Input: sparse-keymap - implement safer freeing of the keymap
[deliverable/linux.git] / drivers / input / input.c
1 /*
2 * The input core
3 *
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
6
7 /*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
11 */
12
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/input.h>
16 #include <linux/module.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include <linux/smp_lock.h>
27 #include "input-compat.h"
28
29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30 MODULE_DESCRIPTION("Input core");
31 MODULE_LICENSE("GPL");
32
33 #define INPUT_DEVICES 256
34
35 /*
36 * EV_ABS events which should not be cached are listed here.
37 */
38 static unsigned int input_abs_bypass_init_data[] __initdata = {
39 ABS_MT_TOUCH_MAJOR,
40 ABS_MT_TOUCH_MINOR,
41 ABS_MT_WIDTH_MAJOR,
42 ABS_MT_WIDTH_MINOR,
43 ABS_MT_ORIENTATION,
44 ABS_MT_POSITION_X,
45 ABS_MT_POSITION_Y,
46 ABS_MT_TOOL_TYPE,
47 ABS_MT_BLOB_ID,
48 ABS_MT_TRACKING_ID,
49 ABS_MT_PRESSURE,
50 0
51 };
52 static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
53
54 static LIST_HEAD(input_dev_list);
55 static LIST_HEAD(input_handler_list);
56
57 /*
58 * input_mutex protects access to both input_dev_list and input_handler_list.
59 * This also causes input_[un]register_device and input_[un]register_handler
60 * be mutually exclusive which simplifies locking in drivers implementing
61 * input handlers.
62 */
63 static DEFINE_MUTEX(input_mutex);
64
65 static struct input_handler *input_table[8];
66
67 static inline int is_event_supported(unsigned int code,
68 unsigned long *bm, unsigned int max)
69 {
70 return code <= max && test_bit(code, bm);
71 }
72
73 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
74 {
75 if (fuzz) {
76 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
77 return old_val;
78
79 if (value > old_val - fuzz && value < old_val + fuzz)
80 return (old_val * 3 + value) / 4;
81
82 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
83 return (old_val + value) / 2;
84 }
85
86 return value;
87 }
88
89 /*
90 * Pass event first through all filters and then, if event has not been
91 * filtered out, through all open handles. This function is called with
92 * dev->event_lock held and interrupts disabled.
93 */
94 static void input_pass_event(struct input_dev *dev,
95 unsigned int type, unsigned int code, int value)
96 {
97 struct input_handler *handler;
98 struct input_handle *handle;
99
100 rcu_read_lock();
101
102 handle = rcu_dereference(dev->grab);
103 if (handle)
104 handle->handler->event(handle, type, code, value);
105 else {
106 bool filtered = false;
107
108 list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
109 if (!handle->open)
110 continue;
111
112 handler = handle->handler;
113 if (!handler->filter) {
114 if (filtered)
115 break;
116
117 handler->event(handle, type, code, value);
118
119 } else if (handler->filter(handle, type, code, value))
120 filtered = true;
121 }
122 }
123
124 rcu_read_unlock();
125 }
126
127 /*
128 * Generate software autorepeat event. Note that we take
129 * dev->event_lock here to avoid racing with input_event
130 * which may cause keys get "stuck".
131 */
132 static void input_repeat_key(unsigned long data)
133 {
134 struct input_dev *dev = (void *) data;
135 unsigned long flags;
136
137 spin_lock_irqsave(&dev->event_lock, flags);
138
139 if (test_bit(dev->repeat_key, dev->key) &&
140 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
141
142 input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
143
144 if (dev->sync) {
145 /*
146 * Only send SYN_REPORT if we are not in a middle
147 * of driver parsing a new hardware packet.
148 * Otherwise assume that the driver will send
149 * SYN_REPORT once it's done.
150 */
151 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
152 }
153
154 if (dev->rep[REP_PERIOD])
155 mod_timer(&dev->timer, jiffies +
156 msecs_to_jiffies(dev->rep[REP_PERIOD]));
157 }
158
159 spin_unlock_irqrestore(&dev->event_lock, flags);
160 }
161
162 static void input_start_autorepeat(struct input_dev *dev, int code)
163 {
164 if (test_bit(EV_REP, dev->evbit) &&
165 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
166 dev->timer.data) {
167 dev->repeat_key = code;
168 mod_timer(&dev->timer,
169 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
170 }
171 }
172
173 static void input_stop_autorepeat(struct input_dev *dev)
174 {
175 del_timer(&dev->timer);
176 }
177
178 #define INPUT_IGNORE_EVENT 0
179 #define INPUT_PASS_TO_HANDLERS 1
180 #define INPUT_PASS_TO_DEVICE 2
181 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
182
183 static void input_handle_event(struct input_dev *dev,
184 unsigned int type, unsigned int code, int value)
185 {
186 int disposition = INPUT_IGNORE_EVENT;
187
188 switch (type) {
189
190 case EV_SYN:
191 switch (code) {
192 case SYN_CONFIG:
193 disposition = INPUT_PASS_TO_ALL;
194 break;
195
196 case SYN_REPORT:
197 if (!dev->sync) {
198 dev->sync = 1;
199 disposition = INPUT_PASS_TO_HANDLERS;
200 }
201 break;
202 case SYN_MT_REPORT:
203 dev->sync = 0;
204 disposition = INPUT_PASS_TO_HANDLERS;
205 break;
206 }
207 break;
208
209 case EV_KEY:
210 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
211 !!test_bit(code, dev->key) != value) {
212
213 if (value != 2) {
214 __change_bit(code, dev->key);
215 if (value)
216 input_start_autorepeat(dev, code);
217 else
218 input_stop_autorepeat(dev);
219 }
220
221 disposition = INPUT_PASS_TO_HANDLERS;
222 }
223 break;
224
225 case EV_SW:
226 if (is_event_supported(code, dev->swbit, SW_MAX) &&
227 !!test_bit(code, dev->sw) != value) {
228
229 __change_bit(code, dev->sw);
230 disposition = INPUT_PASS_TO_HANDLERS;
231 }
232 break;
233
234 case EV_ABS:
235 if (is_event_supported(code, dev->absbit, ABS_MAX)) {
236
237 if (test_bit(code, input_abs_bypass)) {
238 disposition = INPUT_PASS_TO_HANDLERS;
239 break;
240 }
241
242 value = input_defuzz_abs_event(value,
243 dev->abs[code], dev->absfuzz[code]);
244
245 if (dev->abs[code] != value) {
246 dev->abs[code] = value;
247 disposition = INPUT_PASS_TO_HANDLERS;
248 }
249 }
250 break;
251
252 case EV_REL:
253 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
254 disposition = INPUT_PASS_TO_HANDLERS;
255
256 break;
257
258 case EV_MSC:
259 if (is_event_supported(code, dev->mscbit, MSC_MAX))
260 disposition = INPUT_PASS_TO_ALL;
261
262 break;
263
264 case EV_LED:
265 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
266 !!test_bit(code, dev->led) != value) {
267
268 __change_bit(code, dev->led);
269 disposition = INPUT_PASS_TO_ALL;
270 }
271 break;
272
273 case EV_SND:
274 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
275
276 if (!!test_bit(code, dev->snd) != !!value)
277 __change_bit(code, dev->snd);
278 disposition = INPUT_PASS_TO_ALL;
279 }
280 break;
281
282 case EV_REP:
283 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
284 dev->rep[code] = value;
285 disposition = INPUT_PASS_TO_ALL;
286 }
287 break;
288
289 case EV_FF:
290 if (value >= 0)
291 disposition = INPUT_PASS_TO_ALL;
292 break;
293
294 case EV_PWR:
295 disposition = INPUT_PASS_TO_ALL;
296 break;
297 }
298
299 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
300 dev->sync = 0;
301
302 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
303 dev->event(dev, type, code, value);
304
305 if (disposition & INPUT_PASS_TO_HANDLERS)
306 input_pass_event(dev, type, code, value);
307 }
308
309 /**
310 * input_event() - report new input event
311 * @dev: device that generated the event
312 * @type: type of the event
313 * @code: event code
314 * @value: value of the event
315 *
316 * This function should be used by drivers implementing various input
317 * devices to report input events. See also input_inject_event().
318 *
319 * NOTE: input_event() may be safely used right after input device was
320 * allocated with input_allocate_device(), even before it is registered
321 * with input_register_device(), but the event will not reach any of the
322 * input handlers. Such early invocation of input_event() may be used
323 * to 'seed' initial state of a switch or initial position of absolute
324 * axis, etc.
325 */
326 void input_event(struct input_dev *dev,
327 unsigned int type, unsigned int code, int value)
328 {
329 unsigned long flags;
330
331 if (is_event_supported(type, dev->evbit, EV_MAX)) {
332
333 spin_lock_irqsave(&dev->event_lock, flags);
334 add_input_randomness(type, code, value);
335 input_handle_event(dev, type, code, value);
336 spin_unlock_irqrestore(&dev->event_lock, flags);
337 }
338 }
339 EXPORT_SYMBOL(input_event);
340
341 /**
342 * input_inject_event() - send input event from input handler
343 * @handle: input handle to send event through
344 * @type: type of the event
345 * @code: event code
346 * @value: value of the event
347 *
348 * Similar to input_event() but will ignore event if device is
349 * "grabbed" and handle injecting event is not the one that owns
350 * the device.
351 */
352 void input_inject_event(struct input_handle *handle,
353 unsigned int type, unsigned int code, int value)
354 {
355 struct input_dev *dev = handle->dev;
356 struct input_handle *grab;
357 unsigned long flags;
358
359 if (is_event_supported(type, dev->evbit, EV_MAX)) {
360 spin_lock_irqsave(&dev->event_lock, flags);
361
362 rcu_read_lock();
363 grab = rcu_dereference(dev->grab);
364 if (!grab || grab == handle)
365 input_handle_event(dev, type, code, value);
366 rcu_read_unlock();
367
368 spin_unlock_irqrestore(&dev->event_lock, flags);
369 }
370 }
371 EXPORT_SYMBOL(input_inject_event);
372
373 /**
374 * input_grab_device - grabs device for exclusive use
375 * @handle: input handle that wants to own the device
376 *
377 * When a device is grabbed by an input handle all events generated by
378 * the device are delivered only to this handle. Also events injected
379 * by other input handles are ignored while device is grabbed.
380 */
381 int input_grab_device(struct input_handle *handle)
382 {
383 struct input_dev *dev = handle->dev;
384 int retval;
385
386 retval = mutex_lock_interruptible(&dev->mutex);
387 if (retval)
388 return retval;
389
390 if (dev->grab) {
391 retval = -EBUSY;
392 goto out;
393 }
394
395 rcu_assign_pointer(dev->grab, handle);
396 synchronize_rcu();
397
398 out:
399 mutex_unlock(&dev->mutex);
400 return retval;
401 }
402 EXPORT_SYMBOL(input_grab_device);
403
404 static void __input_release_device(struct input_handle *handle)
405 {
406 struct input_dev *dev = handle->dev;
407
408 if (dev->grab == handle) {
409 rcu_assign_pointer(dev->grab, NULL);
410 /* Make sure input_pass_event() notices that grab is gone */
411 synchronize_rcu();
412
413 list_for_each_entry(handle, &dev->h_list, d_node)
414 if (handle->open && handle->handler->start)
415 handle->handler->start(handle);
416 }
417 }
418
419 /**
420 * input_release_device - release previously grabbed device
421 * @handle: input handle that owns the device
422 *
423 * Releases previously grabbed device so that other input handles can
424 * start receiving input events. Upon release all handlers attached
425 * to the device have their start() method called so they have a change
426 * to synchronize device state with the rest of the system.
427 */
428 void input_release_device(struct input_handle *handle)
429 {
430 struct input_dev *dev = handle->dev;
431
432 mutex_lock(&dev->mutex);
433 __input_release_device(handle);
434 mutex_unlock(&dev->mutex);
435 }
436 EXPORT_SYMBOL(input_release_device);
437
438 /**
439 * input_open_device - open input device
440 * @handle: handle through which device is being accessed
441 *
442 * This function should be called by input handlers when they
443 * want to start receive events from given input device.
444 */
445 int input_open_device(struct input_handle *handle)
446 {
447 struct input_dev *dev = handle->dev;
448 int retval;
449
450 retval = mutex_lock_interruptible(&dev->mutex);
451 if (retval)
452 return retval;
453
454 if (dev->going_away) {
455 retval = -ENODEV;
456 goto out;
457 }
458
459 handle->open++;
460
461 if (!dev->users++ && dev->open)
462 retval = dev->open(dev);
463
464 if (retval) {
465 dev->users--;
466 if (!--handle->open) {
467 /*
468 * Make sure we are not delivering any more events
469 * through this handle
470 */
471 synchronize_rcu();
472 }
473 }
474
475 out:
476 mutex_unlock(&dev->mutex);
477 return retval;
478 }
479 EXPORT_SYMBOL(input_open_device);
480
481 int input_flush_device(struct input_handle *handle, struct file *file)
482 {
483 struct input_dev *dev = handle->dev;
484 int retval;
485
486 retval = mutex_lock_interruptible(&dev->mutex);
487 if (retval)
488 return retval;
489
490 if (dev->flush)
491 retval = dev->flush(dev, file);
492
493 mutex_unlock(&dev->mutex);
494 return retval;
495 }
496 EXPORT_SYMBOL(input_flush_device);
497
498 /**
499 * input_close_device - close input device
500 * @handle: handle through which device is being accessed
501 *
502 * This function should be called by input handlers when they
503 * want to stop receive events from given input device.
504 */
505 void input_close_device(struct input_handle *handle)
506 {
507 struct input_dev *dev = handle->dev;
508
509 mutex_lock(&dev->mutex);
510
511 __input_release_device(handle);
512
513 if (!--dev->users && dev->close)
514 dev->close(dev);
515
516 if (!--handle->open) {
517 /*
518 * synchronize_rcu() makes sure that input_pass_event()
519 * completed and that no more input events are delivered
520 * through this handle
521 */
522 synchronize_rcu();
523 }
524
525 mutex_unlock(&dev->mutex);
526 }
527 EXPORT_SYMBOL(input_close_device);
528
529 /*
530 * Prepare device for unregistering
531 */
532 static void input_disconnect_device(struct input_dev *dev)
533 {
534 struct input_handle *handle;
535 int code;
536
537 /*
538 * Mark device as going away. Note that we take dev->mutex here
539 * not to protect access to dev->going_away but rather to ensure
540 * that there are no threads in the middle of input_open_device()
541 */
542 mutex_lock(&dev->mutex);
543 dev->going_away = true;
544 mutex_unlock(&dev->mutex);
545
546 spin_lock_irq(&dev->event_lock);
547
548 /*
549 * Simulate keyup events for all pressed keys so that handlers
550 * are not left with "stuck" keys. The driver may continue
551 * generate events even after we done here but they will not
552 * reach any handlers.
553 */
554 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
555 for (code = 0; code <= KEY_MAX; code++) {
556 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
557 __test_and_clear_bit(code, dev->key)) {
558 input_pass_event(dev, EV_KEY, code, 0);
559 }
560 }
561 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
562 }
563
564 list_for_each_entry(handle, &dev->h_list, d_node)
565 handle->open = 0;
566
567 spin_unlock_irq(&dev->event_lock);
568 }
569
570 static int input_fetch_keycode(struct input_dev *dev, int scancode)
571 {
572 switch (dev->keycodesize) {
573 case 1:
574 return ((u8 *)dev->keycode)[scancode];
575
576 case 2:
577 return ((u16 *)dev->keycode)[scancode];
578
579 default:
580 return ((u32 *)dev->keycode)[scancode];
581 }
582 }
583
584 static int input_default_getkeycode(struct input_dev *dev,
585 unsigned int scancode,
586 unsigned int *keycode)
587 {
588 if (!dev->keycodesize)
589 return -EINVAL;
590
591 if (scancode >= dev->keycodemax)
592 return -EINVAL;
593
594 *keycode = input_fetch_keycode(dev, scancode);
595
596 return 0;
597 }
598
599 static int input_default_setkeycode(struct input_dev *dev,
600 unsigned int scancode,
601 unsigned int keycode)
602 {
603 int old_keycode;
604 int i;
605
606 if (scancode >= dev->keycodemax)
607 return -EINVAL;
608
609 if (!dev->keycodesize)
610 return -EINVAL;
611
612 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
613 return -EINVAL;
614
615 switch (dev->keycodesize) {
616 case 1: {
617 u8 *k = (u8 *)dev->keycode;
618 old_keycode = k[scancode];
619 k[scancode] = keycode;
620 break;
621 }
622 case 2: {
623 u16 *k = (u16 *)dev->keycode;
624 old_keycode = k[scancode];
625 k[scancode] = keycode;
626 break;
627 }
628 default: {
629 u32 *k = (u32 *)dev->keycode;
630 old_keycode = k[scancode];
631 k[scancode] = keycode;
632 break;
633 }
634 }
635
636 __clear_bit(old_keycode, dev->keybit);
637 __set_bit(keycode, dev->keybit);
638
639 for (i = 0; i < dev->keycodemax; i++) {
640 if (input_fetch_keycode(dev, i) == old_keycode) {
641 __set_bit(old_keycode, dev->keybit);
642 break; /* Setting the bit twice is useless, so break */
643 }
644 }
645
646 return 0;
647 }
648
649 /**
650 * input_get_keycode - retrieve keycode currently mapped to a given scancode
651 * @dev: input device which keymap is being queried
652 * @scancode: scancode (or its equivalent for device in question) for which
653 * keycode is needed
654 * @keycode: result
655 *
656 * This function should be called by anyone interested in retrieving current
657 * keymap. Presently keyboard and evdev handlers use it.
658 */
659 int input_get_keycode(struct input_dev *dev,
660 unsigned int scancode, unsigned int *keycode)
661 {
662 unsigned long flags;
663 int retval;
664
665 spin_lock_irqsave(&dev->event_lock, flags);
666 retval = dev->getkeycode(dev, scancode, keycode);
667 spin_unlock_irqrestore(&dev->event_lock, flags);
668
669 return retval;
670 }
671 EXPORT_SYMBOL(input_get_keycode);
672
673 /**
674 * input_get_keycode - assign new keycode to a given scancode
675 * @dev: input device which keymap is being updated
676 * @scancode: scancode (or its equivalent for device in question)
677 * @keycode: new keycode to be assigned to the scancode
678 *
679 * This function should be called by anyone needing to update current
680 * keymap. Presently keyboard and evdev handlers use it.
681 */
682 int input_set_keycode(struct input_dev *dev,
683 unsigned int scancode, unsigned int keycode)
684 {
685 unsigned long flags;
686 int old_keycode;
687 int retval;
688
689 if (keycode > KEY_MAX)
690 return -EINVAL;
691
692 spin_lock_irqsave(&dev->event_lock, flags);
693
694 retval = dev->getkeycode(dev, scancode, &old_keycode);
695 if (retval)
696 goto out;
697
698 retval = dev->setkeycode(dev, scancode, keycode);
699 if (retval)
700 goto out;
701
702 /* Make sure KEY_RESERVED did not get enabled. */
703 __clear_bit(KEY_RESERVED, dev->keybit);
704
705 /*
706 * Simulate keyup event if keycode is not present
707 * in the keymap anymore
708 */
709 if (test_bit(EV_KEY, dev->evbit) &&
710 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
711 __test_and_clear_bit(old_keycode, dev->key)) {
712
713 input_pass_event(dev, EV_KEY, old_keycode, 0);
714 if (dev->sync)
715 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
716 }
717
718 out:
719 spin_unlock_irqrestore(&dev->event_lock, flags);
720
721 return retval;
722 }
723 EXPORT_SYMBOL(input_set_keycode);
724
725 #define MATCH_BIT(bit, max) \
726 for (i = 0; i < BITS_TO_LONGS(max); i++) \
727 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
728 break; \
729 if (i != BITS_TO_LONGS(max)) \
730 continue;
731
732 static const struct input_device_id *input_match_device(struct input_handler *handler,
733 struct input_dev *dev)
734 {
735 const struct input_device_id *id;
736 int i;
737
738 for (id = handler->id_table; id->flags || id->driver_info; id++) {
739
740 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
741 if (id->bustype != dev->id.bustype)
742 continue;
743
744 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
745 if (id->vendor != dev->id.vendor)
746 continue;
747
748 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
749 if (id->product != dev->id.product)
750 continue;
751
752 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
753 if (id->version != dev->id.version)
754 continue;
755
756 MATCH_BIT(evbit, EV_MAX);
757 MATCH_BIT(keybit, KEY_MAX);
758 MATCH_BIT(relbit, REL_MAX);
759 MATCH_BIT(absbit, ABS_MAX);
760 MATCH_BIT(mscbit, MSC_MAX);
761 MATCH_BIT(ledbit, LED_MAX);
762 MATCH_BIT(sndbit, SND_MAX);
763 MATCH_BIT(ffbit, FF_MAX);
764 MATCH_BIT(swbit, SW_MAX);
765
766 if (!handler->match || handler->match(handler, dev))
767 return id;
768 }
769
770 return NULL;
771 }
772
773 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
774 {
775 const struct input_device_id *id;
776 int error;
777
778 id = input_match_device(handler, dev);
779 if (!id)
780 return -ENODEV;
781
782 error = handler->connect(handler, dev, id);
783 if (error && error != -ENODEV)
784 printk(KERN_ERR
785 "input: failed to attach handler %s to device %s, "
786 "error: %d\n",
787 handler->name, kobject_name(&dev->dev.kobj), error);
788
789 return error;
790 }
791
792 #ifdef CONFIG_COMPAT
793
794 static int input_bits_to_string(char *buf, int buf_size,
795 unsigned long bits, bool skip_empty)
796 {
797 int len = 0;
798
799 if (INPUT_COMPAT_TEST) {
800 u32 dword = bits >> 32;
801 if (dword || !skip_empty)
802 len += snprintf(buf, buf_size, "%x ", dword);
803
804 dword = bits & 0xffffffffUL;
805 if (dword || !skip_empty || len)
806 len += snprintf(buf + len, max(buf_size - len, 0),
807 "%x", dword);
808 } else {
809 if (bits || !skip_empty)
810 len += snprintf(buf, buf_size, "%lx", bits);
811 }
812
813 return len;
814 }
815
816 #else /* !CONFIG_COMPAT */
817
818 static int input_bits_to_string(char *buf, int buf_size,
819 unsigned long bits, bool skip_empty)
820 {
821 return bits || !skip_empty ?
822 snprintf(buf, buf_size, "%lx", bits) : 0;
823 }
824
825 #endif
826
827 #ifdef CONFIG_PROC_FS
828
829 static struct proc_dir_entry *proc_bus_input_dir;
830 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
831 static int input_devices_state;
832
833 static inline void input_wakeup_procfs_readers(void)
834 {
835 input_devices_state++;
836 wake_up(&input_devices_poll_wait);
837 }
838
839 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
840 {
841 poll_wait(file, &input_devices_poll_wait, wait);
842 if (file->f_version != input_devices_state) {
843 file->f_version = input_devices_state;
844 return POLLIN | POLLRDNORM;
845 }
846
847 return 0;
848 }
849
850 union input_seq_state {
851 struct {
852 unsigned short pos;
853 bool mutex_acquired;
854 };
855 void *p;
856 };
857
858 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
859 {
860 union input_seq_state *state = (union input_seq_state *)&seq->private;
861 int error;
862
863 /* We need to fit into seq->private pointer */
864 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
865
866 error = mutex_lock_interruptible(&input_mutex);
867 if (error) {
868 state->mutex_acquired = false;
869 return ERR_PTR(error);
870 }
871
872 state->mutex_acquired = true;
873
874 return seq_list_start(&input_dev_list, *pos);
875 }
876
877 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
878 {
879 return seq_list_next(v, &input_dev_list, pos);
880 }
881
882 static void input_seq_stop(struct seq_file *seq, void *v)
883 {
884 union input_seq_state *state = (union input_seq_state *)&seq->private;
885
886 if (state->mutex_acquired)
887 mutex_unlock(&input_mutex);
888 }
889
890 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
891 unsigned long *bitmap, int max)
892 {
893 int i;
894 bool skip_empty = true;
895 char buf[18];
896
897 seq_printf(seq, "B: %s=", name);
898
899 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
900 if (input_bits_to_string(buf, sizeof(buf),
901 bitmap[i], skip_empty)) {
902 skip_empty = false;
903 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
904 }
905 }
906
907 /*
908 * If no output was produced print a single 0.
909 */
910 if (skip_empty)
911 seq_puts(seq, "0");
912
913 seq_putc(seq, '\n');
914 }
915
916 static int input_devices_seq_show(struct seq_file *seq, void *v)
917 {
918 struct input_dev *dev = container_of(v, struct input_dev, node);
919 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
920 struct input_handle *handle;
921
922 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
923 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
924
925 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
926 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
927 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
928 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
929 seq_printf(seq, "H: Handlers=");
930
931 list_for_each_entry(handle, &dev->h_list, d_node)
932 seq_printf(seq, "%s ", handle->name);
933 seq_putc(seq, '\n');
934
935 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
936 if (test_bit(EV_KEY, dev->evbit))
937 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
938 if (test_bit(EV_REL, dev->evbit))
939 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
940 if (test_bit(EV_ABS, dev->evbit))
941 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
942 if (test_bit(EV_MSC, dev->evbit))
943 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
944 if (test_bit(EV_LED, dev->evbit))
945 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
946 if (test_bit(EV_SND, dev->evbit))
947 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
948 if (test_bit(EV_FF, dev->evbit))
949 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
950 if (test_bit(EV_SW, dev->evbit))
951 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
952
953 seq_putc(seq, '\n');
954
955 kfree(path);
956 return 0;
957 }
958
959 static const struct seq_operations input_devices_seq_ops = {
960 .start = input_devices_seq_start,
961 .next = input_devices_seq_next,
962 .stop = input_seq_stop,
963 .show = input_devices_seq_show,
964 };
965
966 static int input_proc_devices_open(struct inode *inode, struct file *file)
967 {
968 return seq_open(file, &input_devices_seq_ops);
969 }
970
971 static const struct file_operations input_devices_fileops = {
972 .owner = THIS_MODULE,
973 .open = input_proc_devices_open,
974 .poll = input_proc_devices_poll,
975 .read = seq_read,
976 .llseek = seq_lseek,
977 .release = seq_release,
978 };
979
980 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
981 {
982 union input_seq_state *state = (union input_seq_state *)&seq->private;
983 int error;
984
985 /* We need to fit into seq->private pointer */
986 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
987
988 error = mutex_lock_interruptible(&input_mutex);
989 if (error) {
990 state->mutex_acquired = false;
991 return ERR_PTR(error);
992 }
993
994 state->mutex_acquired = true;
995 state->pos = *pos;
996
997 return seq_list_start(&input_handler_list, *pos);
998 }
999
1000 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1001 {
1002 union input_seq_state *state = (union input_seq_state *)&seq->private;
1003
1004 state->pos = *pos + 1;
1005 return seq_list_next(v, &input_handler_list, pos);
1006 }
1007
1008 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1009 {
1010 struct input_handler *handler = container_of(v, struct input_handler, node);
1011 union input_seq_state *state = (union input_seq_state *)&seq->private;
1012
1013 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1014 if (handler->filter)
1015 seq_puts(seq, " (filter)");
1016 if (handler->fops)
1017 seq_printf(seq, " Minor=%d", handler->minor);
1018 seq_putc(seq, '\n');
1019
1020 return 0;
1021 }
1022
1023 static const struct seq_operations input_handlers_seq_ops = {
1024 .start = input_handlers_seq_start,
1025 .next = input_handlers_seq_next,
1026 .stop = input_seq_stop,
1027 .show = input_handlers_seq_show,
1028 };
1029
1030 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1031 {
1032 return seq_open(file, &input_handlers_seq_ops);
1033 }
1034
1035 static const struct file_operations input_handlers_fileops = {
1036 .owner = THIS_MODULE,
1037 .open = input_proc_handlers_open,
1038 .read = seq_read,
1039 .llseek = seq_lseek,
1040 .release = seq_release,
1041 };
1042
1043 static int __init input_proc_init(void)
1044 {
1045 struct proc_dir_entry *entry;
1046
1047 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1048 if (!proc_bus_input_dir)
1049 return -ENOMEM;
1050
1051 entry = proc_create("devices", 0, proc_bus_input_dir,
1052 &input_devices_fileops);
1053 if (!entry)
1054 goto fail1;
1055
1056 entry = proc_create("handlers", 0, proc_bus_input_dir,
1057 &input_handlers_fileops);
1058 if (!entry)
1059 goto fail2;
1060
1061 return 0;
1062
1063 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1064 fail1: remove_proc_entry("bus/input", NULL);
1065 return -ENOMEM;
1066 }
1067
1068 static void input_proc_exit(void)
1069 {
1070 remove_proc_entry("devices", proc_bus_input_dir);
1071 remove_proc_entry("handlers", proc_bus_input_dir);
1072 remove_proc_entry("bus/input", NULL);
1073 }
1074
1075 #else /* !CONFIG_PROC_FS */
1076 static inline void input_wakeup_procfs_readers(void) { }
1077 static inline int input_proc_init(void) { return 0; }
1078 static inline void input_proc_exit(void) { }
1079 #endif
1080
1081 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1082 static ssize_t input_dev_show_##name(struct device *dev, \
1083 struct device_attribute *attr, \
1084 char *buf) \
1085 { \
1086 struct input_dev *input_dev = to_input_dev(dev); \
1087 \
1088 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1089 input_dev->name ? input_dev->name : ""); \
1090 } \
1091 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1092
1093 INPUT_DEV_STRING_ATTR_SHOW(name);
1094 INPUT_DEV_STRING_ATTR_SHOW(phys);
1095 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1096
1097 static int input_print_modalias_bits(char *buf, int size,
1098 char name, unsigned long *bm,
1099 unsigned int min_bit, unsigned int max_bit)
1100 {
1101 int len = 0, i;
1102
1103 len += snprintf(buf, max(size, 0), "%c", name);
1104 for (i = min_bit; i < max_bit; i++)
1105 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1106 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1107 return len;
1108 }
1109
1110 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1111 int add_cr)
1112 {
1113 int len;
1114
1115 len = snprintf(buf, max(size, 0),
1116 "input:b%04Xv%04Xp%04Xe%04X-",
1117 id->id.bustype, id->id.vendor,
1118 id->id.product, id->id.version);
1119
1120 len += input_print_modalias_bits(buf + len, size - len,
1121 'e', id->evbit, 0, EV_MAX);
1122 len += input_print_modalias_bits(buf + len, size - len,
1123 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1124 len += input_print_modalias_bits(buf + len, size - len,
1125 'r', id->relbit, 0, REL_MAX);
1126 len += input_print_modalias_bits(buf + len, size - len,
1127 'a', id->absbit, 0, ABS_MAX);
1128 len += input_print_modalias_bits(buf + len, size - len,
1129 'm', id->mscbit, 0, MSC_MAX);
1130 len += input_print_modalias_bits(buf + len, size - len,
1131 'l', id->ledbit, 0, LED_MAX);
1132 len += input_print_modalias_bits(buf + len, size - len,
1133 's', id->sndbit, 0, SND_MAX);
1134 len += input_print_modalias_bits(buf + len, size - len,
1135 'f', id->ffbit, 0, FF_MAX);
1136 len += input_print_modalias_bits(buf + len, size - len,
1137 'w', id->swbit, 0, SW_MAX);
1138
1139 if (add_cr)
1140 len += snprintf(buf + len, max(size - len, 0), "\n");
1141
1142 return len;
1143 }
1144
1145 static ssize_t input_dev_show_modalias(struct device *dev,
1146 struct device_attribute *attr,
1147 char *buf)
1148 {
1149 struct input_dev *id = to_input_dev(dev);
1150 ssize_t len;
1151
1152 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1153
1154 return min_t(int, len, PAGE_SIZE);
1155 }
1156 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1157
1158 static struct attribute *input_dev_attrs[] = {
1159 &dev_attr_name.attr,
1160 &dev_attr_phys.attr,
1161 &dev_attr_uniq.attr,
1162 &dev_attr_modalias.attr,
1163 NULL
1164 };
1165
1166 static struct attribute_group input_dev_attr_group = {
1167 .attrs = input_dev_attrs,
1168 };
1169
1170 #define INPUT_DEV_ID_ATTR(name) \
1171 static ssize_t input_dev_show_id_##name(struct device *dev, \
1172 struct device_attribute *attr, \
1173 char *buf) \
1174 { \
1175 struct input_dev *input_dev = to_input_dev(dev); \
1176 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1177 } \
1178 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1179
1180 INPUT_DEV_ID_ATTR(bustype);
1181 INPUT_DEV_ID_ATTR(vendor);
1182 INPUT_DEV_ID_ATTR(product);
1183 INPUT_DEV_ID_ATTR(version);
1184
1185 static struct attribute *input_dev_id_attrs[] = {
1186 &dev_attr_bustype.attr,
1187 &dev_attr_vendor.attr,
1188 &dev_attr_product.attr,
1189 &dev_attr_version.attr,
1190 NULL
1191 };
1192
1193 static struct attribute_group input_dev_id_attr_group = {
1194 .name = "id",
1195 .attrs = input_dev_id_attrs,
1196 };
1197
1198 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1199 int max, int add_cr)
1200 {
1201 int i;
1202 int len = 0;
1203 bool skip_empty = true;
1204
1205 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1206 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1207 bitmap[i], skip_empty);
1208 if (len) {
1209 skip_empty = false;
1210 if (i > 0)
1211 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1212 }
1213 }
1214
1215 /*
1216 * If no output was produced print a single 0.
1217 */
1218 if (len == 0)
1219 len = snprintf(buf, buf_size, "%d", 0);
1220
1221 if (add_cr)
1222 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1223
1224 return len;
1225 }
1226
1227 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1228 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1229 struct device_attribute *attr, \
1230 char *buf) \
1231 { \
1232 struct input_dev *input_dev = to_input_dev(dev); \
1233 int len = input_print_bitmap(buf, PAGE_SIZE, \
1234 input_dev->bm##bit, ev##_MAX, \
1235 true); \
1236 return min_t(int, len, PAGE_SIZE); \
1237 } \
1238 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1239
1240 INPUT_DEV_CAP_ATTR(EV, ev);
1241 INPUT_DEV_CAP_ATTR(KEY, key);
1242 INPUT_DEV_CAP_ATTR(REL, rel);
1243 INPUT_DEV_CAP_ATTR(ABS, abs);
1244 INPUT_DEV_CAP_ATTR(MSC, msc);
1245 INPUT_DEV_CAP_ATTR(LED, led);
1246 INPUT_DEV_CAP_ATTR(SND, snd);
1247 INPUT_DEV_CAP_ATTR(FF, ff);
1248 INPUT_DEV_CAP_ATTR(SW, sw);
1249
1250 static struct attribute *input_dev_caps_attrs[] = {
1251 &dev_attr_ev.attr,
1252 &dev_attr_key.attr,
1253 &dev_attr_rel.attr,
1254 &dev_attr_abs.attr,
1255 &dev_attr_msc.attr,
1256 &dev_attr_led.attr,
1257 &dev_attr_snd.attr,
1258 &dev_attr_ff.attr,
1259 &dev_attr_sw.attr,
1260 NULL
1261 };
1262
1263 static struct attribute_group input_dev_caps_attr_group = {
1264 .name = "capabilities",
1265 .attrs = input_dev_caps_attrs,
1266 };
1267
1268 static const struct attribute_group *input_dev_attr_groups[] = {
1269 &input_dev_attr_group,
1270 &input_dev_id_attr_group,
1271 &input_dev_caps_attr_group,
1272 NULL
1273 };
1274
1275 static void input_dev_release(struct device *device)
1276 {
1277 struct input_dev *dev = to_input_dev(device);
1278
1279 input_ff_destroy(dev);
1280 kfree(dev);
1281
1282 module_put(THIS_MODULE);
1283 }
1284
1285 /*
1286 * Input uevent interface - loading event handlers based on
1287 * device bitfields.
1288 */
1289 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1290 const char *name, unsigned long *bitmap, int max)
1291 {
1292 int len;
1293
1294 if (add_uevent_var(env, "%s=", name))
1295 return -ENOMEM;
1296
1297 len = input_print_bitmap(&env->buf[env->buflen - 1],
1298 sizeof(env->buf) - env->buflen,
1299 bitmap, max, false);
1300 if (len >= (sizeof(env->buf) - env->buflen))
1301 return -ENOMEM;
1302
1303 env->buflen += len;
1304 return 0;
1305 }
1306
1307 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1308 struct input_dev *dev)
1309 {
1310 int len;
1311
1312 if (add_uevent_var(env, "MODALIAS="))
1313 return -ENOMEM;
1314
1315 len = input_print_modalias(&env->buf[env->buflen - 1],
1316 sizeof(env->buf) - env->buflen,
1317 dev, 0);
1318 if (len >= (sizeof(env->buf) - env->buflen))
1319 return -ENOMEM;
1320
1321 env->buflen += len;
1322 return 0;
1323 }
1324
1325 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1326 do { \
1327 int err = add_uevent_var(env, fmt, val); \
1328 if (err) \
1329 return err; \
1330 } while (0)
1331
1332 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1333 do { \
1334 int err = input_add_uevent_bm_var(env, name, bm, max); \
1335 if (err) \
1336 return err; \
1337 } while (0)
1338
1339 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1340 do { \
1341 int err = input_add_uevent_modalias_var(env, dev); \
1342 if (err) \
1343 return err; \
1344 } while (0)
1345
1346 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1347 {
1348 struct input_dev *dev = to_input_dev(device);
1349
1350 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1351 dev->id.bustype, dev->id.vendor,
1352 dev->id.product, dev->id.version);
1353 if (dev->name)
1354 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1355 if (dev->phys)
1356 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1357 if (dev->uniq)
1358 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1359
1360 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1361 if (test_bit(EV_KEY, dev->evbit))
1362 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1363 if (test_bit(EV_REL, dev->evbit))
1364 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1365 if (test_bit(EV_ABS, dev->evbit))
1366 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1367 if (test_bit(EV_MSC, dev->evbit))
1368 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1369 if (test_bit(EV_LED, dev->evbit))
1370 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1371 if (test_bit(EV_SND, dev->evbit))
1372 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1373 if (test_bit(EV_FF, dev->evbit))
1374 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1375 if (test_bit(EV_SW, dev->evbit))
1376 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1377
1378 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1379
1380 return 0;
1381 }
1382
1383 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1384 do { \
1385 int i; \
1386 bool active; \
1387 \
1388 if (!test_bit(EV_##type, dev->evbit)) \
1389 break; \
1390 \
1391 for (i = 0; i < type##_MAX; i++) { \
1392 if (!test_bit(i, dev->bits##bit)) \
1393 continue; \
1394 \
1395 active = test_bit(i, dev->bits); \
1396 if (!active && !on) \
1397 continue; \
1398 \
1399 dev->event(dev, EV_##type, i, on ? active : 0); \
1400 } \
1401 } while (0)
1402
1403 #ifdef CONFIG_PM
1404 static void input_dev_reset(struct input_dev *dev, bool activate)
1405 {
1406 if (!dev->event)
1407 return;
1408
1409 INPUT_DO_TOGGLE(dev, LED, led, activate);
1410 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1411
1412 if (activate && test_bit(EV_REP, dev->evbit)) {
1413 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1414 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1415 }
1416 }
1417
1418 static int input_dev_suspend(struct device *dev)
1419 {
1420 struct input_dev *input_dev = to_input_dev(dev);
1421
1422 mutex_lock(&input_dev->mutex);
1423 input_dev_reset(input_dev, false);
1424 mutex_unlock(&input_dev->mutex);
1425
1426 return 0;
1427 }
1428
1429 static int input_dev_resume(struct device *dev)
1430 {
1431 struct input_dev *input_dev = to_input_dev(dev);
1432
1433 mutex_lock(&input_dev->mutex);
1434 input_dev_reset(input_dev, true);
1435 mutex_unlock(&input_dev->mutex);
1436
1437 return 0;
1438 }
1439
1440 static const struct dev_pm_ops input_dev_pm_ops = {
1441 .suspend = input_dev_suspend,
1442 .resume = input_dev_resume,
1443 .poweroff = input_dev_suspend,
1444 .restore = input_dev_resume,
1445 };
1446 #endif /* CONFIG_PM */
1447
1448 static struct device_type input_dev_type = {
1449 .groups = input_dev_attr_groups,
1450 .release = input_dev_release,
1451 .uevent = input_dev_uevent,
1452 #ifdef CONFIG_PM
1453 .pm = &input_dev_pm_ops,
1454 #endif
1455 };
1456
1457 static char *input_devnode(struct device *dev, mode_t *mode)
1458 {
1459 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1460 }
1461
1462 struct class input_class = {
1463 .name = "input",
1464 .devnode = input_devnode,
1465 };
1466 EXPORT_SYMBOL_GPL(input_class);
1467
1468 /**
1469 * input_allocate_device - allocate memory for new input device
1470 *
1471 * Returns prepared struct input_dev or NULL.
1472 *
1473 * NOTE: Use input_free_device() to free devices that have not been
1474 * registered; input_unregister_device() should be used for already
1475 * registered devices.
1476 */
1477 struct input_dev *input_allocate_device(void)
1478 {
1479 struct input_dev *dev;
1480
1481 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1482 if (dev) {
1483 dev->dev.type = &input_dev_type;
1484 dev->dev.class = &input_class;
1485 device_initialize(&dev->dev);
1486 mutex_init(&dev->mutex);
1487 spin_lock_init(&dev->event_lock);
1488 INIT_LIST_HEAD(&dev->h_list);
1489 INIT_LIST_HEAD(&dev->node);
1490
1491 __module_get(THIS_MODULE);
1492 }
1493
1494 return dev;
1495 }
1496 EXPORT_SYMBOL(input_allocate_device);
1497
1498 /**
1499 * input_free_device - free memory occupied by input_dev structure
1500 * @dev: input device to free
1501 *
1502 * This function should only be used if input_register_device()
1503 * was not called yet or if it failed. Once device was registered
1504 * use input_unregister_device() and memory will be freed once last
1505 * reference to the device is dropped.
1506 *
1507 * Device should be allocated by input_allocate_device().
1508 *
1509 * NOTE: If there are references to the input device then memory
1510 * will not be freed until last reference is dropped.
1511 */
1512 void input_free_device(struct input_dev *dev)
1513 {
1514 if (dev)
1515 input_put_device(dev);
1516 }
1517 EXPORT_SYMBOL(input_free_device);
1518
1519 /**
1520 * input_set_capability - mark device as capable of a certain event
1521 * @dev: device that is capable of emitting or accepting event
1522 * @type: type of the event (EV_KEY, EV_REL, etc...)
1523 * @code: event code
1524 *
1525 * In addition to setting up corresponding bit in appropriate capability
1526 * bitmap the function also adjusts dev->evbit.
1527 */
1528 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1529 {
1530 switch (type) {
1531 case EV_KEY:
1532 __set_bit(code, dev->keybit);
1533 break;
1534
1535 case EV_REL:
1536 __set_bit(code, dev->relbit);
1537 break;
1538
1539 case EV_ABS:
1540 __set_bit(code, dev->absbit);
1541 break;
1542
1543 case EV_MSC:
1544 __set_bit(code, dev->mscbit);
1545 break;
1546
1547 case EV_SW:
1548 __set_bit(code, dev->swbit);
1549 break;
1550
1551 case EV_LED:
1552 __set_bit(code, dev->ledbit);
1553 break;
1554
1555 case EV_SND:
1556 __set_bit(code, dev->sndbit);
1557 break;
1558
1559 case EV_FF:
1560 __set_bit(code, dev->ffbit);
1561 break;
1562
1563 case EV_PWR:
1564 /* do nothing */
1565 break;
1566
1567 default:
1568 printk(KERN_ERR
1569 "input_set_capability: unknown type %u (code %u)\n",
1570 type, code);
1571 dump_stack();
1572 return;
1573 }
1574
1575 __set_bit(type, dev->evbit);
1576 }
1577 EXPORT_SYMBOL(input_set_capability);
1578
1579 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1580 do { \
1581 if (!test_bit(EV_##type, dev->evbit)) \
1582 memset(dev->bits##bit, 0, \
1583 sizeof(dev->bits##bit)); \
1584 } while (0)
1585
1586 static void input_cleanse_bitmasks(struct input_dev *dev)
1587 {
1588 INPUT_CLEANSE_BITMASK(dev, KEY, key);
1589 INPUT_CLEANSE_BITMASK(dev, REL, rel);
1590 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
1591 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
1592 INPUT_CLEANSE_BITMASK(dev, LED, led);
1593 INPUT_CLEANSE_BITMASK(dev, SND, snd);
1594 INPUT_CLEANSE_BITMASK(dev, FF, ff);
1595 INPUT_CLEANSE_BITMASK(dev, SW, sw);
1596 }
1597
1598 /**
1599 * input_register_device - register device with input core
1600 * @dev: device to be registered
1601 *
1602 * This function registers device with input core. The device must be
1603 * allocated with input_allocate_device() and all it's capabilities
1604 * set up before registering.
1605 * If function fails the device must be freed with input_free_device().
1606 * Once device has been successfully registered it can be unregistered
1607 * with input_unregister_device(); input_free_device() should not be
1608 * called in this case.
1609 */
1610 int input_register_device(struct input_dev *dev)
1611 {
1612 static atomic_t input_no = ATOMIC_INIT(0);
1613 struct input_handler *handler;
1614 const char *path;
1615 int error;
1616
1617 /* Every input device generates EV_SYN/SYN_REPORT events. */
1618 __set_bit(EV_SYN, dev->evbit);
1619
1620 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
1621 __clear_bit(KEY_RESERVED, dev->keybit);
1622
1623 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1624 input_cleanse_bitmasks(dev);
1625
1626 /*
1627 * If delay and period are pre-set by the driver, then autorepeating
1628 * is handled by the driver itself and we don't do it in input.c.
1629 */
1630 init_timer(&dev->timer);
1631 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1632 dev->timer.data = (long) dev;
1633 dev->timer.function = input_repeat_key;
1634 dev->rep[REP_DELAY] = 250;
1635 dev->rep[REP_PERIOD] = 33;
1636 }
1637
1638 if (!dev->getkeycode)
1639 dev->getkeycode = input_default_getkeycode;
1640
1641 if (!dev->setkeycode)
1642 dev->setkeycode = input_default_setkeycode;
1643
1644 dev_set_name(&dev->dev, "input%ld",
1645 (unsigned long) atomic_inc_return(&input_no) - 1);
1646
1647 error = device_add(&dev->dev);
1648 if (error)
1649 return error;
1650
1651 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1652 printk(KERN_INFO "input: %s as %s\n",
1653 dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1654 kfree(path);
1655
1656 error = mutex_lock_interruptible(&input_mutex);
1657 if (error) {
1658 device_del(&dev->dev);
1659 return error;
1660 }
1661
1662 list_add_tail(&dev->node, &input_dev_list);
1663
1664 list_for_each_entry(handler, &input_handler_list, node)
1665 input_attach_handler(dev, handler);
1666
1667 input_wakeup_procfs_readers();
1668
1669 mutex_unlock(&input_mutex);
1670
1671 return 0;
1672 }
1673 EXPORT_SYMBOL(input_register_device);
1674
1675 /**
1676 * input_unregister_device - unregister previously registered device
1677 * @dev: device to be unregistered
1678 *
1679 * This function unregisters an input device. Once device is unregistered
1680 * the caller should not try to access it as it may get freed at any moment.
1681 */
1682 void input_unregister_device(struct input_dev *dev)
1683 {
1684 struct input_handle *handle, *next;
1685
1686 input_disconnect_device(dev);
1687
1688 mutex_lock(&input_mutex);
1689
1690 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1691 handle->handler->disconnect(handle);
1692 WARN_ON(!list_empty(&dev->h_list));
1693
1694 del_timer_sync(&dev->timer);
1695 list_del_init(&dev->node);
1696
1697 input_wakeup_procfs_readers();
1698
1699 mutex_unlock(&input_mutex);
1700
1701 device_unregister(&dev->dev);
1702 }
1703 EXPORT_SYMBOL(input_unregister_device);
1704
1705 /**
1706 * input_register_handler - register a new input handler
1707 * @handler: handler to be registered
1708 *
1709 * This function registers a new input handler (interface) for input
1710 * devices in the system and attaches it to all input devices that
1711 * are compatible with the handler.
1712 */
1713 int input_register_handler(struct input_handler *handler)
1714 {
1715 struct input_dev *dev;
1716 int retval;
1717
1718 retval = mutex_lock_interruptible(&input_mutex);
1719 if (retval)
1720 return retval;
1721
1722 INIT_LIST_HEAD(&handler->h_list);
1723
1724 if (handler->fops != NULL) {
1725 if (input_table[handler->minor >> 5]) {
1726 retval = -EBUSY;
1727 goto out;
1728 }
1729 input_table[handler->minor >> 5] = handler;
1730 }
1731
1732 list_add_tail(&handler->node, &input_handler_list);
1733
1734 list_for_each_entry(dev, &input_dev_list, node)
1735 input_attach_handler(dev, handler);
1736
1737 input_wakeup_procfs_readers();
1738
1739 out:
1740 mutex_unlock(&input_mutex);
1741 return retval;
1742 }
1743 EXPORT_SYMBOL(input_register_handler);
1744
1745 /**
1746 * input_unregister_handler - unregisters an input handler
1747 * @handler: handler to be unregistered
1748 *
1749 * This function disconnects a handler from its input devices and
1750 * removes it from lists of known handlers.
1751 */
1752 void input_unregister_handler(struct input_handler *handler)
1753 {
1754 struct input_handle *handle, *next;
1755
1756 mutex_lock(&input_mutex);
1757
1758 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1759 handler->disconnect(handle);
1760 WARN_ON(!list_empty(&handler->h_list));
1761
1762 list_del_init(&handler->node);
1763
1764 if (handler->fops != NULL)
1765 input_table[handler->minor >> 5] = NULL;
1766
1767 input_wakeup_procfs_readers();
1768
1769 mutex_unlock(&input_mutex);
1770 }
1771 EXPORT_SYMBOL(input_unregister_handler);
1772
1773 /**
1774 * input_handler_for_each_handle - handle iterator
1775 * @handler: input handler to iterate
1776 * @data: data for the callback
1777 * @fn: function to be called for each handle
1778 *
1779 * Iterate over @bus's list of devices, and call @fn for each, passing
1780 * it @data and stop when @fn returns a non-zero value. The function is
1781 * using RCU to traverse the list and therefore may be usind in atonic
1782 * contexts. The @fn callback is invoked from RCU critical section and
1783 * thus must not sleep.
1784 */
1785 int input_handler_for_each_handle(struct input_handler *handler, void *data,
1786 int (*fn)(struct input_handle *, void *))
1787 {
1788 struct input_handle *handle;
1789 int retval = 0;
1790
1791 rcu_read_lock();
1792
1793 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
1794 retval = fn(handle, data);
1795 if (retval)
1796 break;
1797 }
1798
1799 rcu_read_unlock();
1800
1801 return retval;
1802 }
1803 EXPORT_SYMBOL(input_handler_for_each_handle);
1804
1805 /**
1806 * input_register_handle - register a new input handle
1807 * @handle: handle to register
1808 *
1809 * This function puts a new input handle onto device's
1810 * and handler's lists so that events can flow through
1811 * it once it is opened using input_open_device().
1812 *
1813 * This function is supposed to be called from handler's
1814 * connect() method.
1815 */
1816 int input_register_handle(struct input_handle *handle)
1817 {
1818 struct input_handler *handler = handle->handler;
1819 struct input_dev *dev = handle->dev;
1820 int error;
1821
1822 /*
1823 * We take dev->mutex here to prevent race with
1824 * input_release_device().
1825 */
1826 error = mutex_lock_interruptible(&dev->mutex);
1827 if (error)
1828 return error;
1829
1830 /*
1831 * Filters go to the head of the list, normal handlers
1832 * to the tail.
1833 */
1834 if (handler->filter)
1835 list_add_rcu(&handle->d_node, &dev->h_list);
1836 else
1837 list_add_tail_rcu(&handle->d_node, &dev->h_list);
1838
1839 mutex_unlock(&dev->mutex);
1840
1841 /*
1842 * Since we are supposed to be called from ->connect()
1843 * which is mutually exclusive with ->disconnect()
1844 * we can't be racing with input_unregister_handle()
1845 * and so separate lock is not needed here.
1846 */
1847 list_add_tail_rcu(&handle->h_node, &handler->h_list);
1848
1849 if (handler->start)
1850 handler->start(handle);
1851
1852 return 0;
1853 }
1854 EXPORT_SYMBOL(input_register_handle);
1855
1856 /**
1857 * input_unregister_handle - unregister an input handle
1858 * @handle: handle to unregister
1859 *
1860 * This function removes input handle from device's
1861 * and handler's lists.
1862 *
1863 * This function is supposed to be called from handler's
1864 * disconnect() method.
1865 */
1866 void input_unregister_handle(struct input_handle *handle)
1867 {
1868 struct input_dev *dev = handle->dev;
1869
1870 list_del_rcu(&handle->h_node);
1871
1872 /*
1873 * Take dev->mutex to prevent race with input_release_device().
1874 */
1875 mutex_lock(&dev->mutex);
1876 list_del_rcu(&handle->d_node);
1877 mutex_unlock(&dev->mutex);
1878
1879 synchronize_rcu();
1880 }
1881 EXPORT_SYMBOL(input_unregister_handle);
1882
1883 static int input_open_file(struct inode *inode, struct file *file)
1884 {
1885 struct input_handler *handler;
1886 const struct file_operations *old_fops, *new_fops = NULL;
1887 int err;
1888
1889 err = mutex_lock_interruptible(&input_mutex);
1890 if (err)
1891 return err;
1892
1893 /* No load-on-demand here? */
1894 handler = input_table[iminor(inode) >> 5];
1895 if (handler)
1896 new_fops = fops_get(handler->fops);
1897
1898 mutex_unlock(&input_mutex);
1899
1900 /*
1901 * That's _really_ odd. Usually NULL ->open means "nothing special",
1902 * not "no device". Oh, well...
1903 */
1904 if (!new_fops || !new_fops->open) {
1905 fops_put(new_fops);
1906 err = -ENODEV;
1907 goto out;
1908 }
1909
1910 old_fops = file->f_op;
1911 file->f_op = new_fops;
1912
1913 err = new_fops->open(inode, file);
1914 if (err) {
1915 fops_put(file->f_op);
1916 file->f_op = fops_get(old_fops);
1917 }
1918 fops_put(old_fops);
1919 out:
1920 return err;
1921 }
1922
1923 static const struct file_operations input_fops = {
1924 .owner = THIS_MODULE,
1925 .open = input_open_file,
1926 };
1927
1928 static void __init input_init_abs_bypass(void)
1929 {
1930 const unsigned int *p;
1931
1932 for (p = input_abs_bypass_init_data; *p; p++)
1933 input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
1934 }
1935
1936 static int __init input_init(void)
1937 {
1938 int err;
1939
1940 input_init_abs_bypass();
1941
1942 err = class_register(&input_class);
1943 if (err) {
1944 printk(KERN_ERR "input: unable to register input_dev class\n");
1945 return err;
1946 }
1947
1948 err = input_proc_init();
1949 if (err)
1950 goto fail1;
1951
1952 err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1953 if (err) {
1954 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1955 goto fail2;
1956 }
1957
1958 return 0;
1959
1960 fail2: input_proc_exit();
1961 fail1: class_unregister(&input_class);
1962 return err;
1963 }
1964
1965 static void __exit input_exit(void)
1966 {
1967 input_proc_exit();
1968 unregister_chrdev(INPUT_MAJOR, "input");
1969 class_unregister(&input_class);
1970 }
1971
1972 subsys_initcall(input_init);
1973 module_exit(input_exit);
This page took 0.071724 seconds and 5 git commands to generate.