Merge branch 'drm-radeon-testing' of /ssd/git/drm-radeon-next into drm-next-stage
[deliverable/linux.git] / drivers / input / input.c
1 /*
2 * The input core
3 *
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
6
7 /*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
11 */
12
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/input.h>
16 #include <linux/module.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include <linux/smp_lock.h>
27 #include "input-compat.h"
28
29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30 MODULE_DESCRIPTION("Input core");
31 MODULE_LICENSE("GPL");
32
33 #define INPUT_DEVICES 256
34
35 /*
36 * EV_ABS events which should not be cached are listed here.
37 */
38 static unsigned int input_abs_bypass_init_data[] __initdata = {
39 ABS_MT_TOUCH_MAJOR,
40 ABS_MT_TOUCH_MINOR,
41 ABS_MT_WIDTH_MAJOR,
42 ABS_MT_WIDTH_MINOR,
43 ABS_MT_ORIENTATION,
44 ABS_MT_POSITION_X,
45 ABS_MT_POSITION_Y,
46 ABS_MT_TOOL_TYPE,
47 ABS_MT_BLOB_ID,
48 ABS_MT_TRACKING_ID,
49 ABS_MT_PRESSURE,
50 0
51 };
52 static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
53
54 static LIST_HEAD(input_dev_list);
55 static LIST_HEAD(input_handler_list);
56
57 /*
58 * input_mutex protects access to both input_dev_list and input_handler_list.
59 * This also causes input_[un]register_device and input_[un]register_handler
60 * be mutually exclusive which simplifies locking in drivers implementing
61 * input handlers.
62 */
63 static DEFINE_MUTEX(input_mutex);
64
65 static struct input_handler *input_table[8];
66
67 static inline int is_event_supported(unsigned int code,
68 unsigned long *bm, unsigned int max)
69 {
70 return code <= max && test_bit(code, bm);
71 }
72
73 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
74 {
75 if (fuzz) {
76 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
77 return old_val;
78
79 if (value > old_val - fuzz && value < old_val + fuzz)
80 return (old_val * 3 + value) / 4;
81
82 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
83 return (old_val + value) / 2;
84 }
85
86 return value;
87 }
88
89 /*
90 * Pass event through all open handles. This function is called with
91 * dev->event_lock held and interrupts disabled.
92 */
93 static void input_pass_event(struct input_dev *dev,
94 unsigned int type, unsigned int code, int value)
95 {
96 struct input_handle *handle;
97
98 rcu_read_lock();
99
100 handle = rcu_dereference(dev->grab);
101 if (handle)
102 handle->handler->event(handle, type, code, value);
103 else
104 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
105 if (handle->open)
106 handle->handler->event(handle,
107 type, code, value);
108 rcu_read_unlock();
109 }
110
111 /*
112 * Generate software autorepeat event. Note that we take
113 * dev->event_lock here to avoid racing with input_event
114 * which may cause keys get "stuck".
115 */
116 static void input_repeat_key(unsigned long data)
117 {
118 struct input_dev *dev = (void *) data;
119 unsigned long flags;
120
121 spin_lock_irqsave(&dev->event_lock, flags);
122
123 if (test_bit(dev->repeat_key, dev->key) &&
124 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
125
126 input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
127
128 if (dev->sync) {
129 /*
130 * Only send SYN_REPORT if we are not in a middle
131 * of driver parsing a new hardware packet.
132 * Otherwise assume that the driver will send
133 * SYN_REPORT once it's done.
134 */
135 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
136 }
137
138 if (dev->rep[REP_PERIOD])
139 mod_timer(&dev->timer, jiffies +
140 msecs_to_jiffies(dev->rep[REP_PERIOD]));
141 }
142
143 spin_unlock_irqrestore(&dev->event_lock, flags);
144 }
145
146 static void input_start_autorepeat(struct input_dev *dev, int code)
147 {
148 if (test_bit(EV_REP, dev->evbit) &&
149 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
150 dev->timer.data) {
151 dev->repeat_key = code;
152 mod_timer(&dev->timer,
153 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
154 }
155 }
156
157 static void input_stop_autorepeat(struct input_dev *dev)
158 {
159 del_timer(&dev->timer);
160 }
161
162 #define INPUT_IGNORE_EVENT 0
163 #define INPUT_PASS_TO_HANDLERS 1
164 #define INPUT_PASS_TO_DEVICE 2
165 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
166
167 static void input_handle_event(struct input_dev *dev,
168 unsigned int type, unsigned int code, int value)
169 {
170 int disposition = INPUT_IGNORE_EVENT;
171
172 switch (type) {
173
174 case EV_SYN:
175 switch (code) {
176 case SYN_CONFIG:
177 disposition = INPUT_PASS_TO_ALL;
178 break;
179
180 case SYN_REPORT:
181 if (!dev->sync) {
182 dev->sync = 1;
183 disposition = INPUT_PASS_TO_HANDLERS;
184 }
185 break;
186 case SYN_MT_REPORT:
187 dev->sync = 0;
188 disposition = INPUT_PASS_TO_HANDLERS;
189 break;
190 }
191 break;
192
193 case EV_KEY:
194 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
195 !!test_bit(code, dev->key) != value) {
196
197 if (value != 2) {
198 __change_bit(code, dev->key);
199 if (value)
200 input_start_autorepeat(dev, code);
201 else
202 input_stop_autorepeat(dev);
203 }
204
205 disposition = INPUT_PASS_TO_HANDLERS;
206 }
207 break;
208
209 case EV_SW:
210 if (is_event_supported(code, dev->swbit, SW_MAX) &&
211 !!test_bit(code, dev->sw) != value) {
212
213 __change_bit(code, dev->sw);
214 disposition = INPUT_PASS_TO_HANDLERS;
215 }
216 break;
217
218 case EV_ABS:
219 if (is_event_supported(code, dev->absbit, ABS_MAX)) {
220
221 if (test_bit(code, input_abs_bypass)) {
222 disposition = INPUT_PASS_TO_HANDLERS;
223 break;
224 }
225
226 value = input_defuzz_abs_event(value,
227 dev->abs[code], dev->absfuzz[code]);
228
229 if (dev->abs[code] != value) {
230 dev->abs[code] = value;
231 disposition = INPUT_PASS_TO_HANDLERS;
232 }
233 }
234 break;
235
236 case EV_REL:
237 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
238 disposition = INPUT_PASS_TO_HANDLERS;
239
240 break;
241
242 case EV_MSC:
243 if (is_event_supported(code, dev->mscbit, MSC_MAX))
244 disposition = INPUT_PASS_TO_ALL;
245
246 break;
247
248 case EV_LED:
249 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
250 !!test_bit(code, dev->led) != value) {
251
252 __change_bit(code, dev->led);
253 disposition = INPUT_PASS_TO_ALL;
254 }
255 break;
256
257 case EV_SND:
258 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
259
260 if (!!test_bit(code, dev->snd) != !!value)
261 __change_bit(code, dev->snd);
262 disposition = INPUT_PASS_TO_ALL;
263 }
264 break;
265
266 case EV_REP:
267 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
268 dev->rep[code] = value;
269 disposition = INPUT_PASS_TO_ALL;
270 }
271 break;
272
273 case EV_FF:
274 if (value >= 0)
275 disposition = INPUT_PASS_TO_ALL;
276 break;
277
278 case EV_PWR:
279 disposition = INPUT_PASS_TO_ALL;
280 break;
281 }
282
283 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
284 dev->sync = 0;
285
286 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
287 dev->event(dev, type, code, value);
288
289 if (disposition & INPUT_PASS_TO_HANDLERS)
290 input_pass_event(dev, type, code, value);
291 }
292
293 /**
294 * input_event() - report new input event
295 * @dev: device that generated the event
296 * @type: type of the event
297 * @code: event code
298 * @value: value of the event
299 *
300 * This function should be used by drivers implementing various input
301 * devices to report input events. See also input_inject_event().
302 *
303 * NOTE: input_event() may be safely used right after input device was
304 * allocated with input_allocate_device(), even before it is registered
305 * with input_register_device(), but the event will not reach any of the
306 * input handlers. Such early invocation of input_event() may be used
307 * to 'seed' initial state of a switch or initial position of absolute
308 * axis, etc.
309 */
310 void input_event(struct input_dev *dev,
311 unsigned int type, unsigned int code, int value)
312 {
313 unsigned long flags;
314
315 if (is_event_supported(type, dev->evbit, EV_MAX)) {
316
317 spin_lock_irqsave(&dev->event_lock, flags);
318 add_input_randomness(type, code, value);
319 input_handle_event(dev, type, code, value);
320 spin_unlock_irqrestore(&dev->event_lock, flags);
321 }
322 }
323 EXPORT_SYMBOL(input_event);
324
325 /**
326 * input_inject_event() - send input event from input handler
327 * @handle: input handle to send event through
328 * @type: type of the event
329 * @code: event code
330 * @value: value of the event
331 *
332 * Similar to input_event() but will ignore event if device is
333 * "grabbed" and handle injecting event is not the one that owns
334 * the device.
335 */
336 void input_inject_event(struct input_handle *handle,
337 unsigned int type, unsigned int code, int value)
338 {
339 struct input_dev *dev = handle->dev;
340 struct input_handle *grab;
341 unsigned long flags;
342
343 if (is_event_supported(type, dev->evbit, EV_MAX)) {
344 spin_lock_irqsave(&dev->event_lock, flags);
345
346 rcu_read_lock();
347 grab = rcu_dereference(dev->grab);
348 if (!grab || grab == handle)
349 input_handle_event(dev, type, code, value);
350 rcu_read_unlock();
351
352 spin_unlock_irqrestore(&dev->event_lock, flags);
353 }
354 }
355 EXPORT_SYMBOL(input_inject_event);
356
357 /**
358 * input_grab_device - grabs device for exclusive use
359 * @handle: input handle that wants to own the device
360 *
361 * When a device is grabbed by an input handle all events generated by
362 * the device are delivered only to this handle. Also events injected
363 * by other input handles are ignored while device is grabbed.
364 */
365 int input_grab_device(struct input_handle *handle)
366 {
367 struct input_dev *dev = handle->dev;
368 int retval;
369
370 retval = mutex_lock_interruptible(&dev->mutex);
371 if (retval)
372 return retval;
373
374 if (dev->grab) {
375 retval = -EBUSY;
376 goto out;
377 }
378
379 rcu_assign_pointer(dev->grab, handle);
380 synchronize_rcu();
381
382 out:
383 mutex_unlock(&dev->mutex);
384 return retval;
385 }
386 EXPORT_SYMBOL(input_grab_device);
387
388 static void __input_release_device(struct input_handle *handle)
389 {
390 struct input_dev *dev = handle->dev;
391
392 if (dev->grab == handle) {
393 rcu_assign_pointer(dev->grab, NULL);
394 /* Make sure input_pass_event() notices that grab is gone */
395 synchronize_rcu();
396
397 list_for_each_entry(handle, &dev->h_list, d_node)
398 if (handle->open && handle->handler->start)
399 handle->handler->start(handle);
400 }
401 }
402
403 /**
404 * input_release_device - release previously grabbed device
405 * @handle: input handle that owns the device
406 *
407 * Releases previously grabbed device so that other input handles can
408 * start receiving input events. Upon release all handlers attached
409 * to the device have their start() method called so they have a change
410 * to synchronize device state with the rest of the system.
411 */
412 void input_release_device(struct input_handle *handle)
413 {
414 struct input_dev *dev = handle->dev;
415
416 mutex_lock(&dev->mutex);
417 __input_release_device(handle);
418 mutex_unlock(&dev->mutex);
419 }
420 EXPORT_SYMBOL(input_release_device);
421
422 /**
423 * input_open_device - open input device
424 * @handle: handle through which device is being accessed
425 *
426 * This function should be called by input handlers when they
427 * want to start receive events from given input device.
428 */
429 int input_open_device(struct input_handle *handle)
430 {
431 struct input_dev *dev = handle->dev;
432 int retval;
433
434 retval = mutex_lock_interruptible(&dev->mutex);
435 if (retval)
436 return retval;
437
438 if (dev->going_away) {
439 retval = -ENODEV;
440 goto out;
441 }
442
443 handle->open++;
444
445 if (!dev->users++ && dev->open)
446 retval = dev->open(dev);
447
448 if (retval) {
449 dev->users--;
450 if (!--handle->open) {
451 /*
452 * Make sure we are not delivering any more events
453 * through this handle
454 */
455 synchronize_rcu();
456 }
457 }
458
459 out:
460 mutex_unlock(&dev->mutex);
461 return retval;
462 }
463 EXPORT_SYMBOL(input_open_device);
464
465 int input_flush_device(struct input_handle *handle, struct file *file)
466 {
467 struct input_dev *dev = handle->dev;
468 int retval;
469
470 retval = mutex_lock_interruptible(&dev->mutex);
471 if (retval)
472 return retval;
473
474 if (dev->flush)
475 retval = dev->flush(dev, file);
476
477 mutex_unlock(&dev->mutex);
478 return retval;
479 }
480 EXPORT_SYMBOL(input_flush_device);
481
482 /**
483 * input_close_device - close input device
484 * @handle: handle through which device is being accessed
485 *
486 * This function should be called by input handlers when they
487 * want to stop receive events from given input device.
488 */
489 void input_close_device(struct input_handle *handle)
490 {
491 struct input_dev *dev = handle->dev;
492
493 mutex_lock(&dev->mutex);
494
495 __input_release_device(handle);
496
497 if (!--dev->users && dev->close)
498 dev->close(dev);
499
500 if (!--handle->open) {
501 /*
502 * synchronize_rcu() makes sure that input_pass_event()
503 * completed and that no more input events are delivered
504 * through this handle
505 */
506 synchronize_rcu();
507 }
508
509 mutex_unlock(&dev->mutex);
510 }
511 EXPORT_SYMBOL(input_close_device);
512
513 /*
514 * Prepare device for unregistering
515 */
516 static void input_disconnect_device(struct input_dev *dev)
517 {
518 struct input_handle *handle;
519 int code;
520
521 /*
522 * Mark device as going away. Note that we take dev->mutex here
523 * not to protect access to dev->going_away but rather to ensure
524 * that there are no threads in the middle of input_open_device()
525 */
526 mutex_lock(&dev->mutex);
527 dev->going_away = true;
528 mutex_unlock(&dev->mutex);
529
530 spin_lock_irq(&dev->event_lock);
531
532 /*
533 * Simulate keyup events for all pressed keys so that handlers
534 * are not left with "stuck" keys. The driver may continue
535 * generate events even after we done here but they will not
536 * reach any handlers.
537 */
538 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
539 for (code = 0; code <= KEY_MAX; code++) {
540 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
541 __test_and_clear_bit(code, dev->key)) {
542 input_pass_event(dev, EV_KEY, code, 0);
543 }
544 }
545 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
546 }
547
548 list_for_each_entry(handle, &dev->h_list, d_node)
549 handle->open = 0;
550
551 spin_unlock_irq(&dev->event_lock);
552 }
553
554 static int input_fetch_keycode(struct input_dev *dev, int scancode)
555 {
556 switch (dev->keycodesize) {
557 case 1:
558 return ((u8 *)dev->keycode)[scancode];
559
560 case 2:
561 return ((u16 *)dev->keycode)[scancode];
562
563 default:
564 return ((u32 *)dev->keycode)[scancode];
565 }
566 }
567
568 static int input_default_getkeycode(struct input_dev *dev,
569 int scancode, int *keycode)
570 {
571 if (!dev->keycodesize)
572 return -EINVAL;
573
574 if (scancode >= dev->keycodemax)
575 return -EINVAL;
576
577 *keycode = input_fetch_keycode(dev, scancode);
578
579 return 0;
580 }
581
582 static int input_default_setkeycode(struct input_dev *dev,
583 int scancode, int keycode)
584 {
585 int old_keycode;
586 int i;
587
588 if (scancode >= dev->keycodemax)
589 return -EINVAL;
590
591 if (!dev->keycodesize)
592 return -EINVAL;
593
594 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
595 return -EINVAL;
596
597 switch (dev->keycodesize) {
598 case 1: {
599 u8 *k = (u8 *)dev->keycode;
600 old_keycode = k[scancode];
601 k[scancode] = keycode;
602 break;
603 }
604 case 2: {
605 u16 *k = (u16 *)dev->keycode;
606 old_keycode = k[scancode];
607 k[scancode] = keycode;
608 break;
609 }
610 default: {
611 u32 *k = (u32 *)dev->keycode;
612 old_keycode = k[scancode];
613 k[scancode] = keycode;
614 break;
615 }
616 }
617
618 clear_bit(old_keycode, dev->keybit);
619 set_bit(keycode, dev->keybit);
620
621 for (i = 0; i < dev->keycodemax; i++) {
622 if (input_fetch_keycode(dev, i) == old_keycode) {
623 set_bit(old_keycode, dev->keybit);
624 break; /* Setting the bit twice is useless, so break */
625 }
626 }
627
628 return 0;
629 }
630
631 /**
632 * input_get_keycode - retrieve keycode currently mapped to a given scancode
633 * @dev: input device which keymap is being queried
634 * @scancode: scancode (or its equivalent for device in question) for which
635 * keycode is needed
636 * @keycode: result
637 *
638 * This function should be called by anyone interested in retrieving current
639 * keymap. Presently keyboard and evdev handlers use it.
640 */
641 int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
642 {
643 if (scancode < 0)
644 return -EINVAL;
645
646 return dev->getkeycode(dev, scancode, keycode);
647 }
648 EXPORT_SYMBOL(input_get_keycode);
649
650 /**
651 * input_get_keycode - assign new keycode to a given scancode
652 * @dev: input device which keymap is being updated
653 * @scancode: scancode (or its equivalent for device in question)
654 * @keycode: new keycode to be assigned to the scancode
655 *
656 * This function should be called by anyone needing to update current
657 * keymap. Presently keyboard and evdev handlers use it.
658 */
659 int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
660 {
661 unsigned long flags;
662 int old_keycode;
663 int retval;
664
665 if (scancode < 0)
666 return -EINVAL;
667
668 if (keycode < 0 || keycode > KEY_MAX)
669 return -EINVAL;
670
671 spin_lock_irqsave(&dev->event_lock, flags);
672
673 retval = dev->getkeycode(dev, scancode, &old_keycode);
674 if (retval)
675 goto out;
676
677 retval = dev->setkeycode(dev, scancode, keycode);
678 if (retval)
679 goto out;
680
681 /*
682 * Simulate keyup event if keycode is not present
683 * in the keymap anymore
684 */
685 if (test_bit(EV_KEY, dev->evbit) &&
686 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
687 __test_and_clear_bit(old_keycode, dev->key)) {
688
689 input_pass_event(dev, EV_KEY, old_keycode, 0);
690 if (dev->sync)
691 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
692 }
693
694 out:
695 spin_unlock_irqrestore(&dev->event_lock, flags);
696
697 return retval;
698 }
699 EXPORT_SYMBOL(input_set_keycode);
700
701 #define MATCH_BIT(bit, max) \
702 for (i = 0; i < BITS_TO_LONGS(max); i++) \
703 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
704 break; \
705 if (i != BITS_TO_LONGS(max)) \
706 continue;
707
708 static const struct input_device_id *input_match_device(const struct input_device_id *id,
709 struct input_dev *dev)
710 {
711 int i;
712
713 for (; id->flags || id->driver_info; id++) {
714
715 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
716 if (id->bustype != dev->id.bustype)
717 continue;
718
719 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
720 if (id->vendor != dev->id.vendor)
721 continue;
722
723 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
724 if (id->product != dev->id.product)
725 continue;
726
727 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
728 if (id->version != dev->id.version)
729 continue;
730
731 MATCH_BIT(evbit, EV_MAX);
732 MATCH_BIT(keybit, KEY_MAX);
733 MATCH_BIT(relbit, REL_MAX);
734 MATCH_BIT(absbit, ABS_MAX);
735 MATCH_BIT(mscbit, MSC_MAX);
736 MATCH_BIT(ledbit, LED_MAX);
737 MATCH_BIT(sndbit, SND_MAX);
738 MATCH_BIT(ffbit, FF_MAX);
739 MATCH_BIT(swbit, SW_MAX);
740
741 return id;
742 }
743
744 return NULL;
745 }
746
747 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
748 {
749 const struct input_device_id *id;
750 int error;
751
752 if (handler->blacklist && input_match_device(handler->blacklist, dev))
753 return -ENODEV;
754
755 id = input_match_device(handler->id_table, dev);
756 if (!id)
757 return -ENODEV;
758
759 error = handler->connect(handler, dev, id);
760 if (error && error != -ENODEV)
761 printk(KERN_ERR
762 "input: failed to attach handler %s to device %s, "
763 "error: %d\n",
764 handler->name, kobject_name(&dev->dev.kobj), error);
765
766 return error;
767 }
768
769 #ifdef CONFIG_COMPAT
770
771 static int input_bits_to_string(char *buf, int buf_size,
772 unsigned long bits, bool skip_empty)
773 {
774 int len = 0;
775
776 if (INPUT_COMPAT_TEST) {
777 u32 dword = bits >> 32;
778 if (dword || !skip_empty)
779 len += snprintf(buf, buf_size, "%x ", dword);
780
781 dword = bits & 0xffffffffUL;
782 if (dword || !skip_empty || len)
783 len += snprintf(buf + len, max(buf_size - len, 0),
784 "%x", dword);
785 } else {
786 if (bits || !skip_empty)
787 len += snprintf(buf, buf_size, "%lx", bits);
788 }
789
790 return len;
791 }
792
793 #else /* !CONFIG_COMPAT */
794
795 static int input_bits_to_string(char *buf, int buf_size,
796 unsigned long bits, bool skip_empty)
797 {
798 return bits || !skip_empty ?
799 snprintf(buf, buf_size, "%lx", bits) : 0;
800 }
801
802 #endif
803
804 #ifdef CONFIG_PROC_FS
805
806 static struct proc_dir_entry *proc_bus_input_dir;
807 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
808 static int input_devices_state;
809
810 static inline void input_wakeup_procfs_readers(void)
811 {
812 input_devices_state++;
813 wake_up(&input_devices_poll_wait);
814 }
815
816 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
817 {
818 poll_wait(file, &input_devices_poll_wait, wait);
819 if (file->f_version != input_devices_state) {
820 file->f_version = input_devices_state;
821 return POLLIN | POLLRDNORM;
822 }
823
824 return 0;
825 }
826
827 union input_seq_state {
828 struct {
829 unsigned short pos;
830 bool mutex_acquired;
831 };
832 void *p;
833 };
834
835 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
836 {
837 union input_seq_state *state = (union input_seq_state *)&seq->private;
838 int error;
839
840 /* We need to fit into seq->private pointer */
841 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
842
843 error = mutex_lock_interruptible(&input_mutex);
844 if (error) {
845 state->mutex_acquired = false;
846 return ERR_PTR(error);
847 }
848
849 state->mutex_acquired = true;
850
851 return seq_list_start(&input_dev_list, *pos);
852 }
853
854 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
855 {
856 return seq_list_next(v, &input_dev_list, pos);
857 }
858
859 static void input_seq_stop(struct seq_file *seq, void *v)
860 {
861 union input_seq_state *state = (union input_seq_state *)&seq->private;
862
863 if (state->mutex_acquired)
864 mutex_unlock(&input_mutex);
865 }
866
867 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
868 unsigned long *bitmap, int max)
869 {
870 int i;
871 bool skip_empty = true;
872 char buf[18];
873
874 seq_printf(seq, "B: %s=", name);
875
876 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
877 if (input_bits_to_string(buf, sizeof(buf),
878 bitmap[i], skip_empty)) {
879 skip_empty = false;
880 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
881 }
882 }
883
884 /*
885 * If no output was produced print a single 0.
886 */
887 if (skip_empty)
888 seq_puts(seq, "0");
889
890 seq_putc(seq, '\n');
891 }
892
893 static int input_devices_seq_show(struct seq_file *seq, void *v)
894 {
895 struct input_dev *dev = container_of(v, struct input_dev, node);
896 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
897 struct input_handle *handle;
898
899 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
900 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
901
902 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
903 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
904 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
905 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
906 seq_printf(seq, "H: Handlers=");
907
908 list_for_each_entry(handle, &dev->h_list, d_node)
909 seq_printf(seq, "%s ", handle->name);
910 seq_putc(seq, '\n');
911
912 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
913 if (test_bit(EV_KEY, dev->evbit))
914 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
915 if (test_bit(EV_REL, dev->evbit))
916 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
917 if (test_bit(EV_ABS, dev->evbit))
918 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
919 if (test_bit(EV_MSC, dev->evbit))
920 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
921 if (test_bit(EV_LED, dev->evbit))
922 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
923 if (test_bit(EV_SND, dev->evbit))
924 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
925 if (test_bit(EV_FF, dev->evbit))
926 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
927 if (test_bit(EV_SW, dev->evbit))
928 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
929
930 seq_putc(seq, '\n');
931
932 kfree(path);
933 return 0;
934 }
935
936 static const struct seq_operations input_devices_seq_ops = {
937 .start = input_devices_seq_start,
938 .next = input_devices_seq_next,
939 .stop = input_seq_stop,
940 .show = input_devices_seq_show,
941 };
942
943 static int input_proc_devices_open(struct inode *inode, struct file *file)
944 {
945 return seq_open(file, &input_devices_seq_ops);
946 }
947
948 static const struct file_operations input_devices_fileops = {
949 .owner = THIS_MODULE,
950 .open = input_proc_devices_open,
951 .poll = input_proc_devices_poll,
952 .read = seq_read,
953 .llseek = seq_lseek,
954 .release = seq_release,
955 };
956
957 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
958 {
959 union input_seq_state *state = (union input_seq_state *)&seq->private;
960 int error;
961
962 /* We need to fit into seq->private pointer */
963 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
964
965 error = mutex_lock_interruptible(&input_mutex);
966 if (error) {
967 state->mutex_acquired = false;
968 return ERR_PTR(error);
969 }
970
971 state->mutex_acquired = true;
972 state->pos = *pos;
973
974 return seq_list_start(&input_handler_list, *pos);
975 }
976
977 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
978 {
979 union input_seq_state *state = (union input_seq_state *)&seq->private;
980
981 state->pos = *pos + 1;
982 return seq_list_next(v, &input_handler_list, pos);
983 }
984
985 static int input_handlers_seq_show(struct seq_file *seq, void *v)
986 {
987 struct input_handler *handler = container_of(v, struct input_handler, node);
988 union input_seq_state *state = (union input_seq_state *)&seq->private;
989
990 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
991 if (handler->fops)
992 seq_printf(seq, " Minor=%d", handler->minor);
993 seq_putc(seq, '\n');
994
995 return 0;
996 }
997
998 static const struct seq_operations input_handlers_seq_ops = {
999 .start = input_handlers_seq_start,
1000 .next = input_handlers_seq_next,
1001 .stop = input_seq_stop,
1002 .show = input_handlers_seq_show,
1003 };
1004
1005 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1006 {
1007 return seq_open(file, &input_handlers_seq_ops);
1008 }
1009
1010 static const struct file_operations input_handlers_fileops = {
1011 .owner = THIS_MODULE,
1012 .open = input_proc_handlers_open,
1013 .read = seq_read,
1014 .llseek = seq_lseek,
1015 .release = seq_release,
1016 };
1017
1018 static int __init input_proc_init(void)
1019 {
1020 struct proc_dir_entry *entry;
1021
1022 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1023 if (!proc_bus_input_dir)
1024 return -ENOMEM;
1025
1026 entry = proc_create("devices", 0, proc_bus_input_dir,
1027 &input_devices_fileops);
1028 if (!entry)
1029 goto fail1;
1030
1031 entry = proc_create("handlers", 0, proc_bus_input_dir,
1032 &input_handlers_fileops);
1033 if (!entry)
1034 goto fail2;
1035
1036 return 0;
1037
1038 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1039 fail1: remove_proc_entry("bus/input", NULL);
1040 return -ENOMEM;
1041 }
1042
1043 static void input_proc_exit(void)
1044 {
1045 remove_proc_entry("devices", proc_bus_input_dir);
1046 remove_proc_entry("handlers", proc_bus_input_dir);
1047 remove_proc_entry("bus/input", NULL);
1048 }
1049
1050 #else /* !CONFIG_PROC_FS */
1051 static inline void input_wakeup_procfs_readers(void) { }
1052 static inline int input_proc_init(void) { return 0; }
1053 static inline void input_proc_exit(void) { }
1054 #endif
1055
1056 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1057 static ssize_t input_dev_show_##name(struct device *dev, \
1058 struct device_attribute *attr, \
1059 char *buf) \
1060 { \
1061 struct input_dev *input_dev = to_input_dev(dev); \
1062 \
1063 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1064 input_dev->name ? input_dev->name : ""); \
1065 } \
1066 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1067
1068 INPUT_DEV_STRING_ATTR_SHOW(name);
1069 INPUT_DEV_STRING_ATTR_SHOW(phys);
1070 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1071
1072 static int input_print_modalias_bits(char *buf, int size,
1073 char name, unsigned long *bm,
1074 unsigned int min_bit, unsigned int max_bit)
1075 {
1076 int len = 0, i;
1077
1078 len += snprintf(buf, max(size, 0), "%c", name);
1079 for (i = min_bit; i < max_bit; i++)
1080 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1081 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1082 return len;
1083 }
1084
1085 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1086 int add_cr)
1087 {
1088 int len;
1089
1090 len = snprintf(buf, max(size, 0),
1091 "input:b%04Xv%04Xp%04Xe%04X-",
1092 id->id.bustype, id->id.vendor,
1093 id->id.product, id->id.version);
1094
1095 len += input_print_modalias_bits(buf + len, size - len,
1096 'e', id->evbit, 0, EV_MAX);
1097 len += input_print_modalias_bits(buf + len, size - len,
1098 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1099 len += input_print_modalias_bits(buf + len, size - len,
1100 'r', id->relbit, 0, REL_MAX);
1101 len += input_print_modalias_bits(buf + len, size - len,
1102 'a', id->absbit, 0, ABS_MAX);
1103 len += input_print_modalias_bits(buf + len, size - len,
1104 'm', id->mscbit, 0, MSC_MAX);
1105 len += input_print_modalias_bits(buf + len, size - len,
1106 'l', id->ledbit, 0, LED_MAX);
1107 len += input_print_modalias_bits(buf + len, size - len,
1108 's', id->sndbit, 0, SND_MAX);
1109 len += input_print_modalias_bits(buf + len, size - len,
1110 'f', id->ffbit, 0, FF_MAX);
1111 len += input_print_modalias_bits(buf + len, size - len,
1112 'w', id->swbit, 0, SW_MAX);
1113
1114 if (add_cr)
1115 len += snprintf(buf + len, max(size - len, 0), "\n");
1116
1117 return len;
1118 }
1119
1120 static ssize_t input_dev_show_modalias(struct device *dev,
1121 struct device_attribute *attr,
1122 char *buf)
1123 {
1124 struct input_dev *id = to_input_dev(dev);
1125 ssize_t len;
1126
1127 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1128
1129 return min_t(int, len, PAGE_SIZE);
1130 }
1131 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1132
1133 static struct attribute *input_dev_attrs[] = {
1134 &dev_attr_name.attr,
1135 &dev_attr_phys.attr,
1136 &dev_attr_uniq.attr,
1137 &dev_attr_modalias.attr,
1138 NULL
1139 };
1140
1141 static struct attribute_group input_dev_attr_group = {
1142 .attrs = input_dev_attrs,
1143 };
1144
1145 #define INPUT_DEV_ID_ATTR(name) \
1146 static ssize_t input_dev_show_id_##name(struct device *dev, \
1147 struct device_attribute *attr, \
1148 char *buf) \
1149 { \
1150 struct input_dev *input_dev = to_input_dev(dev); \
1151 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1152 } \
1153 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1154
1155 INPUT_DEV_ID_ATTR(bustype);
1156 INPUT_DEV_ID_ATTR(vendor);
1157 INPUT_DEV_ID_ATTR(product);
1158 INPUT_DEV_ID_ATTR(version);
1159
1160 static struct attribute *input_dev_id_attrs[] = {
1161 &dev_attr_bustype.attr,
1162 &dev_attr_vendor.attr,
1163 &dev_attr_product.attr,
1164 &dev_attr_version.attr,
1165 NULL
1166 };
1167
1168 static struct attribute_group input_dev_id_attr_group = {
1169 .name = "id",
1170 .attrs = input_dev_id_attrs,
1171 };
1172
1173 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1174 int max, int add_cr)
1175 {
1176 int i;
1177 int len = 0;
1178 bool skip_empty = true;
1179
1180 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1181 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1182 bitmap[i], skip_empty);
1183 if (len) {
1184 skip_empty = false;
1185 if (i > 0)
1186 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1187 }
1188 }
1189
1190 /*
1191 * If no output was produced print a single 0.
1192 */
1193 if (len == 0)
1194 len = snprintf(buf, buf_size, "%d", 0);
1195
1196 if (add_cr)
1197 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1198
1199 return len;
1200 }
1201
1202 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1203 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1204 struct device_attribute *attr, \
1205 char *buf) \
1206 { \
1207 struct input_dev *input_dev = to_input_dev(dev); \
1208 int len = input_print_bitmap(buf, PAGE_SIZE, \
1209 input_dev->bm##bit, ev##_MAX, \
1210 true); \
1211 return min_t(int, len, PAGE_SIZE); \
1212 } \
1213 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1214
1215 INPUT_DEV_CAP_ATTR(EV, ev);
1216 INPUT_DEV_CAP_ATTR(KEY, key);
1217 INPUT_DEV_CAP_ATTR(REL, rel);
1218 INPUT_DEV_CAP_ATTR(ABS, abs);
1219 INPUT_DEV_CAP_ATTR(MSC, msc);
1220 INPUT_DEV_CAP_ATTR(LED, led);
1221 INPUT_DEV_CAP_ATTR(SND, snd);
1222 INPUT_DEV_CAP_ATTR(FF, ff);
1223 INPUT_DEV_CAP_ATTR(SW, sw);
1224
1225 static struct attribute *input_dev_caps_attrs[] = {
1226 &dev_attr_ev.attr,
1227 &dev_attr_key.attr,
1228 &dev_attr_rel.attr,
1229 &dev_attr_abs.attr,
1230 &dev_attr_msc.attr,
1231 &dev_attr_led.attr,
1232 &dev_attr_snd.attr,
1233 &dev_attr_ff.attr,
1234 &dev_attr_sw.attr,
1235 NULL
1236 };
1237
1238 static struct attribute_group input_dev_caps_attr_group = {
1239 .name = "capabilities",
1240 .attrs = input_dev_caps_attrs,
1241 };
1242
1243 static const struct attribute_group *input_dev_attr_groups[] = {
1244 &input_dev_attr_group,
1245 &input_dev_id_attr_group,
1246 &input_dev_caps_attr_group,
1247 NULL
1248 };
1249
1250 static void input_dev_release(struct device *device)
1251 {
1252 struct input_dev *dev = to_input_dev(device);
1253
1254 input_ff_destroy(dev);
1255 kfree(dev);
1256
1257 module_put(THIS_MODULE);
1258 }
1259
1260 /*
1261 * Input uevent interface - loading event handlers based on
1262 * device bitfields.
1263 */
1264 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1265 const char *name, unsigned long *bitmap, int max)
1266 {
1267 int len;
1268
1269 if (add_uevent_var(env, "%s=", name))
1270 return -ENOMEM;
1271
1272 len = input_print_bitmap(&env->buf[env->buflen - 1],
1273 sizeof(env->buf) - env->buflen,
1274 bitmap, max, false);
1275 if (len >= (sizeof(env->buf) - env->buflen))
1276 return -ENOMEM;
1277
1278 env->buflen += len;
1279 return 0;
1280 }
1281
1282 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1283 struct input_dev *dev)
1284 {
1285 int len;
1286
1287 if (add_uevent_var(env, "MODALIAS="))
1288 return -ENOMEM;
1289
1290 len = input_print_modalias(&env->buf[env->buflen - 1],
1291 sizeof(env->buf) - env->buflen,
1292 dev, 0);
1293 if (len >= (sizeof(env->buf) - env->buflen))
1294 return -ENOMEM;
1295
1296 env->buflen += len;
1297 return 0;
1298 }
1299
1300 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1301 do { \
1302 int err = add_uevent_var(env, fmt, val); \
1303 if (err) \
1304 return err; \
1305 } while (0)
1306
1307 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1308 do { \
1309 int err = input_add_uevent_bm_var(env, name, bm, max); \
1310 if (err) \
1311 return err; \
1312 } while (0)
1313
1314 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1315 do { \
1316 int err = input_add_uevent_modalias_var(env, dev); \
1317 if (err) \
1318 return err; \
1319 } while (0)
1320
1321 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1322 {
1323 struct input_dev *dev = to_input_dev(device);
1324
1325 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1326 dev->id.bustype, dev->id.vendor,
1327 dev->id.product, dev->id.version);
1328 if (dev->name)
1329 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1330 if (dev->phys)
1331 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1332 if (dev->uniq)
1333 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1334
1335 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1336 if (test_bit(EV_KEY, dev->evbit))
1337 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1338 if (test_bit(EV_REL, dev->evbit))
1339 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1340 if (test_bit(EV_ABS, dev->evbit))
1341 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1342 if (test_bit(EV_MSC, dev->evbit))
1343 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1344 if (test_bit(EV_LED, dev->evbit))
1345 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1346 if (test_bit(EV_SND, dev->evbit))
1347 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1348 if (test_bit(EV_FF, dev->evbit))
1349 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1350 if (test_bit(EV_SW, dev->evbit))
1351 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1352
1353 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1354
1355 return 0;
1356 }
1357
1358 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1359 do { \
1360 int i; \
1361 bool active; \
1362 \
1363 if (!test_bit(EV_##type, dev->evbit)) \
1364 break; \
1365 \
1366 for (i = 0; i < type##_MAX; i++) { \
1367 if (!test_bit(i, dev->bits##bit)) \
1368 continue; \
1369 \
1370 active = test_bit(i, dev->bits); \
1371 if (!active && !on) \
1372 continue; \
1373 \
1374 dev->event(dev, EV_##type, i, on ? active : 0); \
1375 } \
1376 } while (0)
1377
1378 #ifdef CONFIG_PM
1379 static void input_dev_reset(struct input_dev *dev, bool activate)
1380 {
1381 if (!dev->event)
1382 return;
1383
1384 INPUT_DO_TOGGLE(dev, LED, led, activate);
1385 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1386
1387 if (activate && test_bit(EV_REP, dev->evbit)) {
1388 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1389 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1390 }
1391 }
1392
1393 static int input_dev_suspend(struct device *dev)
1394 {
1395 struct input_dev *input_dev = to_input_dev(dev);
1396
1397 mutex_lock(&input_dev->mutex);
1398 input_dev_reset(input_dev, false);
1399 mutex_unlock(&input_dev->mutex);
1400
1401 return 0;
1402 }
1403
1404 static int input_dev_resume(struct device *dev)
1405 {
1406 struct input_dev *input_dev = to_input_dev(dev);
1407
1408 mutex_lock(&input_dev->mutex);
1409 input_dev_reset(input_dev, true);
1410 mutex_unlock(&input_dev->mutex);
1411
1412 return 0;
1413 }
1414
1415 static const struct dev_pm_ops input_dev_pm_ops = {
1416 .suspend = input_dev_suspend,
1417 .resume = input_dev_resume,
1418 .poweroff = input_dev_suspend,
1419 .restore = input_dev_resume,
1420 };
1421 #endif /* CONFIG_PM */
1422
1423 static struct device_type input_dev_type = {
1424 .groups = input_dev_attr_groups,
1425 .release = input_dev_release,
1426 .uevent = input_dev_uevent,
1427 #ifdef CONFIG_PM
1428 .pm = &input_dev_pm_ops,
1429 #endif
1430 };
1431
1432 static char *input_devnode(struct device *dev, mode_t *mode)
1433 {
1434 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1435 }
1436
1437 struct class input_class = {
1438 .name = "input",
1439 .devnode = input_devnode,
1440 };
1441 EXPORT_SYMBOL_GPL(input_class);
1442
1443 /**
1444 * input_allocate_device - allocate memory for new input device
1445 *
1446 * Returns prepared struct input_dev or NULL.
1447 *
1448 * NOTE: Use input_free_device() to free devices that have not been
1449 * registered; input_unregister_device() should be used for already
1450 * registered devices.
1451 */
1452 struct input_dev *input_allocate_device(void)
1453 {
1454 struct input_dev *dev;
1455
1456 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1457 if (dev) {
1458 dev->dev.type = &input_dev_type;
1459 dev->dev.class = &input_class;
1460 device_initialize(&dev->dev);
1461 mutex_init(&dev->mutex);
1462 spin_lock_init(&dev->event_lock);
1463 INIT_LIST_HEAD(&dev->h_list);
1464 INIT_LIST_HEAD(&dev->node);
1465
1466 __module_get(THIS_MODULE);
1467 }
1468
1469 return dev;
1470 }
1471 EXPORT_SYMBOL(input_allocate_device);
1472
1473 /**
1474 * input_free_device - free memory occupied by input_dev structure
1475 * @dev: input device to free
1476 *
1477 * This function should only be used if input_register_device()
1478 * was not called yet or if it failed. Once device was registered
1479 * use input_unregister_device() and memory will be freed once last
1480 * reference to the device is dropped.
1481 *
1482 * Device should be allocated by input_allocate_device().
1483 *
1484 * NOTE: If there are references to the input device then memory
1485 * will not be freed until last reference is dropped.
1486 */
1487 void input_free_device(struct input_dev *dev)
1488 {
1489 if (dev)
1490 input_put_device(dev);
1491 }
1492 EXPORT_SYMBOL(input_free_device);
1493
1494 /**
1495 * input_set_capability - mark device as capable of a certain event
1496 * @dev: device that is capable of emitting or accepting event
1497 * @type: type of the event (EV_KEY, EV_REL, etc...)
1498 * @code: event code
1499 *
1500 * In addition to setting up corresponding bit in appropriate capability
1501 * bitmap the function also adjusts dev->evbit.
1502 */
1503 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1504 {
1505 switch (type) {
1506 case EV_KEY:
1507 __set_bit(code, dev->keybit);
1508 break;
1509
1510 case EV_REL:
1511 __set_bit(code, dev->relbit);
1512 break;
1513
1514 case EV_ABS:
1515 __set_bit(code, dev->absbit);
1516 break;
1517
1518 case EV_MSC:
1519 __set_bit(code, dev->mscbit);
1520 break;
1521
1522 case EV_SW:
1523 __set_bit(code, dev->swbit);
1524 break;
1525
1526 case EV_LED:
1527 __set_bit(code, dev->ledbit);
1528 break;
1529
1530 case EV_SND:
1531 __set_bit(code, dev->sndbit);
1532 break;
1533
1534 case EV_FF:
1535 __set_bit(code, dev->ffbit);
1536 break;
1537
1538 case EV_PWR:
1539 /* do nothing */
1540 break;
1541
1542 default:
1543 printk(KERN_ERR
1544 "input_set_capability: unknown type %u (code %u)\n",
1545 type, code);
1546 dump_stack();
1547 return;
1548 }
1549
1550 __set_bit(type, dev->evbit);
1551 }
1552 EXPORT_SYMBOL(input_set_capability);
1553
1554 /**
1555 * input_register_device - register device with input core
1556 * @dev: device to be registered
1557 *
1558 * This function registers device with input core. The device must be
1559 * allocated with input_allocate_device() and all it's capabilities
1560 * set up before registering.
1561 * If function fails the device must be freed with input_free_device().
1562 * Once device has been successfully registered it can be unregistered
1563 * with input_unregister_device(); input_free_device() should not be
1564 * called in this case.
1565 */
1566 int input_register_device(struct input_dev *dev)
1567 {
1568 static atomic_t input_no = ATOMIC_INIT(0);
1569 struct input_handler *handler;
1570 const char *path;
1571 int error;
1572
1573 __set_bit(EV_SYN, dev->evbit);
1574
1575 /*
1576 * If delay and period are pre-set by the driver, then autorepeating
1577 * is handled by the driver itself and we don't do it in input.c.
1578 */
1579
1580 init_timer(&dev->timer);
1581 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1582 dev->timer.data = (long) dev;
1583 dev->timer.function = input_repeat_key;
1584 dev->rep[REP_DELAY] = 250;
1585 dev->rep[REP_PERIOD] = 33;
1586 }
1587
1588 if (!dev->getkeycode)
1589 dev->getkeycode = input_default_getkeycode;
1590
1591 if (!dev->setkeycode)
1592 dev->setkeycode = input_default_setkeycode;
1593
1594 dev_set_name(&dev->dev, "input%ld",
1595 (unsigned long) atomic_inc_return(&input_no) - 1);
1596
1597 error = device_add(&dev->dev);
1598 if (error)
1599 return error;
1600
1601 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1602 printk(KERN_INFO "input: %s as %s\n",
1603 dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1604 kfree(path);
1605
1606 error = mutex_lock_interruptible(&input_mutex);
1607 if (error) {
1608 device_del(&dev->dev);
1609 return error;
1610 }
1611
1612 list_add_tail(&dev->node, &input_dev_list);
1613
1614 list_for_each_entry(handler, &input_handler_list, node)
1615 input_attach_handler(dev, handler);
1616
1617 input_wakeup_procfs_readers();
1618
1619 mutex_unlock(&input_mutex);
1620
1621 return 0;
1622 }
1623 EXPORT_SYMBOL(input_register_device);
1624
1625 /**
1626 * input_unregister_device - unregister previously registered device
1627 * @dev: device to be unregistered
1628 *
1629 * This function unregisters an input device. Once device is unregistered
1630 * the caller should not try to access it as it may get freed at any moment.
1631 */
1632 void input_unregister_device(struct input_dev *dev)
1633 {
1634 struct input_handle *handle, *next;
1635
1636 input_disconnect_device(dev);
1637
1638 mutex_lock(&input_mutex);
1639
1640 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1641 handle->handler->disconnect(handle);
1642 WARN_ON(!list_empty(&dev->h_list));
1643
1644 del_timer_sync(&dev->timer);
1645 list_del_init(&dev->node);
1646
1647 input_wakeup_procfs_readers();
1648
1649 mutex_unlock(&input_mutex);
1650
1651 device_unregister(&dev->dev);
1652 }
1653 EXPORT_SYMBOL(input_unregister_device);
1654
1655 /**
1656 * input_register_handler - register a new input handler
1657 * @handler: handler to be registered
1658 *
1659 * This function registers a new input handler (interface) for input
1660 * devices in the system and attaches it to all input devices that
1661 * are compatible with the handler.
1662 */
1663 int input_register_handler(struct input_handler *handler)
1664 {
1665 struct input_dev *dev;
1666 int retval;
1667
1668 retval = mutex_lock_interruptible(&input_mutex);
1669 if (retval)
1670 return retval;
1671
1672 INIT_LIST_HEAD(&handler->h_list);
1673
1674 if (handler->fops != NULL) {
1675 if (input_table[handler->minor >> 5]) {
1676 retval = -EBUSY;
1677 goto out;
1678 }
1679 input_table[handler->minor >> 5] = handler;
1680 }
1681
1682 list_add_tail(&handler->node, &input_handler_list);
1683
1684 list_for_each_entry(dev, &input_dev_list, node)
1685 input_attach_handler(dev, handler);
1686
1687 input_wakeup_procfs_readers();
1688
1689 out:
1690 mutex_unlock(&input_mutex);
1691 return retval;
1692 }
1693 EXPORT_SYMBOL(input_register_handler);
1694
1695 /**
1696 * input_unregister_handler - unregisters an input handler
1697 * @handler: handler to be unregistered
1698 *
1699 * This function disconnects a handler from its input devices and
1700 * removes it from lists of known handlers.
1701 */
1702 void input_unregister_handler(struct input_handler *handler)
1703 {
1704 struct input_handle *handle, *next;
1705
1706 mutex_lock(&input_mutex);
1707
1708 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1709 handler->disconnect(handle);
1710 WARN_ON(!list_empty(&handler->h_list));
1711
1712 list_del_init(&handler->node);
1713
1714 if (handler->fops != NULL)
1715 input_table[handler->minor >> 5] = NULL;
1716
1717 input_wakeup_procfs_readers();
1718
1719 mutex_unlock(&input_mutex);
1720 }
1721 EXPORT_SYMBOL(input_unregister_handler);
1722
1723 /**
1724 * input_handler_for_each_handle - handle iterator
1725 * @handler: input handler to iterate
1726 * @data: data for the callback
1727 * @fn: function to be called for each handle
1728 *
1729 * Iterate over @bus's list of devices, and call @fn for each, passing
1730 * it @data and stop when @fn returns a non-zero value. The function is
1731 * using RCU to traverse the list and therefore may be usind in atonic
1732 * contexts. The @fn callback is invoked from RCU critical section and
1733 * thus must not sleep.
1734 */
1735 int input_handler_for_each_handle(struct input_handler *handler, void *data,
1736 int (*fn)(struct input_handle *, void *))
1737 {
1738 struct input_handle *handle;
1739 int retval = 0;
1740
1741 rcu_read_lock();
1742
1743 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
1744 retval = fn(handle, data);
1745 if (retval)
1746 break;
1747 }
1748
1749 rcu_read_unlock();
1750
1751 return retval;
1752 }
1753 EXPORT_SYMBOL(input_handler_for_each_handle);
1754
1755 /**
1756 * input_register_handle - register a new input handle
1757 * @handle: handle to register
1758 *
1759 * This function puts a new input handle onto device's
1760 * and handler's lists so that events can flow through
1761 * it once it is opened using input_open_device().
1762 *
1763 * This function is supposed to be called from handler's
1764 * connect() method.
1765 */
1766 int input_register_handle(struct input_handle *handle)
1767 {
1768 struct input_handler *handler = handle->handler;
1769 struct input_dev *dev = handle->dev;
1770 int error;
1771
1772 /*
1773 * We take dev->mutex here to prevent race with
1774 * input_release_device().
1775 */
1776 error = mutex_lock_interruptible(&dev->mutex);
1777 if (error)
1778 return error;
1779 list_add_tail_rcu(&handle->d_node, &dev->h_list);
1780 mutex_unlock(&dev->mutex);
1781
1782 /*
1783 * Since we are supposed to be called from ->connect()
1784 * which is mutually exclusive with ->disconnect()
1785 * we can't be racing with input_unregister_handle()
1786 * and so separate lock is not needed here.
1787 */
1788 list_add_tail_rcu(&handle->h_node, &handler->h_list);
1789
1790 if (handler->start)
1791 handler->start(handle);
1792
1793 return 0;
1794 }
1795 EXPORT_SYMBOL(input_register_handle);
1796
1797 /**
1798 * input_unregister_handle - unregister an input handle
1799 * @handle: handle to unregister
1800 *
1801 * This function removes input handle from device's
1802 * and handler's lists.
1803 *
1804 * This function is supposed to be called from handler's
1805 * disconnect() method.
1806 */
1807 void input_unregister_handle(struct input_handle *handle)
1808 {
1809 struct input_dev *dev = handle->dev;
1810
1811 list_del_rcu(&handle->h_node);
1812
1813 /*
1814 * Take dev->mutex to prevent race with input_release_device().
1815 */
1816 mutex_lock(&dev->mutex);
1817 list_del_rcu(&handle->d_node);
1818 mutex_unlock(&dev->mutex);
1819
1820 synchronize_rcu();
1821 }
1822 EXPORT_SYMBOL(input_unregister_handle);
1823
1824 static int input_open_file(struct inode *inode, struct file *file)
1825 {
1826 struct input_handler *handler;
1827 const struct file_operations *old_fops, *new_fops = NULL;
1828 int err;
1829
1830 lock_kernel();
1831 /* No load-on-demand here? */
1832 handler = input_table[iminor(inode) >> 5];
1833 if (!handler || !(new_fops = fops_get(handler->fops))) {
1834 err = -ENODEV;
1835 goto out;
1836 }
1837
1838 /*
1839 * That's _really_ odd. Usually NULL ->open means "nothing special",
1840 * not "no device". Oh, well...
1841 */
1842 if (!new_fops->open) {
1843 fops_put(new_fops);
1844 err = -ENODEV;
1845 goto out;
1846 }
1847 old_fops = file->f_op;
1848 file->f_op = new_fops;
1849
1850 err = new_fops->open(inode, file);
1851
1852 if (err) {
1853 fops_put(file->f_op);
1854 file->f_op = fops_get(old_fops);
1855 }
1856 fops_put(old_fops);
1857 out:
1858 unlock_kernel();
1859 return err;
1860 }
1861
1862 static const struct file_operations input_fops = {
1863 .owner = THIS_MODULE,
1864 .open = input_open_file,
1865 };
1866
1867 static void __init input_init_abs_bypass(void)
1868 {
1869 const unsigned int *p;
1870
1871 for (p = input_abs_bypass_init_data; *p; p++)
1872 input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
1873 }
1874
1875 static int __init input_init(void)
1876 {
1877 int err;
1878
1879 input_init_abs_bypass();
1880
1881 err = class_register(&input_class);
1882 if (err) {
1883 printk(KERN_ERR "input: unable to register input_dev class\n");
1884 return err;
1885 }
1886
1887 err = input_proc_init();
1888 if (err)
1889 goto fail1;
1890
1891 err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1892 if (err) {
1893 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1894 goto fail2;
1895 }
1896
1897 return 0;
1898
1899 fail2: input_proc_exit();
1900 fail1: class_unregister(&input_class);
1901 return err;
1902 }
1903
1904 static void __exit input_exit(void)
1905 {
1906 input_proc_exit();
1907 unregister_chrdev(INPUT_MAJOR, "input");
1908 class_unregister(&input_class);
1909 }
1910
1911 subsys_initcall(input_init);
1912 module_exit(input_exit);
This page took 0.069359 seconds and 6 git commands to generate.