT_RDMA_MID) {
1997 pr_info("RDMA t %d for idx %u failed with"
1998 " status %d\n", opcode, index, wc->status);
1999 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
2000 }
2001 }
2002
2003 while (unlikely(opcode == SRPT_SEND
2004 && !list_empty(&ch->cmd_wait_list)
2005 && srpt_get_ch_state(ch) == CH_LIVE
2006 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
2007 struct srpt_recv_ioctx *recv_ioctx;
2008
2009 recv_ioctx = list_first_entry(&ch->cmd_wait_list,
2010 struct srpt_recv_ioctx,
2011 wait_list);
2012 list_del(&recv_ioctx->wait_list);
2013 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
2014 }
2015 }
2016
2017 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
2018 {
2019 struct ib_wc *const wc = ch->wc;
2020 int i, n;
2021
2022 WARN_ON(cq != ch->cq);
2023
2024 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
2025 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
2026 for (i = 0; i < n; i++) {
2027 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
2028 srpt_process_rcv_completion(cq, ch, &wc[i]);
2029 else
2030 srpt_process_send_completion(cq, ch, &wc[i]);
2031 }
2032 }
2033 }
2034
2035 /**
2036 * srpt_completion() - IB completion queue callback function.
2037 *
2038 * Notes:
2039 * - It is guaranteed that a completion handler will never be invoked
2040 * concurrently on two different CPUs for the same completion queue. See also
2041 * Documentation/infiniband/core_locking.txt and the implementation of
2042 * handle_edge_irq() in kernel/irq/chip.c.
2043 * - When threaded IRQs are enabled, completion handlers are invoked in thread
2044 * context instead of interrupt context.
2045 */
2046 static void srpt_completion(struct ib_cq *cq, void *ctx)
2047 {
2048 struct srpt_rdma_ch *ch = ctx;
2049
2050 wake_up_interruptible(&ch->wait_queue);
2051 }
2052
2053 static int srpt_compl_thread(void *arg)
2054 {
2055 struct srpt_rdma_ch *ch;
2056
2057 /* Hibernation / freezing of the SRPT kernel thread is not supported. */
2058 current->flags |= PF_NOFREEZE;
2059
2060 ch = arg;
2061 BUG_ON(!ch);
2062 pr_info("Session %s: kernel thread %s (PID %d) started\n",
2063 ch->sess_name, ch->thread->comm, current->pid);
2064 while (!kthread_should_stop()) {
2065 wait_event_interruptible(ch->wait_queue,
2066 (srpt_process_completion(ch->cq, ch),
2067 kthread_should_stop()));
2068 }
2069 pr_info("Session %s: kernel thread %s (PID %d) stopped\n",
2070 ch->sess_name, ch->thread->comm, current->pid);
2071 return 0;
2072 }
2073
2074 /**
2075 * srpt_create_ch_ib() - Create receive and send completion queues.
2076 */
2077 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
2078 {
2079 struct ib_qp_init_attr *qp_init;
2080 struct srpt_port *sport = ch->sport;
2081 struct srpt_device *sdev = sport->sdev;
2082 u32 srp_sq_size = sport->port_attrib.srp_sq_size;
2083 int ret;
2084
2085 WARN_ON(ch->rq_size < 1);
2086
2087 ret = -ENOMEM;
2088 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
2089 if (!qp_init)
2090 goto out;
2091
2092 retry:
2093 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
2094 ch->rq_size + srp_sq_size, 0);
2095 if (IS_ERR(ch->cq)) {
2096 ret = PTR_ERR(ch->cq);
2097 pr_err("failed to create CQ cqe= %d ret= %d\n",
2098 ch->rq_size + srp_sq_size, ret);
2099 goto out;
2100 }
2101
2102 qp_init->qp_context = (void *)ch;
2103 qp_init->event_handler
2104 = (void(*)(struct ib_event *, void*))srpt_qp_event;
2105 qp_init->send_cq = ch->cq;
2106 qp_init->recv_cq = ch->cq;
2107 qp_init->srq = sdev->srq;
2108 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
2109 qp_init->qp_type = IB_QPT_RC;
2110 qp_init->cap.max_send_wr = srp_sq_size;
2111 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
2112
2113 ch->qp = ib_create_qp(sdev->pd, qp_init);
2114 if (IS_ERR(ch->qp)) {
2115 ret = PTR_ERR(ch->qp);
2116 if (ret == -ENOMEM) {
2117 srp_sq_size /= 2;
2118 if (srp_sq_size >= MIN_SRPT_SQ_SIZE) {
2119 ib_destroy_cq(ch->cq);
2120 goto retry;
2121 }
2122 }
2123 pr_err("failed to create_qp ret= %d\n", ret);
2124 goto err_destroy_cq;
2125 }
2126
2127 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
2128
2129 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2130 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
2131 qp_init->cap.max_send_wr, ch->cm_id);
2132
2133 ret = srpt_init_ch_qp(ch, ch->qp);
2134 if (ret)
2135 goto err_destroy_qp;
2136
2137 init_waitqueue_head(&ch->wait_queue);
2138
2139 pr_debug("creating thread for session %s\n", ch->sess_name);
2140
2141 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
2142 if (IS_ERR(ch->thread)) {
2143 pr_err("failed to create kernel thread %ld\n",
2144 PTR_ERR(ch->thread));
2145 ch->thread = NULL;
2146 goto err_destroy_qp;
2147 }
2148
2149 out:
2150 kfree(qp_init);
2151 return ret;
2152
2153 err_destroy_qp:
2154 ib_destroy_qp(ch->qp);
2155 err_destroy_cq:
2156 ib_destroy_cq(ch->cq);
2157 goto out;
2158 }
2159
2160 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2161 {
2162 if (ch->thread)
2163 kthread_stop(ch->thread);
2164
2165 ib_destroy_qp(ch->qp);
2166 ib_destroy_cq(ch->cq);
2167 }
2168
2169 /**
2170 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2171 *
2172 * Reset the QP and make sure all resources associated with the channel will
2173 * be deallocated at an appropriate time.
2174 *
2175 * Note: The caller must hold ch->sport->sdev->spinlock.
2176 */
2177 static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2178 {
2179 struct srpt_device *sdev;
2180 enum rdma_ch_state prev_state;
2181 unsigned long flags;
2182
2183 sdev = ch->sport->sdev;
2184
2185 spin_lock_irqsave(&ch->spinlock, flags);
2186 prev_state = ch->state;
2187 switch (prev_state) {
2188 case CH_CONNECTING:
2189 case CH_LIVE:
2190 ch->state = CH_DISCONNECTING;
2191 break;
2192 default:
2193 break;
2194 }
2195 spin_unlock_irqrestore(&ch->spinlock, flags);
2196
2197 switch (prev_state) {
2198 case CH_CONNECTING:
2199 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2200 NULL, 0);
2201 /* fall through */
2202 case CH_LIVE:
2203 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2204 pr_err("sending CM DREQ failed.\n");
2205 break;
2206 case CH_DISCONNECTING:
2207 break;
2208 case CH_DRAINING:
2209 case CH_RELEASING:
2210 break;
2211 }
2212 }
2213
2214 /**
2215 * srpt_close_ch() - Close an RDMA channel.
2216 */
2217 static void srpt_close_ch(struct srpt_rdma_ch *ch)
2218 {
2219 struct srpt_device *sdev;
2220
2221 sdev = ch->sport->sdev;
2222 spin_lock_irq(&sdev->spinlock);
2223 __srpt_close_ch(ch);
2224 spin_unlock_irq(&sdev->spinlock);
2225 }
2226
2227 /**
2228 * srpt_shutdown_session() - Whether or not a session may be shut down.
2229 */
2230 static int srpt_shutdown_session(struct se_session *se_sess)
2231 {
2232 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
2233 unsigned long flags;
2234
2235 spin_lock_irqsave(&ch->spinlock, flags);
2236 if (ch->in_shutdown) {
2237 spin_unlock_irqrestore(&ch->spinlock, flags);
2238 return true;
2239 }
2240
2241 ch->in_shutdown = true;
2242 target_sess_cmd_list_set_waiting(se_sess);
2243 spin_unlock_irqrestore(&ch->spinlock, flags);
2244
2245 return true;
2246 }
2247
2248 /**
2249 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2250 * @cm_id: Pointer to the CM ID of the channel to be drained.
2251 *
2252 * Note: Must be called from inside srpt_cm_handler to avoid a race between
2253 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2254 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2255 * waits until all target sessions for the associated IB device have been
2256 * unregistered and target session registration involves a call to
2257 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2258 * this function has finished).
2259 */
2260 static void srpt_drain_channel(struct ib_cm_id *cm_id)
2261 {
2262 struct srpt_device *sdev;
2263 struct srpt_rdma_ch *ch;
2264 int ret;
2265 bool do_reset = false;
2266
2267 WARN_ON_ONCE(irqs_disabled());
2268
2269 sdev = cm_id->context;
2270 BUG_ON(!sdev);
2271 spin_lock_irq(&sdev->spinlock);
2272 list_for_each_entry(ch, &sdev->rch_list, list) {
2273 if (ch->cm_id == cm_id) {
2274 do_reset = srpt_test_and_set_ch_state(ch,
2275 CH_CONNECTING, CH_DRAINING) ||
2276 srpt_test_and_set_ch_state(ch,
2277 CH_LIVE, CH_DRAINING) ||
2278 srpt_test_and_set_ch_state(ch,
2279 CH_DISCONNECTING, CH_DRAINING);
2280 break;
2281 }
2282 }
2283 spin_unlock_irq(&sdev->spinlock);
2284
2285 if (do_reset) {
2286 if (ch->sess)
2287 srpt_shutdown_session(ch->sess);
2288
2289 ret = srpt_ch_qp_err(ch);
2290 if (ret < 0)
2291 pr_err("Setting queue pair in error state"
2292 " failed: %d\n", ret);
2293 }
2294 }
2295
2296 /**
2297 * srpt_find_channel() - Look up an RDMA channel.
2298 * @cm_id: Pointer to the CM ID of the channel to be looked up.
2299 *
2300 * Return NULL if no matching RDMA channel has been found.
2301 */
2302 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2303 struct ib_cm_id *cm_id)
2304 {
2305 struct srpt_rdma_ch *ch;
2306 bool found;
2307
2308 WARN_ON_ONCE(irqs_disabled());
2309 BUG_ON(!sdev);
2310
2311 found = false;
2312 spin_lock_irq(&sdev->spinlock);
2313 list_for_each_entry(ch, &sdev->rch_list, list) {
2314 if (ch->cm_id == cm_id) {
2315 found = true;
2316 break;
2317 }
2318 }
2319 spin_unlock_irq(&sdev->spinlock);
2320
2321 return found ? ch : NULL;
2322 }
2323
2324 /**
2325 * srpt_release_channel() - Release channel resources.
2326 *
2327 * Schedules the actual release because:
2328 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2329 * trigger a deadlock.
2330 * - It is not safe to call TCM transport_* functions from interrupt context.
2331 */
2332 static void srpt_release_channel(struct srpt_rdma_ch *ch)
2333 {
2334 schedule_work(&ch->release_work);
2335 }
2336
2337 static void srpt_release_channel_work(struct work_struct *w)
2338 {
2339 struct srpt_rdma_ch *ch;
2340 struct srpt_device *sdev;
2341 struct se_session *se_sess;
2342
2343 ch = container_of(w, struct srpt_rdma_ch, release_work);
2344 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2345 ch->release_done);
2346
2347 sdev = ch->sport->sdev;
2348 BUG_ON(!sdev);
2349
2350 se_sess = ch->sess;
2351 BUG_ON(!se_sess);
2352
2353 target_wait_for_sess_cmds(se_sess);
2354
2355 transport_deregister_session_configfs(se_sess);
2356 transport_deregister_session(se_sess);
2357 ch->sess = NULL;
2358
2359 ib_destroy_cm_id(ch->cm_id);
2360
2361 srpt_destroy_ch_ib(ch);
2362
2363 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2364 ch->sport->sdev, ch->rq_size,
2365 ch->rsp_size, DMA_TO_DEVICE);
2366
2367 spin_lock_irq(&sdev->spinlock);
2368 list_del(&ch->list);
2369 spin_unlock_irq(&sdev->spinlock);
2370
2371 if (ch->release_done)
2372 complete(ch->release_done);
2373
2374 wake_up(&sdev->ch_releaseQ);
2375
2376 kfree(ch);
2377 }
2378
2379 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
2380 u8 i_port_id[16])
2381 {
2382 struct srpt_node_acl *nacl;
2383
2384 list_for_each_entry(nacl, &sport->port_acl_list, list)
2385 if (memcmp(nacl->i_port_id, i_port_id,
2386 sizeof(nacl->i_port_id)) == 0)
2387 return nacl;
2388
2389 return NULL;
2390 }
2391
2392 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
2393 u8 i_port_id[16])
2394 {
2395 struct srpt_node_acl *nacl;
2396
2397 spin_lock_irq(&sport->port_acl_lock);
2398 nacl = __srpt_lookup_acl(sport, i_port_id);
2399 spin_unlock_irq(&sport->port_acl_lock);
2400
2401 return nacl;
2402 }
2403
2404 /**
2405 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2406 *
2407 * Ownership of the cm_id is transferred to the target session if this
2408 * functions returns zero. Otherwise the caller remains the owner of cm_id.
2409 */
2410 static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2411 struct ib_cm_req_event_param *param,
2412 void *private_data)
2413 {
2414 struct srpt_device *sdev = cm_id->context;
2415 struct srpt_port *sport = &sdev->port[param->port - 1];
2416 struct srp_login_req *req;
2417 struct srp_login_rsp *rsp;
2418 struct srp_login_rej *rej;
2419 struct ib_cm_rep_param *rep_param;
2420 struct srpt_rdma_ch *ch, *tmp_ch;
2421 struct srpt_node_acl *nacl;
2422 u32 it_iu_len;
2423 int i;
2424 int ret = 0;
2425
2426 WARN_ON_ONCE(irqs_disabled());
2427
2428 if (WARN_ON(!sdev || !private_data))
2429 return -EINVAL;
2430
2431 req = (struct srp_login_req *)private_data;
2432
2433 it_iu_len = be32_to_cpu(req->req_it_iu_len);
2434
2435 pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2436 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2437 " (guid=0x%llx:0x%llx)\n",
2438 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2439 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2440 be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2441 be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2442 it_iu_len,
2443 param->port,
2444 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2445 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2446
2447 rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2448 rej = kzalloc(sizeof *rej, GFP_KERNEL);
2449 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2450
2451 if (!rsp || !rej || !rep_param) {
2452 ret = -ENOMEM;
2453 goto out;
2454 }
2455
2456 if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2457 rej->reason = __constant_cpu_to_be32(
2458 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2459 ret = -EINVAL;
2460 pr_err("rejected SRP_LOGIN_REQ because its"
2461 " length (%d bytes) is out of range (%d .. %d)\n",
2462 it_iu_len, 64, srp_max_req_size);
2463 goto reject;
2464 }
2465
2466 if (!sport->enabled) {
2467 rej->reason = __constant_cpu_to_be32(
2468 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2469 ret = -EINVAL;
2470 pr_err("rejected SRP_LOGIN_REQ because the target port"
2471 " has not yet been enabled\n");
2472 goto reject;
2473 }
2474
2475 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2476 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2477
2478 spin_lock_irq(&sdev->spinlock);
2479
2480 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2481 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2482 && !memcmp(ch->t_port_id, req->target_port_id, 16)
2483 && param->port == ch->sport->port
2484 && param->listen_id == ch->sport->sdev->cm_id
2485 && ch->cm_id) {
2486 enum rdma_ch_state ch_state;
2487
2488 ch_state = srpt_get_ch_state(ch);
2489 if (ch_state != CH_CONNECTING
2490 && ch_state != CH_LIVE)
2491 continue;
2492
2493 /* found an existing channel */
2494 pr_debug("Found existing channel %s"
2495 " cm_id= %p state= %d\n",
2496 ch->sess_name, ch->cm_id, ch_state);
2497
2498 __srpt_close_ch(ch);
2499
2500 rsp->rsp_flags =
2501 SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2502 }
2503 }
2504
2505 spin_unlock_irq(&sdev->spinlock);
2506
2507 } else
2508 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2509
2510 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2511 || *(__be64 *)(req->target_port_id + 8) !=
2512 cpu_to_be64(srpt_service_guid)) {
2513 rej->reason = __constant_cpu_to_be32(
2514 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2515 ret = -ENOMEM;
2516 pr_err("rejected SRP_LOGIN_REQ because it"
2517 " has an invalid target port identifier.\n");
2518 goto reject;
2519 }
2520
2521 ch = kzalloc(sizeof *ch, GFP_KERNEL);
2522 if (!ch) {
2523 rej->reason = __constant_cpu_to_be32(
2524 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2525 pr_err("rejected SRP_LOGIN_REQ because no memory.\n");
2526 ret = -ENOMEM;
2527 goto reject;
2528 }
2529
2530 INIT_WORK(&ch->release_work, srpt_release_channel_work);
2531 memcpy(ch->i_port_id, req->initiator_port_id, 16);
2532 memcpy(ch->t_port_id, req->target_port_id, 16);
2533 ch->sport = &sdev->port[param->port - 1];
2534 ch->cm_id = cm_id;
2535 /*
2536 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2537 * for the SRP protocol to the command queue size.
2538 */
2539 ch->rq_size = SRPT_RQ_SIZE;
2540 spin_lock_init(&ch->spinlock);
2541 ch->state = CH_CONNECTING;
2542 INIT_LIST_HEAD(&ch->cmd_wait_list);
2543 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2544
2545 ch->ioctx_ring = (struct srpt_send_ioctx **)
2546 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2547 sizeof(*ch->ioctx_ring[0]),
2548 ch->rsp_size, DMA_TO_DEVICE);
2549 if (!ch->ioctx_ring)
2550 goto free_ch;
2551
2552 INIT_LIST_HEAD(&ch->free_list);
2553 for (i = 0; i < ch->rq_size; i++) {
2554 ch->ioctx_ring[i]->ch = ch;
2555 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2556 }
2557
2558 ret = srpt_create_ch_ib(ch);
2559 if (ret) {
2560 rej->reason = __constant_cpu_to_be32(
2561 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2562 pr_err("rejected SRP_LOGIN_REQ because creating"
2563 " a new RDMA channel failed.\n");
2564 goto free_ring;
2565 }
2566
2567 ret = srpt_ch_qp_rtr(ch, ch->qp);
2568 if (ret) {
2569 rej->reason = __constant_cpu_to_be32(
2570 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2571 pr_err("rejected SRP_LOGIN_REQ because enabling"
2572 " RTR failed (error code = %d)\n", ret);
2573 goto destroy_ib;
2574 }
2575 /*
2576 * Use the initator port identifier as the session name.
2577 */
2578 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2579 be64_to_cpu(*(__be64 *)ch->i_port_id),
2580 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2581
2582 pr_debug("registering session %s\n", ch->sess_name);
2583
2584 nacl = srpt_lookup_acl(sport, ch->i_port_id);
2585 if (!nacl) {
2586 pr_info("Rejected login because no ACL has been"
2587 " configured yet for initiator %s.\n", ch->sess_name);
2588 rej->reason = __constant_cpu_to_be32(
2589 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2590 goto destroy_ib;
2591 }
2592
2593 ch->sess = transport_init_session(TARGET_PROT_NORMAL);
2594 if (IS_ERR(ch->sess)) {
2595 rej->reason = __constant_cpu_to_be32(
2596 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2597 pr_debug("Failed to create session\n");
2598 goto deregister_session;
2599 }
2600 ch->sess->se_node_acl = &nacl->nacl;
2601 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
2602
2603 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2604 ch->sess_name, ch->cm_id);
2605
2606 /* create srp_login_response */
2607 rsp->opcode = SRP_LOGIN_RSP;
2608 rsp->tag = req->tag;
2609 rsp->max_it_iu_len = req->req_it_iu_len;
2610 rsp->max_ti_iu_len = req->req_it_iu_len;
2611 ch->max_ti_iu_len = it_iu_len;
2612 rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2613 | SRP_BUF_FORMAT_INDIRECT);
2614 rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2615 atomic_set(&ch->req_lim, ch->rq_size);
2616 atomic_set(&ch->req_lim_delta, 0);
2617
2618 /* create cm reply */
2619 rep_param->qp_num = ch->qp->qp_num;
2620 rep_param->private_data = (void *)rsp;
2621 rep_param->private_data_len = sizeof *rsp;
2622 rep_param->rnr_retry_count = 7;
2623 rep_param->flow_control = 1;
2624 rep_param->failover_accepted = 0;
2625 rep_param->srq = 1;
2626 rep_param->responder_resources = 4;
2627 rep_param->initiator_depth = 4;
2628
2629 ret = ib_send_cm_rep(cm_id, rep_param);
2630 if (ret) {
2631 pr_err("sending SRP_LOGIN_REQ response failed"
2632 " (error code = %d)\n", ret);
2633 goto release_channel;
2634 }
2635
2636 spin_lock_irq(&sdev->spinlock);
2637 list_add_tail(&ch->list, &sdev->rch_list);
2638 spin_unlock_irq(&sdev->spinlock);
2639
2640 goto out;
2641
2642 release_channel:
2643 srpt_set_ch_state(ch, CH_RELEASING);
2644 transport_deregister_session_configfs(ch->sess);
2645
2646 deregister_session:
2647 transport_deregister_session(ch->sess);
2648 ch->sess = NULL;
2649
2650 destroy_ib:
2651 srpt_destroy_ch_ib(ch);
2652
2653 free_ring:
2654 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2655 ch->sport->sdev, ch->rq_size,
2656 ch->rsp_size, DMA_TO_DEVICE);
2657 free_ch:
2658 kfree(ch);
2659
2660 reject:
2661 rej->opcode = SRP_LOGIN_REJ;
2662 rej->tag = req->tag;
2663 rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2664 | SRP_BUF_FORMAT_INDIRECT);
2665
2666 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2667 (void *)rej, sizeof *rej);
2668
2669 out:
2670 kfree(rep_param);
2671 kfree(rsp);
2672 kfree(rej);
2673
2674 return ret;
2675 }
2676
2677 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2678 {
2679 pr_info("Received IB REJ for cm_id %p.\n", cm_id);
2680 srpt_drain_channel(cm_id);
2681 }
2682
2683 /**
2684 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2685 *
2686 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2687 * and that the recipient may begin transmitting (RTU = ready to use).
2688 */
2689 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2690 {
2691 struct srpt_rdma_ch *ch;
2692 int ret;
2693
2694 ch = srpt_find_channel(cm_id->context, cm_id);
2695 BUG_ON(!ch);
2696
2697 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2698 struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2699
2700 ret = srpt_ch_qp_rts(ch, ch->qp);
2701
2702 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2703 wait_list) {
2704 list_del(&ioctx->wait_list);
2705 srpt_handle_new_iu(ch, ioctx, NULL);
2706 }
2707 if (ret)
2708 srpt_close_ch(ch);
2709 }
2710 }
2711
2712 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2713 {
2714 pr_info("Received IB TimeWait exit for cm_id %p.\n", cm_id);
2715 srpt_drain_channel(cm_id);
2716 }
2717
2718 static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2719 {
2720 pr_info("Received IB REP error for cm_id %p.\n", cm_id);
2721 srpt_drain_channel(cm_id);
2722 }
2723
2724 /**
2725 * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2726 */
2727 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2728 {
2729 struct srpt_rdma_ch *ch;
2730 unsigned long flags;
2731 bool send_drep = false;
2732
2733 ch = srpt_find_channel(cm_id->context, cm_id);
2734 BUG_ON(!ch);
2735
2736 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2737
2738 spin_lock_irqsave(&ch->spinlock, flags);
2739 switch (ch->state) {
2740 case CH_CONNECTING:
2741 case CH_LIVE:
2742 send_drep = true;
2743 ch->state = CH_DISCONNECTING;
2744 break;
2745 case CH_DISCONNECTING:
2746 case CH_DRAINING:
2747 case CH_RELEASING:
2748 WARN(true, "unexpected channel state %d\n", ch->state);
2749 break;
2750 }
2751 spin_unlock_irqrestore(&ch->spinlock, flags);
2752
2753 if (send_drep) {
2754 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2755 pr_err("Sending IB DREP failed.\n");
2756 pr_info("Received DREQ and sent DREP for session %s.\n",
2757 ch->sess_name);
2758 }
2759 }
2760
2761 /**
2762 * srpt_cm_drep_recv() - Process reception of a DREP message.
2763 */
2764 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2765 {
2766 pr_info("Received InfiniBand DREP message for cm_id %p.\n", cm_id);
2767 srpt_drain_channel(cm_id);
2768 }
2769
2770 /**
2771 * srpt_cm_handler() - IB connection manager callback function.
2772 *
2773 * A non-zero return value will cause the caller destroy the CM ID.
2774 *
2775 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2776 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2777 * a non-zero value in any other case will trigger a race with the
2778 * ib_destroy_cm_id() call in srpt_release_channel().
2779 */
2780 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2781 {
2782 int ret;
2783
2784 ret = 0;
2785 switch (event->event) {
2786 case IB_CM_REQ_RECEIVED:
2787 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2788 event->private_data);
2789 break;
2790 case IB_CM_REJ_RECEIVED:
2791 srpt_cm_rej_recv(cm_id);
2792 break;
2793 case IB_CM_RTU_RECEIVED:
2794 case IB_CM_USER_ESTABLISHED:
2795 srpt_cm_rtu_recv(cm_id);
2796 break;
2797 case IB_CM_DREQ_RECEIVED:
2798 srpt_cm_dreq_recv(cm_id);
2799 break;
2800 case IB_CM_DREP_RECEIVED:
2801 srpt_cm_drep_recv(cm_id);
2802 break;
2803 case IB_CM_TIMEWAIT_EXIT:
2804 srpt_cm_timewait_exit(cm_id);
2805 break;
2806 case IB_CM_REP_ERROR:
2807 srpt_cm_rep_error(cm_id);
2808 break;
2809 case IB_CM_DREQ_ERROR:
2810 pr_info("Received IB DREQ ERROR event.\n");
2811 break;
2812 case IB_CM_MRA_RECEIVED:
2813 pr_info("Received IB MRA event\n");
2814 break;
2815 default:
2816 pr_err("received unrecognized IB CM event %d\n", event->event);
2817 break;
2818 }
2819
2820 return ret;
2821 }
2822
2823 /**
2824 * srpt_perform_rdmas() - Perform IB RDMA.
2825 *
2826 * Returns zero upon success or a negative number upon failure.
2827 */
2828 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2829 struct srpt_send_ioctx *ioctx)
2830 {
2831 struct ib_send_wr wr;
2832 struct ib_send_wr *bad_wr;
2833 struct rdma_iu *riu;
2834 int i;
2835 int ret;
2836 int sq_wr_avail;
2837 enum dma_data_direction dir;
2838 const int n_rdma = ioctx->n_rdma;
2839
2840 dir = ioctx->cmd.data_direction;
2841 if (dir == DMA_TO_DEVICE) {
2842 /* write */
2843 ret = -ENOMEM;
2844 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2845 if (sq_wr_avail < 0) {
2846 pr_warn("IB send queue full (needed %d)\n",
2847 n_rdma);
2848 goto out;
2849 }
2850 }
2851
2852 ioctx->rdma_aborted = false;
2853 ret = 0;
2854 riu = ioctx->rdma_ius;
2855 memset(&wr, 0, sizeof wr);
2856
2857 for (i = 0; i < n_rdma; ++i, ++riu) {
2858 if (dir == DMA_FROM_DEVICE) {
2859 wr.opcode = IB_WR_RDMA_WRITE;
2860 wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2861 SRPT_RDMA_WRITE_LAST :
2862 SRPT_RDMA_MID,
2863 ioctx->ioctx.index);
2864 } else {
2865 wr.opcode = IB_WR_RDMA_READ;
2866 wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2867 SRPT_RDMA_READ_LAST :
2868 SRPT_RDMA_MID,
2869 ioctx->ioctx.index);
2870 }
2871 wr.next = NULL;
2872 wr.wr.rdma.remote_addr = riu->raddr;
2873 wr.wr.rdma.rkey = riu->rkey;
2874 wr.num_sge = riu->sge_cnt;
2875 wr.sg_list = riu->sge;
2876
2877 /* only get completion event for the last rdma write */
2878 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
2879 wr.send_flags = IB_SEND_SIGNALED;
2880
2881 ret = ib_post_send(ch->qp, &wr, &bad_wr);
2882 if (ret)
2883 break;
2884 }
2885
2886 if (ret)
2887 pr_err("%s[%d]: ib_post_send() returned %d for %d/%d\n",
2888 __func__, __LINE__, ret, i, n_rdma);
2889 if (ret && i > 0) {
2890 wr.num_sge = 0;
2891 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
2892 wr.send_flags = IB_SEND_SIGNALED;
2893 while (ch->state == CH_LIVE &&
2894 ib_post_send(ch->qp, &wr, &bad_wr) != 0) {
2895 pr_info("Trying to abort failed RDMA transfer [%d]\n",
2896 ioctx->ioctx.index);
2897 msleep(1000);
2898 }
2899 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
2900 pr_info("Waiting until RDMA abort finished [%d]\n",
2901 ioctx->ioctx.index);
2902 msleep(1000);
2903 }
2904 }
2905 out:
2906 if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2907 atomic_add(n_rdma, &ch->sq_wr_avail);
2908 return ret;
2909 }
2910
2911 /**
2912 * srpt_xfer_data() - Start data transfer from initiator to target.
2913 */
2914 static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2915 struct srpt_send_ioctx *ioctx)
2916 {
2917 int ret;
2918
2919 ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2920 if (ret) {
2921 pr_err("%s[%d] ret=%d\n", __func__, __LINE__, ret);
2922 goto out;
2923 }
2924
2925 ret = srpt_perform_rdmas(ch, ioctx);
2926 if (ret) {
2927 if (ret == -EAGAIN || ret == -ENOMEM)
2928 pr_info("%s[%d] queue full -- ret=%d\n",
2929 __func__, __LINE__, ret);
2930 else
2931 pr_err("%s[%d] fatal error -- ret=%d\n",
2932 __func__, __LINE__, ret);
2933 goto out_unmap;
2934 }
2935
2936 out:
2937 return ret;
2938 out_unmap:
2939 srpt_unmap_sg_to_ib_sge(ch, ioctx);
2940 goto out;
2941 }
2942
2943 static int srpt_write_pending_status(struct se_cmd *se_cmd)
2944 {
2945 struct srpt_send_ioctx *ioctx;
2946
2947 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2948 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2949 }
2950
2951 /*
2952 * srpt_write_pending() - Start data transfer from initiator to target (write).
2953 */
2954 static int srpt_write_pending(struct se_cmd *se_cmd)
2955 {
2956 struct srpt_rdma_ch *ch;
2957 struct srpt_send_ioctx *ioctx;
2958 enum srpt_command_state new_state;
2959 enum rdma_ch_state ch_state;
2960 int ret;
2961
2962 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2963
2964 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2965 WARN_ON(new_state == SRPT_STATE_DONE);
2966
2967 ch = ioctx->ch;
2968 BUG_ON(!ch);
2969
2970 ch_state = srpt_get_ch_state(ch);
2971 switch (ch_state) {
2972 case CH_CONNECTING:
2973 WARN(true, "unexpected channel state %d\n", ch_state);
2974 ret = -EINVAL;
2975 goto out;
2976 case CH_LIVE:
2977 break;
2978 case CH_DISCONNECTING:
2979 case CH_DRAINING:
2980 case CH_RELEASING:
2981 pr_debug("cmd with tag %lld: channel disconnecting\n",
2982 ioctx->tag);
2983 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2984 ret = -EINVAL;
2985 goto out;
2986 }
2987 ret = srpt_xfer_data(ch, ioctx);
2988
2989 out:
2990 return ret;
2991 }
2992
2993 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2994 {
2995 switch (tcm_mgmt_status) {
2996 case TMR_FUNCTION_COMPLETE:
2997 return SRP_TSK_MGMT_SUCCESS;
2998 case TMR_FUNCTION_REJECTED:
2999 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
3000 }
3001 return SRP_TSK_MGMT_FAILED;
3002 }
3003
3004 /**
3005 * srpt_queue_response() - Transmits the response to a SCSI command.
3006 *
3007 * Callback function called by the TCM core. Must not block since it can be
3008 * invoked on the context of the IB completion handler.
3009 */
3010 static void srpt_queue_response(struct se_cmd *cmd)
3011 {
3012 struct srpt_rdma_ch *ch;
3013 struct srpt_send_ioctx *ioctx;
3014 enum srpt_command_state state;
3015 unsigned long flags;
3016 int ret;
3017 enum dma_data_direction dir;
3018 int resp_len;
3019 u8 srp_tm_status;
3020
3021 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3022 ch = ioctx->ch;
3023 BUG_ON(!ch);
3024
3025 spin_lock_irqsave(&ioctx->spinlock, flags);
3026 state = ioctx->state;
3027 switch (state) {
3028 case SRPT_STATE_NEW:
3029 case SRPT_STATE_DATA_IN:
3030 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
3031 break;
3032 case SRPT_STATE_MGMT:
3033 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
3034 break;
3035 default:
3036 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
3037 ch, ioctx->ioctx.index, ioctx->state);
3038 break;
3039 }
3040 spin_unlock_irqrestore(&ioctx->spinlock, flags);
3041
3042 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
3043 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
3044 atomic_inc(&ch->req_lim_delta);
3045 srpt_abort_cmd(ioctx);
3046 return;
3047 }
3048
3049 dir = ioctx->cmd.data_direction;
3050
3051 /* For read commands, transfer the data to the initiator. */
3052 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
3053 !ioctx->queue_status_only) {
3054 ret = srpt_xfer_data(ch, ioctx);
3055 if (ret) {
3056 pr_err("xfer_data failed for tag %llu\n",
3057 ioctx->tag);
3058 return;
3059 }
3060 }
3061
3062 if (state != SRPT_STATE_MGMT)
3063 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag,
3064 cmd->scsi_status);
3065 else {
3066 srp_tm_status
3067 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
3068 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
3069 ioctx->tag);
3070 }
3071 ret = srpt_post_send(ch, ioctx, resp_len);
3072 if (ret) {
3073 pr_err("sending cmd response failed for tag %llu\n",
3074 ioctx->tag);
3075 srpt_unmap_sg_to_ib_sge(ch, ioctx);
3076 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
3077 target_put_sess_cmd(&ioctx->cmd);
3078 }
3079 }
3080
3081 static int srpt_queue_data_in(struct se_cmd *cmd)
3082 {
3083 srpt_queue_response(cmd);
3084 return 0;
3085 }
3086
3087 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
3088 {
3089 srpt_queue_response(cmd);
3090 }
3091
3092 static void srpt_aborted_task(struct se_cmd *cmd)
3093 {
3094 struct srpt_send_ioctx *ioctx = container_of(cmd,
3095 struct srpt_send_ioctx, cmd);
3096
3097 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
3098 }
3099
3100 static int srpt_queue_status(struct se_cmd *cmd)
3101 {
3102 struct srpt_send_ioctx *ioctx;
3103
3104 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3105 BUG_ON(ioctx->sense_data != cmd->sense_buffer);
3106 if (cmd->se_cmd_flags &
3107 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
3108 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
3109 ioctx->queue_status_only = true;
3110 srpt_queue_response(cmd);
3111 return 0;
3112 }
3113
3114 static void srpt_refresh_port_work(struct work_struct *work)
3115 {
3116 struct srpt_port *sport = container_of(work, struct srpt_port, work);
3117
3118 srpt_refresh_port(sport);
3119 }
3120
3121 static int srpt_ch_list_empty(struct srpt_device *sdev)
3122 {
3123 int res;
3124
3125 spin_lock_irq(&sdev->spinlock);
3126 res = list_empty(&sdev->rch_list);
3127 spin_unlock_irq(&sdev->spinlock);
3128
3129 return res;
3130 }
3131
3132 /**
3133 * srpt_release_sdev() - Free the channel resources associated with a target.
3134 */
3135 static int srpt_release_sdev(struct srpt_device *sdev)
3136 {
3137 struct srpt_rdma_ch *ch, *tmp_ch;
3138 int res;
3139
3140 WARN_ON_ONCE(irqs_disabled());
3141
3142 BUG_ON(!sdev);
3143
3144 spin_lock_irq(&sdev->spinlock);
3145 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
3146 __srpt_close_ch(ch);
3147 spin_unlock_irq(&sdev->spinlock);
3148
3149 res = wait_event_interruptible(sdev->ch_releaseQ,
3150 srpt_ch_list_empty(sdev));
3151 if (res)
3152 pr_err("%s: interrupted.\n", __func__);
3153
3154 return 0;
3155 }
3156
3157 static struct srpt_port *__srpt_lookup_port(const char *name)
3158 {
3159 struct ib_device *dev;
3160 struct srpt_device *sdev;
3161 struct srpt_port *sport;
3162 int i;
3163
3164 list_for_each_entry(sdev, &srpt_dev_list, list) {
3165 dev = sdev->device;
3166 if (!dev)
3167 continue;
3168
3169 for (i = 0; i < dev->phys_port_cnt; i++) {
3170 sport = &sdev->port[i];
3171
3172 if (!strcmp(sport->port_guid, name))
3173 return sport;
3174 }
3175 }
3176
3177 return NULL;
3178 }
3179
3180 static struct srpt_port *srpt_lookup_port(const char *name)
3181 {
3182 struct srpt_port *sport;
3183
3184 spin_lock(&srpt_dev_lock);
3185 sport = __srpt_lookup_port(name);
3186 spin_unlock(&srpt_dev_lock);
3187
3188 return sport;
3189 }
3190
3191 /**
3192 * srpt_add_one() - Infiniband device addition callback function.
3193 */
3194 static void srpt_add_one(struct ib_device *device)
3195 {
3196 struct srpt_device *sdev;
3197 struct srpt_port *sport;
3198 struct ib_srq_init_attr srq_attr;
3199 int i;
3200
3201 pr_debug("device = %p, device->dma_ops = %p\n", device,
3202 device->dma_ops);
3203
3204 sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3205 if (!sdev)
3206 goto err;
3207
3208 sdev->device = device;
3209 INIT_LIST_HEAD(&sdev->rch_list);
3210 init_waitqueue_head(&sdev->ch_releaseQ);
3211 spin_lock_init(&sdev->spinlock);
3212
3213 if (ib_query_device(device, &sdev->dev_attr))
3214 goto free_dev;
3215
3216 sdev->pd = ib_alloc_pd(device);
3217 if (IS_ERR(sdev->pd))
3218 goto free_dev;
3219
3220 sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE);
3221 if (IS_ERR(sdev->mr))
3222 goto err_pd;
3223
3224 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
3225
3226 srq_attr.event_handler = srpt_srq_event;
3227 srq_attr.srq_context = (void *)sdev;
3228 srq_attr.attr.max_wr = sdev->srq_size;
3229 srq_attr.attr.max_sge = 1;
3230 srq_attr.attr.srq_limit = 0;
3231 srq_attr.srq_type = IB_SRQT_BASIC;
3232
3233 sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3234 if (IS_ERR(sdev->srq))
3235 goto err_mr;
3236
3237 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3238 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
3239 device->name);
3240
3241 if (!srpt_service_guid)
3242 srpt_service_guid = be64_to_cpu(device->node_guid);
3243
3244 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3245 if (IS_ERR(sdev->cm_id))
3246 goto err_srq;
3247
3248 /* print out target login information */
3249 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3250 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3251 srpt_service_guid, srpt_service_guid);
3252
3253 /*
3254 * We do not have a consistent service_id (ie. also id_ext of target_id)
3255 * to identify this target. We currently use the guid of the first HCA
3256 * in the system as service_id; therefore, the target_id will change
3257 * if this HCA is gone bad and replaced by different HCA
3258 */
3259 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL))
3260 goto err_cm;
3261
3262 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3263 srpt_event_handler);
3264 if (ib_register_event_handler(&sdev->event_handler))
3265 goto err_cm;
3266
3267 sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3268 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3269 sizeof(*sdev->ioctx_ring[0]),
3270 srp_max_req_size, DMA_FROM_DEVICE);
3271 if (!sdev->ioctx_ring)
3272 goto err_event;
3273
3274 for (i = 0; i < sdev->srq_size; ++i)
3275 srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3276
3277 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
3278
3279 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3280 sport = &sdev->port[i - 1];
3281 sport->sdev = sdev;
3282 sport->port = i;
3283 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3284 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3285 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3286 INIT_WORK(&sport->work, srpt_refresh_port_work);
3287 INIT_LIST_HEAD(&sport->port_acl_list);
3288 spin_lock_init(&sport->port_acl_lock);
3289
3290 if (srpt_refresh_port(sport)) {
3291 pr_err("MAD registration failed for %s-%d.\n",
3292 srpt_sdev_name(sdev), i);
3293 goto err_ring;
3294 }
3295 snprintf(sport->port_guid, sizeof(sport->port_guid),
3296 "0x%016llx%016llx",
3297 be64_to_cpu(sport->gid.global.subnet_prefix),
3298 be64_to_cpu(sport->gid.global.interface_id));
3299 }
3300
3301 spin_lock(&srpt_dev_lock);
3302 list_add_tail(&sdev->list, &srpt_dev_list);
3303 spin_unlock(&srpt_dev_lock);
3304
3305 out:
3306 ib_set_client_data(device, &srpt_client, sdev);
3307 pr_debug("added %s.\n", device->name);
3308 return;
3309
3310 err_ring:
3311 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3312 sdev->srq_size, srp_max_req_size,
3313 DMA_FROM_DEVICE);
3314 err_event:
3315 ib_unregister_event_handler(&sdev->event_handler);
3316 err_cm:
3317 ib_destroy_cm_id(sdev->cm_id);
3318 err_srq:
3319 ib_destroy_srq(sdev->srq);
3320 err_mr:
3321 ib_dereg_mr(sdev->mr);
3322 err_pd:
3323 ib_dealloc_pd(sdev->pd);
3324 free_dev:
3325 kfree(sdev);
3326 err:
3327 sdev = NULL;
3328 pr_info("%s(%s) failed.\n", __func__, device->name);
3329 goto out;
3330 }
3331
3332 /**
3333 * srpt_remove_one() - InfiniBand device removal callback function.
3334 */
3335 static void srpt_remove_one(struct ib_device *device)
3336 {
3337 struct srpt_device *sdev;
3338 int i;
3339
3340 sdev = ib_get_client_data(device, &srpt_client);
3341 if (!sdev) {
3342 pr_info("%s(%s): nothing to do.\n", __func__, device->name);
3343 return;
3344 }
3345
3346 srpt_unregister_mad_agent(sdev);
3347
3348 ib_unregister_event_handler(&sdev->event_handler);
3349
3350 /* Cancel any work queued by the just unregistered IB event handler. */
3351 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3352 cancel_work_sync(&sdev->port[i].work);
3353
3354 ib_destroy_cm_id(sdev->cm_id);
3355
3356 /*
3357 * Unregistering a target must happen after destroying sdev->cm_id
3358 * such that no new SRP_LOGIN_REQ information units can arrive while
3359 * destroying the target.
3360 */
3361 spin_lock(&srpt_dev_lock);
3362 list_del(&sdev->list);
3363 spin_unlock(&srpt_dev_lock);
3364 srpt_release_sdev(sdev);
3365
3366 ib_destroy_srq(sdev->srq);
3367 ib_dereg_mr(sdev->mr);
3368 ib_dealloc_pd(sdev->pd);
3369
3370 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3371 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3372 sdev->ioctx_ring = NULL;
3373 kfree(sdev);
3374 }
3375
3376 static struct ib_client srpt_client = {
3377 .name = DRV_NAME,
3378 .add = srpt_add_one,
3379 .remove = srpt_remove_one
3380 };
3381
3382 static int srpt_check_true(struct se_portal_group *se_tpg)
3383 {
3384 return 1;
3385 }
3386
3387 static int srpt_check_false(struct se_portal_group *se_tpg)
3388 {
3389 return 0;
3390 }
3391
3392 static char *srpt_get_fabric_name(void)
3393 {
3394 return "srpt";
3395 }
3396
3397 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3398 {
3399 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3400
3401 return sport->port_guid;
3402 }
3403
3404 static u16 srpt_get_tag(struct se_portal_group *tpg)
3405 {
3406 return 1;
3407 }
3408
3409 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3410 {
3411 return 1;
3412 }
3413
3414 static void srpt_release_cmd(struct se_cmd *se_cmd)
3415 {
3416 struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3417 struct srpt_send_ioctx, cmd);
3418 struct srpt_rdma_ch *ch = ioctx->ch;
3419 unsigned long flags;
3420
3421 WARN_ON(ioctx->state != SRPT_STATE_DONE);
3422 WARN_ON(ioctx->mapped_sg_count != 0);
3423
3424 if (ioctx->n_rbuf > 1) {
3425 kfree(ioctx->rbufs);
3426 ioctx->rbufs = NULL;
3427 ioctx->n_rbuf = 0;
3428 }
3429
3430 spin_lock_irqsave(&ch->spinlock, flags);
3431 list_add(&ioctx->free_list, &ch->free_list);
3432 spin_unlock_irqrestore(&ch->spinlock, flags);
3433 }
3434
3435 /**
3436 * srpt_close_session() - Forcibly close a session.
3437 *
3438 * Callback function invoked by the TCM core to clean up sessions associated
3439 * with a node ACL when the user invokes
3440 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3441 */
3442 static void srpt_close_session(struct se_session *se_sess)
3443 {
3444 DECLARE_COMPLETION_ONSTACK(release_done);
3445 struct srpt_rdma_ch *ch;
3446 struct srpt_device *sdev;
3447 unsigned long res;
3448
3449 ch = se_sess->fabric_sess_ptr;
3450 WARN_ON(ch->sess != se_sess);
3451
3452 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3453
3454 sdev = ch->sport->sdev;
3455 spin_lock_irq(&sdev->spinlock);
3456 BUG_ON(ch->release_done);
3457 ch->release_done = &release_done;
3458 __srpt_close_ch(ch);
3459 spin_unlock_irq(&sdev->spinlock);
3460
3461 res = wait_for_completion_timeout(&release_done, 60 * HZ);
3462 WARN_ON(res == 0);
3463 }
3464
3465 /**
3466 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3467 *
3468 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3469 * This object represents an arbitrary integer used to uniquely identify a
3470 * particular attached remote initiator port to a particular SCSI target port
3471 * within a particular SCSI target device within a particular SCSI instance.
3472 */
3473 static u32 srpt_sess_get_index(struct se_session *se_sess)
3474 {
3475 return 0;
3476 }
3477
3478 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3479 {
3480 }
3481
3482 static u32 srpt_get_task_tag(struct se_cmd *se_cmd)
3483 {
3484 struct srpt_send_ioctx *ioctx;
3485
3486 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3487 return ioctx->tag;
3488 }
3489
3490 /* Note: only used from inside debug printk's by the TCM core. */
3491 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3492 {
3493 struct srpt_send_ioctx *ioctx;
3494
3495 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3496 return srpt_get_cmd_state(ioctx);
3497 }
3498
3499 /**
3500 * srpt_parse_i_port_id() - Parse an initiator port ID.
3501 * @name: ASCII representation of a 128-bit initiator port ID.
3502 * @i_port_id: Binary 128-bit port ID.
3503 */
3504 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3505 {
3506 const char *p;
3507 unsigned len, count, leading_zero_bytes;
3508 int ret, rc;
3509
3510 p = name;
3511 if (strncasecmp(p, "0x", 2) == 0)
3512 p += 2;
3513 ret = -EINVAL;
3514 len = strlen(p);
3515 if (len % 2)
3516 goto out;
3517 count = min(len / 2, 16U);
3518 leading_zero_bytes = 16 - count;
3519 memset(i_port_id, 0, leading_zero_bytes);
3520 rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
3521 if (rc < 0)
3522 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
3523 ret = 0;
3524 out:
3525 return ret;
3526 }
3527
3528 /*
3529 * configfs callback function invoked for
3530 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3531 */
3532 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3533 {
3534 struct srpt_port *sport =
3535 container_of(se_nacl->se_tpg, struct srpt_port, port_tpg_1);
3536 struct srpt_node_acl *nacl =
3537 container_of(se_nacl, struct srpt_node_acl, nacl);
3538 u8 i_port_id[16];
3539
3540 if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3541 pr_err("invalid initiator port ID %s\n", name);
3542 return -EINVAL;
3543 }
3544
3545 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
3546 nacl->sport = sport;
3547
3548 spin_lock_irq(&sport->port_acl_lock);
3549 list_add_tail(&nacl->list, &sport->port_acl_list);
3550 spin_unlock_irq(&sport->port_acl_lock);
3551
3552 return 0;
3553 }
3554
3555 /*
3556 * configfs callback function invoked for
3557 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3558 */
3559 static void srpt_cleanup_nodeacl(struct se_node_acl *se_nacl)
3560 {
3561 struct srpt_node_acl *nacl =
3562 container_of(se_nacl, struct srpt_node_acl, nacl);
3563 struct srpt_port *sport = nacl->sport;
3564
3565 spin_lock_irq(&sport->port_acl_lock);
3566 list_del(&nacl->list);
3567 spin_unlock_irq(&sport->port_acl_lock);
3568 }
3569
3570 static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size(
3571 struct se_portal_group *se_tpg,
3572 char *page)
3573 {
3574 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3575
3576 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3577 }
3578
3579 static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size(
3580 struct se_portal_group *se_tpg,
3581 const char *page,
3582 size_t count)
3583 {
3584 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3585 unsigned long val;
3586 int ret;
3587
3588 ret = kstrtoul(page, 0, &val);
3589 if (ret < 0) {
3590 pr_err("kstrtoul() failed with ret: %d\n", ret);
3591 return -EINVAL;
3592 }
3593 if (val > MAX_SRPT_RDMA_SIZE) {
3594 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3595 MAX_SRPT_RDMA_SIZE);
3596 return -EINVAL;
3597 }
3598 if (val < DEFAULT_MAX_RDMA_SIZE) {
3599 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3600 val, DEFAULT_MAX_RDMA_SIZE);
3601 return -EINVAL;
3602 }
3603 sport->port_attrib.srp_max_rdma_size = val;
3604
3605 return count;
3606 }
3607
3608 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR);
3609
3610 static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size(
3611 struct se_portal_group *se_tpg,
3612 char *page)
3613 {
3614 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3615
3616 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3617 }
3618
3619 static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size(
3620 struct se_portal_group *se_tpg,
3621 const char *page,
3622 size_t count)
3623 {
3624 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3625 unsigned long val;
3626 int ret;
3627
3628 ret = kstrtoul(page, 0, &val);
3629 if (ret < 0) {
3630 pr_err("kstrtoul() failed with ret: %d\n", ret);
3631 return -EINVAL;
3632 }
3633 if (val > MAX_SRPT_RSP_SIZE) {
3634 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3635 MAX_SRPT_RSP_SIZE);
3636 return -EINVAL;
3637 }
3638 if (val < MIN_MAX_RSP_SIZE) {
3639 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3640 MIN_MAX_RSP_SIZE);
3641 return -EINVAL;
3642 }
3643 sport->port_attrib.srp_max_rsp_size = val;
3644
3645 return count;
3646 }
3647
3648 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR);
3649
3650 static ssize_t srpt_tpg_attrib_show_srp_sq_size(
3651 struct se_portal_group *se_tpg,
3652 char *page)
3653 {
3654 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3655
3656 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3657 }
3658
3659 static ssize_t srpt_tpg_attrib_store_srp_sq_size(
3660 struct se_portal_group *se_tpg,
3661 const char *page,
3662 size_t count)
3663 {
3664 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3665 unsigned long val;
3666 int ret;
3667
3668 ret = kstrtoul(page, 0, &val);
3669 if (ret < 0) {
3670 pr_err("kstrtoul() failed with ret: %d\n", ret);
3671 return -EINVAL;
3672 }
3673 if (val > MAX_SRPT_SRQ_SIZE) {
3674 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3675 MAX_SRPT_SRQ_SIZE);
3676 return -EINVAL;
3677 }
3678 if (val < MIN_SRPT_SRQ_SIZE) {
3679 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3680 MIN_SRPT_SRQ_SIZE);
3681 return -EINVAL;
3682 }
3683 sport->port_attrib.srp_sq_size = val;
3684
3685 return count;
3686 }
3687
3688 TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR);
3689
3690 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3691 &srpt_tpg_attrib_srp_max_rdma_size.attr,
3692 &srpt_tpg_attrib_srp_max_rsp_size.attr,
3693 &srpt_tpg_attrib_srp_sq_size.attr,
3694 NULL,
3695 };
3696
3697 static ssize_t srpt_tpg_show_enable(
3698 struct se_portal_group *se_tpg,
3699 char *page)
3700 {
3701 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3702
3703 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3704 }
3705
3706 static ssize_t srpt_tpg_store_enable(
3707 struct se_portal_group *se_tpg,
3708 const char *page,
3709 size_t count)
3710 {
3711 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3712 unsigned long tmp;
3713 int ret;
3714
3715 ret = kstrtoul(page, 0, &tmp);
3716 if (ret < 0) {
3717 pr_err("Unable to extract srpt_tpg_store_enable\n");
3718 return -EINVAL;
3719 }
3720
3721 if ((tmp != 0) && (tmp != 1)) {
3722 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3723 return -EINVAL;
3724 }
3725 if (tmp == 1)
3726 sport->enabled = true;
3727 else
3728 sport->enabled = false;
3729
3730 return count;
3731 }
3732
3733 TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR);
3734
3735 static struct configfs_attribute *srpt_tpg_attrs[] = {
3736 &srpt_tpg_enable.attr,
3737 NULL,
3738 };
3739
3740 /**
3741 * configfs callback invoked for
3742 * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3743 */
3744 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3745 struct config_group *group,
3746 const char *name)
3747 {
3748 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3749 int res;
3750
3751 /* Initialize sport->port_wwn and sport->port_tpg_1 */
3752 res = core_tpg_register(&srpt_template, &sport->port_wwn,
3753 &sport->port_tpg_1, SCSI_PROTOCOL_SRP);
3754 if (res)
3755 return ERR_PTR(res);
3756
3757 return &sport->port_tpg_1;
3758 }
3759
3760 /**
3761 * configfs callback invoked for
3762 * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3763 */
3764 static void srpt_drop_tpg(struct se_portal_group *tpg)
3765 {
3766 struct srpt_port *sport = container_of(tpg,
3767 struct srpt_port, port_tpg_1);
3768
3769 sport->enabled = false;
3770 core_tpg_deregister(&sport->port_tpg_1);
3771 }
3772
3773 /**
3774 * configfs callback invoked for
3775 * mkdir /sys/kernel/config/target/$driver/$port
3776 */
3777 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3778 struct config_group *group,
3779 const char *name)
3780 {
3781 struct srpt_port *sport;
3782 int ret;
3783
3784 sport = srpt_lookup_port(name);
3785 pr_debug("make_tport(%s)\n", name);
3786 ret = -EINVAL;
3787 if (!sport)
3788 goto err;
3789
3790 return &sport->port_wwn;
3791
3792 err:
3793 return ERR_PTR(ret);
3794 }
3795
3796 /**
3797 * configfs callback invoked for
3798 * rmdir /sys/kernel/config/target/$driver/$port
3799 */
3800 static void srpt_drop_tport(struct se_wwn *wwn)
3801 {
3802 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3803
3804 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3805 }
3806
3807 static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf,
3808 char *buf)
3809 {
3810 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3811 }
3812
3813 TF_WWN_ATTR_RO(srpt, version);
3814
3815 static struct configfs_attribute *srpt_wwn_attrs[] = {
3816 &srpt_wwn_version.attr,
3817 NULL,
3818 };
3819
3820 static const struct target_core_fabric_ops srpt_template = {
3821 .module = THIS_MODULE,
3822 .name = "srpt",
3823 .node_acl_size = sizeof(struct srpt_node_acl),
3824 .get_fabric_name = srpt_get_fabric_name,
3825 .tpg_get_wwn = srpt_get_fabric_wwn,
3826 .tpg_get_tag = srpt_get_tag,
3827 .tpg_check_demo_mode = srpt_check_false,
3828 .tpg_check_demo_mode_cache = srpt_check_true,
3829 .tpg_check_demo_mode_write_protect = srpt_check_true,
3830 .tpg_check_prod_mode_write_protect = srpt_check_false,
3831 .tpg_get_inst_index = srpt_tpg_get_inst_index,
3832 .release_cmd = srpt_release_cmd,
3833 .check_stop_free = srpt_check_stop_free,
3834 .shutdown_session = srpt_shutdown_session,
3835 .close_session = srpt_close_session,
3836 .sess_get_index = srpt_sess_get_index,
3837 .sess_get_initiator_sid = NULL,
3838 .write_pending = srpt_write_pending,
3839 .write_pending_status = srpt_write_pending_status,
3840 .set_default_node_attributes = srpt_set_default_node_attrs,
3841 .get_task_tag = srpt_get_task_tag,
3842 .get_cmd_state = srpt_get_tcm_cmd_state,
3843 .queue_data_in = srpt_queue_data_in,
3844 .queue_status = srpt_queue_status,
3845 .queue_tm_rsp = srpt_queue_tm_rsp,
3846 .aborted_task = srpt_aborted_task,
3847 /*
3848 * Setup function pointers for generic logic in
3849 * target_core_fabric_configfs.c
3850 */
3851 .fabric_make_wwn = srpt_make_tport,
3852 .fabric_drop_wwn = srpt_drop_tport,
3853 .fabric_make_tpg = srpt_make_tpg,
3854 .fabric_drop_tpg = srpt_drop_tpg,
3855 .fabric_init_nodeacl = srpt_init_nodeacl,
3856 .fabric_cleanup_nodeacl = srpt_cleanup_nodeacl,
3857
3858 .tfc_wwn_attrs = srpt_wwn_attrs,
3859 .tfc_tpg_base_attrs = srpt_tpg_attrs,
3860 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs,
3861 };
3862
3863 /**
3864 * srpt_init_module() - Kernel module initialization.
3865 *
3866 * Note: Since ib_register_client() registers callback functions, and since at
3867 * least one of these callback functions (srpt_add_one()) calls target core
3868 * functions, this driver must be registered with the target core before
3869 * ib_register_client() is called.
3870 */
3871 static int __init srpt_init_module(void)
3872 {
3873 int ret;
3874
3875 ret = -EINVAL;
3876 if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3877 pr_err("invalid value %d for kernel module parameter"
3878 " srp_max_req_size -- must be at least %d.\n",
3879 srp_max_req_size, MIN_MAX_REQ_SIZE);
3880 goto out;
3881 }
3882
3883 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3884 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3885 pr_err("invalid value %d for kernel module parameter"
3886 " srpt_srq_size -- must be in the range [%d..%d].\n",
3887 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3888 goto out;
3889 }
3890
3891 ret = target_register_template(&srpt_template);
3892 if (ret)
3893 goto out;
3894
3895 ret = ib_register_client(&srpt_client);
3896 if (ret) {
3897 pr_err("couldn't register IB client\n");
3898 goto out_unregister_target;
3899 }
3900
3901 return 0;
3902
3903 out_unregister_target:
3904 target_unregister_template(&srpt_template);
3905 out:
3906 return ret;
3907 }
3908
3909 static void __exit srpt_cleanup_module(void)
3910 {
3911 ib_unregister_client(&srpt_client);
3912 target_unregister_template(&srpt_template);
3913 }
3914
3915 module_init(srpt_init_module);
3916 module_exit(srpt_cleanup_module);
This page took 0.112358 seconds and 5 git commands to generate.