Merge git://git.kernel.org/pub/scm/linux/kernel/git/joern/logfs
[deliverable/linux.git] / drivers / input / input.c
1 /*
2 * The input core
3 *
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
6
7 /*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
11 */
12
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/input.h>
16 #include <linux/module.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include <linux/smp_lock.h>
27 #include "input-compat.h"
28
29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30 MODULE_DESCRIPTION("Input core");
31 MODULE_LICENSE("GPL");
32
33 #define INPUT_DEVICES 256
34
35 /*
36 * EV_ABS events which should not be cached are listed here.
37 */
38 static unsigned int input_abs_bypass_init_data[] __initdata = {
39 ABS_MT_TOUCH_MAJOR,
40 ABS_MT_TOUCH_MINOR,
41 ABS_MT_WIDTH_MAJOR,
42 ABS_MT_WIDTH_MINOR,
43 ABS_MT_ORIENTATION,
44 ABS_MT_POSITION_X,
45 ABS_MT_POSITION_Y,
46 ABS_MT_TOOL_TYPE,
47 ABS_MT_BLOB_ID,
48 ABS_MT_TRACKING_ID,
49 ABS_MT_PRESSURE,
50 0
51 };
52 static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
53
54 static LIST_HEAD(input_dev_list);
55 static LIST_HEAD(input_handler_list);
56
57 /*
58 * input_mutex protects access to both input_dev_list and input_handler_list.
59 * This also causes input_[un]register_device and input_[un]register_handler
60 * be mutually exclusive which simplifies locking in drivers implementing
61 * input handlers.
62 */
63 static DEFINE_MUTEX(input_mutex);
64
65 static struct input_handler *input_table[8];
66
67 static inline int is_event_supported(unsigned int code,
68 unsigned long *bm, unsigned int max)
69 {
70 return code <= max && test_bit(code, bm);
71 }
72
73 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
74 {
75 if (fuzz) {
76 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
77 return old_val;
78
79 if (value > old_val - fuzz && value < old_val + fuzz)
80 return (old_val * 3 + value) / 4;
81
82 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
83 return (old_val + value) / 2;
84 }
85
86 return value;
87 }
88
89 /*
90 * Pass event first through all filters and then, if event has not been
91 * filtered out, through all open handles. This function is called with
92 * dev->event_lock held and interrupts disabled.
93 */
94 static void input_pass_event(struct input_dev *dev,
95 unsigned int type, unsigned int code, int value)
96 {
97 struct input_handler *handler;
98 struct input_handle *handle;
99
100 rcu_read_lock();
101
102 handle = rcu_dereference(dev->grab);
103 if (handle)
104 handle->handler->event(handle, type, code, value);
105 else {
106 bool filtered = false;
107
108 list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
109 if (!handle->open)
110 continue;
111
112 handler = handle->handler;
113 if (!handler->filter) {
114 if (filtered)
115 break;
116
117 handler->event(handle, type, code, value);
118
119 } else if (handler->filter(handle, type, code, value))
120 filtered = true;
121 }
122 }
123
124 rcu_read_unlock();
125 }
126
127 /*
128 * Generate software autorepeat event. Note that we take
129 * dev->event_lock here to avoid racing with input_event
130 * which may cause keys get "stuck".
131 */
132 static void input_repeat_key(unsigned long data)
133 {
134 struct input_dev *dev = (void *) data;
135 unsigned long flags;
136
137 spin_lock_irqsave(&dev->event_lock, flags);
138
139 if (test_bit(dev->repeat_key, dev->key) &&
140 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
141
142 input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
143
144 if (dev->sync) {
145 /*
146 * Only send SYN_REPORT if we are not in a middle
147 * of driver parsing a new hardware packet.
148 * Otherwise assume that the driver will send
149 * SYN_REPORT once it's done.
150 */
151 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
152 }
153
154 if (dev->rep[REP_PERIOD])
155 mod_timer(&dev->timer, jiffies +
156 msecs_to_jiffies(dev->rep[REP_PERIOD]));
157 }
158
159 spin_unlock_irqrestore(&dev->event_lock, flags);
160 }
161
162 static void input_start_autorepeat(struct input_dev *dev, int code)
163 {
164 if (test_bit(EV_REP, dev->evbit) &&
165 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
166 dev->timer.data) {
167 dev->repeat_key = code;
168 mod_timer(&dev->timer,
169 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
170 }
171 }
172
173 static void input_stop_autorepeat(struct input_dev *dev)
174 {
175 del_timer(&dev->timer);
176 }
177
178 #define INPUT_IGNORE_EVENT 0
179 #define INPUT_PASS_TO_HANDLERS 1
180 #define INPUT_PASS_TO_DEVICE 2
181 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
182
183 static void input_handle_event(struct input_dev *dev,
184 unsigned int type, unsigned int code, int value)
185 {
186 int disposition = INPUT_IGNORE_EVENT;
187
188 switch (type) {
189
190 case EV_SYN:
191 switch (code) {
192 case SYN_CONFIG:
193 disposition = INPUT_PASS_TO_ALL;
194 break;
195
196 case SYN_REPORT:
197 if (!dev->sync) {
198 dev->sync = 1;
199 disposition = INPUT_PASS_TO_HANDLERS;
200 }
201 break;
202 case SYN_MT_REPORT:
203 dev->sync = 0;
204 disposition = INPUT_PASS_TO_HANDLERS;
205 break;
206 }
207 break;
208
209 case EV_KEY:
210 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
211 !!test_bit(code, dev->key) != value) {
212
213 if (value != 2) {
214 __change_bit(code, dev->key);
215 if (value)
216 input_start_autorepeat(dev, code);
217 else
218 input_stop_autorepeat(dev);
219 }
220
221 disposition = INPUT_PASS_TO_HANDLERS;
222 }
223 break;
224
225 case EV_SW:
226 if (is_event_supported(code, dev->swbit, SW_MAX) &&
227 !!test_bit(code, dev->sw) != value) {
228
229 __change_bit(code, dev->sw);
230 disposition = INPUT_PASS_TO_HANDLERS;
231 }
232 break;
233
234 case EV_ABS:
235 if (is_event_supported(code, dev->absbit, ABS_MAX)) {
236
237 if (test_bit(code, input_abs_bypass)) {
238 disposition = INPUT_PASS_TO_HANDLERS;
239 break;
240 }
241
242 value = input_defuzz_abs_event(value,
243 dev->abs[code], dev->absfuzz[code]);
244
245 if (dev->abs[code] != value) {
246 dev->abs[code] = value;
247 disposition = INPUT_PASS_TO_HANDLERS;
248 }
249 }
250 break;
251
252 case EV_REL:
253 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
254 disposition = INPUT_PASS_TO_HANDLERS;
255
256 break;
257
258 case EV_MSC:
259 if (is_event_supported(code, dev->mscbit, MSC_MAX))
260 disposition = INPUT_PASS_TO_ALL;
261
262 break;
263
264 case EV_LED:
265 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
266 !!test_bit(code, dev->led) != value) {
267
268 __change_bit(code, dev->led);
269 disposition = INPUT_PASS_TO_ALL;
270 }
271 break;
272
273 case EV_SND:
274 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
275
276 if (!!test_bit(code, dev->snd) != !!value)
277 __change_bit(code, dev->snd);
278 disposition = INPUT_PASS_TO_ALL;
279 }
280 break;
281
282 case EV_REP:
283 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
284 dev->rep[code] = value;
285 disposition = INPUT_PASS_TO_ALL;
286 }
287 break;
288
289 case EV_FF:
290 if (value >= 0)
291 disposition = INPUT_PASS_TO_ALL;
292 break;
293
294 case EV_PWR:
295 disposition = INPUT_PASS_TO_ALL;
296 break;
297 }
298
299 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
300 dev->sync = 0;
301
302 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
303 dev->event(dev, type, code, value);
304
305 if (disposition & INPUT_PASS_TO_HANDLERS)
306 input_pass_event(dev, type, code, value);
307 }
308
309 /**
310 * input_event() - report new input event
311 * @dev: device that generated the event
312 * @type: type of the event
313 * @code: event code
314 * @value: value of the event
315 *
316 * This function should be used by drivers implementing various input
317 * devices to report input events. See also input_inject_event().
318 *
319 * NOTE: input_event() may be safely used right after input device was
320 * allocated with input_allocate_device(), even before it is registered
321 * with input_register_device(), but the event will not reach any of the
322 * input handlers. Such early invocation of input_event() may be used
323 * to 'seed' initial state of a switch or initial position of absolute
324 * axis, etc.
325 */
326 void input_event(struct input_dev *dev,
327 unsigned int type, unsigned int code, int value)
328 {
329 unsigned long flags;
330
331 if (is_event_supported(type, dev->evbit, EV_MAX)) {
332
333 spin_lock_irqsave(&dev->event_lock, flags);
334 add_input_randomness(type, code, value);
335 input_handle_event(dev, type, code, value);
336 spin_unlock_irqrestore(&dev->event_lock, flags);
337 }
338 }
339 EXPORT_SYMBOL(input_event);
340
341 /**
342 * input_inject_event() - send input event from input handler
343 * @handle: input handle to send event through
344 * @type: type of the event
345 * @code: event code
346 * @value: value of the event
347 *
348 * Similar to input_event() but will ignore event if device is
349 * "grabbed" and handle injecting event is not the one that owns
350 * the device.
351 */
352 void input_inject_event(struct input_handle *handle,
353 unsigned int type, unsigned int code, int value)
354 {
355 struct input_dev *dev = handle->dev;
356 struct input_handle *grab;
357 unsigned long flags;
358
359 if (is_event_supported(type, dev->evbit, EV_MAX)) {
360 spin_lock_irqsave(&dev->event_lock, flags);
361
362 rcu_read_lock();
363 grab = rcu_dereference(dev->grab);
364 if (!grab || grab == handle)
365 input_handle_event(dev, type, code, value);
366 rcu_read_unlock();
367
368 spin_unlock_irqrestore(&dev->event_lock, flags);
369 }
370 }
371 EXPORT_SYMBOL(input_inject_event);
372
373 /**
374 * input_grab_device - grabs device for exclusive use
375 * @handle: input handle that wants to own the device
376 *
377 * When a device is grabbed by an input handle all events generated by
378 * the device are delivered only to this handle. Also events injected
379 * by other input handles are ignored while device is grabbed.
380 */
381 int input_grab_device(struct input_handle *handle)
382 {
383 struct input_dev *dev = handle->dev;
384 int retval;
385
386 retval = mutex_lock_interruptible(&dev->mutex);
387 if (retval)
388 return retval;
389
390 if (dev->grab) {
391 retval = -EBUSY;
392 goto out;
393 }
394
395 rcu_assign_pointer(dev->grab, handle);
396 synchronize_rcu();
397
398 out:
399 mutex_unlock(&dev->mutex);
400 return retval;
401 }
402 EXPORT_SYMBOL(input_grab_device);
403
404 static void __input_release_device(struct input_handle *handle)
405 {
406 struct input_dev *dev = handle->dev;
407
408 if (dev->grab == handle) {
409 rcu_assign_pointer(dev->grab, NULL);
410 /* Make sure input_pass_event() notices that grab is gone */
411 synchronize_rcu();
412
413 list_for_each_entry(handle, &dev->h_list, d_node)
414 if (handle->open && handle->handler->start)
415 handle->handler->start(handle);
416 }
417 }
418
419 /**
420 * input_release_device - release previously grabbed device
421 * @handle: input handle that owns the device
422 *
423 * Releases previously grabbed device so that other input handles can
424 * start receiving input events. Upon release all handlers attached
425 * to the device have their start() method called so they have a change
426 * to synchronize device state with the rest of the system.
427 */
428 void input_release_device(struct input_handle *handle)
429 {
430 struct input_dev *dev = handle->dev;
431
432 mutex_lock(&dev->mutex);
433 __input_release_device(handle);
434 mutex_unlock(&dev->mutex);
435 }
436 EXPORT_SYMBOL(input_release_device);
437
438 /**
439 * input_open_device - open input device
440 * @handle: handle through which device is being accessed
441 *
442 * This function should be called by input handlers when they
443 * want to start receive events from given input device.
444 */
445 int input_open_device(struct input_handle *handle)
446 {
447 struct input_dev *dev = handle->dev;
448 int retval;
449
450 retval = mutex_lock_interruptible(&dev->mutex);
451 if (retval)
452 return retval;
453
454 if (dev->going_away) {
455 retval = -ENODEV;
456 goto out;
457 }
458
459 handle->open++;
460
461 if (!dev->users++ && dev->open)
462 retval = dev->open(dev);
463
464 if (retval) {
465 dev->users--;
466 if (!--handle->open) {
467 /*
468 * Make sure we are not delivering any more events
469 * through this handle
470 */
471 synchronize_rcu();
472 }
473 }
474
475 out:
476 mutex_unlock(&dev->mutex);
477 return retval;
478 }
479 EXPORT_SYMBOL(input_open_device);
480
481 int input_flush_device(struct input_handle *handle, struct file *file)
482 {
483 struct input_dev *dev = handle->dev;
484 int retval;
485
486 retval = mutex_lock_interruptible(&dev->mutex);
487 if (retval)
488 return retval;
489
490 if (dev->flush)
491 retval = dev->flush(dev, file);
492
493 mutex_unlock(&dev->mutex);
494 return retval;
495 }
496 EXPORT_SYMBOL(input_flush_device);
497
498 /**
499 * input_close_device - close input device
500 * @handle: handle through which device is being accessed
501 *
502 * This function should be called by input handlers when they
503 * want to stop receive events from given input device.
504 */
505 void input_close_device(struct input_handle *handle)
506 {
507 struct input_dev *dev = handle->dev;
508
509 mutex_lock(&dev->mutex);
510
511 __input_release_device(handle);
512
513 if (!--dev->users && dev->close)
514 dev->close(dev);
515
516 if (!--handle->open) {
517 /*
518 * synchronize_rcu() makes sure that input_pass_event()
519 * completed and that no more input events are delivered
520 * through this handle
521 */
522 synchronize_rcu();
523 }
524
525 mutex_unlock(&dev->mutex);
526 }
527 EXPORT_SYMBOL(input_close_device);
528
529 /*
530 * Prepare device for unregistering
531 */
532 static void input_disconnect_device(struct input_dev *dev)
533 {
534 struct input_handle *handle;
535 int code;
536
537 /*
538 * Mark device as going away. Note that we take dev->mutex here
539 * not to protect access to dev->going_away but rather to ensure
540 * that there are no threads in the middle of input_open_device()
541 */
542 mutex_lock(&dev->mutex);
543 dev->going_away = true;
544 mutex_unlock(&dev->mutex);
545
546 spin_lock_irq(&dev->event_lock);
547
548 /*
549 * Simulate keyup events for all pressed keys so that handlers
550 * are not left with "stuck" keys. The driver may continue
551 * generate events even after we done here but they will not
552 * reach any handlers.
553 */
554 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
555 for (code = 0; code <= KEY_MAX; code++) {
556 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
557 __test_and_clear_bit(code, dev->key)) {
558 input_pass_event(dev, EV_KEY, code, 0);
559 }
560 }
561 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
562 }
563
564 list_for_each_entry(handle, &dev->h_list, d_node)
565 handle->open = 0;
566
567 spin_unlock_irq(&dev->event_lock);
568 }
569
570 static int input_fetch_keycode(struct input_dev *dev, int scancode)
571 {
572 switch (dev->keycodesize) {
573 case 1:
574 return ((u8 *)dev->keycode)[scancode];
575
576 case 2:
577 return ((u16 *)dev->keycode)[scancode];
578
579 default:
580 return ((u32 *)dev->keycode)[scancode];
581 }
582 }
583
584 static int input_default_getkeycode(struct input_dev *dev,
585 int scancode, int *keycode)
586 {
587 if (!dev->keycodesize)
588 return -EINVAL;
589
590 if (scancode >= dev->keycodemax)
591 return -EINVAL;
592
593 *keycode = input_fetch_keycode(dev, scancode);
594
595 return 0;
596 }
597
598 static int input_default_setkeycode(struct input_dev *dev,
599 int scancode, int keycode)
600 {
601 int old_keycode;
602 int i;
603
604 if (scancode >= dev->keycodemax)
605 return -EINVAL;
606
607 if (!dev->keycodesize)
608 return -EINVAL;
609
610 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
611 return -EINVAL;
612
613 switch (dev->keycodesize) {
614 case 1: {
615 u8 *k = (u8 *)dev->keycode;
616 old_keycode = k[scancode];
617 k[scancode] = keycode;
618 break;
619 }
620 case 2: {
621 u16 *k = (u16 *)dev->keycode;
622 old_keycode = k[scancode];
623 k[scancode] = keycode;
624 break;
625 }
626 default: {
627 u32 *k = (u32 *)dev->keycode;
628 old_keycode = k[scancode];
629 k[scancode] = keycode;
630 break;
631 }
632 }
633
634 __clear_bit(old_keycode, dev->keybit);
635 __set_bit(keycode, dev->keybit);
636
637 for (i = 0; i < dev->keycodemax; i++) {
638 if (input_fetch_keycode(dev, i) == old_keycode) {
639 __set_bit(old_keycode, dev->keybit);
640 break; /* Setting the bit twice is useless, so break */
641 }
642 }
643
644 return 0;
645 }
646
647 /**
648 * input_get_keycode - retrieve keycode currently mapped to a given scancode
649 * @dev: input device which keymap is being queried
650 * @scancode: scancode (or its equivalent for device in question) for which
651 * keycode is needed
652 * @keycode: result
653 *
654 * This function should be called by anyone interested in retrieving current
655 * keymap. Presently keyboard and evdev handlers use it.
656 */
657 int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
658 {
659 if (scancode < 0)
660 return -EINVAL;
661
662 return dev->getkeycode(dev, scancode, keycode);
663 }
664 EXPORT_SYMBOL(input_get_keycode);
665
666 /**
667 * input_get_keycode - assign new keycode to a given scancode
668 * @dev: input device which keymap is being updated
669 * @scancode: scancode (or its equivalent for device in question)
670 * @keycode: new keycode to be assigned to the scancode
671 *
672 * This function should be called by anyone needing to update current
673 * keymap. Presently keyboard and evdev handlers use it.
674 */
675 int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
676 {
677 unsigned long flags;
678 int old_keycode;
679 int retval;
680
681 if (scancode < 0)
682 return -EINVAL;
683
684 if (keycode < 0 || keycode > KEY_MAX)
685 return -EINVAL;
686
687 spin_lock_irqsave(&dev->event_lock, flags);
688
689 retval = dev->getkeycode(dev, scancode, &old_keycode);
690 if (retval)
691 goto out;
692
693 retval = dev->setkeycode(dev, scancode, keycode);
694 if (retval)
695 goto out;
696
697 /* Make sure KEY_RESERVED did not get enabled. */
698 __clear_bit(KEY_RESERVED, dev->keybit);
699
700 /*
701 * Simulate keyup event if keycode is not present
702 * in the keymap anymore
703 */
704 if (test_bit(EV_KEY, dev->evbit) &&
705 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
706 __test_and_clear_bit(old_keycode, dev->key)) {
707
708 input_pass_event(dev, EV_KEY, old_keycode, 0);
709 if (dev->sync)
710 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
711 }
712
713 out:
714 spin_unlock_irqrestore(&dev->event_lock, flags);
715
716 return retval;
717 }
718 EXPORT_SYMBOL(input_set_keycode);
719
720 #define MATCH_BIT(bit, max) \
721 for (i = 0; i < BITS_TO_LONGS(max); i++) \
722 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
723 break; \
724 if (i != BITS_TO_LONGS(max)) \
725 continue;
726
727 static const struct input_device_id *input_match_device(struct input_handler *handler,
728 struct input_dev *dev)
729 {
730 const struct input_device_id *id;
731 int i;
732
733 for (id = handler->id_table; id->flags || id->driver_info; id++) {
734
735 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
736 if (id->bustype != dev->id.bustype)
737 continue;
738
739 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
740 if (id->vendor != dev->id.vendor)
741 continue;
742
743 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
744 if (id->product != dev->id.product)
745 continue;
746
747 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
748 if (id->version != dev->id.version)
749 continue;
750
751 MATCH_BIT(evbit, EV_MAX);
752 MATCH_BIT(keybit, KEY_MAX);
753 MATCH_BIT(relbit, REL_MAX);
754 MATCH_BIT(absbit, ABS_MAX);
755 MATCH_BIT(mscbit, MSC_MAX);
756 MATCH_BIT(ledbit, LED_MAX);
757 MATCH_BIT(sndbit, SND_MAX);
758 MATCH_BIT(ffbit, FF_MAX);
759 MATCH_BIT(swbit, SW_MAX);
760
761 if (!handler->match || handler->match(handler, dev))
762 return id;
763 }
764
765 return NULL;
766 }
767
768 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
769 {
770 const struct input_device_id *id;
771 int error;
772
773 id = input_match_device(handler, dev);
774 if (!id)
775 return -ENODEV;
776
777 error = handler->connect(handler, dev, id);
778 if (error && error != -ENODEV)
779 printk(KERN_ERR
780 "input: failed to attach handler %s to device %s, "
781 "error: %d\n",
782 handler->name, kobject_name(&dev->dev.kobj), error);
783
784 return error;
785 }
786
787 #ifdef CONFIG_COMPAT
788
789 static int input_bits_to_string(char *buf, int buf_size,
790 unsigned long bits, bool skip_empty)
791 {
792 int len = 0;
793
794 if (INPUT_COMPAT_TEST) {
795 u32 dword = bits >> 32;
796 if (dword || !skip_empty)
797 len += snprintf(buf, buf_size, "%x ", dword);
798
799 dword = bits & 0xffffffffUL;
800 if (dword || !skip_empty || len)
801 len += snprintf(buf + len, max(buf_size - len, 0),
802 "%x", dword);
803 } else {
804 if (bits || !skip_empty)
805 len += snprintf(buf, buf_size, "%lx", bits);
806 }
807
808 return len;
809 }
810
811 #else /* !CONFIG_COMPAT */
812
813 static int input_bits_to_string(char *buf, int buf_size,
814 unsigned long bits, bool skip_empty)
815 {
816 return bits || !skip_empty ?
817 snprintf(buf, buf_size, "%lx", bits) : 0;
818 }
819
820 #endif
821
822 #ifdef CONFIG_PROC_FS
823
824 static struct proc_dir_entry *proc_bus_input_dir;
825 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
826 static int input_devices_state;
827
828 static inline void input_wakeup_procfs_readers(void)
829 {
830 input_devices_state++;
831 wake_up(&input_devices_poll_wait);
832 }
833
834 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
835 {
836 poll_wait(file, &input_devices_poll_wait, wait);
837 if (file->f_version != input_devices_state) {
838 file->f_version = input_devices_state;
839 return POLLIN | POLLRDNORM;
840 }
841
842 return 0;
843 }
844
845 union input_seq_state {
846 struct {
847 unsigned short pos;
848 bool mutex_acquired;
849 };
850 void *p;
851 };
852
853 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
854 {
855 union input_seq_state *state = (union input_seq_state *)&seq->private;
856 int error;
857
858 /* We need to fit into seq->private pointer */
859 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
860
861 error = mutex_lock_interruptible(&input_mutex);
862 if (error) {
863 state->mutex_acquired = false;
864 return ERR_PTR(error);
865 }
866
867 state->mutex_acquired = true;
868
869 return seq_list_start(&input_dev_list, *pos);
870 }
871
872 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
873 {
874 return seq_list_next(v, &input_dev_list, pos);
875 }
876
877 static void input_seq_stop(struct seq_file *seq, void *v)
878 {
879 union input_seq_state *state = (union input_seq_state *)&seq->private;
880
881 if (state->mutex_acquired)
882 mutex_unlock(&input_mutex);
883 }
884
885 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
886 unsigned long *bitmap, int max)
887 {
888 int i;
889 bool skip_empty = true;
890 char buf[18];
891
892 seq_printf(seq, "B: %s=", name);
893
894 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
895 if (input_bits_to_string(buf, sizeof(buf),
896 bitmap[i], skip_empty)) {
897 skip_empty = false;
898 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
899 }
900 }
901
902 /*
903 * If no output was produced print a single 0.
904 */
905 if (skip_empty)
906 seq_puts(seq, "0");
907
908 seq_putc(seq, '\n');
909 }
910
911 static int input_devices_seq_show(struct seq_file *seq, void *v)
912 {
913 struct input_dev *dev = container_of(v, struct input_dev, node);
914 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
915 struct input_handle *handle;
916
917 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
918 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
919
920 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
921 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
922 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
923 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
924 seq_printf(seq, "H: Handlers=");
925
926 list_for_each_entry(handle, &dev->h_list, d_node)
927 seq_printf(seq, "%s ", handle->name);
928 seq_putc(seq, '\n');
929
930 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
931 if (test_bit(EV_KEY, dev->evbit))
932 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
933 if (test_bit(EV_REL, dev->evbit))
934 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
935 if (test_bit(EV_ABS, dev->evbit))
936 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
937 if (test_bit(EV_MSC, dev->evbit))
938 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
939 if (test_bit(EV_LED, dev->evbit))
940 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
941 if (test_bit(EV_SND, dev->evbit))
942 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
943 if (test_bit(EV_FF, dev->evbit))
944 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
945 if (test_bit(EV_SW, dev->evbit))
946 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
947
948 seq_putc(seq, '\n');
949
950 kfree(path);
951 return 0;
952 }
953
954 static const struct seq_operations input_devices_seq_ops = {
955 .start = input_devices_seq_start,
956 .next = input_devices_seq_next,
957 .stop = input_seq_stop,
958 .show = input_devices_seq_show,
959 };
960
961 static int input_proc_devices_open(struct inode *inode, struct file *file)
962 {
963 return seq_open(file, &input_devices_seq_ops);
964 }
965
966 static const struct file_operations input_devices_fileops = {
967 .owner = THIS_MODULE,
968 .open = input_proc_devices_open,
969 .poll = input_proc_devices_poll,
970 .read = seq_read,
971 .llseek = seq_lseek,
972 .release = seq_release,
973 };
974
975 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
976 {
977 union input_seq_state *state = (union input_seq_state *)&seq->private;
978 int error;
979
980 /* We need to fit into seq->private pointer */
981 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
982
983 error = mutex_lock_interruptible(&input_mutex);
984 if (error) {
985 state->mutex_acquired = false;
986 return ERR_PTR(error);
987 }
988
989 state->mutex_acquired = true;
990 state->pos = *pos;
991
992 return seq_list_start(&input_handler_list, *pos);
993 }
994
995 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
996 {
997 union input_seq_state *state = (union input_seq_state *)&seq->private;
998
999 state->pos = *pos + 1;
1000 return seq_list_next(v, &input_handler_list, pos);
1001 }
1002
1003 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1004 {
1005 struct input_handler *handler = container_of(v, struct input_handler, node);
1006 union input_seq_state *state = (union input_seq_state *)&seq->private;
1007
1008 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1009 if (handler->filter)
1010 seq_puts(seq, " (filter)");
1011 if (handler->fops)
1012 seq_printf(seq, " Minor=%d", handler->minor);
1013 seq_putc(seq, '\n');
1014
1015 return 0;
1016 }
1017
1018 static const struct seq_operations input_handlers_seq_ops = {
1019 .start = input_handlers_seq_start,
1020 .next = input_handlers_seq_next,
1021 .stop = input_seq_stop,
1022 .show = input_handlers_seq_show,
1023 };
1024
1025 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1026 {
1027 return seq_open(file, &input_handlers_seq_ops);
1028 }
1029
1030 static const struct file_operations input_handlers_fileops = {
1031 .owner = THIS_MODULE,
1032 .open = input_proc_handlers_open,
1033 .read = seq_read,
1034 .llseek = seq_lseek,
1035 .release = seq_release,
1036 };
1037
1038 static int __init input_proc_init(void)
1039 {
1040 struct proc_dir_entry *entry;
1041
1042 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1043 if (!proc_bus_input_dir)
1044 return -ENOMEM;
1045
1046 entry = proc_create("devices", 0, proc_bus_input_dir,
1047 &input_devices_fileops);
1048 if (!entry)
1049 goto fail1;
1050
1051 entry = proc_create("handlers", 0, proc_bus_input_dir,
1052 &input_handlers_fileops);
1053 if (!entry)
1054 goto fail2;
1055
1056 return 0;
1057
1058 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1059 fail1: remove_proc_entry("bus/input", NULL);
1060 return -ENOMEM;
1061 }
1062
1063 static void input_proc_exit(void)
1064 {
1065 remove_proc_entry("devices", proc_bus_input_dir);
1066 remove_proc_entry("handlers", proc_bus_input_dir);
1067 remove_proc_entry("bus/input", NULL);
1068 }
1069
1070 #else /* !CONFIG_PROC_FS */
1071 static inline void input_wakeup_procfs_readers(void) { }
1072 static inline int input_proc_init(void) { return 0; }
1073 static inline void input_proc_exit(void) { }
1074 #endif
1075
1076 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1077 static ssize_t input_dev_show_##name(struct device *dev, \
1078 struct device_attribute *attr, \
1079 char *buf) \
1080 { \
1081 struct input_dev *input_dev = to_input_dev(dev); \
1082 \
1083 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1084 input_dev->name ? input_dev->name : ""); \
1085 } \
1086 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1087
1088 INPUT_DEV_STRING_ATTR_SHOW(name);
1089 INPUT_DEV_STRING_ATTR_SHOW(phys);
1090 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1091
1092 static int input_print_modalias_bits(char *buf, int size,
1093 char name, unsigned long *bm,
1094 unsigned int min_bit, unsigned int max_bit)
1095 {
1096 int len = 0, i;
1097
1098 len += snprintf(buf, max(size, 0), "%c", name);
1099 for (i = min_bit; i < max_bit; i++)
1100 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1101 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1102 return len;
1103 }
1104
1105 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1106 int add_cr)
1107 {
1108 int len;
1109
1110 len = snprintf(buf, max(size, 0),
1111 "input:b%04Xv%04Xp%04Xe%04X-",
1112 id->id.bustype, id->id.vendor,
1113 id->id.product, id->id.version);
1114
1115 len += input_print_modalias_bits(buf + len, size - len,
1116 'e', id->evbit, 0, EV_MAX);
1117 len += input_print_modalias_bits(buf + len, size - len,
1118 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1119 len += input_print_modalias_bits(buf + len, size - len,
1120 'r', id->relbit, 0, REL_MAX);
1121 len += input_print_modalias_bits(buf + len, size - len,
1122 'a', id->absbit, 0, ABS_MAX);
1123 len += input_print_modalias_bits(buf + len, size - len,
1124 'm', id->mscbit, 0, MSC_MAX);
1125 len += input_print_modalias_bits(buf + len, size - len,
1126 'l', id->ledbit, 0, LED_MAX);
1127 len += input_print_modalias_bits(buf + len, size - len,
1128 's', id->sndbit, 0, SND_MAX);
1129 len += input_print_modalias_bits(buf + len, size - len,
1130 'f', id->ffbit, 0, FF_MAX);
1131 len += input_print_modalias_bits(buf + len, size - len,
1132 'w', id->swbit, 0, SW_MAX);
1133
1134 if (add_cr)
1135 len += snprintf(buf + len, max(size - len, 0), "\n");
1136
1137 return len;
1138 }
1139
1140 static ssize_t input_dev_show_modalias(struct device *dev,
1141 struct device_attribute *attr,
1142 char *buf)
1143 {
1144 struct input_dev *id = to_input_dev(dev);
1145 ssize_t len;
1146
1147 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1148
1149 return min_t(int, len, PAGE_SIZE);
1150 }
1151 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1152
1153 static struct attribute *input_dev_attrs[] = {
1154 &dev_attr_name.attr,
1155 &dev_attr_phys.attr,
1156 &dev_attr_uniq.attr,
1157 &dev_attr_modalias.attr,
1158 NULL
1159 };
1160
1161 static struct attribute_group input_dev_attr_group = {
1162 .attrs = input_dev_attrs,
1163 };
1164
1165 #define INPUT_DEV_ID_ATTR(name) \
1166 static ssize_t input_dev_show_id_##name(struct device *dev, \
1167 struct device_attribute *attr, \
1168 char *buf) \
1169 { \
1170 struct input_dev *input_dev = to_input_dev(dev); \
1171 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1172 } \
1173 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1174
1175 INPUT_DEV_ID_ATTR(bustype);
1176 INPUT_DEV_ID_ATTR(vendor);
1177 INPUT_DEV_ID_ATTR(product);
1178 INPUT_DEV_ID_ATTR(version);
1179
1180 static struct attribute *input_dev_id_attrs[] = {
1181 &dev_attr_bustype.attr,
1182 &dev_attr_vendor.attr,
1183 &dev_attr_product.attr,
1184 &dev_attr_version.attr,
1185 NULL
1186 };
1187
1188 static struct attribute_group input_dev_id_attr_group = {
1189 .name = "id",
1190 .attrs = input_dev_id_attrs,
1191 };
1192
1193 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1194 int max, int add_cr)
1195 {
1196 int i;
1197 int len = 0;
1198 bool skip_empty = true;
1199
1200 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1201 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1202 bitmap[i], skip_empty);
1203 if (len) {
1204 skip_empty = false;
1205 if (i > 0)
1206 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1207 }
1208 }
1209
1210 /*
1211 * If no output was produced print a single 0.
1212 */
1213 if (len == 0)
1214 len = snprintf(buf, buf_size, "%d", 0);
1215
1216 if (add_cr)
1217 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1218
1219 return len;
1220 }
1221
1222 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1223 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1224 struct device_attribute *attr, \
1225 char *buf) \
1226 { \
1227 struct input_dev *input_dev = to_input_dev(dev); \
1228 int len = input_print_bitmap(buf, PAGE_SIZE, \
1229 input_dev->bm##bit, ev##_MAX, \
1230 true); \
1231 return min_t(int, len, PAGE_SIZE); \
1232 } \
1233 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1234
1235 INPUT_DEV_CAP_ATTR(EV, ev);
1236 INPUT_DEV_CAP_ATTR(KEY, key);
1237 INPUT_DEV_CAP_ATTR(REL, rel);
1238 INPUT_DEV_CAP_ATTR(ABS, abs);
1239 INPUT_DEV_CAP_ATTR(MSC, msc);
1240 INPUT_DEV_CAP_ATTR(LED, led);
1241 INPUT_DEV_CAP_ATTR(SND, snd);
1242 INPUT_DEV_CAP_ATTR(FF, ff);
1243 INPUT_DEV_CAP_ATTR(SW, sw);
1244
1245 static struct attribute *input_dev_caps_attrs[] = {
1246 &dev_attr_ev.attr,
1247 &dev_attr_key.attr,
1248 &dev_attr_rel.attr,
1249 &dev_attr_abs.attr,
1250 &dev_attr_msc.attr,
1251 &dev_attr_led.attr,
1252 &dev_attr_snd.attr,
1253 &dev_attr_ff.attr,
1254 &dev_attr_sw.attr,
1255 NULL
1256 };
1257
1258 static struct attribute_group input_dev_caps_attr_group = {
1259 .name = "capabilities",
1260 .attrs = input_dev_caps_attrs,
1261 };
1262
1263 static const struct attribute_group *input_dev_attr_groups[] = {
1264 &input_dev_attr_group,
1265 &input_dev_id_attr_group,
1266 &input_dev_caps_attr_group,
1267 NULL
1268 };
1269
1270 static void input_dev_release(struct device *device)
1271 {
1272 struct input_dev *dev = to_input_dev(device);
1273
1274 input_ff_destroy(dev);
1275 kfree(dev);
1276
1277 module_put(THIS_MODULE);
1278 }
1279
1280 /*
1281 * Input uevent interface - loading event handlers based on
1282 * device bitfields.
1283 */
1284 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1285 const char *name, unsigned long *bitmap, int max)
1286 {
1287 int len;
1288
1289 if (add_uevent_var(env, "%s=", name))
1290 return -ENOMEM;
1291
1292 len = input_print_bitmap(&env->buf[env->buflen - 1],
1293 sizeof(env->buf) - env->buflen,
1294 bitmap, max, false);
1295 if (len >= (sizeof(env->buf) - env->buflen))
1296 return -ENOMEM;
1297
1298 env->buflen += len;
1299 return 0;
1300 }
1301
1302 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1303 struct input_dev *dev)
1304 {
1305 int len;
1306
1307 if (add_uevent_var(env, "MODALIAS="))
1308 return -ENOMEM;
1309
1310 len = input_print_modalias(&env->buf[env->buflen - 1],
1311 sizeof(env->buf) - env->buflen,
1312 dev, 0);
1313 if (len >= (sizeof(env->buf) - env->buflen))
1314 return -ENOMEM;
1315
1316 env->buflen += len;
1317 return 0;
1318 }
1319
1320 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1321 do { \
1322 int err = add_uevent_var(env, fmt, val); \
1323 if (err) \
1324 return err; \
1325 } while (0)
1326
1327 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1328 do { \
1329 int err = input_add_uevent_bm_var(env, name, bm, max); \
1330 if (err) \
1331 return err; \
1332 } while (0)
1333
1334 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1335 do { \
1336 int err = input_add_uevent_modalias_var(env, dev); \
1337 if (err) \
1338 return err; \
1339 } while (0)
1340
1341 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1342 {
1343 struct input_dev *dev = to_input_dev(device);
1344
1345 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1346 dev->id.bustype, dev->id.vendor,
1347 dev->id.product, dev->id.version);
1348 if (dev->name)
1349 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1350 if (dev->phys)
1351 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1352 if (dev->uniq)
1353 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1354
1355 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1356 if (test_bit(EV_KEY, dev->evbit))
1357 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1358 if (test_bit(EV_REL, dev->evbit))
1359 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1360 if (test_bit(EV_ABS, dev->evbit))
1361 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1362 if (test_bit(EV_MSC, dev->evbit))
1363 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1364 if (test_bit(EV_LED, dev->evbit))
1365 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1366 if (test_bit(EV_SND, dev->evbit))
1367 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1368 if (test_bit(EV_FF, dev->evbit))
1369 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1370 if (test_bit(EV_SW, dev->evbit))
1371 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1372
1373 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1374
1375 return 0;
1376 }
1377
1378 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1379 do { \
1380 int i; \
1381 bool active; \
1382 \
1383 if (!test_bit(EV_##type, dev->evbit)) \
1384 break; \
1385 \
1386 for (i = 0; i < type##_MAX; i++) { \
1387 if (!test_bit(i, dev->bits##bit)) \
1388 continue; \
1389 \
1390 active = test_bit(i, dev->bits); \
1391 if (!active && !on) \
1392 continue; \
1393 \
1394 dev->event(dev, EV_##type, i, on ? active : 0); \
1395 } \
1396 } while (0)
1397
1398 #ifdef CONFIG_PM
1399 static void input_dev_reset(struct input_dev *dev, bool activate)
1400 {
1401 if (!dev->event)
1402 return;
1403
1404 INPUT_DO_TOGGLE(dev, LED, led, activate);
1405 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1406
1407 if (activate && test_bit(EV_REP, dev->evbit)) {
1408 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1409 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1410 }
1411 }
1412
1413 static int input_dev_suspend(struct device *dev)
1414 {
1415 struct input_dev *input_dev = to_input_dev(dev);
1416
1417 mutex_lock(&input_dev->mutex);
1418 input_dev_reset(input_dev, false);
1419 mutex_unlock(&input_dev->mutex);
1420
1421 return 0;
1422 }
1423
1424 static int input_dev_resume(struct device *dev)
1425 {
1426 struct input_dev *input_dev = to_input_dev(dev);
1427
1428 mutex_lock(&input_dev->mutex);
1429 input_dev_reset(input_dev, true);
1430 mutex_unlock(&input_dev->mutex);
1431
1432 return 0;
1433 }
1434
1435 static const struct dev_pm_ops input_dev_pm_ops = {
1436 .suspend = input_dev_suspend,
1437 .resume = input_dev_resume,
1438 .poweroff = input_dev_suspend,
1439 .restore = input_dev_resume,
1440 };
1441 #endif /* CONFIG_PM */
1442
1443 static struct device_type input_dev_type = {
1444 .groups = input_dev_attr_groups,
1445 .release = input_dev_release,
1446 .uevent = input_dev_uevent,
1447 #ifdef CONFIG_PM
1448 .pm = &input_dev_pm_ops,
1449 #endif
1450 };
1451
1452 static char *input_devnode(struct device *dev, mode_t *mode)
1453 {
1454 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1455 }
1456
1457 struct class input_class = {
1458 .name = "input",
1459 .devnode = input_devnode,
1460 };
1461 EXPORT_SYMBOL_GPL(input_class);
1462
1463 /**
1464 * input_allocate_device - allocate memory for new input device
1465 *
1466 * Returns prepared struct input_dev or NULL.
1467 *
1468 * NOTE: Use input_free_device() to free devices that have not been
1469 * registered; input_unregister_device() should be used for already
1470 * registered devices.
1471 */
1472 struct input_dev *input_allocate_device(void)
1473 {
1474 struct input_dev *dev;
1475
1476 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1477 if (dev) {
1478 dev->dev.type = &input_dev_type;
1479 dev->dev.class = &input_class;
1480 device_initialize(&dev->dev);
1481 mutex_init(&dev->mutex);
1482 spin_lock_init(&dev->event_lock);
1483 INIT_LIST_HEAD(&dev->h_list);
1484 INIT_LIST_HEAD(&dev->node);
1485
1486 __module_get(THIS_MODULE);
1487 }
1488
1489 return dev;
1490 }
1491 EXPORT_SYMBOL(input_allocate_device);
1492
1493 /**
1494 * input_free_device - free memory occupied by input_dev structure
1495 * @dev: input device to free
1496 *
1497 * This function should only be used if input_register_device()
1498 * was not called yet or if it failed. Once device was registered
1499 * use input_unregister_device() and memory will be freed once last
1500 * reference to the device is dropped.
1501 *
1502 * Device should be allocated by input_allocate_device().
1503 *
1504 * NOTE: If there are references to the input device then memory
1505 * will not be freed until last reference is dropped.
1506 */
1507 void input_free_device(struct input_dev *dev)
1508 {
1509 if (dev)
1510 input_put_device(dev);
1511 }
1512 EXPORT_SYMBOL(input_free_device);
1513
1514 /**
1515 * input_set_capability - mark device as capable of a certain event
1516 * @dev: device that is capable of emitting or accepting event
1517 * @type: type of the event (EV_KEY, EV_REL, etc...)
1518 * @code: event code
1519 *
1520 * In addition to setting up corresponding bit in appropriate capability
1521 * bitmap the function also adjusts dev->evbit.
1522 */
1523 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1524 {
1525 switch (type) {
1526 case EV_KEY:
1527 __set_bit(code, dev->keybit);
1528 break;
1529
1530 case EV_REL:
1531 __set_bit(code, dev->relbit);
1532 break;
1533
1534 case EV_ABS:
1535 __set_bit(code, dev->absbit);
1536 break;
1537
1538 case EV_MSC:
1539 __set_bit(code, dev->mscbit);
1540 break;
1541
1542 case EV_SW:
1543 __set_bit(code, dev->swbit);
1544 break;
1545
1546 case EV_LED:
1547 __set_bit(code, dev->ledbit);
1548 break;
1549
1550 case EV_SND:
1551 __set_bit(code, dev->sndbit);
1552 break;
1553
1554 case EV_FF:
1555 __set_bit(code, dev->ffbit);
1556 break;
1557
1558 case EV_PWR:
1559 /* do nothing */
1560 break;
1561
1562 default:
1563 printk(KERN_ERR
1564 "input_set_capability: unknown type %u (code %u)\n",
1565 type, code);
1566 dump_stack();
1567 return;
1568 }
1569
1570 __set_bit(type, dev->evbit);
1571 }
1572 EXPORT_SYMBOL(input_set_capability);
1573
1574 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1575 do { \
1576 if (!test_bit(EV_##type, dev->evbit)) \
1577 memset(dev->bits##bit, 0, \
1578 sizeof(dev->bits##bit)); \
1579 } while (0)
1580
1581 static void input_cleanse_bitmasks(struct input_dev *dev)
1582 {
1583 INPUT_CLEANSE_BITMASK(dev, KEY, key);
1584 INPUT_CLEANSE_BITMASK(dev, REL, rel);
1585 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
1586 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
1587 INPUT_CLEANSE_BITMASK(dev, LED, led);
1588 INPUT_CLEANSE_BITMASK(dev, SND, snd);
1589 INPUT_CLEANSE_BITMASK(dev, FF, ff);
1590 INPUT_CLEANSE_BITMASK(dev, SW, sw);
1591 }
1592
1593 /**
1594 * input_register_device - register device with input core
1595 * @dev: device to be registered
1596 *
1597 * This function registers device with input core. The device must be
1598 * allocated with input_allocate_device() and all it's capabilities
1599 * set up before registering.
1600 * If function fails the device must be freed with input_free_device().
1601 * Once device has been successfully registered it can be unregistered
1602 * with input_unregister_device(); input_free_device() should not be
1603 * called in this case.
1604 */
1605 int input_register_device(struct input_dev *dev)
1606 {
1607 static atomic_t input_no = ATOMIC_INIT(0);
1608 struct input_handler *handler;
1609 const char *path;
1610 int error;
1611
1612 /* Every input device generates EV_SYN/SYN_REPORT events. */
1613 __set_bit(EV_SYN, dev->evbit);
1614
1615 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
1616 __clear_bit(KEY_RESERVED, dev->keybit);
1617
1618 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1619 input_cleanse_bitmasks(dev);
1620
1621 /*
1622 * If delay and period are pre-set by the driver, then autorepeating
1623 * is handled by the driver itself and we don't do it in input.c.
1624 */
1625 init_timer(&dev->timer);
1626 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1627 dev->timer.data = (long) dev;
1628 dev->timer.function = input_repeat_key;
1629 dev->rep[REP_DELAY] = 250;
1630 dev->rep[REP_PERIOD] = 33;
1631 }
1632
1633 if (!dev->getkeycode)
1634 dev->getkeycode = input_default_getkeycode;
1635
1636 if (!dev->setkeycode)
1637 dev->setkeycode = input_default_setkeycode;
1638
1639 dev_set_name(&dev->dev, "input%ld",
1640 (unsigned long) atomic_inc_return(&input_no) - 1);
1641
1642 error = device_add(&dev->dev);
1643 if (error)
1644 return error;
1645
1646 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1647 printk(KERN_INFO "input: %s as %s\n",
1648 dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1649 kfree(path);
1650
1651 error = mutex_lock_interruptible(&input_mutex);
1652 if (error) {
1653 device_del(&dev->dev);
1654 return error;
1655 }
1656
1657 list_add_tail(&dev->node, &input_dev_list);
1658
1659 list_for_each_entry(handler, &input_handler_list, node)
1660 input_attach_handler(dev, handler);
1661
1662 input_wakeup_procfs_readers();
1663
1664 mutex_unlock(&input_mutex);
1665
1666 return 0;
1667 }
1668 EXPORT_SYMBOL(input_register_device);
1669
1670 /**
1671 * input_unregister_device - unregister previously registered device
1672 * @dev: device to be unregistered
1673 *
1674 * This function unregisters an input device. Once device is unregistered
1675 * the caller should not try to access it as it may get freed at any moment.
1676 */
1677 void input_unregister_device(struct input_dev *dev)
1678 {
1679 struct input_handle *handle, *next;
1680
1681 input_disconnect_device(dev);
1682
1683 mutex_lock(&input_mutex);
1684
1685 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1686 handle->handler->disconnect(handle);
1687 WARN_ON(!list_empty(&dev->h_list));
1688
1689 del_timer_sync(&dev->timer);
1690 list_del_init(&dev->node);
1691
1692 input_wakeup_procfs_readers();
1693
1694 mutex_unlock(&input_mutex);
1695
1696 device_unregister(&dev->dev);
1697 }
1698 EXPORT_SYMBOL(input_unregister_device);
1699
1700 /**
1701 * input_register_handler - register a new input handler
1702 * @handler: handler to be registered
1703 *
1704 * This function registers a new input handler (interface) for input
1705 * devices in the system and attaches it to all input devices that
1706 * are compatible with the handler.
1707 */
1708 int input_register_handler(struct input_handler *handler)
1709 {
1710 struct input_dev *dev;
1711 int retval;
1712
1713 retval = mutex_lock_interruptible(&input_mutex);
1714 if (retval)
1715 return retval;
1716
1717 INIT_LIST_HEAD(&handler->h_list);
1718
1719 if (handler->fops != NULL) {
1720 if (input_table[handler->minor >> 5]) {
1721 retval = -EBUSY;
1722 goto out;
1723 }
1724 input_table[handler->minor >> 5] = handler;
1725 }
1726
1727 list_add_tail(&handler->node, &input_handler_list);
1728
1729 list_for_each_entry(dev, &input_dev_list, node)
1730 input_attach_handler(dev, handler);
1731
1732 input_wakeup_procfs_readers();
1733
1734 out:
1735 mutex_unlock(&input_mutex);
1736 return retval;
1737 }
1738 EXPORT_SYMBOL(input_register_handler);
1739
1740 /**
1741 * input_unregister_handler - unregisters an input handler
1742 * @handler: handler to be unregistered
1743 *
1744 * This function disconnects a handler from its input devices and
1745 * removes it from lists of known handlers.
1746 */
1747 void input_unregister_handler(struct input_handler *handler)
1748 {
1749 struct input_handle *handle, *next;
1750
1751 mutex_lock(&input_mutex);
1752
1753 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1754 handler->disconnect(handle);
1755 WARN_ON(!list_empty(&handler->h_list));
1756
1757 list_del_init(&handler->node);
1758
1759 if (handler->fops != NULL)
1760 input_table[handler->minor >> 5] = NULL;
1761
1762 input_wakeup_procfs_readers();
1763
1764 mutex_unlock(&input_mutex);
1765 }
1766 EXPORT_SYMBOL(input_unregister_handler);
1767
1768 /**
1769 * input_handler_for_each_handle - handle iterator
1770 * @handler: input handler to iterate
1771 * @data: data for the callback
1772 * @fn: function to be called for each handle
1773 *
1774 * Iterate over @bus's list of devices, and call @fn for each, passing
1775 * it @data and stop when @fn returns a non-zero value. The function is
1776 * using RCU to traverse the list and therefore may be usind in atonic
1777 * contexts. The @fn callback is invoked from RCU critical section and
1778 * thus must not sleep.
1779 */
1780 int input_handler_for_each_handle(struct input_handler *handler, void *data,
1781 int (*fn)(struct input_handle *, void *))
1782 {
1783 struct input_handle *handle;
1784 int retval = 0;
1785
1786 rcu_read_lock();
1787
1788 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
1789 retval = fn(handle, data);
1790 if (retval)
1791 break;
1792 }
1793
1794 rcu_read_unlock();
1795
1796 return retval;
1797 }
1798 EXPORT_SYMBOL(input_handler_for_each_handle);
1799
1800 /**
1801 * input_register_handle - register a new input handle
1802 * @handle: handle to register
1803 *
1804 * This function puts a new input handle onto device's
1805 * and handler's lists so that events can flow through
1806 * it once it is opened using input_open_device().
1807 *
1808 * This function is supposed to be called from handler's
1809 * connect() method.
1810 */
1811 int input_register_handle(struct input_handle *handle)
1812 {
1813 struct input_handler *handler = handle->handler;
1814 struct input_dev *dev = handle->dev;
1815 int error;
1816
1817 /*
1818 * We take dev->mutex here to prevent race with
1819 * input_release_device().
1820 */
1821 error = mutex_lock_interruptible(&dev->mutex);
1822 if (error)
1823 return error;
1824
1825 /*
1826 * Filters go to the head of the list, normal handlers
1827 * to the tail.
1828 */
1829 if (handler->filter)
1830 list_add_rcu(&handle->d_node, &dev->h_list);
1831 else
1832 list_add_tail_rcu(&handle->d_node, &dev->h_list);
1833
1834 mutex_unlock(&dev->mutex);
1835
1836 /*
1837 * Since we are supposed to be called from ->connect()
1838 * which is mutually exclusive with ->disconnect()
1839 * we can't be racing with input_unregister_handle()
1840 * and so separate lock is not needed here.
1841 */
1842 list_add_tail_rcu(&handle->h_node, &handler->h_list);
1843
1844 if (handler->start)
1845 handler->start(handle);
1846
1847 return 0;
1848 }
1849 EXPORT_SYMBOL(input_register_handle);
1850
1851 /**
1852 * input_unregister_handle - unregister an input handle
1853 * @handle: handle to unregister
1854 *
1855 * This function removes input handle from device's
1856 * and handler's lists.
1857 *
1858 * This function is supposed to be called from handler's
1859 * disconnect() method.
1860 */
1861 void input_unregister_handle(struct input_handle *handle)
1862 {
1863 struct input_dev *dev = handle->dev;
1864
1865 list_del_rcu(&handle->h_node);
1866
1867 /*
1868 * Take dev->mutex to prevent race with input_release_device().
1869 */
1870 mutex_lock(&dev->mutex);
1871 list_del_rcu(&handle->d_node);
1872 mutex_unlock(&dev->mutex);
1873
1874 synchronize_rcu();
1875 }
1876 EXPORT_SYMBOL(input_unregister_handle);
1877
1878 static int input_open_file(struct inode *inode, struct file *file)
1879 {
1880 struct input_handler *handler;
1881 const struct file_operations *old_fops, *new_fops = NULL;
1882 int err;
1883
1884 lock_kernel();
1885 /* No load-on-demand here? */
1886 handler = input_table[iminor(inode) >> 5];
1887 if (!handler || !(new_fops = fops_get(handler->fops))) {
1888 err = -ENODEV;
1889 goto out;
1890 }
1891
1892 /*
1893 * That's _really_ odd. Usually NULL ->open means "nothing special",
1894 * not "no device". Oh, well...
1895 */
1896 if (!new_fops->open) {
1897 fops_put(new_fops);
1898 err = -ENODEV;
1899 goto out;
1900 }
1901 old_fops = file->f_op;
1902 file->f_op = new_fops;
1903
1904 err = new_fops->open(inode, file);
1905
1906 if (err) {
1907 fops_put(file->f_op);
1908 file->f_op = fops_get(old_fops);
1909 }
1910 fops_put(old_fops);
1911 out:
1912 unlock_kernel();
1913 return err;
1914 }
1915
1916 static const struct file_operations input_fops = {
1917 .owner = THIS_MODULE,
1918 .open = input_open_file,
1919 };
1920
1921 static void __init input_init_abs_bypass(void)
1922 {
1923 const unsigned int *p;
1924
1925 for (p = input_abs_bypass_init_data; *p; p++)
1926 input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
1927 }
1928
1929 static int __init input_init(void)
1930 {
1931 int err;
1932
1933 input_init_abs_bypass();
1934
1935 err = class_register(&input_class);
1936 if (err) {
1937 printk(KERN_ERR "input: unable to register input_dev class\n");
1938 return err;
1939 }
1940
1941 err = input_proc_init();
1942 if (err)
1943 goto fail1;
1944
1945 err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1946 if (err) {
1947 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1948 goto fail2;
1949 }
1950
1951 return 0;
1952
1953 fail2: input_proc_exit();
1954 fail1: class_unregister(&input_class);
1955 return err;
1956 }
1957
1958 static void __exit input_exit(void)
1959 {
1960 input_proc_exit();
1961 unregister_chrdev(INPUT_MAJOR, "input");
1962 class_unregister(&input_class);
1963 }
1964
1965 subsys_initcall(input_init);
1966 module_exit(input_exit);
This page took 0.082464 seconds and 6 git commands to generate.