Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[deliverable/linux.git] / drivers / input / misc / hp_sdc_rtc.c
1 /*
2 * HP i8042 SDC + MSM-58321 BBRTC driver.
3 *
4 * Copyright (c) 2001 Brian S. Julin
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. The name of the author may not be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * Alternatively, this software may be distributed under the terms of the
17 * GNU General Public License ("GPL").
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 *
29 * References:
30 * System Device Controller Microprocessor Firmware Theory of Operation
31 * for Part Number 1820-4784 Revision B. Dwg No. A-1820-4784-2
32 * efirtc.c by Stephane Eranian/Hewlett Packard
33 *
34 */
35
36 #include <linux/hp_sdc.h>
37 #include <linux/errno.h>
38 #include <linux/types.h>
39 #include <linux/init.h>
40 #include <linux/module.h>
41 #include <linux/time.h>
42 #include <linux/miscdevice.h>
43 #include <linux/proc_fs.h>
44 #include <linux/seq_file.h>
45 #include <linux/poll.h>
46 #include <linux/rtc.h>
47 #include <linux/mutex.h>
48 #include <linux/semaphore.h>
49
50 MODULE_AUTHOR("Brian S. Julin <bri@calyx.com>");
51 MODULE_DESCRIPTION("HP i8042 SDC + MSM-58321 RTC Driver");
52 MODULE_LICENSE("Dual BSD/GPL");
53
54 #define RTC_VERSION "1.10d"
55
56 static DEFINE_MUTEX(hp_sdc_rtc_mutex);
57 static unsigned long epoch = 2000;
58
59 static struct semaphore i8042tregs;
60
61 static hp_sdc_irqhook hp_sdc_rtc_isr;
62
63 static struct fasync_struct *hp_sdc_rtc_async_queue;
64
65 static DECLARE_WAIT_QUEUE_HEAD(hp_sdc_rtc_wait);
66
67 static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf,
68 size_t count, loff_t *ppos);
69
70 static long hp_sdc_rtc_unlocked_ioctl(struct file *file,
71 unsigned int cmd, unsigned long arg);
72
73 static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait);
74
75 static int hp_sdc_rtc_open(struct inode *inode, struct file *file);
76 static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on);
77
78 static void hp_sdc_rtc_isr (int irq, void *dev_id,
79 uint8_t status, uint8_t data)
80 {
81 return;
82 }
83
84 static int hp_sdc_rtc_do_read_bbrtc (struct rtc_time *rtctm)
85 {
86 struct semaphore tsem;
87 hp_sdc_transaction t;
88 uint8_t tseq[91];
89 int i;
90
91 i = 0;
92 while (i < 91) {
93 tseq[i++] = HP_SDC_ACT_DATAREG |
94 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN;
95 tseq[i++] = 0x01; /* write i8042[0x70] */
96 tseq[i] = i / 7; /* BBRTC reg address */
97 i++;
98 tseq[i++] = HP_SDC_CMD_DO_RTCR; /* Trigger command */
99 tseq[i++] = 2; /* expect 1 stat/dat pair back. */
100 i++; i++; /* buffer for stat/dat pair */
101 }
102 tseq[84] |= HP_SDC_ACT_SEMAPHORE;
103 t.endidx = 91;
104 t.seq = tseq;
105 t.act.semaphore = &tsem;
106 sema_init(&tsem, 0);
107
108 if (hp_sdc_enqueue_transaction(&t)) return -1;
109
110 /* Put ourselves to sleep for results. */
111 if (WARN_ON(down_interruptible(&tsem)))
112 return -1;
113
114 /* Check for nonpresence of BBRTC */
115 if (!((tseq[83] | tseq[90] | tseq[69] | tseq[76] |
116 tseq[55] | tseq[62] | tseq[34] | tseq[41] |
117 tseq[20] | tseq[27] | tseq[6] | tseq[13]) & 0x0f))
118 return -1;
119
120 memset(rtctm, 0, sizeof(struct rtc_time));
121 rtctm->tm_year = (tseq[83] & 0x0f) + (tseq[90] & 0x0f) * 10;
122 rtctm->tm_mon = (tseq[69] & 0x0f) + (tseq[76] & 0x0f) * 10;
123 rtctm->tm_mday = (tseq[55] & 0x0f) + (tseq[62] & 0x0f) * 10;
124 rtctm->tm_wday = (tseq[48] & 0x0f);
125 rtctm->tm_hour = (tseq[34] & 0x0f) + (tseq[41] & 0x0f) * 10;
126 rtctm->tm_min = (tseq[20] & 0x0f) + (tseq[27] & 0x0f) * 10;
127 rtctm->tm_sec = (tseq[6] & 0x0f) + (tseq[13] & 0x0f) * 10;
128
129 return 0;
130 }
131
132 static int hp_sdc_rtc_read_bbrtc (struct rtc_time *rtctm)
133 {
134 struct rtc_time tm, tm_last;
135 int i = 0;
136
137 /* MSM-58321 has no read latch, so must read twice and compare. */
138
139 if (hp_sdc_rtc_do_read_bbrtc(&tm_last)) return -1;
140 if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
141
142 while (memcmp(&tm, &tm_last, sizeof(struct rtc_time))) {
143 if (i++ > 4) return -1;
144 memcpy(&tm_last, &tm, sizeof(struct rtc_time));
145 if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
146 }
147
148 memcpy(rtctm, &tm, sizeof(struct rtc_time));
149
150 return 0;
151 }
152
153
154 static int64_t hp_sdc_rtc_read_i8042timer (uint8_t loadcmd, int numreg)
155 {
156 hp_sdc_transaction t;
157 uint8_t tseq[26] = {
158 HP_SDC_ACT_PRECMD | HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
159 0,
160 HP_SDC_CMD_READ_T1, 2, 0, 0,
161 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
162 HP_SDC_CMD_READ_T2, 2, 0, 0,
163 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
164 HP_SDC_CMD_READ_T3, 2, 0, 0,
165 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
166 HP_SDC_CMD_READ_T4, 2, 0, 0,
167 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
168 HP_SDC_CMD_READ_T5, 2, 0, 0
169 };
170
171 t.endidx = numreg * 5;
172
173 tseq[1] = loadcmd;
174 tseq[t.endidx - 4] |= HP_SDC_ACT_SEMAPHORE; /* numreg assumed > 1 */
175
176 t.seq = tseq;
177 t.act.semaphore = &i8042tregs;
178
179 /* Sleep if output regs in use. */
180 if (WARN_ON(down_interruptible(&i8042tregs)))
181 return -1;
182
183 if (hp_sdc_enqueue_transaction(&t)) return -1;
184
185 /* Sleep until results come back. */
186 if (WARN_ON(down_interruptible(&i8042tregs)))
187 return -1;
188
189 up(&i8042tregs);
190
191 return (tseq[5] |
192 ((uint64_t)(tseq[10]) << 8) | ((uint64_t)(tseq[15]) << 16) |
193 ((uint64_t)(tseq[20]) << 24) | ((uint64_t)(tseq[25]) << 32));
194 }
195
196
197 /* Read the i8042 real-time clock */
198 static inline int hp_sdc_rtc_read_rt(struct timeval *res) {
199 int64_t raw;
200 uint32_t tenms;
201 unsigned int days;
202
203 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_RT, 5);
204 if (raw < 0) return -1;
205
206 tenms = (uint32_t)raw & 0xffffff;
207 days = (unsigned int)(raw >> 24) & 0xffff;
208
209 res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
210 res->tv_sec = (time_t)(tenms / 100) + days * 86400;
211
212 return 0;
213 }
214
215
216 /* Read the i8042 fast handshake timer */
217 static inline int hp_sdc_rtc_read_fhs(struct timeval *res) {
218 int64_t raw;
219 unsigned int tenms;
220
221 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_FHS, 2);
222 if (raw < 0) return -1;
223
224 tenms = (unsigned int)raw & 0xffff;
225
226 res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
227 res->tv_sec = (time_t)(tenms / 100);
228
229 return 0;
230 }
231
232
233 /* Read the i8042 match timer (a.k.a. alarm) */
234 static inline int hp_sdc_rtc_read_mt(struct timeval *res) {
235 int64_t raw;
236 uint32_t tenms;
237
238 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_MT, 3);
239 if (raw < 0) return -1;
240
241 tenms = (uint32_t)raw & 0xffffff;
242
243 res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
244 res->tv_sec = (time_t)(tenms / 100);
245
246 return 0;
247 }
248
249
250 /* Read the i8042 delay timer */
251 static inline int hp_sdc_rtc_read_dt(struct timeval *res) {
252 int64_t raw;
253 uint32_t tenms;
254
255 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_DT, 3);
256 if (raw < 0) return -1;
257
258 tenms = (uint32_t)raw & 0xffffff;
259
260 res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
261 res->tv_sec = (time_t)(tenms / 100);
262
263 return 0;
264 }
265
266
267 /* Read the i8042 cycle timer (a.k.a. periodic) */
268 static inline int hp_sdc_rtc_read_ct(struct timeval *res) {
269 int64_t raw;
270 uint32_t tenms;
271
272 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_CT, 3);
273 if (raw < 0) return -1;
274
275 tenms = (uint32_t)raw & 0xffffff;
276
277 res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
278 res->tv_sec = (time_t)(tenms / 100);
279
280 return 0;
281 }
282
283
284 #if 0 /* not used yet */
285 /* Set the i8042 real-time clock */
286 static int hp_sdc_rtc_set_rt (struct timeval *setto)
287 {
288 uint32_t tenms;
289 unsigned int days;
290 hp_sdc_transaction t;
291 uint8_t tseq[11] = {
292 HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
293 HP_SDC_CMD_SET_RTMS, 3, 0, 0, 0,
294 HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
295 HP_SDC_CMD_SET_RTD, 2, 0, 0
296 };
297
298 t.endidx = 10;
299
300 if (0xffff < setto->tv_sec / 86400) return -1;
301 days = setto->tv_sec / 86400;
302 if (0xffff < setto->tv_usec / 1000000 / 86400) return -1;
303 days += ((setto->tv_sec % 86400) + setto->tv_usec / 1000000) / 86400;
304 if (days > 0xffff) return -1;
305
306 if (0xffffff < setto->tv_sec) return -1;
307 tenms = setto->tv_sec * 100;
308 if (0xffffff < setto->tv_usec / 10000) return -1;
309 tenms += setto->tv_usec / 10000;
310 if (tenms > 0xffffff) return -1;
311
312 tseq[3] = (uint8_t)(tenms & 0xff);
313 tseq[4] = (uint8_t)((tenms >> 8) & 0xff);
314 tseq[5] = (uint8_t)((tenms >> 16) & 0xff);
315
316 tseq[9] = (uint8_t)(days & 0xff);
317 tseq[10] = (uint8_t)((days >> 8) & 0xff);
318
319 t.seq = tseq;
320
321 if (hp_sdc_enqueue_transaction(&t)) return -1;
322 return 0;
323 }
324
325 /* Set the i8042 fast handshake timer */
326 static int hp_sdc_rtc_set_fhs (struct timeval *setto)
327 {
328 uint32_t tenms;
329 hp_sdc_transaction t;
330 uint8_t tseq[5] = {
331 HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
332 HP_SDC_CMD_SET_FHS, 2, 0, 0
333 };
334
335 t.endidx = 4;
336
337 if (0xffff < setto->tv_sec) return -1;
338 tenms = setto->tv_sec * 100;
339 if (0xffff < setto->tv_usec / 10000) return -1;
340 tenms += setto->tv_usec / 10000;
341 if (tenms > 0xffff) return -1;
342
343 tseq[3] = (uint8_t)(tenms & 0xff);
344 tseq[4] = (uint8_t)((tenms >> 8) & 0xff);
345
346 t.seq = tseq;
347
348 if (hp_sdc_enqueue_transaction(&t)) return -1;
349 return 0;
350 }
351
352
353 /* Set the i8042 match timer (a.k.a. alarm) */
354 #define hp_sdc_rtc_set_mt (setto) \
355 hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_MT)
356
357 /* Set the i8042 delay timer */
358 #define hp_sdc_rtc_set_dt (setto) \
359 hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_DT)
360
361 /* Set the i8042 cycle timer (a.k.a. periodic) */
362 #define hp_sdc_rtc_set_ct (setto) \
363 hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_CT)
364
365 /* Set one of the i8042 3-byte wide timers */
366 static int hp_sdc_rtc_set_i8042timer (struct timeval *setto, uint8_t setcmd)
367 {
368 uint32_t tenms;
369 hp_sdc_transaction t;
370 uint8_t tseq[6] = {
371 HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
372 0, 3, 0, 0, 0
373 };
374
375 t.endidx = 6;
376
377 if (0xffffff < setto->tv_sec) return -1;
378 tenms = setto->tv_sec * 100;
379 if (0xffffff < setto->tv_usec / 10000) return -1;
380 tenms += setto->tv_usec / 10000;
381 if (tenms > 0xffffff) return -1;
382
383 tseq[1] = setcmd;
384 tseq[3] = (uint8_t)(tenms & 0xff);
385 tseq[4] = (uint8_t)((tenms >> 8) & 0xff);
386 tseq[5] = (uint8_t)((tenms >> 16) & 0xff);
387
388 t.seq = tseq;
389
390 if (hp_sdc_enqueue_transaction(&t)) {
391 return -1;
392 }
393 return 0;
394 }
395 #endif
396
397 static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf,
398 size_t count, loff_t *ppos) {
399 ssize_t retval;
400
401 if (count < sizeof(unsigned long))
402 return -EINVAL;
403
404 retval = put_user(68, (unsigned long __user *)buf);
405 return retval;
406 }
407
408 static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait)
409 {
410 unsigned long l;
411
412 l = 0;
413 if (l != 0)
414 return POLLIN | POLLRDNORM;
415 return 0;
416 }
417
418 static int hp_sdc_rtc_open(struct inode *inode, struct file *file)
419 {
420 return 0;
421 }
422
423 static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on)
424 {
425 return fasync_helper (fd, filp, on, &hp_sdc_rtc_async_queue);
426 }
427
428 static int hp_sdc_rtc_proc_show(struct seq_file *m, void *v)
429 {
430 #define YN(bit) ("no")
431 #define NY(bit) ("yes")
432 struct rtc_time tm;
433 struct timeval tv;
434
435 memset(&tm, 0, sizeof(struct rtc_time));
436
437 if (hp_sdc_rtc_read_bbrtc(&tm)) {
438 seq_puts(m, "BBRTC\t\t: READ FAILED!\n");
439 } else {
440 seq_printf(m,
441 "rtc_time\t: %02d:%02d:%02d\n"
442 "rtc_date\t: %04d-%02d-%02d\n"
443 "rtc_epoch\t: %04lu\n",
444 tm.tm_hour, tm.tm_min, tm.tm_sec,
445 tm.tm_year + 1900, tm.tm_mon + 1,
446 tm.tm_mday, epoch);
447 }
448
449 if (hp_sdc_rtc_read_rt(&tv)) {
450 seq_puts(m, "i8042 rtc\t: READ FAILED!\n");
451 } else {
452 seq_printf(m, "i8042 rtc\t: %ld.%02d seconds\n",
453 tv.tv_sec, (int)tv.tv_usec/1000);
454 }
455
456 if (hp_sdc_rtc_read_fhs(&tv)) {
457 seq_puts(m, "handshake\t: READ FAILED!\n");
458 } else {
459 seq_printf(m, "handshake\t: %ld.%02d seconds\n",
460 tv.tv_sec, (int)tv.tv_usec/1000);
461 }
462
463 if (hp_sdc_rtc_read_mt(&tv)) {
464 seq_puts(m, "alarm\t\t: READ FAILED!\n");
465 } else {
466 seq_printf(m, "alarm\t\t: %ld.%02d seconds\n",
467 tv.tv_sec, (int)tv.tv_usec/1000);
468 }
469
470 if (hp_sdc_rtc_read_dt(&tv)) {
471 seq_puts(m, "delay\t\t: READ FAILED!\n");
472 } else {
473 seq_printf(m, "delay\t\t: %ld.%02d seconds\n",
474 tv.tv_sec, (int)tv.tv_usec/1000);
475 }
476
477 if (hp_sdc_rtc_read_ct(&tv)) {
478 seq_puts(m, "periodic\t: READ FAILED!\n");
479 } else {
480 seq_printf(m, "periodic\t: %ld.%02d seconds\n",
481 tv.tv_sec, (int)tv.tv_usec/1000);
482 }
483
484 seq_printf(m,
485 "DST_enable\t: %s\n"
486 "BCD\t\t: %s\n"
487 "24hr\t\t: %s\n"
488 "square_wave\t: %s\n"
489 "alarm_IRQ\t: %s\n"
490 "update_IRQ\t: %s\n"
491 "periodic_IRQ\t: %s\n"
492 "periodic_freq\t: %ld\n"
493 "batt_status\t: %s\n",
494 YN(RTC_DST_EN),
495 NY(RTC_DM_BINARY),
496 YN(RTC_24H),
497 YN(RTC_SQWE),
498 YN(RTC_AIE),
499 YN(RTC_UIE),
500 YN(RTC_PIE),
501 1UL,
502 1 ? "okay" : "dead");
503
504 return 0;
505 #undef YN
506 #undef NY
507 }
508
509 static int hp_sdc_rtc_proc_open(struct inode *inode, struct file *file)
510 {
511 return single_open(file, hp_sdc_rtc_proc_show, NULL);
512 }
513
514 static const struct file_operations hp_sdc_rtc_proc_fops = {
515 .open = hp_sdc_rtc_proc_open,
516 .read = seq_read,
517 .llseek = seq_lseek,
518 .release = single_release,
519 };
520
521 static int hp_sdc_rtc_ioctl(struct file *file,
522 unsigned int cmd, unsigned long arg)
523 {
524 #if 1
525 return -EINVAL;
526 #else
527
528 struct rtc_time wtime;
529 struct timeval ttime;
530 int use_wtime = 0;
531
532 /* This needs major work. */
533
534 switch (cmd) {
535
536 case RTC_AIE_OFF: /* Mask alarm int. enab. bit */
537 case RTC_AIE_ON: /* Allow alarm interrupts. */
538 case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
539 case RTC_PIE_ON: /* Allow periodic ints */
540 case RTC_UIE_ON: /* Allow ints for RTC updates. */
541 case RTC_UIE_OFF: /* Allow ints for RTC updates. */
542 {
543 /* We cannot mask individual user timers and we
544 cannot tell them apart when they occur, so it
545 would be disingenuous to succeed these IOCTLs */
546 return -EINVAL;
547 }
548 case RTC_ALM_READ: /* Read the present alarm time */
549 {
550 if (hp_sdc_rtc_read_mt(&ttime)) return -EFAULT;
551 if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
552
553 wtime.tm_hour = ttime.tv_sec / 3600; ttime.tv_sec %= 3600;
554 wtime.tm_min = ttime.tv_sec / 60; ttime.tv_sec %= 60;
555 wtime.tm_sec = ttime.tv_sec;
556
557 break;
558 }
559 case RTC_IRQP_READ: /* Read the periodic IRQ rate. */
560 {
561 return put_user(hp_sdc_rtc_freq, (unsigned long *)arg);
562 }
563 case RTC_IRQP_SET: /* Set periodic IRQ rate. */
564 {
565 /*
566 * The max we can do is 100Hz.
567 */
568
569 if ((arg < 1) || (arg > 100)) return -EINVAL;
570 ttime.tv_sec = 0;
571 ttime.tv_usec = 1000000 / arg;
572 if (hp_sdc_rtc_set_ct(&ttime)) return -EFAULT;
573 hp_sdc_rtc_freq = arg;
574 return 0;
575 }
576 case RTC_ALM_SET: /* Store a time into the alarm */
577 {
578 /*
579 * This expects a struct hp_sdc_rtc_time. Writing 0xff means
580 * "don't care" or "match all" for PC timers. The HP SDC
581 * does not support that perk, but it could be emulated fairly
582 * easily. Only the tm_hour, tm_min and tm_sec are used.
583 * We could do it with 10ms accuracy with the HP SDC, if the
584 * rtc interface left us a way to do that.
585 */
586 struct hp_sdc_rtc_time alm_tm;
587
588 if (copy_from_user(&alm_tm, (struct hp_sdc_rtc_time*)arg,
589 sizeof(struct hp_sdc_rtc_time)))
590 return -EFAULT;
591
592 if (alm_tm.tm_hour > 23) return -EINVAL;
593 if (alm_tm.tm_min > 59) return -EINVAL;
594 if (alm_tm.tm_sec > 59) return -EINVAL;
595
596 ttime.sec = alm_tm.tm_hour * 3600 +
597 alm_tm.tm_min * 60 + alm_tm.tm_sec;
598 ttime.usec = 0;
599 if (hp_sdc_rtc_set_mt(&ttime)) return -EFAULT;
600 return 0;
601 }
602 case RTC_RD_TIME: /* Read the time/date from RTC */
603 {
604 if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
605 break;
606 }
607 case RTC_SET_TIME: /* Set the RTC */
608 {
609 struct rtc_time hp_sdc_rtc_tm;
610 unsigned char mon, day, hrs, min, sec, leap_yr;
611 unsigned int yrs;
612
613 if (!capable(CAP_SYS_TIME))
614 return -EACCES;
615 if (copy_from_user(&hp_sdc_rtc_tm, (struct rtc_time *)arg,
616 sizeof(struct rtc_time)))
617 return -EFAULT;
618
619 yrs = hp_sdc_rtc_tm.tm_year + 1900;
620 mon = hp_sdc_rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
621 day = hp_sdc_rtc_tm.tm_mday;
622 hrs = hp_sdc_rtc_tm.tm_hour;
623 min = hp_sdc_rtc_tm.tm_min;
624 sec = hp_sdc_rtc_tm.tm_sec;
625
626 if (yrs < 1970)
627 return -EINVAL;
628
629 leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
630
631 if ((mon > 12) || (day == 0))
632 return -EINVAL;
633 if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
634 return -EINVAL;
635 if ((hrs >= 24) || (min >= 60) || (sec >= 60))
636 return -EINVAL;
637
638 if ((yrs -= eH) > 255) /* They are unsigned */
639 return -EINVAL;
640
641
642 return 0;
643 }
644 case RTC_EPOCH_READ: /* Read the epoch. */
645 {
646 return put_user (epoch, (unsigned long *)arg);
647 }
648 case RTC_EPOCH_SET: /* Set the epoch. */
649 {
650 /*
651 * There were no RTC clocks before 1900.
652 */
653 if (arg < 1900)
654 return -EINVAL;
655 if (!capable(CAP_SYS_TIME))
656 return -EACCES;
657
658 epoch = arg;
659 return 0;
660 }
661 default:
662 return -EINVAL;
663 }
664 return copy_to_user((void *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
665 #endif
666 }
667
668 static long hp_sdc_rtc_unlocked_ioctl(struct file *file,
669 unsigned int cmd, unsigned long arg)
670 {
671 int ret;
672
673 mutex_lock(&hp_sdc_rtc_mutex);
674 ret = hp_sdc_rtc_ioctl(file, cmd, arg);
675 mutex_unlock(&hp_sdc_rtc_mutex);
676
677 return ret;
678 }
679
680
681 static const struct file_operations hp_sdc_rtc_fops = {
682 .owner = THIS_MODULE,
683 .llseek = no_llseek,
684 .read = hp_sdc_rtc_read,
685 .poll = hp_sdc_rtc_poll,
686 .unlocked_ioctl = hp_sdc_rtc_unlocked_ioctl,
687 .open = hp_sdc_rtc_open,
688 .fasync = hp_sdc_rtc_fasync,
689 };
690
691 static struct miscdevice hp_sdc_rtc_dev = {
692 .minor = RTC_MINOR,
693 .name = "rtc_HIL",
694 .fops = &hp_sdc_rtc_fops
695 };
696
697 static int __init hp_sdc_rtc_init(void)
698 {
699 int ret;
700
701 #ifdef __mc68000__
702 if (!MACH_IS_HP300)
703 return -ENODEV;
704 #endif
705
706 sema_init(&i8042tregs, 1);
707
708 if ((ret = hp_sdc_request_timer_irq(&hp_sdc_rtc_isr)))
709 return ret;
710 if (misc_register(&hp_sdc_rtc_dev) != 0)
711 printk(KERN_INFO "Could not register misc. dev for i8042 rtc\n");
712
713 proc_create("driver/rtc", 0, NULL, &hp_sdc_rtc_proc_fops);
714
715 printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support loaded "
716 "(RTC v " RTC_VERSION ")\n");
717
718 return 0;
719 }
720
721 static void __exit hp_sdc_rtc_exit(void)
722 {
723 remove_proc_entry ("driver/rtc", NULL);
724 misc_deregister(&hp_sdc_rtc_dev);
725 hp_sdc_release_timer_irq(hp_sdc_rtc_isr);
726 printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support unloaded\n");
727 }
728
729 module_init(hp_sdc_rtc_init);
730 module_exit(hp_sdc_rtc_exit);
This page took 0.045854 seconds and 5 git commands to generate.