Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[deliverable/linux.git] / drivers / iommu / amd_iommu.c
1 /*
2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <jroedel@suse.de>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/pci-ats.h>
23 #include <linux/bitmap.h>
24 #include <linux/slab.h>
25 #include <linux/debugfs.h>
26 #include <linux/scatterlist.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/iommu-helper.h>
29 #include <linux/iommu.h>
30 #include <linux/delay.h>
31 #include <linux/amd-iommu.h>
32 #include <linux/notifier.h>
33 #include <linux/export.h>
34 #include <linux/irq.h>
35 #include <linux/msi.h>
36 #include <linux/dma-contiguous.h>
37 #include <linux/irqdomain.h>
38 #include <linux/percpu.h>
39 #include <asm/irq_remapping.h>
40 #include <asm/io_apic.h>
41 #include <asm/apic.h>
42 #include <asm/hw_irq.h>
43 #include <asm/msidef.h>
44 #include <asm/proto.h>
45 #include <asm/iommu.h>
46 #include <asm/gart.h>
47 #include <asm/dma.h>
48
49 #include "amd_iommu_proto.h"
50 #include "amd_iommu_types.h"
51 #include "irq_remapping.h"
52
53 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
54
55 #define LOOP_TIMEOUT 100000
56
57 /*
58 * This bitmap is used to advertise the page sizes our hardware support
59 * to the IOMMU core, which will then use this information to split
60 * physically contiguous memory regions it is mapping into page sizes
61 * that we support.
62 *
63 * 512GB Pages are not supported due to a hardware bug
64 */
65 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
66
67 static DEFINE_RWLOCK(amd_iommu_devtable_lock);
68
69 /* List of all available dev_data structures */
70 static LIST_HEAD(dev_data_list);
71 static DEFINE_SPINLOCK(dev_data_list_lock);
72
73 LIST_HEAD(ioapic_map);
74 LIST_HEAD(hpet_map);
75
76 /*
77 * Domain for untranslated devices - only allocated
78 * if iommu=pt passed on kernel cmd line.
79 */
80 static const struct iommu_ops amd_iommu_ops;
81
82 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
83 int amd_iommu_max_glx_val = -1;
84
85 static struct dma_map_ops amd_iommu_dma_ops;
86
87 /*
88 * This struct contains device specific data for the IOMMU
89 */
90 struct iommu_dev_data {
91 struct list_head list; /* For domain->dev_list */
92 struct list_head dev_data_list; /* For global dev_data_list */
93 struct protection_domain *domain; /* Domain the device is bound to */
94 u16 devid; /* PCI Device ID */
95 u16 alias; /* Alias Device ID */
96 bool iommu_v2; /* Device can make use of IOMMUv2 */
97 bool passthrough; /* Device is identity mapped */
98 struct {
99 bool enabled;
100 int qdep;
101 } ats; /* ATS state */
102 bool pri_tlp; /* PASID TLB required for
103 PPR completions */
104 u32 errata; /* Bitmap for errata to apply */
105 };
106
107 /*
108 * general struct to manage commands send to an IOMMU
109 */
110 struct iommu_cmd {
111 u32 data[4];
112 };
113
114 struct kmem_cache *amd_iommu_irq_cache;
115
116 static void update_domain(struct protection_domain *domain);
117 static int protection_domain_init(struct protection_domain *domain);
118 static void detach_device(struct device *dev);
119
120 /*
121 * For dynamic growth the aperture size is split into ranges of 128MB of
122 * DMA address space each. This struct represents one such range.
123 */
124 struct aperture_range {
125
126 spinlock_t bitmap_lock;
127
128 /* address allocation bitmap */
129 unsigned long *bitmap;
130 unsigned long offset;
131 unsigned long next_bit;
132
133 /*
134 * Array of PTE pages for the aperture. In this array we save all the
135 * leaf pages of the domain page table used for the aperture. This way
136 * we don't need to walk the page table to find a specific PTE. We can
137 * just calculate its address in constant time.
138 */
139 u64 *pte_pages[64];
140 };
141
142 /*
143 * Data container for a dma_ops specific protection domain
144 */
145 struct dma_ops_domain {
146 /* generic protection domain information */
147 struct protection_domain domain;
148
149 /* size of the aperture for the mappings */
150 unsigned long aperture_size;
151
152 /* aperture index we start searching for free addresses */
153 u32 __percpu *next_index;
154
155 /* address space relevant data */
156 struct aperture_range *aperture[APERTURE_MAX_RANGES];
157 };
158
159 /****************************************************************************
160 *
161 * Helper functions
162 *
163 ****************************************************************************/
164
165 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
166 {
167 return container_of(dom, struct protection_domain, domain);
168 }
169
170 static inline u16 get_device_id(struct device *dev)
171 {
172 struct pci_dev *pdev = to_pci_dev(dev);
173
174 return PCI_DEVID(pdev->bus->number, pdev->devfn);
175 }
176
177 static struct iommu_dev_data *alloc_dev_data(u16 devid)
178 {
179 struct iommu_dev_data *dev_data;
180 unsigned long flags;
181
182 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
183 if (!dev_data)
184 return NULL;
185
186 dev_data->devid = devid;
187
188 spin_lock_irqsave(&dev_data_list_lock, flags);
189 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
190 spin_unlock_irqrestore(&dev_data_list_lock, flags);
191
192 return dev_data;
193 }
194
195 static struct iommu_dev_data *search_dev_data(u16 devid)
196 {
197 struct iommu_dev_data *dev_data;
198 unsigned long flags;
199
200 spin_lock_irqsave(&dev_data_list_lock, flags);
201 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
202 if (dev_data->devid == devid)
203 goto out_unlock;
204 }
205
206 dev_data = NULL;
207
208 out_unlock:
209 spin_unlock_irqrestore(&dev_data_list_lock, flags);
210
211 return dev_data;
212 }
213
214 static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
215 {
216 *(u16 *)data = alias;
217 return 0;
218 }
219
220 static u16 get_alias(struct device *dev)
221 {
222 struct pci_dev *pdev = to_pci_dev(dev);
223 u16 devid, ivrs_alias, pci_alias;
224
225 devid = get_device_id(dev);
226 ivrs_alias = amd_iommu_alias_table[devid];
227 pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
228
229 if (ivrs_alias == pci_alias)
230 return ivrs_alias;
231
232 /*
233 * DMA alias showdown
234 *
235 * The IVRS is fairly reliable in telling us about aliases, but it
236 * can't know about every screwy device. If we don't have an IVRS
237 * reported alias, use the PCI reported alias. In that case we may
238 * still need to initialize the rlookup and dev_table entries if the
239 * alias is to a non-existent device.
240 */
241 if (ivrs_alias == devid) {
242 if (!amd_iommu_rlookup_table[pci_alias]) {
243 amd_iommu_rlookup_table[pci_alias] =
244 amd_iommu_rlookup_table[devid];
245 memcpy(amd_iommu_dev_table[pci_alias].data,
246 amd_iommu_dev_table[devid].data,
247 sizeof(amd_iommu_dev_table[pci_alias].data));
248 }
249
250 return pci_alias;
251 }
252
253 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
254 "for device %s[%04x:%04x], kernel reported alias "
255 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
256 PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
257 PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
258 PCI_FUNC(pci_alias));
259
260 /*
261 * If we don't have a PCI DMA alias and the IVRS alias is on the same
262 * bus, then the IVRS table may know about a quirk that we don't.
263 */
264 if (pci_alias == devid &&
265 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
266 pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
267 pdev->dma_alias_devfn = ivrs_alias & 0xff;
268 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
269 PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
270 dev_name(dev));
271 }
272
273 return ivrs_alias;
274 }
275
276 static struct iommu_dev_data *find_dev_data(u16 devid)
277 {
278 struct iommu_dev_data *dev_data;
279
280 dev_data = search_dev_data(devid);
281
282 if (dev_data == NULL)
283 dev_data = alloc_dev_data(devid);
284
285 return dev_data;
286 }
287
288 static struct iommu_dev_data *get_dev_data(struct device *dev)
289 {
290 return dev->archdata.iommu;
291 }
292
293 static bool pci_iommuv2_capable(struct pci_dev *pdev)
294 {
295 static const int caps[] = {
296 PCI_EXT_CAP_ID_ATS,
297 PCI_EXT_CAP_ID_PRI,
298 PCI_EXT_CAP_ID_PASID,
299 };
300 int i, pos;
301
302 for (i = 0; i < 3; ++i) {
303 pos = pci_find_ext_capability(pdev, caps[i]);
304 if (pos == 0)
305 return false;
306 }
307
308 return true;
309 }
310
311 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
312 {
313 struct iommu_dev_data *dev_data;
314
315 dev_data = get_dev_data(&pdev->dev);
316
317 return dev_data->errata & (1 << erratum) ? true : false;
318 }
319
320 /*
321 * This function actually applies the mapping to the page table of the
322 * dma_ops domain.
323 */
324 static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
325 struct unity_map_entry *e)
326 {
327 u64 addr;
328
329 for (addr = e->address_start; addr < e->address_end;
330 addr += PAGE_SIZE) {
331 if (addr < dma_dom->aperture_size)
332 __set_bit(addr >> PAGE_SHIFT,
333 dma_dom->aperture[0]->bitmap);
334 }
335 }
336
337 /*
338 * Inits the unity mappings required for a specific device
339 */
340 static void init_unity_mappings_for_device(struct device *dev,
341 struct dma_ops_domain *dma_dom)
342 {
343 struct unity_map_entry *e;
344 u16 devid;
345
346 devid = get_device_id(dev);
347
348 list_for_each_entry(e, &amd_iommu_unity_map, list) {
349 if (!(devid >= e->devid_start && devid <= e->devid_end))
350 continue;
351 alloc_unity_mapping(dma_dom, e);
352 }
353 }
354
355 /*
356 * This function checks if the driver got a valid device from the caller to
357 * avoid dereferencing invalid pointers.
358 */
359 static bool check_device(struct device *dev)
360 {
361 u16 devid;
362
363 if (!dev || !dev->dma_mask)
364 return false;
365
366 /* No PCI device */
367 if (!dev_is_pci(dev))
368 return false;
369
370 devid = get_device_id(dev);
371
372 /* Out of our scope? */
373 if (devid > amd_iommu_last_bdf)
374 return false;
375
376 if (amd_iommu_rlookup_table[devid] == NULL)
377 return false;
378
379 return true;
380 }
381
382 static void init_iommu_group(struct device *dev)
383 {
384 struct dma_ops_domain *dma_domain;
385 struct iommu_domain *domain;
386 struct iommu_group *group;
387
388 group = iommu_group_get_for_dev(dev);
389 if (IS_ERR(group))
390 return;
391
392 domain = iommu_group_default_domain(group);
393 if (!domain)
394 goto out;
395
396 dma_domain = to_pdomain(domain)->priv;
397
398 init_unity_mappings_for_device(dev, dma_domain);
399 out:
400 iommu_group_put(group);
401 }
402
403 static int iommu_init_device(struct device *dev)
404 {
405 struct pci_dev *pdev = to_pci_dev(dev);
406 struct iommu_dev_data *dev_data;
407
408 if (dev->archdata.iommu)
409 return 0;
410
411 dev_data = find_dev_data(get_device_id(dev));
412 if (!dev_data)
413 return -ENOMEM;
414
415 dev_data->alias = get_alias(dev);
416
417 if (pci_iommuv2_capable(pdev)) {
418 struct amd_iommu *iommu;
419
420 iommu = amd_iommu_rlookup_table[dev_data->devid];
421 dev_data->iommu_v2 = iommu->is_iommu_v2;
422 }
423
424 dev->archdata.iommu = dev_data;
425
426 iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
427 dev);
428
429 return 0;
430 }
431
432 static void iommu_ignore_device(struct device *dev)
433 {
434 u16 devid, alias;
435
436 devid = get_device_id(dev);
437 alias = get_alias(dev);
438
439 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
440 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
441
442 amd_iommu_rlookup_table[devid] = NULL;
443 amd_iommu_rlookup_table[alias] = NULL;
444 }
445
446 static void iommu_uninit_device(struct device *dev)
447 {
448 struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));
449
450 if (!dev_data)
451 return;
452
453 if (dev_data->domain)
454 detach_device(dev);
455
456 iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
457 dev);
458
459 iommu_group_remove_device(dev);
460
461 /* Remove dma-ops */
462 dev->archdata.dma_ops = NULL;
463
464 /*
465 * We keep dev_data around for unplugged devices and reuse it when the
466 * device is re-plugged - not doing so would introduce a ton of races.
467 */
468 }
469
470 #ifdef CONFIG_AMD_IOMMU_STATS
471
472 /*
473 * Initialization code for statistics collection
474 */
475
476 DECLARE_STATS_COUNTER(compl_wait);
477 DECLARE_STATS_COUNTER(cnt_map_single);
478 DECLARE_STATS_COUNTER(cnt_unmap_single);
479 DECLARE_STATS_COUNTER(cnt_map_sg);
480 DECLARE_STATS_COUNTER(cnt_unmap_sg);
481 DECLARE_STATS_COUNTER(cnt_alloc_coherent);
482 DECLARE_STATS_COUNTER(cnt_free_coherent);
483 DECLARE_STATS_COUNTER(cross_page);
484 DECLARE_STATS_COUNTER(domain_flush_single);
485 DECLARE_STATS_COUNTER(domain_flush_all);
486 DECLARE_STATS_COUNTER(alloced_io_mem);
487 DECLARE_STATS_COUNTER(total_map_requests);
488 DECLARE_STATS_COUNTER(complete_ppr);
489 DECLARE_STATS_COUNTER(invalidate_iotlb);
490 DECLARE_STATS_COUNTER(invalidate_iotlb_all);
491 DECLARE_STATS_COUNTER(pri_requests);
492
493 static struct dentry *stats_dir;
494 static struct dentry *de_fflush;
495
496 static void amd_iommu_stats_add(struct __iommu_counter *cnt)
497 {
498 if (stats_dir == NULL)
499 return;
500
501 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
502 &cnt->value);
503 }
504
505 static void amd_iommu_stats_init(void)
506 {
507 stats_dir = debugfs_create_dir("amd-iommu", NULL);
508 if (stats_dir == NULL)
509 return;
510
511 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
512 &amd_iommu_unmap_flush);
513
514 amd_iommu_stats_add(&compl_wait);
515 amd_iommu_stats_add(&cnt_map_single);
516 amd_iommu_stats_add(&cnt_unmap_single);
517 amd_iommu_stats_add(&cnt_map_sg);
518 amd_iommu_stats_add(&cnt_unmap_sg);
519 amd_iommu_stats_add(&cnt_alloc_coherent);
520 amd_iommu_stats_add(&cnt_free_coherent);
521 amd_iommu_stats_add(&cross_page);
522 amd_iommu_stats_add(&domain_flush_single);
523 amd_iommu_stats_add(&domain_flush_all);
524 amd_iommu_stats_add(&alloced_io_mem);
525 amd_iommu_stats_add(&total_map_requests);
526 amd_iommu_stats_add(&complete_ppr);
527 amd_iommu_stats_add(&invalidate_iotlb);
528 amd_iommu_stats_add(&invalidate_iotlb_all);
529 amd_iommu_stats_add(&pri_requests);
530 }
531
532 #endif
533
534 /****************************************************************************
535 *
536 * Interrupt handling functions
537 *
538 ****************************************************************************/
539
540 static void dump_dte_entry(u16 devid)
541 {
542 int i;
543
544 for (i = 0; i < 4; ++i)
545 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
546 amd_iommu_dev_table[devid].data[i]);
547 }
548
549 static void dump_command(unsigned long phys_addr)
550 {
551 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
552 int i;
553
554 for (i = 0; i < 4; ++i)
555 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
556 }
557
558 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
559 {
560 int type, devid, domid, flags;
561 volatile u32 *event = __evt;
562 int count = 0;
563 u64 address;
564
565 retry:
566 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
567 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
568 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
569 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
570 address = (u64)(((u64)event[3]) << 32) | event[2];
571
572 if (type == 0) {
573 /* Did we hit the erratum? */
574 if (++count == LOOP_TIMEOUT) {
575 pr_err("AMD-Vi: No event written to event log\n");
576 return;
577 }
578 udelay(1);
579 goto retry;
580 }
581
582 printk(KERN_ERR "AMD-Vi: Event logged [");
583
584 switch (type) {
585 case EVENT_TYPE_ILL_DEV:
586 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
587 "address=0x%016llx flags=0x%04x]\n",
588 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
589 address, flags);
590 dump_dte_entry(devid);
591 break;
592 case EVENT_TYPE_IO_FAULT:
593 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
594 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
595 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
596 domid, address, flags);
597 break;
598 case EVENT_TYPE_DEV_TAB_ERR:
599 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
600 "address=0x%016llx flags=0x%04x]\n",
601 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
602 address, flags);
603 break;
604 case EVENT_TYPE_PAGE_TAB_ERR:
605 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
606 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
607 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
608 domid, address, flags);
609 break;
610 case EVENT_TYPE_ILL_CMD:
611 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
612 dump_command(address);
613 break;
614 case EVENT_TYPE_CMD_HARD_ERR:
615 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
616 "flags=0x%04x]\n", address, flags);
617 break;
618 case EVENT_TYPE_IOTLB_INV_TO:
619 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
620 "address=0x%016llx]\n",
621 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
622 address);
623 break;
624 case EVENT_TYPE_INV_DEV_REQ:
625 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
626 "address=0x%016llx flags=0x%04x]\n",
627 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
628 address, flags);
629 break;
630 default:
631 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
632 }
633
634 memset(__evt, 0, 4 * sizeof(u32));
635 }
636
637 static void iommu_poll_events(struct amd_iommu *iommu)
638 {
639 u32 head, tail;
640
641 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
642 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
643
644 while (head != tail) {
645 iommu_print_event(iommu, iommu->evt_buf + head);
646 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
647 }
648
649 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
650 }
651
652 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
653 {
654 struct amd_iommu_fault fault;
655
656 INC_STATS_COUNTER(pri_requests);
657
658 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
659 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
660 return;
661 }
662
663 fault.address = raw[1];
664 fault.pasid = PPR_PASID(raw[0]);
665 fault.device_id = PPR_DEVID(raw[0]);
666 fault.tag = PPR_TAG(raw[0]);
667 fault.flags = PPR_FLAGS(raw[0]);
668
669 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
670 }
671
672 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
673 {
674 u32 head, tail;
675
676 if (iommu->ppr_log == NULL)
677 return;
678
679 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
680 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
681
682 while (head != tail) {
683 volatile u64 *raw;
684 u64 entry[2];
685 int i;
686
687 raw = (u64 *)(iommu->ppr_log + head);
688
689 /*
690 * Hardware bug: Interrupt may arrive before the entry is
691 * written to memory. If this happens we need to wait for the
692 * entry to arrive.
693 */
694 for (i = 0; i < LOOP_TIMEOUT; ++i) {
695 if (PPR_REQ_TYPE(raw[0]) != 0)
696 break;
697 udelay(1);
698 }
699
700 /* Avoid memcpy function-call overhead */
701 entry[0] = raw[0];
702 entry[1] = raw[1];
703
704 /*
705 * To detect the hardware bug we need to clear the entry
706 * back to zero.
707 */
708 raw[0] = raw[1] = 0UL;
709
710 /* Update head pointer of hardware ring-buffer */
711 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
712 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
713
714 /* Handle PPR entry */
715 iommu_handle_ppr_entry(iommu, entry);
716
717 /* Refresh ring-buffer information */
718 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
719 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
720 }
721 }
722
723 irqreturn_t amd_iommu_int_thread(int irq, void *data)
724 {
725 struct amd_iommu *iommu = (struct amd_iommu *) data;
726 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
727
728 while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
729 /* Enable EVT and PPR interrupts again */
730 writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
731 iommu->mmio_base + MMIO_STATUS_OFFSET);
732
733 if (status & MMIO_STATUS_EVT_INT_MASK) {
734 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
735 iommu_poll_events(iommu);
736 }
737
738 if (status & MMIO_STATUS_PPR_INT_MASK) {
739 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
740 iommu_poll_ppr_log(iommu);
741 }
742
743 /*
744 * Hardware bug: ERBT1312
745 * When re-enabling interrupt (by writing 1
746 * to clear the bit), the hardware might also try to set
747 * the interrupt bit in the event status register.
748 * In this scenario, the bit will be set, and disable
749 * subsequent interrupts.
750 *
751 * Workaround: The IOMMU driver should read back the
752 * status register and check if the interrupt bits are cleared.
753 * If not, driver will need to go through the interrupt handler
754 * again and re-clear the bits
755 */
756 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
757 }
758 return IRQ_HANDLED;
759 }
760
761 irqreturn_t amd_iommu_int_handler(int irq, void *data)
762 {
763 return IRQ_WAKE_THREAD;
764 }
765
766 /****************************************************************************
767 *
768 * IOMMU command queuing functions
769 *
770 ****************************************************************************/
771
772 static int wait_on_sem(volatile u64 *sem)
773 {
774 int i = 0;
775
776 while (*sem == 0 && i < LOOP_TIMEOUT) {
777 udelay(1);
778 i += 1;
779 }
780
781 if (i == LOOP_TIMEOUT) {
782 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
783 return -EIO;
784 }
785
786 return 0;
787 }
788
789 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
790 struct iommu_cmd *cmd,
791 u32 tail)
792 {
793 u8 *target;
794
795 target = iommu->cmd_buf + tail;
796 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
797
798 /* Copy command to buffer */
799 memcpy(target, cmd, sizeof(*cmd));
800
801 /* Tell the IOMMU about it */
802 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
803 }
804
805 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
806 {
807 WARN_ON(address & 0x7ULL);
808
809 memset(cmd, 0, sizeof(*cmd));
810 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
811 cmd->data[1] = upper_32_bits(__pa(address));
812 cmd->data[2] = 1;
813 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
814 }
815
816 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
817 {
818 memset(cmd, 0, sizeof(*cmd));
819 cmd->data[0] = devid;
820 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
821 }
822
823 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
824 size_t size, u16 domid, int pde)
825 {
826 u64 pages;
827 bool s;
828
829 pages = iommu_num_pages(address, size, PAGE_SIZE);
830 s = false;
831
832 if (pages > 1) {
833 /*
834 * If we have to flush more than one page, flush all
835 * TLB entries for this domain
836 */
837 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
838 s = true;
839 }
840
841 address &= PAGE_MASK;
842
843 memset(cmd, 0, sizeof(*cmd));
844 cmd->data[1] |= domid;
845 cmd->data[2] = lower_32_bits(address);
846 cmd->data[3] = upper_32_bits(address);
847 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
848 if (s) /* size bit - we flush more than one 4kb page */
849 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
850 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
851 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
852 }
853
854 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
855 u64 address, size_t size)
856 {
857 u64 pages;
858 bool s;
859
860 pages = iommu_num_pages(address, size, PAGE_SIZE);
861 s = false;
862
863 if (pages > 1) {
864 /*
865 * If we have to flush more than one page, flush all
866 * TLB entries for this domain
867 */
868 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
869 s = true;
870 }
871
872 address &= PAGE_MASK;
873
874 memset(cmd, 0, sizeof(*cmd));
875 cmd->data[0] = devid;
876 cmd->data[0] |= (qdep & 0xff) << 24;
877 cmd->data[1] = devid;
878 cmd->data[2] = lower_32_bits(address);
879 cmd->data[3] = upper_32_bits(address);
880 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
881 if (s)
882 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
883 }
884
885 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
886 u64 address, bool size)
887 {
888 memset(cmd, 0, sizeof(*cmd));
889
890 address &= ~(0xfffULL);
891
892 cmd->data[0] = pasid;
893 cmd->data[1] = domid;
894 cmd->data[2] = lower_32_bits(address);
895 cmd->data[3] = upper_32_bits(address);
896 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
897 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
898 if (size)
899 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
900 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
901 }
902
903 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
904 int qdep, u64 address, bool size)
905 {
906 memset(cmd, 0, sizeof(*cmd));
907
908 address &= ~(0xfffULL);
909
910 cmd->data[0] = devid;
911 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
912 cmd->data[0] |= (qdep & 0xff) << 24;
913 cmd->data[1] = devid;
914 cmd->data[1] |= (pasid & 0xff) << 16;
915 cmd->data[2] = lower_32_bits(address);
916 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
917 cmd->data[3] = upper_32_bits(address);
918 if (size)
919 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
920 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
921 }
922
923 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
924 int status, int tag, bool gn)
925 {
926 memset(cmd, 0, sizeof(*cmd));
927
928 cmd->data[0] = devid;
929 if (gn) {
930 cmd->data[1] = pasid;
931 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
932 }
933 cmd->data[3] = tag & 0x1ff;
934 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
935
936 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
937 }
938
939 static void build_inv_all(struct iommu_cmd *cmd)
940 {
941 memset(cmd, 0, sizeof(*cmd));
942 CMD_SET_TYPE(cmd, CMD_INV_ALL);
943 }
944
945 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
946 {
947 memset(cmd, 0, sizeof(*cmd));
948 cmd->data[0] = devid;
949 CMD_SET_TYPE(cmd, CMD_INV_IRT);
950 }
951
952 /*
953 * Writes the command to the IOMMUs command buffer and informs the
954 * hardware about the new command.
955 */
956 static int iommu_queue_command_sync(struct amd_iommu *iommu,
957 struct iommu_cmd *cmd,
958 bool sync)
959 {
960 u32 left, tail, head, next_tail;
961 unsigned long flags;
962
963 again:
964 spin_lock_irqsave(&iommu->lock, flags);
965
966 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
967 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
968 next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
969 left = (head - next_tail) % CMD_BUFFER_SIZE;
970
971 if (left <= 2) {
972 struct iommu_cmd sync_cmd;
973 volatile u64 sem = 0;
974 int ret;
975
976 build_completion_wait(&sync_cmd, (u64)&sem);
977 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
978
979 spin_unlock_irqrestore(&iommu->lock, flags);
980
981 if ((ret = wait_on_sem(&sem)) != 0)
982 return ret;
983
984 goto again;
985 }
986
987 copy_cmd_to_buffer(iommu, cmd, tail);
988
989 /* We need to sync now to make sure all commands are processed */
990 iommu->need_sync = sync;
991
992 spin_unlock_irqrestore(&iommu->lock, flags);
993
994 return 0;
995 }
996
997 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
998 {
999 return iommu_queue_command_sync(iommu, cmd, true);
1000 }
1001
1002 /*
1003 * This function queues a completion wait command into the command
1004 * buffer of an IOMMU
1005 */
1006 static int iommu_completion_wait(struct amd_iommu *iommu)
1007 {
1008 struct iommu_cmd cmd;
1009 volatile u64 sem = 0;
1010 int ret;
1011
1012 if (!iommu->need_sync)
1013 return 0;
1014
1015 build_completion_wait(&cmd, (u64)&sem);
1016
1017 ret = iommu_queue_command_sync(iommu, &cmd, false);
1018 if (ret)
1019 return ret;
1020
1021 return wait_on_sem(&sem);
1022 }
1023
1024 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1025 {
1026 struct iommu_cmd cmd;
1027
1028 build_inv_dte(&cmd, devid);
1029
1030 return iommu_queue_command(iommu, &cmd);
1031 }
1032
1033 static void iommu_flush_dte_all(struct amd_iommu *iommu)
1034 {
1035 u32 devid;
1036
1037 for (devid = 0; devid <= 0xffff; ++devid)
1038 iommu_flush_dte(iommu, devid);
1039
1040 iommu_completion_wait(iommu);
1041 }
1042
1043 /*
1044 * This function uses heavy locking and may disable irqs for some time. But
1045 * this is no issue because it is only called during resume.
1046 */
1047 static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1048 {
1049 u32 dom_id;
1050
1051 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1052 struct iommu_cmd cmd;
1053 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1054 dom_id, 1);
1055 iommu_queue_command(iommu, &cmd);
1056 }
1057
1058 iommu_completion_wait(iommu);
1059 }
1060
1061 static void iommu_flush_all(struct amd_iommu *iommu)
1062 {
1063 struct iommu_cmd cmd;
1064
1065 build_inv_all(&cmd);
1066
1067 iommu_queue_command(iommu, &cmd);
1068 iommu_completion_wait(iommu);
1069 }
1070
1071 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1072 {
1073 struct iommu_cmd cmd;
1074
1075 build_inv_irt(&cmd, devid);
1076
1077 iommu_queue_command(iommu, &cmd);
1078 }
1079
1080 static void iommu_flush_irt_all(struct amd_iommu *iommu)
1081 {
1082 u32 devid;
1083
1084 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1085 iommu_flush_irt(iommu, devid);
1086
1087 iommu_completion_wait(iommu);
1088 }
1089
1090 void iommu_flush_all_caches(struct amd_iommu *iommu)
1091 {
1092 if (iommu_feature(iommu, FEATURE_IA)) {
1093 iommu_flush_all(iommu);
1094 } else {
1095 iommu_flush_dte_all(iommu);
1096 iommu_flush_irt_all(iommu);
1097 iommu_flush_tlb_all(iommu);
1098 }
1099 }
1100
1101 /*
1102 * Command send function for flushing on-device TLB
1103 */
1104 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1105 u64 address, size_t size)
1106 {
1107 struct amd_iommu *iommu;
1108 struct iommu_cmd cmd;
1109 int qdep;
1110
1111 qdep = dev_data->ats.qdep;
1112 iommu = amd_iommu_rlookup_table[dev_data->devid];
1113
1114 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1115
1116 return iommu_queue_command(iommu, &cmd);
1117 }
1118
1119 /*
1120 * Command send function for invalidating a device table entry
1121 */
1122 static int device_flush_dte(struct iommu_dev_data *dev_data)
1123 {
1124 struct amd_iommu *iommu;
1125 u16 alias;
1126 int ret;
1127
1128 iommu = amd_iommu_rlookup_table[dev_data->devid];
1129 alias = dev_data->alias;
1130
1131 ret = iommu_flush_dte(iommu, dev_data->devid);
1132 if (!ret && alias != dev_data->devid)
1133 ret = iommu_flush_dte(iommu, alias);
1134 if (ret)
1135 return ret;
1136
1137 if (dev_data->ats.enabled)
1138 ret = device_flush_iotlb(dev_data, 0, ~0UL);
1139
1140 return ret;
1141 }
1142
1143 /*
1144 * TLB invalidation function which is called from the mapping functions.
1145 * It invalidates a single PTE if the range to flush is within a single
1146 * page. Otherwise it flushes the whole TLB of the IOMMU.
1147 */
1148 static void __domain_flush_pages(struct protection_domain *domain,
1149 u64 address, size_t size, int pde)
1150 {
1151 struct iommu_dev_data *dev_data;
1152 struct iommu_cmd cmd;
1153 int ret = 0, i;
1154
1155 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1156
1157 for (i = 0; i < amd_iommus_present; ++i) {
1158 if (!domain->dev_iommu[i])
1159 continue;
1160
1161 /*
1162 * Devices of this domain are behind this IOMMU
1163 * We need a TLB flush
1164 */
1165 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1166 }
1167
1168 list_for_each_entry(dev_data, &domain->dev_list, list) {
1169
1170 if (!dev_data->ats.enabled)
1171 continue;
1172
1173 ret |= device_flush_iotlb(dev_data, address, size);
1174 }
1175
1176 WARN_ON(ret);
1177 }
1178
1179 static void domain_flush_pages(struct protection_domain *domain,
1180 u64 address, size_t size)
1181 {
1182 __domain_flush_pages(domain, address, size, 0);
1183 }
1184
1185 /* Flush the whole IO/TLB for a given protection domain */
1186 static void domain_flush_tlb(struct protection_domain *domain)
1187 {
1188 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1189 }
1190
1191 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1192 static void domain_flush_tlb_pde(struct protection_domain *domain)
1193 {
1194 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1195 }
1196
1197 static void domain_flush_complete(struct protection_domain *domain)
1198 {
1199 int i;
1200
1201 for (i = 0; i < amd_iommus_present; ++i) {
1202 if (!domain->dev_iommu[i])
1203 continue;
1204
1205 /*
1206 * Devices of this domain are behind this IOMMU
1207 * We need to wait for completion of all commands.
1208 */
1209 iommu_completion_wait(amd_iommus[i]);
1210 }
1211 }
1212
1213
1214 /*
1215 * This function flushes the DTEs for all devices in domain
1216 */
1217 static void domain_flush_devices(struct protection_domain *domain)
1218 {
1219 struct iommu_dev_data *dev_data;
1220
1221 list_for_each_entry(dev_data, &domain->dev_list, list)
1222 device_flush_dte(dev_data);
1223 }
1224
1225 /****************************************************************************
1226 *
1227 * The functions below are used the create the page table mappings for
1228 * unity mapped regions.
1229 *
1230 ****************************************************************************/
1231
1232 /*
1233 * This function is used to add another level to an IO page table. Adding
1234 * another level increases the size of the address space by 9 bits to a size up
1235 * to 64 bits.
1236 */
1237 static bool increase_address_space(struct protection_domain *domain,
1238 gfp_t gfp)
1239 {
1240 u64 *pte;
1241
1242 if (domain->mode == PAGE_MODE_6_LEVEL)
1243 /* address space already 64 bit large */
1244 return false;
1245
1246 pte = (void *)get_zeroed_page(gfp);
1247 if (!pte)
1248 return false;
1249
1250 *pte = PM_LEVEL_PDE(domain->mode,
1251 virt_to_phys(domain->pt_root));
1252 domain->pt_root = pte;
1253 domain->mode += 1;
1254 domain->updated = true;
1255
1256 return true;
1257 }
1258
1259 static u64 *alloc_pte(struct protection_domain *domain,
1260 unsigned long address,
1261 unsigned long page_size,
1262 u64 **pte_page,
1263 gfp_t gfp)
1264 {
1265 int level, end_lvl;
1266 u64 *pte, *page;
1267
1268 BUG_ON(!is_power_of_2(page_size));
1269
1270 while (address > PM_LEVEL_SIZE(domain->mode))
1271 increase_address_space(domain, gfp);
1272
1273 level = domain->mode - 1;
1274 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1275 address = PAGE_SIZE_ALIGN(address, page_size);
1276 end_lvl = PAGE_SIZE_LEVEL(page_size);
1277
1278 while (level > end_lvl) {
1279 u64 __pte, __npte;
1280
1281 __pte = *pte;
1282
1283 if (!IOMMU_PTE_PRESENT(__pte)) {
1284 page = (u64 *)get_zeroed_page(gfp);
1285 if (!page)
1286 return NULL;
1287
1288 __npte = PM_LEVEL_PDE(level, virt_to_phys(page));
1289
1290 if (cmpxchg64(pte, __pte, __npte)) {
1291 free_page((unsigned long)page);
1292 continue;
1293 }
1294 }
1295
1296 /* No level skipping support yet */
1297 if (PM_PTE_LEVEL(*pte) != level)
1298 return NULL;
1299
1300 level -= 1;
1301
1302 pte = IOMMU_PTE_PAGE(*pte);
1303
1304 if (pte_page && level == end_lvl)
1305 *pte_page = pte;
1306
1307 pte = &pte[PM_LEVEL_INDEX(level, address)];
1308 }
1309
1310 return pte;
1311 }
1312
1313 /*
1314 * This function checks if there is a PTE for a given dma address. If
1315 * there is one, it returns the pointer to it.
1316 */
1317 static u64 *fetch_pte(struct protection_domain *domain,
1318 unsigned long address,
1319 unsigned long *page_size)
1320 {
1321 int level;
1322 u64 *pte;
1323
1324 if (address > PM_LEVEL_SIZE(domain->mode))
1325 return NULL;
1326
1327 level = domain->mode - 1;
1328 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1329 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1330
1331 while (level > 0) {
1332
1333 /* Not Present */
1334 if (!IOMMU_PTE_PRESENT(*pte))
1335 return NULL;
1336
1337 /* Large PTE */
1338 if (PM_PTE_LEVEL(*pte) == 7 ||
1339 PM_PTE_LEVEL(*pte) == 0)
1340 break;
1341
1342 /* No level skipping support yet */
1343 if (PM_PTE_LEVEL(*pte) != level)
1344 return NULL;
1345
1346 level -= 1;
1347
1348 /* Walk to the next level */
1349 pte = IOMMU_PTE_PAGE(*pte);
1350 pte = &pte[PM_LEVEL_INDEX(level, address)];
1351 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1352 }
1353
1354 if (PM_PTE_LEVEL(*pte) == 0x07) {
1355 unsigned long pte_mask;
1356
1357 /*
1358 * If we have a series of large PTEs, make
1359 * sure to return a pointer to the first one.
1360 */
1361 *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1362 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1363 pte = (u64 *)(((unsigned long)pte) & pte_mask);
1364 }
1365
1366 return pte;
1367 }
1368
1369 /*
1370 * Generic mapping functions. It maps a physical address into a DMA
1371 * address space. It allocates the page table pages if necessary.
1372 * In the future it can be extended to a generic mapping function
1373 * supporting all features of AMD IOMMU page tables like level skipping
1374 * and full 64 bit address spaces.
1375 */
1376 static int iommu_map_page(struct protection_domain *dom,
1377 unsigned long bus_addr,
1378 unsigned long phys_addr,
1379 int prot,
1380 unsigned long page_size)
1381 {
1382 u64 __pte, *pte;
1383 int i, count;
1384
1385 BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1386 BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1387
1388 if (!(prot & IOMMU_PROT_MASK))
1389 return -EINVAL;
1390
1391 count = PAGE_SIZE_PTE_COUNT(page_size);
1392 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1393
1394 if (!pte)
1395 return -ENOMEM;
1396
1397 for (i = 0; i < count; ++i)
1398 if (IOMMU_PTE_PRESENT(pte[i]))
1399 return -EBUSY;
1400
1401 if (count > 1) {
1402 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1403 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1404 } else
1405 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1406
1407 if (prot & IOMMU_PROT_IR)
1408 __pte |= IOMMU_PTE_IR;
1409 if (prot & IOMMU_PROT_IW)
1410 __pte |= IOMMU_PTE_IW;
1411
1412 for (i = 0; i < count; ++i)
1413 pte[i] = __pte;
1414
1415 update_domain(dom);
1416
1417 return 0;
1418 }
1419
1420 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1421 unsigned long bus_addr,
1422 unsigned long page_size)
1423 {
1424 unsigned long long unmapped;
1425 unsigned long unmap_size;
1426 u64 *pte;
1427
1428 BUG_ON(!is_power_of_2(page_size));
1429
1430 unmapped = 0;
1431
1432 while (unmapped < page_size) {
1433
1434 pte = fetch_pte(dom, bus_addr, &unmap_size);
1435
1436 if (pte) {
1437 int i, count;
1438
1439 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1440 for (i = 0; i < count; i++)
1441 pte[i] = 0ULL;
1442 }
1443
1444 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1445 unmapped += unmap_size;
1446 }
1447
1448 BUG_ON(unmapped && !is_power_of_2(unmapped));
1449
1450 return unmapped;
1451 }
1452
1453 /****************************************************************************
1454 *
1455 * The next functions belong to the address allocator for the dma_ops
1456 * interface functions. They work like the allocators in the other IOMMU
1457 * drivers. Its basically a bitmap which marks the allocated pages in
1458 * the aperture. Maybe it could be enhanced in the future to a more
1459 * efficient allocator.
1460 *
1461 ****************************************************************************/
1462
1463 /*
1464 * The address allocator core functions.
1465 *
1466 * called with domain->lock held
1467 */
1468
1469 /*
1470 * Used to reserve address ranges in the aperture (e.g. for exclusion
1471 * ranges.
1472 */
1473 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1474 unsigned long start_page,
1475 unsigned int pages)
1476 {
1477 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1478
1479 if (start_page + pages > last_page)
1480 pages = last_page - start_page;
1481
1482 for (i = start_page; i < start_page + pages; ++i) {
1483 int index = i / APERTURE_RANGE_PAGES;
1484 int page = i % APERTURE_RANGE_PAGES;
1485 __set_bit(page, dom->aperture[index]->bitmap);
1486 }
1487 }
1488
1489 /*
1490 * This function is used to add a new aperture range to an existing
1491 * aperture in case of dma_ops domain allocation or address allocation
1492 * failure.
1493 */
1494 static int alloc_new_range(struct dma_ops_domain *dma_dom,
1495 bool populate, gfp_t gfp)
1496 {
1497 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1498 unsigned long i, old_size, pte_pgsize;
1499 struct aperture_range *range;
1500 struct amd_iommu *iommu;
1501 unsigned long flags;
1502
1503 #ifdef CONFIG_IOMMU_STRESS
1504 populate = false;
1505 #endif
1506
1507 if (index >= APERTURE_MAX_RANGES)
1508 return -ENOMEM;
1509
1510 range = kzalloc(sizeof(struct aperture_range), gfp);
1511 if (!range)
1512 return -ENOMEM;
1513
1514 range->bitmap = (void *)get_zeroed_page(gfp);
1515 if (!range->bitmap)
1516 goto out_free;
1517
1518 range->offset = dma_dom->aperture_size;
1519
1520 spin_lock_init(&range->bitmap_lock);
1521
1522 if (populate) {
1523 unsigned long address = dma_dom->aperture_size;
1524 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1525 u64 *pte, *pte_page;
1526
1527 for (i = 0; i < num_ptes; ++i) {
1528 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1529 &pte_page, gfp);
1530 if (!pte)
1531 goto out_free;
1532
1533 range->pte_pages[i] = pte_page;
1534
1535 address += APERTURE_RANGE_SIZE / 64;
1536 }
1537 }
1538
1539 spin_lock_irqsave(&dma_dom->domain.lock, flags);
1540
1541 /* First take the bitmap_lock and then publish the range */
1542 spin_lock(&range->bitmap_lock);
1543
1544 old_size = dma_dom->aperture_size;
1545 dma_dom->aperture[index] = range;
1546 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1547
1548 /* Reserve address range used for MSI messages */
1549 if (old_size < MSI_ADDR_BASE_LO &&
1550 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1551 unsigned long spage;
1552 int pages;
1553
1554 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1555 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1556
1557 dma_ops_reserve_addresses(dma_dom, spage, pages);
1558 }
1559
1560 /* Initialize the exclusion range if necessary */
1561 for_each_iommu(iommu) {
1562 if (iommu->exclusion_start &&
1563 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1564 && iommu->exclusion_start < dma_dom->aperture_size) {
1565 unsigned long startpage;
1566 int pages = iommu_num_pages(iommu->exclusion_start,
1567 iommu->exclusion_length,
1568 PAGE_SIZE);
1569 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1570 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1571 }
1572 }
1573
1574 /*
1575 * Check for areas already mapped as present in the new aperture
1576 * range and mark those pages as reserved in the allocator. Such
1577 * mappings may already exist as a result of requested unity
1578 * mappings for devices.
1579 */
1580 for (i = dma_dom->aperture[index]->offset;
1581 i < dma_dom->aperture_size;
1582 i += pte_pgsize) {
1583 u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1584 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1585 continue;
1586
1587 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
1588 pte_pgsize >> 12);
1589 }
1590
1591 update_domain(&dma_dom->domain);
1592
1593 spin_unlock(&range->bitmap_lock);
1594
1595 spin_unlock_irqrestore(&dma_dom->domain.lock, flags);
1596
1597 return 0;
1598
1599 out_free:
1600 update_domain(&dma_dom->domain);
1601
1602 free_page((unsigned long)range->bitmap);
1603
1604 kfree(range);
1605
1606 return -ENOMEM;
1607 }
1608
1609 static dma_addr_t dma_ops_aperture_alloc(struct dma_ops_domain *dom,
1610 struct aperture_range *range,
1611 unsigned long pages,
1612 unsigned long dma_mask,
1613 unsigned long boundary_size,
1614 unsigned long align_mask,
1615 bool trylock)
1616 {
1617 unsigned long offset, limit, flags;
1618 dma_addr_t address;
1619 bool flush = false;
1620
1621 offset = range->offset >> PAGE_SHIFT;
1622 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1623 dma_mask >> PAGE_SHIFT);
1624
1625 if (trylock) {
1626 if (!spin_trylock_irqsave(&range->bitmap_lock, flags))
1627 return -1;
1628 } else {
1629 spin_lock_irqsave(&range->bitmap_lock, flags);
1630 }
1631
1632 address = iommu_area_alloc(range->bitmap, limit, range->next_bit,
1633 pages, offset, boundary_size, align_mask);
1634 if (address == -1) {
1635 /* Nothing found, retry one time */
1636 address = iommu_area_alloc(range->bitmap, limit,
1637 0, pages, offset, boundary_size,
1638 align_mask);
1639 flush = true;
1640 }
1641
1642 if (address != -1)
1643 range->next_bit = address + pages;
1644
1645 spin_unlock_irqrestore(&range->bitmap_lock, flags);
1646
1647 if (flush) {
1648 domain_flush_tlb(&dom->domain);
1649 domain_flush_complete(&dom->domain);
1650 }
1651
1652 return address;
1653 }
1654
1655 static unsigned long dma_ops_area_alloc(struct device *dev,
1656 struct dma_ops_domain *dom,
1657 unsigned int pages,
1658 unsigned long align_mask,
1659 u64 dma_mask)
1660 {
1661 unsigned long boundary_size, mask;
1662 unsigned long address = -1;
1663 bool first = true;
1664 u32 start, i;
1665
1666 preempt_disable();
1667
1668 mask = dma_get_seg_boundary(dev);
1669
1670 again:
1671 start = this_cpu_read(*dom->next_index);
1672
1673 /* Sanity check - is it really necessary? */
1674 if (unlikely(start > APERTURE_MAX_RANGES)) {
1675 start = 0;
1676 this_cpu_write(*dom->next_index, 0);
1677 }
1678
1679 boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
1680 1UL << (BITS_PER_LONG - PAGE_SHIFT);
1681
1682 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1683 struct aperture_range *range;
1684 int index;
1685
1686 index = (start + i) % APERTURE_MAX_RANGES;
1687
1688 range = dom->aperture[index];
1689
1690 if (!range || range->offset >= dma_mask)
1691 continue;
1692
1693 address = dma_ops_aperture_alloc(dom, range, pages,
1694 dma_mask, boundary_size,
1695 align_mask, first);
1696 if (address != -1) {
1697 address = range->offset + (address << PAGE_SHIFT);
1698 this_cpu_write(*dom->next_index, index);
1699 break;
1700 }
1701 }
1702
1703 if (address == -1 && first) {
1704 first = false;
1705 goto again;
1706 }
1707
1708 preempt_enable();
1709
1710 return address;
1711 }
1712
1713 static unsigned long dma_ops_alloc_addresses(struct device *dev,
1714 struct dma_ops_domain *dom,
1715 unsigned int pages,
1716 unsigned long align_mask,
1717 u64 dma_mask)
1718 {
1719 unsigned long address = -1;
1720
1721 while (address == -1) {
1722 address = dma_ops_area_alloc(dev, dom, pages,
1723 align_mask, dma_mask);
1724
1725 if (address == -1 && alloc_new_range(dom, false, GFP_ATOMIC))
1726 break;
1727 }
1728
1729 if (unlikely(address == -1))
1730 address = DMA_ERROR_CODE;
1731
1732 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1733
1734 return address;
1735 }
1736
1737 /*
1738 * The address free function.
1739 *
1740 * called with domain->lock held
1741 */
1742 static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1743 unsigned long address,
1744 unsigned int pages)
1745 {
1746 unsigned i = address >> APERTURE_RANGE_SHIFT;
1747 struct aperture_range *range = dom->aperture[i];
1748 unsigned long flags;
1749
1750 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1751
1752 #ifdef CONFIG_IOMMU_STRESS
1753 if (i < 4)
1754 return;
1755 #endif
1756
1757 if (amd_iommu_unmap_flush) {
1758 domain_flush_tlb(&dom->domain);
1759 domain_flush_complete(&dom->domain);
1760 }
1761
1762 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1763
1764 spin_lock_irqsave(&range->bitmap_lock, flags);
1765 if (address + pages > range->next_bit)
1766 range->next_bit = address + pages;
1767 bitmap_clear(range->bitmap, address, pages);
1768 spin_unlock_irqrestore(&range->bitmap_lock, flags);
1769
1770 }
1771
1772 /****************************************************************************
1773 *
1774 * The next functions belong to the domain allocation. A domain is
1775 * allocated for every IOMMU as the default domain. If device isolation
1776 * is enabled, every device get its own domain. The most important thing
1777 * about domains is the page table mapping the DMA address space they
1778 * contain.
1779 *
1780 ****************************************************************************/
1781
1782 /*
1783 * This function adds a protection domain to the global protection domain list
1784 */
1785 static void add_domain_to_list(struct protection_domain *domain)
1786 {
1787 unsigned long flags;
1788
1789 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1790 list_add(&domain->list, &amd_iommu_pd_list);
1791 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1792 }
1793
1794 /*
1795 * This function removes a protection domain to the global
1796 * protection domain list
1797 */
1798 static void del_domain_from_list(struct protection_domain *domain)
1799 {
1800 unsigned long flags;
1801
1802 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1803 list_del(&domain->list);
1804 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1805 }
1806
1807 static u16 domain_id_alloc(void)
1808 {
1809 unsigned long flags;
1810 int id;
1811
1812 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1813 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1814 BUG_ON(id == 0);
1815 if (id > 0 && id < MAX_DOMAIN_ID)
1816 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1817 else
1818 id = 0;
1819 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1820
1821 return id;
1822 }
1823
1824 static void domain_id_free(int id)
1825 {
1826 unsigned long flags;
1827
1828 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1829 if (id > 0 && id < MAX_DOMAIN_ID)
1830 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1831 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1832 }
1833
1834 #define DEFINE_FREE_PT_FN(LVL, FN) \
1835 static void free_pt_##LVL (unsigned long __pt) \
1836 { \
1837 unsigned long p; \
1838 u64 *pt; \
1839 int i; \
1840 \
1841 pt = (u64 *)__pt; \
1842 \
1843 for (i = 0; i < 512; ++i) { \
1844 /* PTE present? */ \
1845 if (!IOMMU_PTE_PRESENT(pt[i])) \
1846 continue; \
1847 \
1848 /* Large PTE? */ \
1849 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1850 PM_PTE_LEVEL(pt[i]) == 7) \
1851 continue; \
1852 \
1853 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1854 FN(p); \
1855 } \
1856 free_page((unsigned long)pt); \
1857 }
1858
1859 DEFINE_FREE_PT_FN(l2, free_page)
1860 DEFINE_FREE_PT_FN(l3, free_pt_l2)
1861 DEFINE_FREE_PT_FN(l4, free_pt_l3)
1862 DEFINE_FREE_PT_FN(l5, free_pt_l4)
1863 DEFINE_FREE_PT_FN(l6, free_pt_l5)
1864
1865 static void free_pagetable(struct protection_domain *domain)
1866 {
1867 unsigned long root = (unsigned long)domain->pt_root;
1868
1869 switch (domain->mode) {
1870 case PAGE_MODE_NONE:
1871 break;
1872 case PAGE_MODE_1_LEVEL:
1873 free_page(root);
1874 break;
1875 case PAGE_MODE_2_LEVEL:
1876 free_pt_l2(root);
1877 break;
1878 case PAGE_MODE_3_LEVEL:
1879 free_pt_l3(root);
1880 break;
1881 case PAGE_MODE_4_LEVEL:
1882 free_pt_l4(root);
1883 break;
1884 case PAGE_MODE_5_LEVEL:
1885 free_pt_l5(root);
1886 break;
1887 case PAGE_MODE_6_LEVEL:
1888 free_pt_l6(root);
1889 break;
1890 default:
1891 BUG();
1892 }
1893 }
1894
1895 static void free_gcr3_tbl_level1(u64 *tbl)
1896 {
1897 u64 *ptr;
1898 int i;
1899
1900 for (i = 0; i < 512; ++i) {
1901 if (!(tbl[i] & GCR3_VALID))
1902 continue;
1903
1904 ptr = __va(tbl[i] & PAGE_MASK);
1905
1906 free_page((unsigned long)ptr);
1907 }
1908 }
1909
1910 static void free_gcr3_tbl_level2(u64 *tbl)
1911 {
1912 u64 *ptr;
1913 int i;
1914
1915 for (i = 0; i < 512; ++i) {
1916 if (!(tbl[i] & GCR3_VALID))
1917 continue;
1918
1919 ptr = __va(tbl[i] & PAGE_MASK);
1920
1921 free_gcr3_tbl_level1(ptr);
1922 }
1923 }
1924
1925 static void free_gcr3_table(struct protection_domain *domain)
1926 {
1927 if (domain->glx == 2)
1928 free_gcr3_tbl_level2(domain->gcr3_tbl);
1929 else if (domain->glx == 1)
1930 free_gcr3_tbl_level1(domain->gcr3_tbl);
1931 else
1932 BUG_ON(domain->glx != 0);
1933
1934 free_page((unsigned long)domain->gcr3_tbl);
1935 }
1936
1937 /*
1938 * Free a domain, only used if something went wrong in the
1939 * allocation path and we need to free an already allocated page table
1940 */
1941 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1942 {
1943 int i;
1944
1945 if (!dom)
1946 return;
1947
1948 free_percpu(dom->next_index);
1949
1950 del_domain_from_list(&dom->domain);
1951
1952 free_pagetable(&dom->domain);
1953
1954 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1955 if (!dom->aperture[i])
1956 continue;
1957 free_page((unsigned long)dom->aperture[i]->bitmap);
1958 kfree(dom->aperture[i]);
1959 }
1960
1961 kfree(dom);
1962 }
1963
1964 static int dma_ops_domain_alloc_apertures(struct dma_ops_domain *dma_dom,
1965 int max_apertures)
1966 {
1967 int ret, i, apertures;
1968
1969 apertures = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1970 ret = 0;
1971
1972 for (i = apertures; i < max_apertures; ++i) {
1973 ret = alloc_new_range(dma_dom, false, GFP_KERNEL);
1974 if (ret)
1975 break;
1976 }
1977
1978 return ret;
1979 }
1980
1981 /*
1982 * Allocates a new protection domain usable for the dma_ops functions.
1983 * It also initializes the page table and the address allocator data
1984 * structures required for the dma_ops interface
1985 */
1986 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1987 {
1988 struct dma_ops_domain *dma_dom;
1989 int cpu;
1990
1991 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1992 if (!dma_dom)
1993 return NULL;
1994
1995 if (protection_domain_init(&dma_dom->domain))
1996 goto free_dma_dom;
1997
1998 dma_dom->next_index = alloc_percpu(u32);
1999 if (!dma_dom->next_index)
2000 goto free_dma_dom;
2001
2002 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
2003 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2004 dma_dom->domain.flags = PD_DMA_OPS_MASK;
2005 dma_dom->domain.priv = dma_dom;
2006 if (!dma_dom->domain.pt_root)
2007 goto free_dma_dom;
2008
2009 add_domain_to_list(&dma_dom->domain);
2010
2011 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
2012 goto free_dma_dom;
2013
2014 /*
2015 * mark the first page as allocated so we never return 0 as
2016 * a valid dma-address. So we can use 0 as error value
2017 */
2018 dma_dom->aperture[0]->bitmap[0] = 1;
2019
2020 for_each_possible_cpu(cpu)
2021 *per_cpu_ptr(dma_dom->next_index, cpu) = 0;
2022
2023 return dma_dom;
2024
2025 free_dma_dom:
2026 dma_ops_domain_free(dma_dom);
2027
2028 return NULL;
2029 }
2030
2031 /*
2032 * little helper function to check whether a given protection domain is a
2033 * dma_ops domain
2034 */
2035 static bool dma_ops_domain(struct protection_domain *domain)
2036 {
2037 return domain->flags & PD_DMA_OPS_MASK;
2038 }
2039
2040 static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2041 {
2042 u64 pte_root = 0;
2043 u64 flags = 0;
2044
2045 if (domain->mode != PAGE_MODE_NONE)
2046 pte_root = virt_to_phys(domain->pt_root);
2047
2048 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
2049 << DEV_ENTRY_MODE_SHIFT;
2050 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2051
2052 flags = amd_iommu_dev_table[devid].data[1];
2053
2054 if (ats)
2055 flags |= DTE_FLAG_IOTLB;
2056
2057 if (domain->flags & PD_IOMMUV2_MASK) {
2058 u64 gcr3 = __pa(domain->gcr3_tbl);
2059 u64 glx = domain->glx;
2060 u64 tmp;
2061
2062 pte_root |= DTE_FLAG_GV;
2063 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
2064
2065 /* First mask out possible old values for GCR3 table */
2066 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
2067 flags &= ~tmp;
2068
2069 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
2070 flags &= ~tmp;
2071
2072 /* Encode GCR3 table into DTE */
2073 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
2074 pte_root |= tmp;
2075
2076 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2077 flags |= tmp;
2078
2079 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2080 flags |= tmp;
2081 }
2082
2083 flags &= ~(0xffffUL);
2084 flags |= domain->id;
2085
2086 amd_iommu_dev_table[devid].data[1] = flags;
2087 amd_iommu_dev_table[devid].data[0] = pte_root;
2088 }
2089
2090 static void clear_dte_entry(u16 devid)
2091 {
2092 /* remove entry from the device table seen by the hardware */
2093 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
2094 amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
2095
2096 amd_iommu_apply_erratum_63(devid);
2097 }
2098
2099 static void do_attach(struct iommu_dev_data *dev_data,
2100 struct protection_domain *domain)
2101 {
2102 struct amd_iommu *iommu;
2103 u16 alias;
2104 bool ats;
2105
2106 iommu = amd_iommu_rlookup_table[dev_data->devid];
2107 alias = dev_data->alias;
2108 ats = dev_data->ats.enabled;
2109
2110 /* Update data structures */
2111 dev_data->domain = domain;
2112 list_add(&dev_data->list, &domain->dev_list);
2113
2114 /* Do reference counting */
2115 domain->dev_iommu[iommu->index] += 1;
2116 domain->dev_cnt += 1;
2117
2118 /* Update device table */
2119 set_dte_entry(dev_data->devid, domain, ats);
2120 if (alias != dev_data->devid)
2121 set_dte_entry(alias, domain, ats);
2122
2123 device_flush_dte(dev_data);
2124 }
2125
2126 static void do_detach(struct iommu_dev_data *dev_data)
2127 {
2128 struct amd_iommu *iommu;
2129 u16 alias;
2130
2131 /*
2132 * First check if the device is still attached. It might already
2133 * be detached from its domain because the generic
2134 * iommu_detach_group code detached it and we try again here in
2135 * our alias handling.
2136 */
2137 if (!dev_data->domain)
2138 return;
2139
2140 iommu = amd_iommu_rlookup_table[dev_data->devid];
2141 alias = dev_data->alias;
2142
2143 /* decrease reference counters */
2144 dev_data->domain->dev_iommu[iommu->index] -= 1;
2145 dev_data->domain->dev_cnt -= 1;
2146
2147 /* Update data structures */
2148 dev_data->domain = NULL;
2149 list_del(&dev_data->list);
2150 clear_dte_entry(dev_data->devid);
2151 if (alias != dev_data->devid)
2152 clear_dte_entry(alias);
2153
2154 /* Flush the DTE entry */
2155 device_flush_dte(dev_data);
2156 }
2157
2158 /*
2159 * If a device is not yet associated with a domain, this function does
2160 * assigns it visible for the hardware
2161 */
2162 static int __attach_device(struct iommu_dev_data *dev_data,
2163 struct protection_domain *domain)
2164 {
2165 int ret;
2166
2167 /*
2168 * Must be called with IRQs disabled. Warn here to detect early
2169 * when its not.
2170 */
2171 WARN_ON(!irqs_disabled());
2172
2173 /* lock domain */
2174 spin_lock(&domain->lock);
2175
2176 ret = -EBUSY;
2177 if (dev_data->domain != NULL)
2178 goto out_unlock;
2179
2180 /* Attach alias group root */
2181 do_attach(dev_data, domain);
2182
2183 ret = 0;
2184
2185 out_unlock:
2186
2187 /* ready */
2188 spin_unlock(&domain->lock);
2189
2190 return ret;
2191 }
2192
2193
2194 static void pdev_iommuv2_disable(struct pci_dev *pdev)
2195 {
2196 pci_disable_ats(pdev);
2197 pci_disable_pri(pdev);
2198 pci_disable_pasid(pdev);
2199 }
2200
2201 /* FIXME: Change generic reset-function to do the same */
2202 static int pri_reset_while_enabled(struct pci_dev *pdev)
2203 {
2204 u16 control;
2205 int pos;
2206
2207 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2208 if (!pos)
2209 return -EINVAL;
2210
2211 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2212 control |= PCI_PRI_CTRL_RESET;
2213 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2214
2215 return 0;
2216 }
2217
2218 static int pdev_iommuv2_enable(struct pci_dev *pdev)
2219 {
2220 bool reset_enable;
2221 int reqs, ret;
2222
2223 /* FIXME: Hardcode number of outstanding requests for now */
2224 reqs = 32;
2225 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2226 reqs = 1;
2227 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2228
2229 /* Only allow access to user-accessible pages */
2230 ret = pci_enable_pasid(pdev, 0);
2231 if (ret)
2232 goto out_err;
2233
2234 /* First reset the PRI state of the device */
2235 ret = pci_reset_pri(pdev);
2236 if (ret)
2237 goto out_err;
2238
2239 /* Enable PRI */
2240 ret = pci_enable_pri(pdev, reqs);
2241 if (ret)
2242 goto out_err;
2243
2244 if (reset_enable) {
2245 ret = pri_reset_while_enabled(pdev);
2246 if (ret)
2247 goto out_err;
2248 }
2249
2250 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2251 if (ret)
2252 goto out_err;
2253
2254 return 0;
2255
2256 out_err:
2257 pci_disable_pri(pdev);
2258 pci_disable_pasid(pdev);
2259
2260 return ret;
2261 }
2262
2263 /* FIXME: Move this to PCI code */
2264 #define PCI_PRI_TLP_OFF (1 << 15)
2265
2266 static bool pci_pri_tlp_required(struct pci_dev *pdev)
2267 {
2268 u16 status;
2269 int pos;
2270
2271 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2272 if (!pos)
2273 return false;
2274
2275 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2276
2277 return (status & PCI_PRI_TLP_OFF) ? true : false;
2278 }
2279
2280 /*
2281 * If a device is not yet associated with a domain, this function
2282 * assigns it visible for the hardware
2283 */
2284 static int attach_device(struct device *dev,
2285 struct protection_domain *domain)
2286 {
2287 struct pci_dev *pdev = to_pci_dev(dev);
2288 struct iommu_dev_data *dev_data;
2289 unsigned long flags;
2290 int ret;
2291
2292 dev_data = get_dev_data(dev);
2293
2294 if (domain->flags & PD_IOMMUV2_MASK) {
2295 if (!dev_data->passthrough)
2296 return -EINVAL;
2297
2298 if (dev_data->iommu_v2) {
2299 if (pdev_iommuv2_enable(pdev) != 0)
2300 return -EINVAL;
2301
2302 dev_data->ats.enabled = true;
2303 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2304 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
2305 }
2306 } else if (amd_iommu_iotlb_sup &&
2307 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2308 dev_data->ats.enabled = true;
2309 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2310 }
2311
2312 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2313 ret = __attach_device(dev_data, domain);
2314 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2315
2316 /*
2317 * We might boot into a crash-kernel here. The crashed kernel
2318 * left the caches in the IOMMU dirty. So we have to flush
2319 * here to evict all dirty stuff.
2320 */
2321 domain_flush_tlb_pde(domain);
2322
2323 return ret;
2324 }
2325
2326 /*
2327 * Removes a device from a protection domain (unlocked)
2328 */
2329 static void __detach_device(struct iommu_dev_data *dev_data)
2330 {
2331 struct protection_domain *domain;
2332
2333 /*
2334 * Must be called with IRQs disabled. Warn here to detect early
2335 * when its not.
2336 */
2337 WARN_ON(!irqs_disabled());
2338
2339 if (WARN_ON(!dev_data->domain))
2340 return;
2341
2342 domain = dev_data->domain;
2343
2344 spin_lock(&domain->lock);
2345
2346 do_detach(dev_data);
2347
2348 spin_unlock(&domain->lock);
2349 }
2350
2351 /*
2352 * Removes a device from a protection domain (with devtable_lock held)
2353 */
2354 static void detach_device(struct device *dev)
2355 {
2356 struct protection_domain *domain;
2357 struct iommu_dev_data *dev_data;
2358 unsigned long flags;
2359
2360 dev_data = get_dev_data(dev);
2361 domain = dev_data->domain;
2362
2363 /* lock device table */
2364 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2365 __detach_device(dev_data);
2366 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2367
2368 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2369 pdev_iommuv2_disable(to_pci_dev(dev));
2370 else if (dev_data->ats.enabled)
2371 pci_disable_ats(to_pci_dev(dev));
2372
2373 dev_data->ats.enabled = false;
2374 }
2375
2376 static int amd_iommu_add_device(struct device *dev)
2377 {
2378 struct iommu_dev_data *dev_data;
2379 struct iommu_domain *domain;
2380 struct amd_iommu *iommu;
2381 u16 devid;
2382 int ret;
2383
2384 if (!check_device(dev) || get_dev_data(dev))
2385 return 0;
2386
2387 devid = get_device_id(dev);
2388 iommu = amd_iommu_rlookup_table[devid];
2389
2390 ret = iommu_init_device(dev);
2391 if (ret) {
2392 if (ret != -ENOTSUPP)
2393 pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2394 dev_name(dev));
2395
2396 iommu_ignore_device(dev);
2397 dev->archdata.dma_ops = &nommu_dma_ops;
2398 goto out;
2399 }
2400 init_iommu_group(dev);
2401
2402 dev_data = get_dev_data(dev);
2403
2404 BUG_ON(!dev_data);
2405
2406 if (iommu_pass_through || dev_data->iommu_v2)
2407 iommu_request_dm_for_dev(dev);
2408
2409 /* Domains are initialized for this device - have a look what we ended up with */
2410 domain = iommu_get_domain_for_dev(dev);
2411 if (domain->type == IOMMU_DOMAIN_IDENTITY)
2412 dev_data->passthrough = true;
2413 else
2414 dev->archdata.dma_ops = &amd_iommu_dma_ops;
2415
2416 out:
2417 iommu_completion_wait(iommu);
2418
2419 return 0;
2420 }
2421
2422 static void amd_iommu_remove_device(struct device *dev)
2423 {
2424 struct amd_iommu *iommu;
2425 u16 devid;
2426
2427 if (!check_device(dev))
2428 return;
2429
2430 devid = get_device_id(dev);
2431 iommu = amd_iommu_rlookup_table[devid];
2432
2433 iommu_uninit_device(dev);
2434 iommu_completion_wait(iommu);
2435 }
2436
2437 /*****************************************************************************
2438 *
2439 * The next functions belong to the dma_ops mapping/unmapping code.
2440 *
2441 *****************************************************************************/
2442
2443 /*
2444 * In the dma_ops path we only have the struct device. This function
2445 * finds the corresponding IOMMU, the protection domain and the
2446 * requestor id for a given device.
2447 * If the device is not yet associated with a domain this is also done
2448 * in this function.
2449 */
2450 static struct protection_domain *get_domain(struct device *dev)
2451 {
2452 struct protection_domain *domain;
2453 struct iommu_domain *io_domain;
2454
2455 if (!check_device(dev))
2456 return ERR_PTR(-EINVAL);
2457
2458 io_domain = iommu_get_domain_for_dev(dev);
2459 if (!io_domain)
2460 return NULL;
2461
2462 domain = to_pdomain(io_domain);
2463 if (!dma_ops_domain(domain))
2464 return ERR_PTR(-EBUSY);
2465
2466 return domain;
2467 }
2468
2469 static void update_device_table(struct protection_domain *domain)
2470 {
2471 struct iommu_dev_data *dev_data;
2472
2473 list_for_each_entry(dev_data, &domain->dev_list, list)
2474 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2475 }
2476
2477 static void update_domain(struct protection_domain *domain)
2478 {
2479 if (!domain->updated)
2480 return;
2481
2482 update_device_table(domain);
2483
2484 domain_flush_devices(domain);
2485 domain_flush_tlb_pde(domain);
2486
2487 domain->updated = false;
2488 }
2489
2490 /*
2491 * This function fetches the PTE for a given address in the aperture
2492 */
2493 static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2494 unsigned long address)
2495 {
2496 struct aperture_range *aperture;
2497 u64 *pte, *pte_page;
2498
2499 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2500 if (!aperture)
2501 return NULL;
2502
2503 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2504 if (!pte) {
2505 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2506 GFP_ATOMIC);
2507 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2508 } else
2509 pte += PM_LEVEL_INDEX(0, address);
2510
2511 update_domain(&dom->domain);
2512
2513 return pte;
2514 }
2515
2516 /*
2517 * This is the generic map function. It maps one 4kb page at paddr to
2518 * the given address in the DMA address space for the domain.
2519 */
2520 static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2521 unsigned long address,
2522 phys_addr_t paddr,
2523 int direction)
2524 {
2525 u64 *pte, __pte;
2526
2527 WARN_ON(address > dom->aperture_size);
2528
2529 paddr &= PAGE_MASK;
2530
2531 pte = dma_ops_get_pte(dom, address);
2532 if (!pte)
2533 return DMA_ERROR_CODE;
2534
2535 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2536
2537 if (direction == DMA_TO_DEVICE)
2538 __pte |= IOMMU_PTE_IR;
2539 else if (direction == DMA_FROM_DEVICE)
2540 __pte |= IOMMU_PTE_IW;
2541 else if (direction == DMA_BIDIRECTIONAL)
2542 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2543
2544 WARN_ON_ONCE(*pte);
2545
2546 *pte = __pte;
2547
2548 return (dma_addr_t)address;
2549 }
2550
2551 /*
2552 * The generic unmapping function for on page in the DMA address space.
2553 */
2554 static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2555 unsigned long address)
2556 {
2557 struct aperture_range *aperture;
2558 u64 *pte;
2559
2560 if (address >= dom->aperture_size)
2561 return;
2562
2563 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2564 if (!aperture)
2565 return;
2566
2567 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2568 if (!pte)
2569 return;
2570
2571 pte += PM_LEVEL_INDEX(0, address);
2572
2573 WARN_ON_ONCE(!*pte);
2574
2575 *pte = 0ULL;
2576 }
2577
2578 /*
2579 * This function contains common code for mapping of a physically
2580 * contiguous memory region into DMA address space. It is used by all
2581 * mapping functions provided with this IOMMU driver.
2582 * Must be called with the domain lock held.
2583 */
2584 static dma_addr_t __map_single(struct device *dev,
2585 struct dma_ops_domain *dma_dom,
2586 phys_addr_t paddr,
2587 size_t size,
2588 int dir,
2589 bool align,
2590 u64 dma_mask)
2591 {
2592 dma_addr_t offset = paddr & ~PAGE_MASK;
2593 dma_addr_t address, start, ret;
2594 unsigned int pages;
2595 unsigned long align_mask = 0;
2596 int i;
2597
2598 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2599 paddr &= PAGE_MASK;
2600
2601 INC_STATS_COUNTER(total_map_requests);
2602
2603 if (pages > 1)
2604 INC_STATS_COUNTER(cross_page);
2605
2606 if (align)
2607 align_mask = (1UL << get_order(size)) - 1;
2608
2609 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2610 dma_mask);
2611
2612 if (address == DMA_ERROR_CODE)
2613 goto out;
2614
2615 start = address;
2616 for (i = 0; i < pages; ++i) {
2617 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2618 if (ret == DMA_ERROR_CODE)
2619 goto out_unmap;
2620
2621 paddr += PAGE_SIZE;
2622 start += PAGE_SIZE;
2623 }
2624 address += offset;
2625
2626 ADD_STATS_COUNTER(alloced_io_mem, size);
2627
2628 if (unlikely(amd_iommu_np_cache)) {
2629 domain_flush_pages(&dma_dom->domain, address, size);
2630 domain_flush_complete(&dma_dom->domain);
2631 }
2632
2633 out:
2634 return address;
2635
2636 out_unmap:
2637
2638 for (--i; i >= 0; --i) {
2639 start -= PAGE_SIZE;
2640 dma_ops_domain_unmap(dma_dom, start);
2641 }
2642
2643 dma_ops_free_addresses(dma_dom, address, pages);
2644
2645 return DMA_ERROR_CODE;
2646 }
2647
2648 /*
2649 * Does the reverse of the __map_single function. Must be called with
2650 * the domain lock held too
2651 */
2652 static void __unmap_single(struct dma_ops_domain *dma_dom,
2653 dma_addr_t dma_addr,
2654 size_t size,
2655 int dir)
2656 {
2657 dma_addr_t flush_addr;
2658 dma_addr_t i, start;
2659 unsigned int pages;
2660
2661 if ((dma_addr == DMA_ERROR_CODE) ||
2662 (dma_addr + size > dma_dom->aperture_size))
2663 return;
2664
2665 flush_addr = dma_addr;
2666 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2667 dma_addr &= PAGE_MASK;
2668 start = dma_addr;
2669
2670 for (i = 0; i < pages; ++i) {
2671 dma_ops_domain_unmap(dma_dom, start);
2672 start += PAGE_SIZE;
2673 }
2674
2675 SUB_STATS_COUNTER(alloced_io_mem, size);
2676
2677 dma_ops_free_addresses(dma_dom, dma_addr, pages);
2678 }
2679
2680 /*
2681 * The exported map_single function for dma_ops.
2682 */
2683 static dma_addr_t map_page(struct device *dev, struct page *page,
2684 unsigned long offset, size_t size,
2685 enum dma_data_direction dir,
2686 struct dma_attrs *attrs)
2687 {
2688 phys_addr_t paddr = page_to_phys(page) + offset;
2689 struct protection_domain *domain;
2690 u64 dma_mask;
2691
2692 INC_STATS_COUNTER(cnt_map_single);
2693
2694 domain = get_domain(dev);
2695 if (PTR_ERR(domain) == -EINVAL)
2696 return (dma_addr_t)paddr;
2697 else if (IS_ERR(domain))
2698 return DMA_ERROR_CODE;
2699
2700 dma_mask = *dev->dma_mask;
2701
2702 return __map_single(dev, domain->priv, paddr, size, dir, false,
2703 dma_mask);
2704 }
2705
2706 /*
2707 * The exported unmap_single function for dma_ops.
2708 */
2709 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2710 enum dma_data_direction dir, struct dma_attrs *attrs)
2711 {
2712 struct protection_domain *domain;
2713
2714 INC_STATS_COUNTER(cnt_unmap_single);
2715
2716 domain = get_domain(dev);
2717 if (IS_ERR(domain))
2718 return;
2719
2720 __unmap_single(domain->priv, dma_addr, size, dir);
2721 }
2722
2723 /*
2724 * The exported map_sg function for dma_ops (handles scatter-gather
2725 * lists).
2726 */
2727 static int map_sg(struct device *dev, struct scatterlist *sglist,
2728 int nelems, enum dma_data_direction dir,
2729 struct dma_attrs *attrs)
2730 {
2731 struct protection_domain *domain;
2732 int i;
2733 struct scatterlist *s;
2734 phys_addr_t paddr;
2735 int mapped_elems = 0;
2736 u64 dma_mask;
2737
2738 INC_STATS_COUNTER(cnt_map_sg);
2739
2740 domain = get_domain(dev);
2741 if (IS_ERR(domain))
2742 return 0;
2743
2744 dma_mask = *dev->dma_mask;
2745
2746 for_each_sg(sglist, s, nelems, i) {
2747 paddr = sg_phys(s);
2748
2749 s->dma_address = __map_single(dev, domain->priv,
2750 paddr, s->length, dir, false,
2751 dma_mask);
2752
2753 if (s->dma_address) {
2754 s->dma_length = s->length;
2755 mapped_elems++;
2756 } else
2757 goto unmap;
2758 }
2759
2760 return mapped_elems;
2761
2762 unmap:
2763 for_each_sg(sglist, s, mapped_elems, i) {
2764 if (s->dma_address)
2765 __unmap_single(domain->priv, s->dma_address,
2766 s->dma_length, dir);
2767 s->dma_address = s->dma_length = 0;
2768 }
2769
2770 return 0;
2771 }
2772
2773 /*
2774 * The exported map_sg function for dma_ops (handles scatter-gather
2775 * lists).
2776 */
2777 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2778 int nelems, enum dma_data_direction dir,
2779 struct dma_attrs *attrs)
2780 {
2781 struct protection_domain *domain;
2782 struct scatterlist *s;
2783 int i;
2784
2785 INC_STATS_COUNTER(cnt_unmap_sg);
2786
2787 domain = get_domain(dev);
2788 if (IS_ERR(domain))
2789 return;
2790
2791 for_each_sg(sglist, s, nelems, i) {
2792 __unmap_single(domain->priv, s->dma_address,
2793 s->dma_length, dir);
2794 s->dma_address = s->dma_length = 0;
2795 }
2796 }
2797
2798 /*
2799 * The exported alloc_coherent function for dma_ops.
2800 */
2801 static void *alloc_coherent(struct device *dev, size_t size,
2802 dma_addr_t *dma_addr, gfp_t flag,
2803 struct dma_attrs *attrs)
2804 {
2805 u64 dma_mask = dev->coherent_dma_mask;
2806 struct protection_domain *domain;
2807 struct page *page;
2808
2809 INC_STATS_COUNTER(cnt_alloc_coherent);
2810
2811 domain = get_domain(dev);
2812 if (PTR_ERR(domain) == -EINVAL) {
2813 page = alloc_pages(flag, get_order(size));
2814 *dma_addr = page_to_phys(page);
2815 return page_address(page);
2816 } else if (IS_ERR(domain))
2817 return NULL;
2818
2819 size = PAGE_ALIGN(size);
2820 dma_mask = dev->coherent_dma_mask;
2821 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2822 flag |= __GFP_ZERO;
2823
2824 page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
2825 if (!page) {
2826 if (!gfpflags_allow_blocking(flag))
2827 return NULL;
2828
2829 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2830 get_order(size));
2831 if (!page)
2832 return NULL;
2833 }
2834
2835 if (!dma_mask)
2836 dma_mask = *dev->dma_mask;
2837
2838 *dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2839 size, DMA_BIDIRECTIONAL, true, dma_mask);
2840
2841 if (*dma_addr == DMA_ERROR_CODE)
2842 goto out_free;
2843
2844 return page_address(page);
2845
2846 out_free:
2847
2848 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2849 __free_pages(page, get_order(size));
2850
2851 return NULL;
2852 }
2853
2854 /*
2855 * The exported free_coherent function for dma_ops.
2856 */
2857 static void free_coherent(struct device *dev, size_t size,
2858 void *virt_addr, dma_addr_t dma_addr,
2859 struct dma_attrs *attrs)
2860 {
2861 struct protection_domain *domain;
2862 struct page *page;
2863
2864 INC_STATS_COUNTER(cnt_free_coherent);
2865
2866 page = virt_to_page(virt_addr);
2867 size = PAGE_ALIGN(size);
2868
2869 domain = get_domain(dev);
2870 if (IS_ERR(domain))
2871 goto free_mem;
2872
2873 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2874
2875 free_mem:
2876 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2877 __free_pages(page, get_order(size));
2878 }
2879
2880 /*
2881 * This function is called by the DMA layer to find out if we can handle a
2882 * particular device. It is part of the dma_ops.
2883 */
2884 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2885 {
2886 return check_device(dev);
2887 }
2888
2889 static int set_dma_mask(struct device *dev, u64 mask)
2890 {
2891 struct protection_domain *domain;
2892 int max_apertures = 1;
2893
2894 domain = get_domain(dev);
2895 if (IS_ERR(domain))
2896 return PTR_ERR(domain);
2897
2898 if (mask == DMA_BIT_MASK(64))
2899 max_apertures = 8;
2900 else if (mask > DMA_BIT_MASK(32))
2901 max_apertures = 4;
2902
2903 /*
2904 * To prevent lock contention it doesn't make sense to allocate more
2905 * apertures than online cpus
2906 */
2907 if (max_apertures > num_online_cpus())
2908 max_apertures = num_online_cpus();
2909
2910 if (dma_ops_domain_alloc_apertures(domain->priv, max_apertures))
2911 dev_err(dev, "Can't allocate %d iommu apertures\n",
2912 max_apertures);
2913
2914 return 0;
2915 }
2916
2917 static struct dma_map_ops amd_iommu_dma_ops = {
2918 .alloc = alloc_coherent,
2919 .free = free_coherent,
2920 .map_page = map_page,
2921 .unmap_page = unmap_page,
2922 .map_sg = map_sg,
2923 .unmap_sg = unmap_sg,
2924 .dma_supported = amd_iommu_dma_supported,
2925 .set_dma_mask = set_dma_mask,
2926 };
2927
2928 int __init amd_iommu_init_api(void)
2929 {
2930 return bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2931 }
2932
2933 int __init amd_iommu_init_dma_ops(void)
2934 {
2935 swiotlb = iommu_pass_through ? 1 : 0;
2936 iommu_detected = 1;
2937
2938 /*
2939 * In case we don't initialize SWIOTLB (actually the common case
2940 * when AMD IOMMU is enabled), make sure there are global
2941 * dma_ops set as a fall-back for devices not handled by this
2942 * driver (for example non-PCI devices).
2943 */
2944 if (!swiotlb)
2945 dma_ops = &nommu_dma_ops;
2946
2947 amd_iommu_stats_init();
2948
2949 if (amd_iommu_unmap_flush)
2950 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
2951 else
2952 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
2953
2954 return 0;
2955 }
2956
2957 /*****************************************************************************
2958 *
2959 * The following functions belong to the exported interface of AMD IOMMU
2960 *
2961 * This interface allows access to lower level functions of the IOMMU
2962 * like protection domain handling and assignement of devices to domains
2963 * which is not possible with the dma_ops interface.
2964 *
2965 *****************************************************************************/
2966
2967 static void cleanup_domain(struct protection_domain *domain)
2968 {
2969 struct iommu_dev_data *entry;
2970 unsigned long flags;
2971
2972 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2973
2974 while (!list_empty(&domain->dev_list)) {
2975 entry = list_first_entry(&domain->dev_list,
2976 struct iommu_dev_data, list);
2977 __detach_device(entry);
2978 }
2979
2980 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2981 }
2982
2983 static void protection_domain_free(struct protection_domain *domain)
2984 {
2985 if (!domain)
2986 return;
2987
2988 del_domain_from_list(domain);
2989
2990 if (domain->id)
2991 domain_id_free(domain->id);
2992
2993 kfree(domain);
2994 }
2995
2996 static int protection_domain_init(struct protection_domain *domain)
2997 {
2998 spin_lock_init(&domain->lock);
2999 mutex_init(&domain->api_lock);
3000 domain->id = domain_id_alloc();
3001 if (!domain->id)
3002 return -ENOMEM;
3003 INIT_LIST_HEAD(&domain->dev_list);
3004
3005 return 0;
3006 }
3007
3008 static struct protection_domain *protection_domain_alloc(void)
3009 {
3010 struct protection_domain *domain;
3011
3012 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3013 if (!domain)
3014 return NULL;
3015
3016 if (protection_domain_init(domain))
3017 goto out_err;
3018
3019 add_domain_to_list(domain);
3020
3021 return domain;
3022
3023 out_err:
3024 kfree(domain);
3025
3026 return NULL;
3027 }
3028
3029 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
3030 {
3031 struct protection_domain *pdomain;
3032 struct dma_ops_domain *dma_domain;
3033
3034 switch (type) {
3035 case IOMMU_DOMAIN_UNMANAGED:
3036 pdomain = protection_domain_alloc();
3037 if (!pdomain)
3038 return NULL;
3039
3040 pdomain->mode = PAGE_MODE_3_LEVEL;
3041 pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3042 if (!pdomain->pt_root) {
3043 protection_domain_free(pdomain);
3044 return NULL;
3045 }
3046
3047 pdomain->domain.geometry.aperture_start = 0;
3048 pdomain->domain.geometry.aperture_end = ~0ULL;
3049 pdomain->domain.geometry.force_aperture = true;
3050
3051 break;
3052 case IOMMU_DOMAIN_DMA:
3053 dma_domain = dma_ops_domain_alloc();
3054 if (!dma_domain) {
3055 pr_err("AMD-Vi: Failed to allocate\n");
3056 return NULL;
3057 }
3058 pdomain = &dma_domain->domain;
3059 break;
3060 case IOMMU_DOMAIN_IDENTITY:
3061 pdomain = protection_domain_alloc();
3062 if (!pdomain)
3063 return NULL;
3064
3065 pdomain->mode = PAGE_MODE_NONE;
3066 break;
3067 default:
3068 return NULL;
3069 }
3070
3071 return &pdomain->domain;
3072 }
3073
3074 static void amd_iommu_domain_free(struct iommu_domain *dom)
3075 {
3076 struct protection_domain *domain;
3077
3078 if (!dom)
3079 return;
3080
3081 domain = to_pdomain(dom);
3082
3083 if (domain->dev_cnt > 0)
3084 cleanup_domain(domain);
3085
3086 BUG_ON(domain->dev_cnt != 0);
3087
3088 if (domain->mode != PAGE_MODE_NONE)
3089 free_pagetable(domain);
3090
3091 if (domain->flags & PD_IOMMUV2_MASK)
3092 free_gcr3_table(domain);
3093
3094 protection_domain_free(domain);
3095 }
3096
3097 static void amd_iommu_detach_device(struct iommu_domain *dom,
3098 struct device *dev)
3099 {
3100 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3101 struct amd_iommu *iommu;
3102 u16 devid;
3103
3104 if (!check_device(dev))
3105 return;
3106
3107 devid = get_device_id(dev);
3108
3109 if (dev_data->domain != NULL)
3110 detach_device(dev);
3111
3112 iommu = amd_iommu_rlookup_table[devid];
3113 if (!iommu)
3114 return;
3115
3116 iommu_completion_wait(iommu);
3117 }
3118
3119 static int amd_iommu_attach_device(struct iommu_domain *dom,
3120 struct device *dev)
3121 {
3122 struct protection_domain *domain = to_pdomain(dom);
3123 struct iommu_dev_data *dev_data;
3124 struct amd_iommu *iommu;
3125 int ret;
3126
3127 if (!check_device(dev))
3128 return -EINVAL;
3129
3130 dev_data = dev->archdata.iommu;
3131
3132 iommu = amd_iommu_rlookup_table[dev_data->devid];
3133 if (!iommu)
3134 return -EINVAL;
3135
3136 if (dev_data->domain)
3137 detach_device(dev);
3138
3139 ret = attach_device(dev, domain);
3140
3141 iommu_completion_wait(iommu);
3142
3143 return ret;
3144 }
3145
3146 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3147 phys_addr_t paddr, size_t page_size, int iommu_prot)
3148 {
3149 struct protection_domain *domain = to_pdomain(dom);
3150 int prot = 0;
3151 int ret;
3152
3153 if (domain->mode == PAGE_MODE_NONE)
3154 return -EINVAL;
3155
3156 if (iommu_prot & IOMMU_READ)
3157 prot |= IOMMU_PROT_IR;
3158 if (iommu_prot & IOMMU_WRITE)
3159 prot |= IOMMU_PROT_IW;
3160
3161 mutex_lock(&domain->api_lock);
3162 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3163 mutex_unlock(&domain->api_lock);
3164
3165 return ret;
3166 }
3167
3168 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3169 size_t page_size)
3170 {
3171 struct protection_domain *domain = to_pdomain(dom);
3172 size_t unmap_size;
3173
3174 if (domain->mode == PAGE_MODE_NONE)
3175 return -EINVAL;
3176
3177 mutex_lock(&domain->api_lock);
3178 unmap_size = iommu_unmap_page(domain, iova, page_size);
3179 mutex_unlock(&domain->api_lock);
3180
3181 domain_flush_tlb_pde(domain);
3182
3183 return unmap_size;
3184 }
3185
3186 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3187 dma_addr_t iova)
3188 {
3189 struct protection_domain *domain = to_pdomain(dom);
3190 unsigned long offset_mask, pte_pgsize;
3191 u64 *pte, __pte;
3192
3193 if (domain->mode == PAGE_MODE_NONE)
3194 return iova;
3195
3196 pte = fetch_pte(domain, iova, &pte_pgsize);
3197
3198 if (!pte || !IOMMU_PTE_PRESENT(*pte))
3199 return 0;
3200
3201 offset_mask = pte_pgsize - 1;
3202 __pte = *pte & PM_ADDR_MASK;
3203
3204 return (__pte & ~offset_mask) | (iova & offset_mask);
3205 }
3206
3207 static bool amd_iommu_capable(enum iommu_cap cap)
3208 {
3209 switch (cap) {
3210 case IOMMU_CAP_CACHE_COHERENCY:
3211 return true;
3212 case IOMMU_CAP_INTR_REMAP:
3213 return (irq_remapping_enabled == 1);
3214 case IOMMU_CAP_NOEXEC:
3215 return false;
3216 }
3217
3218 return false;
3219 }
3220
3221 static void amd_iommu_get_dm_regions(struct device *dev,
3222 struct list_head *head)
3223 {
3224 struct unity_map_entry *entry;
3225 u16 devid;
3226
3227 devid = get_device_id(dev);
3228
3229 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3230 struct iommu_dm_region *region;
3231
3232 if (devid < entry->devid_start || devid > entry->devid_end)
3233 continue;
3234
3235 region = kzalloc(sizeof(*region), GFP_KERNEL);
3236 if (!region) {
3237 pr_err("Out of memory allocating dm-regions for %s\n",
3238 dev_name(dev));
3239 return;
3240 }
3241
3242 region->start = entry->address_start;
3243 region->length = entry->address_end - entry->address_start;
3244 if (entry->prot & IOMMU_PROT_IR)
3245 region->prot |= IOMMU_READ;
3246 if (entry->prot & IOMMU_PROT_IW)
3247 region->prot |= IOMMU_WRITE;
3248
3249 list_add_tail(&region->list, head);
3250 }
3251 }
3252
3253 static void amd_iommu_put_dm_regions(struct device *dev,
3254 struct list_head *head)
3255 {
3256 struct iommu_dm_region *entry, *next;
3257
3258 list_for_each_entry_safe(entry, next, head, list)
3259 kfree(entry);
3260 }
3261
3262 static const struct iommu_ops amd_iommu_ops = {
3263 .capable = amd_iommu_capable,
3264 .domain_alloc = amd_iommu_domain_alloc,
3265 .domain_free = amd_iommu_domain_free,
3266 .attach_dev = amd_iommu_attach_device,
3267 .detach_dev = amd_iommu_detach_device,
3268 .map = amd_iommu_map,
3269 .unmap = amd_iommu_unmap,
3270 .map_sg = default_iommu_map_sg,
3271 .iova_to_phys = amd_iommu_iova_to_phys,
3272 .add_device = amd_iommu_add_device,
3273 .remove_device = amd_iommu_remove_device,
3274 .device_group = pci_device_group,
3275 .get_dm_regions = amd_iommu_get_dm_regions,
3276 .put_dm_regions = amd_iommu_put_dm_regions,
3277 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
3278 };
3279
3280 /*****************************************************************************
3281 *
3282 * The next functions do a basic initialization of IOMMU for pass through
3283 * mode
3284 *
3285 * In passthrough mode the IOMMU is initialized and enabled but not used for
3286 * DMA-API translation.
3287 *
3288 *****************************************************************************/
3289
3290 /* IOMMUv2 specific functions */
3291 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3292 {
3293 return atomic_notifier_chain_register(&ppr_notifier, nb);
3294 }
3295 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3296
3297 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3298 {
3299 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3300 }
3301 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3302
3303 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3304 {
3305 struct protection_domain *domain = to_pdomain(dom);
3306 unsigned long flags;
3307
3308 spin_lock_irqsave(&domain->lock, flags);
3309
3310 /* Update data structure */
3311 domain->mode = PAGE_MODE_NONE;
3312 domain->updated = true;
3313
3314 /* Make changes visible to IOMMUs */
3315 update_domain(domain);
3316
3317 /* Page-table is not visible to IOMMU anymore, so free it */
3318 free_pagetable(domain);
3319
3320 spin_unlock_irqrestore(&domain->lock, flags);
3321 }
3322 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3323
3324 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3325 {
3326 struct protection_domain *domain = to_pdomain(dom);
3327 unsigned long flags;
3328 int levels, ret;
3329
3330 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3331 return -EINVAL;
3332
3333 /* Number of GCR3 table levels required */
3334 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3335 levels += 1;
3336
3337 if (levels > amd_iommu_max_glx_val)
3338 return -EINVAL;
3339
3340 spin_lock_irqsave(&domain->lock, flags);
3341
3342 /*
3343 * Save us all sanity checks whether devices already in the
3344 * domain support IOMMUv2. Just force that the domain has no
3345 * devices attached when it is switched into IOMMUv2 mode.
3346 */
3347 ret = -EBUSY;
3348 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3349 goto out;
3350
3351 ret = -ENOMEM;
3352 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3353 if (domain->gcr3_tbl == NULL)
3354 goto out;
3355
3356 domain->glx = levels;
3357 domain->flags |= PD_IOMMUV2_MASK;
3358 domain->updated = true;
3359
3360 update_domain(domain);
3361
3362 ret = 0;
3363
3364 out:
3365 spin_unlock_irqrestore(&domain->lock, flags);
3366
3367 return ret;
3368 }
3369 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3370
3371 static int __flush_pasid(struct protection_domain *domain, int pasid,
3372 u64 address, bool size)
3373 {
3374 struct iommu_dev_data *dev_data;
3375 struct iommu_cmd cmd;
3376 int i, ret;
3377
3378 if (!(domain->flags & PD_IOMMUV2_MASK))
3379 return -EINVAL;
3380
3381 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3382
3383 /*
3384 * IOMMU TLB needs to be flushed before Device TLB to
3385 * prevent device TLB refill from IOMMU TLB
3386 */
3387 for (i = 0; i < amd_iommus_present; ++i) {
3388 if (domain->dev_iommu[i] == 0)
3389 continue;
3390
3391 ret = iommu_queue_command(amd_iommus[i], &cmd);
3392 if (ret != 0)
3393 goto out;
3394 }
3395
3396 /* Wait until IOMMU TLB flushes are complete */
3397 domain_flush_complete(domain);
3398
3399 /* Now flush device TLBs */
3400 list_for_each_entry(dev_data, &domain->dev_list, list) {
3401 struct amd_iommu *iommu;
3402 int qdep;
3403
3404 /*
3405 There might be non-IOMMUv2 capable devices in an IOMMUv2
3406 * domain.
3407 */
3408 if (!dev_data->ats.enabled)
3409 continue;
3410
3411 qdep = dev_data->ats.qdep;
3412 iommu = amd_iommu_rlookup_table[dev_data->devid];
3413
3414 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3415 qdep, address, size);
3416
3417 ret = iommu_queue_command(iommu, &cmd);
3418 if (ret != 0)
3419 goto out;
3420 }
3421
3422 /* Wait until all device TLBs are flushed */
3423 domain_flush_complete(domain);
3424
3425 ret = 0;
3426
3427 out:
3428
3429 return ret;
3430 }
3431
3432 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3433 u64 address)
3434 {
3435 INC_STATS_COUNTER(invalidate_iotlb);
3436
3437 return __flush_pasid(domain, pasid, address, false);
3438 }
3439
3440 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3441 u64 address)
3442 {
3443 struct protection_domain *domain = to_pdomain(dom);
3444 unsigned long flags;
3445 int ret;
3446
3447 spin_lock_irqsave(&domain->lock, flags);
3448 ret = __amd_iommu_flush_page(domain, pasid, address);
3449 spin_unlock_irqrestore(&domain->lock, flags);
3450
3451 return ret;
3452 }
3453 EXPORT_SYMBOL(amd_iommu_flush_page);
3454
3455 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3456 {
3457 INC_STATS_COUNTER(invalidate_iotlb_all);
3458
3459 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3460 true);
3461 }
3462
3463 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3464 {
3465 struct protection_domain *domain = to_pdomain(dom);
3466 unsigned long flags;
3467 int ret;
3468
3469 spin_lock_irqsave(&domain->lock, flags);
3470 ret = __amd_iommu_flush_tlb(domain, pasid);
3471 spin_unlock_irqrestore(&domain->lock, flags);
3472
3473 return ret;
3474 }
3475 EXPORT_SYMBOL(amd_iommu_flush_tlb);
3476
3477 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3478 {
3479 int index;
3480 u64 *pte;
3481
3482 while (true) {
3483
3484 index = (pasid >> (9 * level)) & 0x1ff;
3485 pte = &root[index];
3486
3487 if (level == 0)
3488 break;
3489
3490 if (!(*pte & GCR3_VALID)) {
3491 if (!alloc)
3492 return NULL;
3493
3494 root = (void *)get_zeroed_page(GFP_ATOMIC);
3495 if (root == NULL)
3496 return NULL;
3497
3498 *pte = __pa(root) | GCR3_VALID;
3499 }
3500
3501 root = __va(*pte & PAGE_MASK);
3502
3503 level -= 1;
3504 }
3505
3506 return pte;
3507 }
3508
3509 static int __set_gcr3(struct protection_domain *domain, int pasid,
3510 unsigned long cr3)
3511 {
3512 u64 *pte;
3513
3514 if (domain->mode != PAGE_MODE_NONE)
3515 return -EINVAL;
3516
3517 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3518 if (pte == NULL)
3519 return -ENOMEM;
3520
3521 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3522
3523 return __amd_iommu_flush_tlb(domain, pasid);
3524 }
3525
3526 static int __clear_gcr3(struct protection_domain *domain, int pasid)
3527 {
3528 u64 *pte;
3529
3530 if (domain->mode != PAGE_MODE_NONE)
3531 return -EINVAL;
3532
3533 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3534 if (pte == NULL)
3535 return 0;
3536
3537 *pte = 0;
3538
3539 return __amd_iommu_flush_tlb(domain, pasid);
3540 }
3541
3542 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3543 unsigned long cr3)
3544 {
3545 struct protection_domain *domain = to_pdomain(dom);
3546 unsigned long flags;
3547 int ret;
3548
3549 spin_lock_irqsave(&domain->lock, flags);
3550 ret = __set_gcr3(domain, pasid, cr3);
3551 spin_unlock_irqrestore(&domain->lock, flags);
3552
3553 return ret;
3554 }
3555 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3556
3557 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3558 {
3559 struct protection_domain *domain = to_pdomain(dom);
3560 unsigned long flags;
3561 int ret;
3562
3563 spin_lock_irqsave(&domain->lock, flags);
3564 ret = __clear_gcr3(domain, pasid);
3565 spin_unlock_irqrestore(&domain->lock, flags);
3566
3567 return ret;
3568 }
3569 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3570
3571 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3572 int status, int tag)
3573 {
3574 struct iommu_dev_data *dev_data;
3575 struct amd_iommu *iommu;
3576 struct iommu_cmd cmd;
3577
3578 INC_STATS_COUNTER(complete_ppr);
3579
3580 dev_data = get_dev_data(&pdev->dev);
3581 iommu = amd_iommu_rlookup_table[dev_data->devid];
3582
3583 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3584 tag, dev_data->pri_tlp);
3585
3586 return iommu_queue_command(iommu, &cmd);
3587 }
3588 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3589
3590 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3591 {
3592 struct protection_domain *pdomain;
3593
3594 pdomain = get_domain(&pdev->dev);
3595 if (IS_ERR(pdomain))
3596 return NULL;
3597
3598 /* Only return IOMMUv2 domains */
3599 if (!(pdomain->flags & PD_IOMMUV2_MASK))
3600 return NULL;
3601
3602 return &pdomain->domain;
3603 }
3604 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3605
3606 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3607 {
3608 struct iommu_dev_data *dev_data;
3609
3610 if (!amd_iommu_v2_supported())
3611 return;
3612
3613 dev_data = get_dev_data(&pdev->dev);
3614 dev_data->errata |= (1 << erratum);
3615 }
3616 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3617
3618 int amd_iommu_device_info(struct pci_dev *pdev,
3619 struct amd_iommu_device_info *info)
3620 {
3621 int max_pasids;
3622 int pos;
3623
3624 if (pdev == NULL || info == NULL)
3625 return -EINVAL;
3626
3627 if (!amd_iommu_v2_supported())
3628 return -EINVAL;
3629
3630 memset(info, 0, sizeof(*info));
3631
3632 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3633 if (pos)
3634 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3635
3636 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3637 if (pos)
3638 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3639
3640 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3641 if (pos) {
3642 int features;
3643
3644 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3645 max_pasids = min(max_pasids, (1 << 20));
3646
3647 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3648 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3649
3650 features = pci_pasid_features(pdev);
3651 if (features & PCI_PASID_CAP_EXEC)
3652 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3653 if (features & PCI_PASID_CAP_PRIV)
3654 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3655 }
3656
3657 return 0;
3658 }
3659 EXPORT_SYMBOL(amd_iommu_device_info);
3660
3661 #ifdef CONFIG_IRQ_REMAP
3662
3663 /*****************************************************************************
3664 *
3665 * Interrupt Remapping Implementation
3666 *
3667 *****************************************************************************/
3668
3669 union irte {
3670 u32 val;
3671 struct {
3672 u32 valid : 1,
3673 no_fault : 1,
3674 int_type : 3,
3675 rq_eoi : 1,
3676 dm : 1,
3677 rsvd_1 : 1,
3678 destination : 8,
3679 vector : 8,
3680 rsvd_2 : 8;
3681 } fields;
3682 };
3683
3684 struct irq_2_irte {
3685 u16 devid; /* Device ID for IRTE table */
3686 u16 index; /* Index into IRTE table*/
3687 };
3688
3689 struct amd_ir_data {
3690 struct irq_2_irte irq_2_irte;
3691 union irte irte_entry;
3692 union {
3693 struct msi_msg msi_entry;
3694 };
3695 };
3696
3697 static struct irq_chip amd_ir_chip;
3698
3699 #define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3700 #define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3701 #define DTE_IRQ_TABLE_LEN (8ULL << 1)
3702 #define DTE_IRQ_REMAP_ENABLE 1ULL
3703
3704 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3705 {
3706 u64 dte;
3707
3708 dte = amd_iommu_dev_table[devid].data[2];
3709 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3710 dte |= virt_to_phys(table->table);
3711 dte |= DTE_IRQ_REMAP_INTCTL;
3712 dte |= DTE_IRQ_TABLE_LEN;
3713 dte |= DTE_IRQ_REMAP_ENABLE;
3714
3715 amd_iommu_dev_table[devid].data[2] = dte;
3716 }
3717
3718 #define IRTE_ALLOCATED (~1U)
3719
3720 static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3721 {
3722 struct irq_remap_table *table = NULL;
3723 struct amd_iommu *iommu;
3724 unsigned long flags;
3725 u16 alias;
3726
3727 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3728
3729 iommu = amd_iommu_rlookup_table[devid];
3730 if (!iommu)
3731 goto out_unlock;
3732
3733 table = irq_lookup_table[devid];
3734 if (table)
3735 goto out;
3736
3737 alias = amd_iommu_alias_table[devid];
3738 table = irq_lookup_table[alias];
3739 if (table) {
3740 irq_lookup_table[devid] = table;
3741 set_dte_irq_entry(devid, table);
3742 iommu_flush_dte(iommu, devid);
3743 goto out;
3744 }
3745
3746 /* Nothing there yet, allocate new irq remapping table */
3747 table = kzalloc(sizeof(*table), GFP_ATOMIC);
3748 if (!table)
3749 goto out;
3750
3751 /* Initialize table spin-lock */
3752 spin_lock_init(&table->lock);
3753
3754 if (ioapic)
3755 /* Keep the first 32 indexes free for IOAPIC interrupts */
3756 table->min_index = 32;
3757
3758 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3759 if (!table->table) {
3760 kfree(table);
3761 table = NULL;
3762 goto out;
3763 }
3764
3765 memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3766
3767 if (ioapic) {
3768 int i;
3769
3770 for (i = 0; i < 32; ++i)
3771 table->table[i] = IRTE_ALLOCATED;
3772 }
3773
3774 irq_lookup_table[devid] = table;
3775 set_dte_irq_entry(devid, table);
3776 iommu_flush_dte(iommu, devid);
3777 if (devid != alias) {
3778 irq_lookup_table[alias] = table;
3779 set_dte_irq_entry(alias, table);
3780 iommu_flush_dte(iommu, alias);
3781 }
3782
3783 out:
3784 iommu_completion_wait(iommu);
3785
3786 out_unlock:
3787 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3788
3789 return table;
3790 }
3791
3792 static int alloc_irq_index(u16 devid, int count)
3793 {
3794 struct irq_remap_table *table;
3795 unsigned long flags;
3796 int index, c;
3797
3798 table = get_irq_table(devid, false);
3799 if (!table)
3800 return -ENODEV;
3801
3802 spin_lock_irqsave(&table->lock, flags);
3803
3804 /* Scan table for free entries */
3805 for (c = 0, index = table->min_index;
3806 index < MAX_IRQS_PER_TABLE;
3807 ++index) {
3808 if (table->table[index] == 0)
3809 c += 1;
3810 else
3811 c = 0;
3812
3813 if (c == count) {
3814 for (; c != 0; --c)
3815 table->table[index - c + 1] = IRTE_ALLOCATED;
3816
3817 index -= count - 1;
3818 goto out;
3819 }
3820 }
3821
3822 index = -ENOSPC;
3823
3824 out:
3825 spin_unlock_irqrestore(&table->lock, flags);
3826
3827 return index;
3828 }
3829
3830 static int modify_irte(u16 devid, int index, union irte irte)
3831 {
3832 struct irq_remap_table *table;
3833 struct amd_iommu *iommu;
3834 unsigned long flags;
3835
3836 iommu = amd_iommu_rlookup_table[devid];
3837 if (iommu == NULL)
3838 return -EINVAL;
3839
3840 table = get_irq_table(devid, false);
3841 if (!table)
3842 return -ENOMEM;
3843
3844 spin_lock_irqsave(&table->lock, flags);
3845 table->table[index] = irte.val;
3846 spin_unlock_irqrestore(&table->lock, flags);
3847
3848 iommu_flush_irt(iommu, devid);
3849 iommu_completion_wait(iommu);
3850
3851 return 0;
3852 }
3853
3854 static void free_irte(u16 devid, int index)
3855 {
3856 struct irq_remap_table *table;
3857 struct amd_iommu *iommu;
3858 unsigned long flags;
3859
3860 iommu = amd_iommu_rlookup_table[devid];
3861 if (iommu == NULL)
3862 return;
3863
3864 table = get_irq_table(devid, false);
3865 if (!table)
3866 return;
3867
3868 spin_lock_irqsave(&table->lock, flags);
3869 table->table[index] = 0;
3870 spin_unlock_irqrestore(&table->lock, flags);
3871
3872 iommu_flush_irt(iommu, devid);
3873 iommu_completion_wait(iommu);
3874 }
3875
3876 static int get_devid(struct irq_alloc_info *info)
3877 {
3878 int devid = -1;
3879
3880 switch (info->type) {
3881 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3882 devid = get_ioapic_devid(info->ioapic_id);
3883 break;
3884 case X86_IRQ_ALLOC_TYPE_HPET:
3885 devid = get_hpet_devid(info->hpet_id);
3886 break;
3887 case X86_IRQ_ALLOC_TYPE_MSI:
3888 case X86_IRQ_ALLOC_TYPE_MSIX:
3889 devid = get_device_id(&info->msi_dev->dev);
3890 break;
3891 default:
3892 BUG_ON(1);
3893 break;
3894 }
3895
3896 return devid;
3897 }
3898
3899 static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
3900 {
3901 struct amd_iommu *iommu;
3902 int devid;
3903
3904 if (!info)
3905 return NULL;
3906
3907 devid = get_devid(info);
3908 if (devid >= 0) {
3909 iommu = amd_iommu_rlookup_table[devid];
3910 if (iommu)
3911 return iommu->ir_domain;
3912 }
3913
3914 return NULL;
3915 }
3916
3917 static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3918 {
3919 struct amd_iommu *iommu;
3920 int devid;
3921
3922 if (!info)
3923 return NULL;
3924
3925 switch (info->type) {
3926 case X86_IRQ_ALLOC_TYPE_MSI:
3927 case X86_IRQ_ALLOC_TYPE_MSIX:
3928 devid = get_device_id(&info->msi_dev->dev);
3929 iommu = amd_iommu_rlookup_table[devid];
3930 if (iommu)
3931 return iommu->msi_domain;
3932 break;
3933 default:
3934 break;
3935 }
3936
3937 return NULL;
3938 }
3939
3940 struct irq_remap_ops amd_iommu_irq_ops = {
3941 .prepare = amd_iommu_prepare,
3942 .enable = amd_iommu_enable,
3943 .disable = amd_iommu_disable,
3944 .reenable = amd_iommu_reenable,
3945 .enable_faulting = amd_iommu_enable_faulting,
3946 .get_ir_irq_domain = get_ir_irq_domain,
3947 .get_irq_domain = get_irq_domain,
3948 };
3949
3950 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3951 struct irq_cfg *irq_cfg,
3952 struct irq_alloc_info *info,
3953 int devid, int index, int sub_handle)
3954 {
3955 struct irq_2_irte *irte_info = &data->irq_2_irte;
3956 struct msi_msg *msg = &data->msi_entry;
3957 union irte *irte = &data->irte_entry;
3958 struct IO_APIC_route_entry *entry;
3959
3960 data->irq_2_irte.devid = devid;
3961 data->irq_2_irte.index = index + sub_handle;
3962
3963 /* Setup IRTE for IOMMU */
3964 irte->val = 0;
3965 irte->fields.vector = irq_cfg->vector;
3966 irte->fields.int_type = apic->irq_delivery_mode;
3967 irte->fields.destination = irq_cfg->dest_apicid;
3968 irte->fields.dm = apic->irq_dest_mode;
3969 irte->fields.valid = 1;
3970
3971 switch (info->type) {
3972 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3973 /* Setup IOAPIC entry */
3974 entry = info->ioapic_entry;
3975 info->ioapic_entry = NULL;
3976 memset(entry, 0, sizeof(*entry));
3977 entry->vector = index;
3978 entry->mask = 0;
3979 entry->trigger = info->ioapic_trigger;
3980 entry->polarity = info->ioapic_polarity;
3981 /* Mask level triggered irqs. */
3982 if (info->ioapic_trigger)
3983 entry->mask = 1;
3984 break;
3985
3986 case X86_IRQ_ALLOC_TYPE_HPET:
3987 case X86_IRQ_ALLOC_TYPE_MSI:
3988 case X86_IRQ_ALLOC_TYPE_MSIX:
3989 msg->address_hi = MSI_ADDR_BASE_HI;
3990 msg->address_lo = MSI_ADDR_BASE_LO;
3991 msg->data = irte_info->index;
3992 break;
3993
3994 default:
3995 BUG_ON(1);
3996 break;
3997 }
3998 }
3999
4000 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
4001 unsigned int nr_irqs, void *arg)
4002 {
4003 struct irq_alloc_info *info = arg;
4004 struct irq_data *irq_data;
4005 struct amd_ir_data *data;
4006 struct irq_cfg *cfg;
4007 int i, ret, devid;
4008 int index = -1;
4009
4010 if (!info)
4011 return -EINVAL;
4012 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
4013 info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4014 return -EINVAL;
4015
4016 /*
4017 * With IRQ remapping enabled, don't need contiguous CPU vectors
4018 * to support multiple MSI interrupts.
4019 */
4020 if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
4021 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4022
4023 devid = get_devid(info);
4024 if (devid < 0)
4025 return -EINVAL;
4026
4027 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
4028 if (ret < 0)
4029 return ret;
4030
4031 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4032 if (get_irq_table(devid, true))
4033 index = info->ioapic_pin;
4034 else
4035 ret = -ENOMEM;
4036 } else {
4037 index = alloc_irq_index(devid, nr_irqs);
4038 }
4039 if (index < 0) {
4040 pr_warn("Failed to allocate IRTE\n");
4041 goto out_free_parent;
4042 }
4043
4044 for (i = 0; i < nr_irqs; i++) {
4045 irq_data = irq_domain_get_irq_data(domain, virq + i);
4046 cfg = irqd_cfg(irq_data);
4047 if (!irq_data || !cfg) {
4048 ret = -EINVAL;
4049 goto out_free_data;
4050 }
4051
4052 ret = -ENOMEM;
4053 data = kzalloc(sizeof(*data), GFP_KERNEL);
4054 if (!data)
4055 goto out_free_data;
4056
4057 irq_data->hwirq = (devid << 16) + i;
4058 irq_data->chip_data = data;
4059 irq_data->chip = &amd_ir_chip;
4060 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
4061 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
4062 }
4063
4064 return 0;
4065
4066 out_free_data:
4067 for (i--; i >= 0; i--) {
4068 irq_data = irq_domain_get_irq_data(domain, virq + i);
4069 if (irq_data)
4070 kfree(irq_data->chip_data);
4071 }
4072 for (i = 0; i < nr_irqs; i++)
4073 free_irte(devid, index + i);
4074 out_free_parent:
4075 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4076 return ret;
4077 }
4078
4079 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4080 unsigned int nr_irqs)
4081 {
4082 struct irq_2_irte *irte_info;
4083 struct irq_data *irq_data;
4084 struct amd_ir_data *data;
4085 int i;
4086
4087 for (i = 0; i < nr_irqs; i++) {
4088 irq_data = irq_domain_get_irq_data(domain, virq + i);
4089 if (irq_data && irq_data->chip_data) {
4090 data = irq_data->chip_data;
4091 irte_info = &data->irq_2_irte;
4092 free_irte(irte_info->devid, irte_info->index);
4093 kfree(data);
4094 }
4095 }
4096 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4097 }
4098
4099 static void irq_remapping_activate(struct irq_domain *domain,
4100 struct irq_data *irq_data)
4101 {
4102 struct amd_ir_data *data = irq_data->chip_data;
4103 struct irq_2_irte *irte_info = &data->irq_2_irte;
4104
4105 modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4106 }
4107
4108 static void irq_remapping_deactivate(struct irq_domain *domain,
4109 struct irq_data *irq_data)
4110 {
4111 struct amd_ir_data *data = irq_data->chip_data;
4112 struct irq_2_irte *irte_info = &data->irq_2_irte;
4113 union irte entry;
4114
4115 entry.val = 0;
4116 modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4117 }
4118
4119 static struct irq_domain_ops amd_ir_domain_ops = {
4120 .alloc = irq_remapping_alloc,
4121 .free = irq_remapping_free,
4122 .activate = irq_remapping_activate,
4123 .deactivate = irq_remapping_deactivate,
4124 };
4125
4126 static int amd_ir_set_affinity(struct irq_data *data,
4127 const struct cpumask *mask, bool force)
4128 {
4129 struct amd_ir_data *ir_data = data->chip_data;
4130 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4131 struct irq_cfg *cfg = irqd_cfg(data);
4132 struct irq_data *parent = data->parent_data;
4133 int ret;
4134
4135 ret = parent->chip->irq_set_affinity(parent, mask, force);
4136 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4137 return ret;
4138
4139 /*
4140 * Atomically updates the IRTE with the new destination, vector
4141 * and flushes the interrupt entry cache.
4142 */
4143 ir_data->irte_entry.fields.vector = cfg->vector;
4144 ir_data->irte_entry.fields.destination = cfg->dest_apicid;
4145 modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
4146
4147 /*
4148 * After this point, all the interrupts will start arriving
4149 * at the new destination. So, time to cleanup the previous
4150 * vector allocation.
4151 */
4152 send_cleanup_vector(cfg);
4153
4154 return IRQ_SET_MASK_OK_DONE;
4155 }
4156
4157 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4158 {
4159 struct amd_ir_data *ir_data = irq_data->chip_data;
4160
4161 *msg = ir_data->msi_entry;
4162 }
4163
4164 static struct irq_chip amd_ir_chip = {
4165 .irq_ack = ir_ack_apic_edge,
4166 .irq_set_affinity = amd_ir_set_affinity,
4167 .irq_compose_msi_msg = ir_compose_msi_msg,
4168 };
4169
4170 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4171 {
4172 iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
4173 if (!iommu->ir_domain)
4174 return -ENOMEM;
4175
4176 iommu->ir_domain->parent = arch_get_ir_parent_domain();
4177 iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4178
4179 return 0;
4180 }
4181 #endif
This page took 0.115639 seconds and 5 git commands to generate.