Merge branch 'drm-fixes' of git://people.freedesktop.org/~airlied/linux
[deliverable/linux.git] / drivers / iommu / amd_iommu.c
1 /*
2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <jroedel@suse.de>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/pci-ats.h>
23 #include <linux/bitmap.h>
24 #include <linux/slab.h>
25 #include <linux/debugfs.h>
26 #include <linux/scatterlist.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/iommu-helper.h>
29 #include <linux/iommu.h>
30 #include <linux/delay.h>
31 #include <linux/amd-iommu.h>
32 #include <linux/notifier.h>
33 #include <linux/export.h>
34 #include <linux/irq.h>
35 #include <linux/msi.h>
36 #include <linux/dma-contiguous.h>
37 #include <linux/irqdomain.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/io_apic.h>
40 #include <asm/apic.h>
41 #include <asm/hw_irq.h>
42 #include <asm/msidef.h>
43 #include <asm/proto.h>
44 #include <asm/iommu.h>
45 #include <asm/gart.h>
46 #include <asm/dma.h>
47
48 #include "amd_iommu_proto.h"
49 #include "amd_iommu_types.h"
50 #include "irq_remapping.h"
51
52 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
53
54 #define LOOP_TIMEOUT 100000
55
56 /*
57 * This bitmap is used to advertise the page sizes our hardware support
58 * to the IOMMU core, which will then use this information to split
59 * physically contiguous memory regions it is mapping into page sizes
60 * that we support.
61 *
62 * 512GB Pages are not supported due to a hardware bug
63 */
64 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
65
66 static DEFINE_RWLOCK(amd_iommu_devtable_lock);
67
68 /* List of all available dev_data structures */
69 static LIST_HEAD(dev_data_list);
70 static DEFINE_SPINLOCK(dev_data_list_lock);
71
72 LIST_HEAD(ioapic_map);
73 LIST_HEAD(hpet_map);
74
75 /*
76 * Domain for untranslated devices - only allocated
77 * if iommu=pt passed on kernel cmd line.
78 */
79 static const struct iommu_ops amd_iommu_ops;
80
81 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
82 int amd_iommu_max_glx_val = -1;
83
84 static struct dma_map_ops amd_iommu_dma_ops;
85
86 /*
87 * This struct contains device specific data for the IOMMU
88 */
89 struct iommu_dev_data {
90 struct list_head list; /* For domain->dev_list */
91 struct list_head dev_data_list; /* For global dev_data_list */
92 struct list_head alias_list; /* Link alias-groups together */
93 struct iommu_dev_data *alias_data;/* The alias dev_data */
94 struct protection_domain *domain; /* Domain the device is bound to */
95 u16 devid; /* PCI Device ID */
96 bool iommu_v2; /* Device can make use of IOMMUv2 */
97 bool passthrough; /* Device is identity mapped */
98 struct {
99 bool enabled;
100 int qdep;
101 } ats; /* ATS state */
102 bool pri_tlp; /* PASID TLB required for
103 PPR completions */
104 u32 errata; /* Bitmap for errata to apply */
105 };
106
107 /*
108 * general struct to manage commands send to an IOMMU
109 */
110 struct iommu_cmd {
111 u32 data[4];
112 };
113
114 struct kmem_cache *amd_iommu_irq_cache;
115
116 static void update_domain(struct protection_domain *domain);
117 static int protection_domain_init(struct protection_domain *domain);
118
119 /****************************************************************************
120 *
121 * Helper functions
122 *
123 ****************************************************************************/
124
125 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
126 {
127 return container_of(dom, struct protection_domain, domain);
128 }
129
130 static struct iommu_dev_data *alloc_dev_data(u16 devid)
131 {
132 struct iommu_dev_data *dev_data;
133 unsigned long flags;
134
135 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
136 if (!dev_data)
137 return NULL;
138
139 INIT_LIST_HEAD(&dev_data->alias_list);
140
141 dev_data->devid = devid;
142
143 spin_lock_irqsave(&dev_data_list_lock, flags);
144 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
145 spin_unlock_irqrestore(&dev_data_list_lock, flags);
146
147 return dev_data;
148 }
149
150 static void free_dev_data(struct iommu_dev_data *dev_data)
151 {
152 unsigned long flags;
153
154 spin_lock_irqsave(&dev_data_list_lock, flags);
155 list_del(&dev_data->dev_data_list);
156 spin_unlock_irqrestore(&dev_data_list_lock, flags);
157
158 kfree(dev_data);
159 }
160
161 static struct iommu_dev_data *search_dev_data(u16 devid)
162 {
163 struct iommu_dev_data *dev_data;
164 unsigned long flags;
165
166 spin_lock_irqsave(&dev_data_list_lock, flags);
167 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
168 if (dev_data->devid == devid)
169 goto out_unlock;
170 }
171
172 dev_data = NULL;
173
174 out_unlock:
175 spin_unlock_irqrestore(&dev_data_list_lock, flags);
176
177 return dev_data;
178 }
179
180 static struct iommu_dev_data *find_dev_data(u16 devid)
181 {
182 struct iommu_dev_data *dev_data;
183
184 dev_data = search_dev_data(devid);
185
186 if (dev_data == NULL)
187 dev_data = alloc_dev_data(devid);
188
189 return dev_data;
190 }
191
192 static inline u16 get_device_id(struct device *dev)
193 {
194 struct pci_dev *pdev = to_pci_dev(dev);
195
196 return PCI_DEVID(pdev->bus->number, pdev->devfn);
197 }
198
199 static struct iommu_dev_data *get_dev_data(struct device *dev)
200 {
201 return dev->archdata.iommu;
202 }
203
204 static bool pci_iommuv2_capable(struct pci_dev *pdev)
205 {
206 static const int caps[] = {
207 PCI_EXT_CAP_ID_ATS,
208 PCI_EXT_CAP_ID_PRI,
209 PCI_EXT_CAP_ID_PASID,
210 };
211 int i, pos;
212
213 for (i = 0; i < 3; ++i) {
214 pos = pci_find_ext_capability(pdev, caps[i]);
215 if (pos == 0)
216 return false;
217 }
218
219 return true;
220 }
221
222 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
223 {
224 struct iommu_dev_data *dev_data;
225
226 dev_data = get_dev_data(&pdev->dev);
227
228 return dev_data->errata & (1 << erratum) ? true : false;
229 }
230
231 /*
232 * This function actually applies the mapping to the page table of the
233 * dma_ops domain.
234 */
235 static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
236 struct unity_map_entry *e)
237 {
238 u64 addr;
239
240 for (addr = e->address_start; addr < e->address_end;
241 addr += PAGE_SIZE) {
242 if (addr < dma_dom->aperture_size)
243 __set_bit(addr >> PAGE_SHIFT,
244 dma_dom->aperture[0]->bitmap);
245 }
246 }
247
248 /*
249 * Inits the unity mappings required for a specific device
250 */
251 static void init_unity_mappings_for_device(struct device *dev,
252 struct dma_ops_domain *dma_dom)
253 {
254 struct unity_map_entry *e;
255 u16 devid;
256
257 devid = get_device_id(dev);
258
259 list_for_each_entry(e, &amd_iommu_unity_map, list) {
260 if (!(devid >= e->devid_start && devid <= e->devid_end))
261 continue;
262 alloc_unity_mapping(dma_dom, e);
263 }
264 }
265
266 /*
267 * This function checks if the driver got a valid device from the caller to
268 * avoid dereferencing invalid pointers.
269 */
270 static bool check_device(struct device *dev)
271 {
272 u16 devid;
273
274 if (!dev || !dev->dma_mask)
275 return false;
276
277 /* No PCI device */
278 if (!dev_is_pci(dev))
279 return false;
280
281 devid = get_device_id(dev);
282
283 /* Out of our scope? */
284 if (devid > amd_iommu_last_bdf)
285 return false;
286
287 if (amd_iommu_rlookup_table[devid] == NULL)
288 return false;
289
290 return true;
291 }
292
293 static void init_iommu_group(struct device *dev)
294 {
295 struct dma_ops_domain *dma_domain;
296 struct iommu_domain *domain;
297 struct iommu_group *group;
298
299 group = iommu_group_get_for_dev(dev);
300 if (IS_ERR(group))
301 return;
302
303 domain = iommu_group_default_domain(group);
304 if (!domain)
305 goto out;
306
307 dma_domain = to_pdomain(domain)->priv;
308
309 init_unity_mappings_for_device(dev, dma_domain);
310 out:
311 iommu_group_put(group);
312 }
313
314 static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
315 {
316 *(u16 *)data = alias;
317 return 0;
318 }
319
320 static u16 get_alias(struct device *dev)
321 {
322 struct pci_dev *pdev = to_pci_dev(dev);
323 u16 devid, ivrs_alias, pci_alias;
324
325 devid = get_device_id(dev);
326 ivrs_alias = amd_iommu_alias_table[devid];
327 pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
328
329 if (ivrs_alias == pci_alias)
330 return ivrs_alias;
331
332 /*
333 * DMA alias showdown
334 *
335 * The IVRS is fairly reliable in telling us about aliases, but it
336 * can't know about every screwy device. If we don't have an IVRS
337 * reported alias, use the PCI reported alias. In that case we may
338 * still need to initialize the rlookup and dev_table entries if the
339 * alias is to a non-existent device.
340 */
341 if (ivrs_alias == devid) {
342 if (!amd_iommu_rlookup_table[pci_alias]) {
343 amd_iommu_rlookup_table[pci_alias] =
344 amd_iommu_rlookup_table[devid];
345 memcpy(amd_iommu_dev_table[pci_alias].data,
346 amd_iommu_dev_table[devid].data,
347 sizeof(amd_iommu_dev_table[pci_alias].data));
348 }
349
350 return pci_alias;
351 }
352
353 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
354 "for device %s[%04x:%04x], kernel reported alias "
355 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
356 PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
357 PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
358 PCI_FUNC(pci_alias));
359
360 /*
361 * If we don't have a PCI DMA alias and the IVRS alias is on the same
362 * bus, then the IVRS table may know about a quirk that we don't.
363 */
364 if (pci_alias == devid &&
365 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
366 pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
367 pdev->dma_alias_devfn = ivrs_alias & 0xff;
368 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
369 PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
370 dev_name(dev));
371 }
372
373 return ivrs_alias;
374 }
375
376 static int iommu_init_device(struct device *dev)
377 {
378 struct pci_dev *pdev = to_pci_dev(dev);
379 struct iommu_dev_data *dev_data;
380 u16 alias;
381
382 if (dev->archdata.iommu)
383 return 0;
384
385 dev_data = find_dev_data(get_device_id(dev));
386 if (!dev_data)
387 return -ENOMEM;
388
389 alias = get_alias(dev);
390
391 if (alias != dev_data->devid) {
392 struct iommu_dev_data *alias_data;
393
394 alias_data = find_dev_data(alias);
395 if (alias_data == NULL) {
396 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
397 dev_name(dev));
398 free_dev_data(dev_data);
399 return -ENOTSUPP;
400 }
401 dev_data->alias_data = alias_data;
402
403 /* Add device to the alias_list */
404 list_add(&dev_data->alias_list, &alias_data->alias_list);
405 }
406
407 if (pci_iommuv2_capable(pdev)) {
408 struct amd_iommu *iommu;
409
410 iommu = amd_iommu_rlookup_table[dev_data->devid];
411 dev_data->iommu_v2 = iommu->is_iommu_v2;
412 }
413
414 dev->archdata.iommu = dev_data;
415
416 iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
417 dev);
418
419 return 0;
420 }
421
422 static void iommu_ignore_device(struct device *dev)
423 {
424 u16 devid, alias;
425
426 devid = get_device_id(dev);
427 alias = amd_iommu_alias_table[devid];
428
429 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
430 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
431
432 amd_iommu_rlookup_table[devid] = NULL;
433 amd_iommu_rlookup_table[alias] = NULL;
434 }
435
436 static void iommu_uninit_device(struct device *dev)
437 {
438 struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));
439
440 if (!dev_data)
441 return;
442
443 iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
444 dev);
445
446 iommu_group_remove_device(dev);
447
448 /* Unlink from alias, it may change if another device is re-plugged */
449 dev_data->alias_data = NULL;
450
451 /* Remove dma-ops */
452 dev->archdata.dma_ops = NULL;
453
454 /*
455 * We keep dev_data around for unplugged devices and reuse it when the
456 * device is re-plugged - not doing so would introduce a ton of races.
457 */
458 }
459
460 #ifdef CONFIG_AMD_IOMMU_STATS
461
462 /*
463 * Initialization code for statistics collection
464 */
465
466 DECLARE_STATS_COUNTER(compl_wait);
467 DECLARE_STATS_COUNTER(cnt_map_single);
468 DECLARE_STATS_COUNTER(cnt_unmap_single);
469 DECLARE_STATS_COUNTER(cnt_map_sg);
470 DECLARE_STATS_COUNTER(cnt_unmap_sg);
471 DECLARE_STATS_COUNTER(cnt_alloc_coherent);
472 DECLARE_STATS_COUNTER(cnt_free_coherent);
473 DECLARE_STATS_COUNTER(cross_page);
474 DECLARE_STATS_COUNTER(domain_flush_single);
475 DECLARE_STATS_COUNTER(domain_flush_all);
476 DECLARE_STATS_COUNTER(alloced_io_mem);
477 DECLARE_STATS_COUNTER(total_map_requests);
478 DECLARE_STATS_COUNTER(complete_ppr);
479 DECLARE_STATS_COUNTER(invalidate_iotlb);
480 DECLARE_STATS_COUNTER(invalidate_iotlb_all);
481 DECLARE_STATS_COUNTER(pri_requests);
482
483 static struct dentry *stats_dir;
484 static struct dentry *de_fflush;
485
486 static void amd_iommu_stats_add(struct __iommu_counter *cnt)
487 {
488 if (stats_dir == NULL)
489 return;
490
491 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
492 &cnt->value);
493 }
494
495 static void amd_iommu_stats_init(void)
496 {
497 stats_dir = debugfs_create_dir("amd-iommu", NULL);
498 if (stats_dir == NULL)
499 return;
500
501 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
502 &amd_iommu_unmap_flush);
503
504 amd_iommu_stats_add(&compl_wait);
505 amd_iommu_stats_add(&cnt_map_single);
506 amd_iommu_stats_add(&cnt_unmap_single);
507 amd_iommu_stats_add(&cnt_map_sg);
508 amd_iommu_stats_add(&cnt_unmap_sg);
509 amd_iommu_stats_add(&cnt_alloc_coherent);
510 amd_iommu_stats_add(&cnt_free_coherent);
511 amd_iommu_stats_add(&cross_page);
512 amd_iommu_stats_add(&domain_flush_single);
513 amd_iommu_stats_add(&domain_flush_all);
514 amd_iommu_stats_add(&alloced_io_mem);
515 amd_iommu_stats_add(&total_map_requests);
516 amd_iommu_stats_add(&complete_ppr);
517 amd_iommu_stats_add(&invalidate_iotlb);
518 amd_iommu_stats_add(&invalidate_iotlb_all);
519 amd_iommu_stats_add(&pri_requests);
520 }
521
522 #endif
523
524 /****************************************************************************
525 *
526 * Interrupt handling functions
527 *
528 ****************************************************************************/
529
530 static void dump_dte_entry(u16 devid)
531 {
532 int i;
533
534 for (i = 0; i < 4; ++i)
535 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
536 amd_iommu_dev_table[devid].data[i]);
537 }
538
539 static void dump_command(unsigned long phys_addr)
540 {
541 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
542 int i;
543
544 for (i = 0; i < 4; ++i)
545 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
546 }
547
548 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
549 {
550 int type, devid, domid, flags;
551 volatile u32 *event = __evt;
552 int count = 0;
553 u64 address;
554
555 retry:
556 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
557 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
558 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
559 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
560 address = (u64)(((u64)event[3]) << 32) | event[2];
561
562 if (type == 0) {
563 /* Did we hit the erratum? */
564 if (++count == LOOP_TIMEOUT) {
565 pr_err("AMD-Vi: No event written to event log\n");
566 return;
567 }
568 udelay(1);
569 goto retry;
570 }
571
572 printk(KERN_ERR "AMD-Vi: Event logged [");
573
574 switch (type) {
575 case EVENT_TYPE_ILL_DEV:
576 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
577 "address=0x%016llx flags=0x%04x]\n",
578 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
579 address, flags);
580 dump_dte_entry(devid);
581 break;
582 case EVENT_TYPE_IO_FAULT:
583 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
584 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
585 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
586 domid, address, flags);
587 break;
588 case EVENT_TYPE_DEV_TAB_ERR:
589 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
590 "address=0x%016llx flags=0x%04x]\n",
591 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
592 address, flags);
593 break;
594 case EVENT_TYPE_PAGE_TAB_ERR:
595 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
596 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
597 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
598 domid, address, flags);
599 break;
600 case EVENT_TYPE_ILL_CMD:
601 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
602 dump_command(address);
603 break;
604 case EVENT_TYPE_CMD_HARD_ERR:
605 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
606 "flags=0x%04x]\n", address, flags);
607 break;
608 case EVENT_TYPE_IOTLB_INV_TO:
609 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
610 "address=0x%016llx]\n",
611 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
612 address);
613 break;
614 case EVENT_TYPE_INV_DEV_REQ:
615 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
616 "address=0x%016llx flags=0x%04x]\n",
617 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
618 address, flags);
619 break;
620 default:
621 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
622 }
623
624 memset(__evt, 0, 4 * sizeof(u32));
625 }
626
627 static void iommu_poll_events(struct amd_iommu *iommu)
628 {
629 u32 head, tail;
630
631 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
632 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
633
634 while (head != tail) {
635 iommu_print_event(iommu, iommu->evt_buf + head);
636 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
637 }
638
639 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
640 }
641
642 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
643 {
644 struct amd_iommu_fault fault;
645
646 INC_STATS_COUNTER(pri_requests);
647
648 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
649 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
650 return;
651 }
652
653 fault.address = raw[1];
654 fault.pasid = PPR_PASID(raw[0]);
655 fault.device_id = PPR_DEVID(raw[0]);
656 fault.tag = PPR_TAG(raw[0]);
657 fault.flags = PPR_FLAGS(raw[0]);
658
659 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
660 }
661
662 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
663 {
664 u32 head, tail;
665
666 if (iommu->ppr_log == NULL)
667 return;
668
669 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
670 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
671
672 while (head != tail) {
673 volatile u64 *raw;
674 u64 entry[2];
675 int i;
676
677 raw = (u64 *)(iommu->ppr_log + head);
678
679 /*
680 * Hardware bug: Interrupt may arrive before the entry is
681 * written to memory. If this happens we need to wait for the
682 * entry to arrive.
683 */
684 for (i = 0; i < LOOP_TIMEOUT; ++i) {
685 if (PPR_REQ_TYPE(raw[0]) != 0)
686 break;
687 udelay(1);
688 }
689
690 /* Avoid memcpy function-call overhead */
691 entry[0] = raw[0];
692 entry[1] = raw[1];
693
694 /*
695 * To detect the hardware bug we need to clear the entry
696 * back to zero.
697 */
698 raw[0] = raw[1] = 0UL;
699
700 /* Update head pointer of hardware ring-buffer */
701 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
702 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
703
704 /* Handle PPR entry */
705 iommu_handle_ppr_entry(iommu, entry);
706
707 /* Refresh ring-buffer information */
708 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
709 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
710 }
711 }
712
713 irqreturn_t amd_iommu_int_thread(int irq, void *data)
714 {
715 struct amd_iommu *iommu = (struct amd_iommu *) data;
716 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
717
718 while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
719 /* Enable EVT and PPR interrupts again */
720 writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
721 iommu->mmio_base + MMIO_STATUS_OFFSET);
722
723 if (status & MMIO_STATUS_EVT_INT_MASK) {
724 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
725 iommu_poll_events(iommu);
726 }
727
728 if (status & MMIO_STATUS_PPR_INT_MASK) {
729 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
730 iommu_poll_ppr_log(iommu);
731 }
732
733 /*
734 * Hardware bug: ERBT1312
735 * When re-enabling interrupt (by writing 1
736 * to clear the bit), the hardware might also try to set
737 * the interrupt bit in the event status register.
738 * In this scenario, the bit will be set, and disable
739 * subsequent interrupts.
740 *
741 * Workaround: The IOMMU driver should read back the
742 * status register and check if the interrupt bits are cleared.
743 * If not, driver will need to go through the interrupt handler
744 * again and re-clear the bits
745 */
746 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
747 }
748 return IRQ_HANDLED;
749 }
750
751 irqreturn_t amd_iommu_int_handler(int irq, void *data)
752 {
753 return IRQ_WAKE_THREAD;
754 }
755
756 /****************************************************************************
757 *
758 * IOMMU command queuing functions
759 *
760 ****************************************************************************/
761
762 static int wait_on_sem(volatile u64 *sem)
763 {
764 int i = 0;
765
766 while (*sem == 0 && i < LOOP_TIMEOUT) {
767 udelay(1);
768 i += 1;
769 }
770
771 if (i == LOOP_TIMEOUT) {
772 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
773 return -EIO;
774 }
775
776 return 0;
777 }
778
779 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
780 struct iommu_cmd *cmd,
781 u32 tail)
782 {
783 u8 *target;
784
785 target = iommu->cmd_buf + tail;
786 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
787
788 /* Copy command to buffer */
789 memcpy(target, cmd, sizeof(*cmd));
790
791 /* Tell the IOMMU about it */
792 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
793 }
794
795 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
796 {
797 WARN_ON(address & 0x7ULL);
798
799 memset(cmd, 0, sizeof(*cmd));
800 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
801 cmd->data[1] = upper_32_bits(__pa(address));
802 cmd->data[2] = 1;
803 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
804 }
805
806 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
807 {
808 memset(cmd, 0, sizeof(*cmd));
809 cmd->data[0] = devid;
810 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
811 }
812
813 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
814 size_t size, u16 domid, int pde)
815 {
816 u64 pages;
817 bool s;
818
819 pages = iommu_num_pages(address, size, PAGE_SIZE);
820 s = false;
821
822 if (pages > 1) {
823 /*
824 * If we have to flush more than one page, flush all
825 * TLB entries for this domain
826 */
827 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
828 s = true;
829 }
830
831 address &= PAGE_MASK;
832
833 memset(cmd, 0, sizeof(*cmd));
834 cmd->data[1] |= domid;
835 cmd->data[2] = lower_32_bits(address);
836 cmd->data[3] = upper_32_bits(address);
837 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
838 if (s) /* size bit - we flush more than one 4kb page */
839 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
840 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
841 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
842 }
843
844 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
845 u64 address, size_t size)
846 {
847 u64 pages;
848 bool s;
849
850 pages = iommu_num_pages(address, size, PAGE_SIZE);
851 s = false;
852
853 if (pages > 1) {
854 /*
855 * If we have to flush more than one page, flush all
856 * TLB entries for this domain
857 */
858 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
859 s = true;
860 }
861
862 address &= PAGE_MASK;
863
864 memset(cmd, 0, sizeof(*cmd));
865 cmd->data[0] = devid;
866 cmd->data[0] |= (qdep & 0xff) << 24;
867 cmd->data[1] = devid;
868 cmd->data[2] = lower_32_bits(address);
869 cmd->data[3] = upper_32_bits(address);
870 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
871 if (s)
872 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
873 }
874
875 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
876 u64 address, bool size)
877 {
878 memset(cmd, 0, sizeof(*cmd));
879
880 address &= ~(0xfffULL);
881
882 cmd->data[0] = pasid;
883 cmd->data[1] = domid;
884 cmd->data[2] = lower_32_bits(address);
885 cmd->data[3] = upper_32_bits(address);
886 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
887 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
888 if (size)
889 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
890 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
891 }
892
893 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
894 int qdep, u64 address, bool size)
895 {
896 memset(cmd, 0, sizeof(*cmd));
897
898 address &= ~(0xfffULL);
899
900 cmd->data[0] = devid;
901 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
902 cmd->data[0] |= (qdep & 0xff) << 24;
903 cmd->data[1] = devid;
904 cmd->data[1] |= (pasid & 0xff) << 16;
905 cmd->data[2] = lower_32_bits(address);
906 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
907 cmd->data[3] = upper_32_bits(address);
908 if (size)
909 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
910 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
911 }
912
913 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
914 int status, int tag, bool gn)
915 {
916 memset(cmd, 0, sizeof(*cmd));
917
918 cmd->data[0] = devid;
919 if (gn) {
920 cmd->data[1] = pasid;
921 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
922 }
923 cmd->data[3] = tag & 0x1ff;
924 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
925
926 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
927 }
928
929 static void build_inv_all(struct iommu_cmd *cmd)
930 {
931 memset(cmd, 0, sizeof(*cmd));
932 CMD_SET_TYPE(cmd, CMD_INV_ALL);
933 }
934
935 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
936 {
937 memset(cmd, 0, sizeof(*cmd));
938 cmd->data[0] = devid;
939 CMD_SET_TYPE(cmd, CMD_INV_IRT);
940 }
941
942 /*
943 * Writes the command to the IOMMUs command buffer and informs the
944 * hardware about the new command.
945 */
946 static int iommu_queue_command_sync(struct amd_iommu *iommu,
947 struct iommu_cmd *cmd,
948 bool sync)
949 {
950 u32 left, tail, head, next_tail;
951 unsigned long flags;
952
953 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
954
955 again:
956 spin_lock_irqsave(&iommu->lock, flags);
957
958 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
959 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
960 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
961 left = (head - next_tail) % iommu->cmd_buf_size;
962
963 if (left <= 2) {
964 struct iommu_cmd sync_cmd;
965 volatile u64 sem = 0;
966 int ret;
967
968 build_completion_wait(&sync_cmd, (u64)&sem);
969 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
970
971 spin_unlock_irqrestore(&iommu->lock, flags);
972
973 if ((ret = wait_on_sem(&sem)) != 0)
974 return ret;
975
976 goto again;
977 }
978
979 copy_cmd_to_buffer(iommu, cmd, tail);
980
981 /* We need to sync now to make sure all commands are processed */
982 iommu->need_sync = sync;
983
984 spin_unlock_irqrestore(&iommu->lock, flags);
985
986 return 0;
987 }
988
989 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
990 {
991 return iommu_queue_command_sync(iommu, cmd, true);
992 }
993
994 /*
995 * This function queues a completion wait command into the command
996 * buffer of an IOMMU
997 */
998 static int iommu_completion_wait(struct amd_iommu *iommu)
999 {
1000 struct iommu_cmd cmd;
1001 volatile u64 sem = 0;
1002 int ret;
1003
1004 if (!iommu->need_sync)
1005 return 0;
1006
1007 build_completion_wait(&cmd, (u64)&sem);
1008
1009 ret = iommu_queue_command_sync(iommu, &cmd, false);
1010 if (ret)
1011 return ret;
1012
1013 return wait_on_sem(&sem);
1014 }
1015
1016 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1017 {
1018 struct iommu_cmd cmd;
1019
1020 build_inv_dte(&cmd, devid);
1021
1022 return iommu_queue_command(iommu, &cmd);
1023 }
1024
1025 static void iommu_flush_dte_all(struct amd_iommu *iommu)
1026 {
1027 u32 devid;
1028
1029 for (devid = 0; devid <= 0xffff; ++devid)
1030 iommu_flush_dte(iommu, devid);
1031
1032 iommu_completion_wait(iommu);
1033 }
1034
1035 /*
1036 * This function uses heavy locking and may disable irqs for some time. But
1037 * this is no issue because it is only called during resume.
1038 */
1039 static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1040 {
1041 u32 dom_id;
1042
1043 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1044 struct iommu_cmd cmd;
1045 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1046 dom_id, 1);
1047 iommu_queue_command(iommu, &cmd);
1048 }
1049
1050 iommu_completion_wait(iommu);
1051 }
1052
1053 static void iommu_flush_all(struct amd_iommu *iommu)
1054 {
1055 struct iommu_cmd cmd;
1056
1057 build_inv_all(&cmd);
1058
1059 iommu_queue_command(iommu, &cmd);
1060 iommu_completion_wait(iommu);
1061 }
1062
1063 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1064 {
1065 struct iommu_cmd cmd;
1066
1067 build_inv_irt(&cmd, devid);
1068
1069 iommu_queue_command(iommu, &cmd);
1070 }
1071
1072 static void iommu_flush_irt_all(struct amd_iommu *iommu)
1073 {
1074 u32 devid;
1075
1076 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1077 iommu_flush_irt(iommu, devid);
1078
1079 iommu_completion_wait(iommu);
1080 }
1081
1082 void iommu_flush_all_caches(struct amd_iommu *iommu)
1083 {
1084 if (iommu_feature(iommu, FEATURE_IA)) {
1085 iommu_flush_all(iommu);
1086 } else {
1087 iommu_flush_dte_all(iommu);
1088 iommu_flush_irt_all(iommu);
1089 iommu_flush_tlb_all(iommu);
1090 }
1091 }
1092
1093 /*
1094 * Command send function for flushing on-device TLB
1095 */
1096 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1097 u64 address, size_t size)
1098 {
1099 struct amd_iommu *iommu;
1100 struct iommu_cmd cmd;
1101 int qdep;
1102
1103 qdep = dev_data->ats.qdep;
1104 iommu = amd_iommu_rlookup_table[dev_data->devid];
1105
1106 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1107
1108 return iommu_queue_command(iommu, &cmd);
1109 }
1110
1111 /*
1112 * Command send function for invalidating a device table entry
1113 */
1114 static int device_flush_dte(struct iommu_dev_data *dev_data)
1115 {
1116 struct amd_iommu *iommu;
1117 int ret;
1118
1119 iommu = amd_iommu_rlookup_table[dev_data->devid];
1120
1121 ret = iommu_flush_dte(iommu, dev_data->devid);
1122 if (ret)
1123 return ret;
1124
1125 if (dev_data->ats.enabled)
1126 ret = device_flush_iotlb(dev_data, 0, ~0UL);
1127
1128 return ret;
1129 }
1130
1131 /*
1132 * TLB invalidation function which is called from the mapping functions.
1133 * It invalidates a single PTE if the range to flush is within a single
1134 * page. Otherwise it flushes the whole TLB of the IOMMU.
1135 */
1136 static void __domain_flush_pages(struct protection_domain *domain,
1137 u64 address, size_t size, int pde)
1138 {
1139 struct iommu_dev_data *dev_data;
1140 struct iommu_cmd cmd;
1141 int ret = 0, i;
1142
1143 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1144
1145 for (i = 0; i < amd_iommus_present; ++i) {
1146 if (!domain->dev_iommu[i])
1147 continue;
1148
1149 /*
1150 * Devices of this domain are behind this IOMMU
1151 * We need a TLB flush
1152 */
1153 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1154 }
1155
1156 list_for_each_entry(dev_data, &domain->dev_list, list) {
1157
1158 if (!dev_data->ats.enabled)
1159 continue;
1160
1161 ret |= device_flush_iotlb(dev_data, address, size);
1162 }
1163
1164 WARN_ON(ret);
1165 }
1166
1167 static void domain_flush_pages(struct protection_domain *domain,
1168 u64 address, size_t size)
1169 {
1170 __domain_flush_pages(domain, address, size, 0);
1171 }
1172
1173 /* Flush the whole IO/TLB for a given protection domain */
1174 static void domain_flush_tlb(struct protection_domain *domain)
1175 {
1176 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1177 }
1178
1179 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1180 static void domain_flush_tlb_pde(struct protection_domain *domain)
1181 {
1182 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1183 }
1184
1185 static void domain_flush_complete(struct protection_domain *domain)
1186 {
1187 int i;
1188
1189 for (i = 0; i < amd_iommus_present; ++i) {
1190 if (!domain->dev_iommu[i])
1191 continue;
1192
1193 /*
1194 * Devices of this domain are behind this IOMMU
1195 * We need to wait for completion of all commands.
1196 */
1197 iommu_completion_wait(amd_iommus[i]);
1198 }
1199 }
1200
1201
1202 /*
1203 * This function flushes the DTEs for all devices in domain
1204 */
1205 static void domain_flush_devices(struct protection_domain *domain)
1206 {
1207 struct iommu_dev_data *dev_data;
1208
1209 list_for_each_entry(dev_data, &domain->dev_list, list)
1210 device_flush_dte(dev_data);
1211 }
1212
1213 /****************************************************************************
1214 *
1215 * The functions below are used the create the page table mappings for
1216 * unity mapped regions.
1217 *
1218 ****************************************************************************/
1219
1220 /*
1221 * This function is used to add another level to an IO page table. Adding
1222 * another level increases the size of the address space by 9 bits to a size up
1223 * to 64 bits.
1224 */
1225 static bool increase_address_space(struct protection_domain *domain,
1226 gfp_t gfp)
1227 {
1228 u64 *pte;
1229
1230 if (domain->mode == PAGE_MODE_6_LEVEL)
1231 /* address space already 64 bit large */
1232 return false;
1233
1234 pte = (void *)get_zeroed_page(gfp);
1235 if (!pte)
1236 return false;
1237
1238 *pte = PM_LEVEL_PDE(domain->mode,
1239 virt_to_phys(domain->pt_root));
1240 domain->pt_root = pte;
1241 domain->mode += 1;
1242 domain->updated = true;
1243
1244 return true;
1245 }
1246
1247 static u64 *alloc_pte(struct protection_domain *domain,
1248 unsigned long address,
1249 unsigned long page_size,
1250 u64 **pte_page,
1251 gfp_t gfp)
1252 {
1253 int level, end_lvl;
1254 u64 *pte, *page;
1255
1256 BUG_ON(!is_power_of_2(page_size));
1257
1258 while (address > PM_LEVEL_SIZE(domain->mode))
1259 increase_address_space(domain, gfp);
1260
1261 level = domain->mode - 1;
1262 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1263 address = PAGE_SIZE_ALIGN(address, page_size);
1264 end_lvl = PAGE_SIZE_LEVEL(page_size);
1265
1266 while (level > end_lvl) {
1267 if (!IOMMU_PTE_PRESENT(*pte)) {
1268 page = (u64 *)get_zeroed_page(gfp);
1269 if (!page)
1270 return NULL;
1271 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1272 }
1273
1274 /* No level skipping support yet */
1275 if (PM_PTE_LEVEL(*pte) != level)
1276 return NULL;
1277
1278 level -= 1;
1279
1280 pte = IOMMU_PTE_PAGE(*pte);
1281
1282 if (pte_page && level == end_lvl)
1283 *pte_page = pte;
1284
1285 pte = &pte[PM_LEVEL_INDEX(level, address)];
1286 }
1287
1288 return pte;
1289 }
1290
1291 /*
1292 * This function checks if there is a PTE for a given dma address. If
1293 * there is one, it returns the pointer to it.
1294 */
1295 static u64 *fetch_pte(struct protection_domain *domain,
1296 unsigned long address,
1297 unsigned long *page_size)
1298 {
1299 int level;
1300 u64 *pte;
1301
1302 if (address > PM_LEVEL_SIZE(domain->mode))
1303 return NULL;
1304
1305 level = domain->mode - 1;
1306 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1307 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1308
1309 while (level > 0) {
1310
1311 /* Not Present */
1312 if (!IOMMU_PTE_PRESENT(*pte))
1313 return NULL;
1314
1315 /* Large PTE */
1316 if (PM_PTE_LEVEL(*pte) == 7 ||
1317 PM_PTE_LEVEL(*pte) == 0)
1318 break;
1319
1320 /* No level skipping support yet */
1321 if (PM_PTE_LEVEL(*pte) != level)
1322 return NULL;
1323
1324 level -= 1;
1325
1326 /* Walk to the next level */
1327 pte = IOMMU_PTE_PAGE(*pte);
1328 pte = &pte[PM_LEVEL_INDEX(level, address)];
1329 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1330 }
1331
1332 if (PM_PTE_LEVEL(*pte) == 0x07) {
1333 unsigned long pte_mask;
1334
1335 /*
1336 * If we have a series of large PTEs, make
1337 * sure to return a pointer to the first one.
1338 */
1339 *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1340 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1341 pte = (u64 *)(((unsigned long)pte) & pte_mask);
1342 }
1343
1344 return pte;
1345 }
1346
1347 /*
1348 * Generic mapping functions. It maps a physical address into a DMA
1349 * address space. It allocates the page table pages if necessary.
1350 * In the future it can be extended to a generic mapping function
1351 * supporting all features of AMD IOMMU page tables like level skipping
1352 * and full 64 bit address spaces.
1353 */
1354 static int iommu_map_page(struct protection_domain *dom,
1355 unsigned long bus_addr,
1356 unsigned long phys_addr,
1357 int prot,
1358 unsigned long page_size)
1359 {
1360 u64 __pte, *pte;
1361 int i, count;
1362
1363 BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1364 BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1365
1366 if (!(prot & IOMMU_PROT_MASK))
1367 return -EINVAL;
1368
1369 count = PAGE_SIZE_PTE_COUNT(page_size);
1370 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1371
1372 if (!pte)
1373 return -ENOMEM;
1374
1375 for (i = 0; i < count; ++i)
1376 if (IOMMU_PTE_PRESENT(pte[i]))
1377 return -EBUSY;
1378
1379 if (count > 1) {
1380 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1381 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1382 } else
1383 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1384
1385 if (prot & IOMMU_PROT_IR)
1386 __pte |= IOMMU_PTE_IR;
1387 if (prot & IOMMU_PROT_IW)
1388 __pte |= IOMMU_PTE_IW;
1389
1390 for (i = 0; i < count; ++i)
1391 pte[i] = __pte;
1392
1393 update_domain(dom);
1394
1395 return 0;
1396 }
1397
1398 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1399 unsigned long bus_addr,
1400 unsigned long page_size)
1401 {
1402 unsigned long long unmapped;
1403 unsigned long unmap_size;
1404 u64 *pte;
1405
1406 BUG_ON(!is_power_of_2(page_size));
1407
1408 unmapped = 0;
1409
1410 while (unmapped < page_size) {
1411
1412 pte = fetch_pte(dom, bus_addr, &unmap_size);
1413
1414 if (pte) {
1415 int i, count;
1416
1417 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1418 for (i = 0; i < count; i++)
1419 pte[i] = 0ULL;
1420 }
1421
1422 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1423 unmapped += unmap_size;
1424 }
1425
1426 BUG_ON(unmapped && !is_power_of_2(unmapped));
1427
1428 return unmapped;
1429 }
1430
1431 /****************************************************************************
1432 *
1433 * The next functions belong to the address allocator for the dma_ops
1434 * interface functions. They work like the allocators in the other IOMMU
1435 * drivers. Its basically a bitmap which marks the allocated pages in
1436 * the aperture. Maybe it could be enhanced in the future to a more
1437 * efficient allocator.
1438 *
1439 ****************************************************************************/
1440
1441 /*
1442 * The address allocator core functions.
1443 *
1444 * called with domain->lock held
1445 */
1446
1447 /*
1448 * Used to reserve address ranges in the aperture (e.g. for exclusion
1449 * ranges.
1450 */
1451 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1452 unsigned long start_page,
1453 unsigned int pages)
1454 {
1455 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1456
1457 if (start_page + pages > last_page)
1458 pages = last_page - start_page;
1459
1460 for (i = start_page; i < start_page + pages; ++i) {
1461 int index = i / APERTURE_RANGE_PAGES;
1462 int page = i % APERTURE_RANGE_PAGES;
1463 __set_bit(page, dom->aperture[index]->bitmap);
1464 }
1465 }
1466
1467 /*
1468 * This function is used to add a new aperture range to an existing
1469 * aperture in case of dma_ops domain allocation or address allocation
1470 * failure.
1471 */
1472 static int alloc_new_range(struct dma_ops_domain *dma_dom,
1473 bool populate, gfp_t gfp)
1474 {
1475 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1476 struct amd_iommu *iommu;
1477 unsigned long i, old_size, pte_pgsize;
1478
1479 #ifdef CONFIG_IOMMU_STRESS
1480 populate = false;
1481 #endif
1482
1483 if (index >= APERTURE_MAX_RANGES)
1484 return -ENOMEM;
1485
1486 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1487 if (!dma_dom->aperture[index])
1488 return -ENOMEM;
1489
1490 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1491 if (!dma_dom->aperture[index]->bitmap)
1492 goto out_free;
1493
1494 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1495
1496 if (populate) {
1497 unsigned long address = dma_dom->aperture_size;
1498 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1499 u64 *pte, *pte_page;
1500
1501 for (i = 0; i < num_ptes; ++i) {
1502 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1503 &pte_page, gfp);
1504 if (!pte)
1505 goto out_free;
1506
1507 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1508
1509 address += APERTURE_RANGE_SIZE / 64;
1510 }
1511 }
1512
1513 old_size = dma_dom->aperture_size;
1514 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1515
1516 /* Reserve address range used for MSI messages */
1517 if (old_size < MSI_ADDR_BASE_LO &&
1518 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1519 unsigned long spage;
1520 int pages;
1521
1522 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1523 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1524
1525 dma_ops_reserve_addresses(dma_dom, spage, pages);
1526 }
1527
1528 /* Initialize the exclusion range if necessary */
1529 for_each_iommu(iommu) {
1530 if (iommu->exclusion_start &&
1531 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1532 && iommu->exclusion_start < dma_dom->aperture_size) {
1533 unsigned long startpage;
1534 int pages = iommu_num_pages(iommu->exclusion_start,
1535 iommu->exclusion_length,
1536 PAGE_SIZE);
1537 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1538 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1539 }
1540 }
1541
1542 /*
1543 * Check for areas already mapped as present in the new aperture
1544 * range and mark those pages as reserved in the allocator. Such
1545 * mappings may already exist as a result of requested unity
1546 * mappings for devices.
1547 */
1548 for (i = dma_dom->aperture[index]->offset;
1549 i < dma_dom->aperture_size;
1550 i += pte_pgsize) {
1551 u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1552 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1553 continue;
1554
1555 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
1556 pte_pgsize >> 12);
1557 }
1558
1559 update_domain(&dma_dom->domain);
1560
1561 return 0;
1562
1563 out_free:
1564 update_domain(&dma_dom->domain);
1565
1566 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1567
1568 kfree(dma_dom->aperture[index]);
1569 dma_dom->aperture[index] = NULL;
1570
1571 return -ENOMEM;
1572 }
1573
1574 static unsigned long dma_ops_area_alloc(struct device *dev,
1575 struct dma_ops_domain *dom,
1576 unsigned int pages,
1577 unsigned long align_mask,
1578 u64 dma_mask,
1579 unsigned long start)
1580 {
1581 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1582 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1583 int i = start >> APERTURE_RANGE_SHIFT;
1584 unsigned long boundary_size, mask;
1585 unsigned long address = -1;
1586 unsigned long limit;
1587
1588 next_bit >>= PAGE_SHIFT;
1589
1590 mask = dma_get_seg_boundary(dev);
1591
1592 boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
1593 1UL << (BITS_PER_LONG - PAGE_SHIFT);
1594
1595 for (;i < max_index; ++i) {
1596 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1597
1598 if (dom->aperture[i]->offset >= dma_mask)
1599 break;
1600
1601 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1602 dma_mask >> PAGE_SHIFT);
1603
1604 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1605 limit, next_bit, pages, 0,
1606 boundary_size, align_mask);
1607 if (address != -1) {
1608 address = dom->aperture[i]->offset +
1609 (address << PAGE_SHIFT);
1610 dom->next_address = address + (pages << PAGE_SHIFT);
1611 break;
1612 }
1613
1614 next_bit = 0;
1615 }
1616
1617 return address;
1618 }
1619
1620 static unsigned long dma_ops_alloc_addresses(struct device *dev,
1621 struct dma_ops_domain *dom,
1622 unsigned int pages,
1623 unsigned long align_mask,
1624 u64 dma_mask)
1625 {
1626 unsigned long address;
1627
1628 #ifdef CONFIG_IOMMU_STRESS
1629 dom->next_address = 0;
1630 dom->need_flush = true;
1631 #endif
1632
1633 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1634 dma_mask, dom->next_address);
1635
1636 if (address == -1) {
1637 dom->next_address = 0;
1638 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1639 dma_mask, 0);
1640 dom->need_flush = true;
1641 }
1642
1643 if (unlikely(address == -1))
1644 address = DMA_ERROR_CODE;
1645
1646 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1647
1648 return address;
1649 }
1650
1651 /*
1652 * The address free function.
1653 *
1654 * called with domain->lock held
1655 */
1656 static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1657 unsigned long address,
1658 unsigned int pages)
1659 {
1660 unsigned i = address >> APERTURE_RANGE_SHIFT;
1661 struct aperture_range *range = dom->aperture[i];
1662
1663 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1664
1665 #ifdef CONFIG_IOMMU_STRESS
1666 if (i < 4)
1667 return;
1668 #endif
1669
1670 if (address >= dom->next_address)
1671 dom->need_flush = true;
1672
1673 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1674
1675 bitmap_clear(range->bitmap, address, pages);
1676
1677 }
1678
1679 /****************************************************************************
1680 *
1681 * The next functions belong to the domain allocation. A domain is
1682 * allocated for every IOMMU as the default domain. If device isolation
1683 * is enabled, every device get its own domain. The most important thing
1684 * about domains is the page table mapping the DMA address space they
1685 * contain.
1686 *
1687 ****************************************************************************/
1688
1689 /*
1690 * This function adds a protection domain to the global protection domain list
1691 */
1692 static void add_domain_to_list(struct protection_domain *domain)
1693 {
1694 unsigned long flags;
1695
1696 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1697 list_add(&domain->list, &amd_iommu_pd_list);
1698 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1699 }
1700
1701 /*
1702 * This function removes a protection domain to the global
1703 * protection domain list
1704 */
1705 static void del_domain_from_list(struct protection_domain *domain)
1706 {
1707 unsigned long flags;
1708
1709 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1710 list_del(&domain->list);
1711 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1712 }
1713
1714 static u16 domain_id_alloc(void)
1715 {
1716 unsigned long flags;
1717 int id;
1718
1719 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1720 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1721 BUG_ON(id == 0);
1722 if (id > 0 && id < MAX_DOMAIN_ID)
1723 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1724 else
1725 id = 0;
1726 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1727
1728 return id;
1729 }
1730
1731 static void domain_id_free(int id)
1732 {
1733 unsigned long flags;
1734
1735 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1736 if (id > 0 && id < MAX_DOMAIN_ID)
1737 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1738 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1739 }
1740
1741 #define DEFINE_FREE_PT_FN(LVL, FN) \
1742 static void free_pt_##LVL (unsigned long __pt) \
1743 { \
1744 unsigned long p; \
1745 u64 *pt; \
1746 int i; \
1747 \
1748 pt = (u64 *)__pt; \
1749 \
1750 for (i = 0; i < 512; ++i) { \
1751 /* PTE present? */ \
1752 if (!IOMMU_PTE_PRESENT(pt[i])) \
1753 continue; \
1754 \
1755 /* Large PTE? */ \
1756 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1757 PM_PTE_LEVEL(pt[i]) == 7) \
1758 continue; \
1759 \
1760 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1761 FN(p); \
1762 } \
1763 free_page((unsigned long)pt); \
1764 }
1765
1766 DEFINE_FREE_PT_FN(l2, free_page)
1767 DEFINE_FREE_PT_FN(l3, free_pt_l2)
1768 DEFINE_FREE_PT_FN(l4, free_pt_l3)
1769 DEFINE_FREE_PT_FN(l5, free_pt_l4)
1770 DEFINE_FREE_PT_FN(l6, free_pt_l5)
1771
1772 static void free_pagetable(struct protection_domain *domain)
1773 {
1774 unsigned long root = (unsigned long)domain->pt_root;
1775
1776 switch (domain->mode) {
1777 case PAGE_MODE_NONE:
1778 break;
1779 case PAGE_MODE_1_LEVEL:
1780 free_page(root);
1781 break;
1782 case PAGE_MODE_2_LEVEL:
1783 free_pt_l2(root);
1784 break;
1785 case PAGE_MODE_3_LEVEL:
1786 free_pt_l3(root);
1787 break;
1788 case PAGE_MODE_4_LEVEL:
1789 free_pt_l4(root);
1790 break;
1791 case PAGE_MODE_5_LEVEL:
1792 free_pt_l5(root);
1793 break;
1794 case PAGE_MODE_6_LEVEL:
1795 free_pt_l6(root);
1796 break;
1797 default:
1798 BUG();
1799 }
1800 }
1801
1802 static void free_gcr3_tbl_level1(u64 *tbl)
1803 {
1804 u64 *ptr;
1805 int i;
1806
1807 for (i = 0; i < 512; ++i) {
1808 if (!(tbl[i] & GCR3_VALID))
1809 continue;
1810
1811 ptr = __va(tbl[i] & PAGE_MASK);
1812
1813 free_page((unsigned long)ptr);
1814 }
1815 }
1816
1817 static void free_gcr3_tbl_level2(u64 *tbl)
1818 {
1819 u64 *ptr;
1820 int i;
1821
1822 for (i = 0; i < 512; ++i) {
1823 if (!(tbl[i] & GCR3_VALID))
1824 continue;
1825
1826 ptr = __va(tbl[i] & PAGE_MASK);
1827
1828 free_gcr3_tbl_level1(ptr);
1829 }
1830 }
1831
1832 static void free_gcr3_table(struct protection_domain *domain)
1833 {
1834 if (domain->glx == 2)
1835 free_gcr3_tbl_level2(domain->gcr3_tbl);
1836 else if (domain->glx == 1)
1837 free_gcr3_tbl_level1(domain->gcr3_tbl);
1838 else if (domain->glx != 0)
1839 BUG();
1840
1841 free_page((unsigned long)domain->gcr3_tbl);
1842 }
1843
1844 /*
1845 * Free a domain, only used if something went wrong in the
1846 * allocation path and we need to free an already allocated page table
1847 */
1848 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1849 {
1850 int i;
1851
1852 if (!dom)
1853 return;
1854
1855 del_domain_from_list(&dom->domain);
1856
1857 free_pagetable(&dom->domain);
1858
1859 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1860 if (!dom->aperture[i])
1861 continue;
1862 free_page((unsigned long)dom->aperture[i]->bitmap);
1863 kfree(dom->aperture[i]);
1864 }
1865
1866 kfree(dom);
1867 }
1868
1869 /*
1870 * Allocates a new protection domain usable for the dma_ops functions.
1871 * It also initializes the page table and the address allocator data
1872 * structures required for the dma_ops interface
1873 */
1874 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1875 {
1876 struct dma_ops_domain *dma_dom;
1877
1878 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1879 if (!dma_dom)
1880 return NULL;
1881
1882 if (protection_domain_init(&dma_dom->domain))
1883 goto free_dma_dom;
1884
1885 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1886 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1887 dma_dom->domain.flags = PD_DMA_OPS_MASK;
1888 dma_dom->domain.priv = dma_dom;
1889 if (!dma_dom->domain.pt_root)
1890 goto free_dma_dom;
1891
1892 dma_dom->need_flush = false;
1893
1894 add_domain_to_list(&dma_dom->domain);
1895
1896 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1897 goto free_dma_dom;
1898
1899 /*
1900 * mark the first page as allocated so we never return 0 as
1901 * a valid dma-address. So we can use 0 as error value
1902 */
1903 dma_dom->aperture[0]->bitmap[0] = 1;
1904 dma_dom->next_address = 0;
1905
1906
1907 return dma_dom;
1908
1909 free_dma_dom:
1910 dma_ops_domain_free(dma_dom);
1911
1912 return NULL;
1913 }
1914
1915 /*
1916 * little helper function to check whether a given protection domain is a
1917 * dma_ops domain
1918 */
1919 static bool dma_ops_domain(struct protection_domain *domain)
1920 {
1921 return domain->flags & PD_DMA_OPS_MASK;
1922 }
1923
1924 static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1925 {
1926 u64 pte_root = 0;
1927 u64 flags = 0;
1928
1929 if (domain->mode != PAGE_MODE_NONE)
1930 pte_root = virt_to_phys(domain->pt_root);
1931
1932 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1933 << DEV_ENTRY_MODE_SHIFT;
1934 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1935
1936 flags = amd_iommu_dev_table[devid].data[1];
1937
1938 if (ats)
1939 flags |= DTE_FLAG_IOTLB;
1940
1941 if (domain->flags & PD_IOMMUV2_MASK) {
1942 u64 gcr3 = __pa(domain->gcr3_tbl);
1943 u64 glx = domain->glx;
1944 u64 tmp;
1945
1946 pte_root |= DTE_FLAG_GV;
1947 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1948
1949 /* First mask out possible old values for GCR3 table */
1950 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1951 flags &= ~tmp;
1952
1953 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1954 flags &= ~tmp;
1955
1956 /* Encode GCR3 table into DTE */
1957 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1958 pte_root |= tmp;
1959
1960 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1961 flags |= tmp;
1962
1963 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1964 flags |= tmp;
1965 }
1966
1967 flags &= ~(0xffffUL);
1968 flags |= domain->id;
1969
1970 amd_iommu_dev_table[devid].data[1] = flags;
1971 amd_iommu_dev_table[devid].data[0] = pte_root;
1972 }
1973
1974 static void clear_dte_entry(u16 devid)
1975 {
1976 /* remove entry from the device table seen by the hardware */
1977 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1978 amd_iommu_dev_table[devid].data[1] = 0;
1979
1980 amd_iommu_apply_erratum_63(devid);
1981 }
1982
1983 static void do_attach(struct iommu_dev_data *dev_data,
1984 struct protection_domain *domain)
1985 {
1986 struct amd_iommu *iommu;
1987 bool ats;
1988
1989 iommu = amd_iommu_rlookup_table[dev_data->devid];
1990 ats = dev_data->ats.enabled;
1991
1992 /* Update data structures */
1993 dev_data->domain = domain;
1994 list_add(&dev_data->list, &domain->dev_list);
1995 set_dte_entry(dev_data->devid, domain, ats);
1996
1997 /* Do reference counting */
1998 domain->dev_iommu[iommu->index] += 1;
1999 domain->dev_cnt += 1;
2000
2001 /* Flush the DTE entry */
2002 device_flush_dte(dev_data);
2003 }
2004
2005 static void do_detach(struct iommu_dev_data *dev_data)
2006 {
2007 struct amd_iommu *iommu;
2008
2009 iommu = amd_iommu_rlookup_table[dev_data->devid];
2010
2011 /* decrease reference counters */
2012 dev_data->domain->dev_iommu[iommu->index] -= 1;
2013 dev_data->domain->dev_cnt -= 1;
2014
2015 /* Update data structures */
2016 dev_data->domain = NULL;
2017 list_del(&dev_data->list);
2018 clear_dte_entry(dev_data->devid);
2019
2020 /* Flush the DTE entry */
2021 device_flush_dte(dev_data);
2022 }
2023
2024 /*
2025 * If a device is not yet associated with a domain, this function does
2026 * assigns it visible for the hardware
2027 */
2028 static int __attach_device(struct iommu_dev_data *dev_data,
2029 struct protection_domain *domain)
2030 {
2031 struct iommu_dev_data *head, *entry;
2032 int ret;
2033
2034 /* lock domain */
2035 spin_lock(&domain->lock);
2036
2037 head = dev_data;
2038
2039 if (head->alias_data != NULL)
2040 head = head->alias_data;
2041
2042 /* Now we have the root of the alias group, if any */
2043
2044 ret = -EBUSY;
2045 if (head->domain != NULL)
2046 goto out_unlock;
2047
2048 /* Attach alias group root */
2049 do_attach(head, domain);
2050
2051 /* Attach other devices in the alias group */
2052 list_for_each_entry(entry, &head->alias_list, alias_list)
2053 do_attach(entry, domain);
2054
2055 ret = 0;
2056
2057 out_unlock:
2058
2059 /* ready */
2060 spin_unlock(&domain->lock);
2061
2062 return ret;
2063 }
2064
2065
2066 static void pdev_iommuv2_disable(struct pci_dev *pdev)
2067 {
2068 pci_disable_ats(pdev);
2069 pci_disable_pri(pdev);
2070 pci_disable_pasid(pdev);
2071 }
2072
2073 /* FIXME: Change generic reset-function to do the same */
2074 static int pri_reset_while_enabled(struct pci_dev *pdev)
2075 {
2076 u16 control;
2077 int pos;
2078
2079 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2080 if (!pos)
2081 return -EINVAL;
2082
2083 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2084 control |= PCI_PRI_CTRL_RESET;
2085 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2086
2087 return 0;
2088 }
2089
2090 static int pdev_iommuv2_enable(struct pci_dev *pdev)
2091 {
2092 bool reset_enable;
2093 int reqs, ret;
2094
2095 /* FIXME: Hardcode number of outstanding requests for now */
2096 reqs = 32;
2097 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2098 reqs = 1;
2099 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2100
2101 /* Only allow access to user-accessible pages */
2102 ret = pci_enable_pasid(pdev, 0);
2103 if (ret)
2104 goto out_err;
2105
2106 /* First reset the PRI state of the device */
2107 ret = pci_reset_pri(pdev);
2108 if (ret)
2109 goto out_err;
2110
2111 /* Enable PRI */
2112 ret = pci_enable_pri(pdev, reqs);
2113 if (ret)
2114 goto out_err;
2115
2116 if (reset_enable) {
2117 ret = pri_reset_while_enabled(pdev);
2118 if (ret)
2119 goto out_err;
2120 }
2121
2122 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2123 if (ret)
2124 goto out_err;
2125
2126 return 0;
2127
2128 out_err:
2129 pci_disable_pri(pdev);
2130 pci_disable_pasid(pdev);
2131
2132 return ret;
2133 }
2134
2135 /* FIXME: Move this to PCI code */
2136 #define PCI_PRI_TLP_OFF (1 << 15)
2137
2138 static bool pci_pri_tlp_required(struct pci_dev *pdev)
2139 {
2140 u16 status;
2141 int pos;
2142
2143 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2144 if (!pos)
2145 return false;
2146
2147 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2148
2149 return (status & PCI_PRI_TLP_OFF) ? true : false;
2150 }
2151
2152 /*
2153 * If a device is not yet associated with a domain, this function
2154 * assigns it visible for the hardware
2155 */
2156 static int attach_device(struct device *dev,
2157 struct protection_domain *domain)
2158 {
2159 struct pci_dev *pdev = to_pci_dev(dev);
2160 struct iommu_dev_data *dev_data;
2161 unsigned long flags;
2162 int ret;
2163
2164 dev_data = get_dev_data(dev);
2165
2166 if (domain->flags & PD_IOMMUV2_MASK) {
2167 if (!dev_data->passthrough)
2168 return -EINVAL;
2169
2170 if (dev_data->iommu_v2) {
2171 if (pdev_iommuv2_enable(pdev) != 0)
2172 return -EINVAL;
2173
2174 dev_data->ats.enabled = true;
2175 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2176 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
2177 }
2178 } else if (amd_iommu_iotlb_sup &&
2179 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2180 dev_data->ats.enabled = true;
2181 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2182 }
2183
2184 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2185 ret = __attach_device(dev_data, domain);
2186 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2187
2188 /*
2189 * We might boot into a crash-kernel here. The crashed kernel
2190 * left the caches in the IOMMU dirty. So we have to flush
2191 * here to evict all dirty stuff.
2192 */
2193 domain_flush_tlb_pde(domain);
2194
2195 return ret;
2196 }
2197
2198 /*
2199 * Removes a device from a protection domain (unlocked)
2200 */
2201 static void __detach_device(struct iommu_dev_data *dev_data)
2202 {
2203 struct iommu_dev_data *head, *entry;
2204 struct protection_domain *domain;
2205 unsigned long flags;
2206
2207 BUG_ON(!dev_data->domain);
2208
2209 domain = dev_data->domain;
2210
2211 spin_lock_irqsave(&domain->lock, flags);
2212
2213 head = dev_data;
2214 if (head->alias_data != NULL)
2215 head = head->alias_data;
2216
2217 list_for_each_entry(entry, &head->alias_list, alias_list)
2218 do_detach(entry);
2219
2220 do_detach(head);
2221
2222 spin_unlock_irqrestore(&domain->lock, flags);
2223 }
2224
2225 /*
2226 * Removes a device from a protection domain (with devtable_lock held)
2227 */
2228 static void detach_device(struct device *dev)
2229 {
2230 struct protection_domain *domain;
2231 struct iommu_dev_data *dev_data;
2232 unsigned long flags;
2233
2234 dev_data = get_dev_data(dev);
2235 domain = dev_data->domain;
2236
2237 /* lock device table */
2238 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2239 __detach_device(dev_data);
2240 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2241
2242 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2243 pdev_iommuv2_disable(to_pci_dev(dev));
2244 else if (dev_data->ats.enabled)
2245 pci_disable_ats(to_pci_dev(dev));
2246
2247 dev_data->ats.enabled = false;
2248 }
2249
2250 static int amd_iommu_add_device(struct device *dev)
2251 {
2252 struct iommu_dev_data *dev_data;
2253 struct iommu_domain *domain;
2254 struct amd_iommu *iommu;
2255 u16 devid;
2256 int ret;
2257
2258 if (!check_device(dev) || get_dev_data(dev))
2259 return 0;
2260
2261 devid = get_device_id(dev);
2262 iommu = amd_iommu_rlookup_table[devid];
2263
2264 ret = iommu_init_device(dev);
2265 if (ret) {
2266 if (ret != -ENOTSUPP)
2267 pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2268 dev_name(dev));
2269
2270 iommu_ignore_device(dev);
2271 dev->archdata.dma_ops = &nommu_dma_ops;
2272 goto out;
2273 }
2274 init_iommu_group(dev);
2275
2276 dev_data = get_dev_data(dev);
2277
2278 BUG_ON(!dev_data);
2279
2280 if (iommu_pass_through || dev_data->iommu_v2)
2281 iommu_request_dm_for_dev(dev);
2282
2283 /* Domains are initialized for this device - have a look what we ended up with */
2284 domain = iommu_get_domain_for_dev(dev);
2285 if (domain->type == IOMMU_DOMAIN_IDENTITY)
2286 dev_data->passthrough = true;
2287 else
2288 dev->archdata.dma_ops = &amd_iommu_dma_ops;
2289
2290 out:
2291 iommu_completion_wait(iommu);
2292
2293 return 0;
2294 }
2295
2296 static void amd_iommu_remove_device(struct device *dev)
2297 {
2298 struct amd_iommu *iommu;
2299 u16 devid;
2300
2301 if (!check_device(dev))
2302 return;
2303
2304 devid = get_device_id(dev);
2305 iommu = amd_iommu_rlookup_table[devid];
2306
2307 iommu_uninit_device(dev);
2308 iommu_completion_wait(iommu);
2309 }
2310
2311 /*****************************************************************************
2312 *
2313 * The next functions belong to the dma_ops mapping/unmapping code.
2314 *
2315 *****************************************************************************/
2316
2317 /*
2318 * In the dma_ops path we only have the struct device. This function
2319 * finds the corresponding IOMMU, the protection domain and the
2320 * requestor id for a given device.
2321 * If the device is not yet associated with a domain this is also done
2322 * in this function.
2323 */
2324 static struct protection_domain *get_domain(struct device *dev)
2325 {
2326 struct protection_domain *domain;
2327 struct iommu_domain *io_domain;
2328
2329 if (!check_device(dev))
2330 return ERR_PTR(-EINVAL);
2331
2332 io_domain = iommu_get_domain_for_dev(dev);
2333 if (!io_domain)
2334 return NULL;
2335
2336 domain = to_pdomain(io_domain);
2337 if (!dma_ops_domain(domain))
2338 return ERR_PTR(-EBUSY);
2339
2340 return domain;
2341 }
2342
2343 static void update_device_table(struct protection_domain *domain)
2344 {
2345 struct iommu_dev_data *dev_data;
2346
2347 list_for_each_entry(dev_data, &domain->dev_list, list)
2348 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2349 }
2350
2351 static void update_domain(struct protection_domain *domain)
2352 {
2353 if (!domain->updated)
2354 return;
2355
2356 update_device_table(domain);
2357
2358 domain_flush_devices(domain);
2359 domain_flush_tlb_pde(domain);
2360
2361 domain->updated = false;
2362 }
2363
2364 /*
2365 * This function fetches the PTE for a given address in the aperture
2366 */
2367 static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2368 unsigned long address)
2369 {
2370 struct aperture_range *aperture;
2371 u64 *pte, *pte_page;
2372
2373 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2374 if (!aperture)
2375 return NULL;
2376
2377 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2378 if (!pte) {
2379 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2380 GFP_ATOMIC);
2381 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2382 } else
2383 pte += PM_LEVEL_INDEX(0, address);
2384
2385 update_domain(&dom->domain);
2386
2387 return pte;
2388 }
2389
2390 /*
2391 * This is the generic map function. It maps one 4kb page at paddr to
2392 * the given address in the DMA address space for the domain.
2393 */
2394 static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2395 unsigned long address,
2396 phys_addr_t paddr,
2397 int direction)
2398 {
2399 u64 *pte, __pte;
2400
2401 WARN_ON(address > dom->aperture_size);
2402
2403 paddr &= PAGE_MASK;
2404
2405 pte = dma_ops_get_pte(dom, address);
2406 if (!pte)
2407 return DMA_ERROR_CODE;
2408
2409 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2410
2411 if (direction == DMA_TO_DEVICE)
2412 __pte |= IOMMU_PTE_IR;
2413 else if (direction == DMA_FROM_DEVICE)
2414 __pte |= IOMMU_PTE_IW;
2415 else if (direction == DMA_BIDIRECTIONAL)
2416 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2417
2418 WARN_ON(*pte);
2419
2420 *pte = __pte;
2421
2422 return (dma_addr_t)address;
2423 }
2424
2425 /*
2426 * The generic unmapping function for on page in the DMA address space.
2427 */
2428 static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2429 unsigned long address)
2430 {
2431 struct aperture_range *aperture;
2432 u64 *pte;
2433
2434 if (address >= dom->aperture_size)
2435 return;
2436
2437 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2438 if (!aperture)
2439 return;
2440
2441 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2442 if (!pte)
2443 return;
2444
2445 pte += PM_LEVEL_INDEX(0, address);
2446
2447 WARN_ON(!*pte);
2448
2449 *pte = 0ULL;
2450 }
2451
2452 /*
2453 * This function contains common code for mapping of a physically
2454 * contiguous memory region into DMA address space. It is used by all
2455 * mapping functions provided with this IOMMU driver.
2456 * Must be called with the domain lock held.
2457 */
2458 static dma_addr_t __map_single(struct device *dev,
2459 struct dma_ops_domain *dma_dom,
2460 phys_addr_t paddr,
2461 size_t size,
2462 int dir,
2463 bool align,
2464 u64 dma_mask)
2465 {
2466 dma_addr_t offset = paddr & ~PAGE_MASK;
2467 dma_addr_t address, start, ret;
2468 unsigned int pages;
2469 unsigned long align_mask = 0;
2470 int i;
2471
2472 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2473 paddr &= PAGE_MASK;
2474
2475 INC_STATS_COUNTER(total_map_requests);
2476
2477 if (pages > 1)
2478 INC_STATS_COUNTER(cross_page);
2479
2480 if (align)
2481 align_mask = (1UL << get_order(size)) - 1;
2482
2483 retry:
2484 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2485 dma_mask);
2486 if (unlikely(address == DMA_ERROR_CODE)) {
2487 /*
2488 * setting next_address here will let the address
2489 * allocator only scan the new allocated range in the
2490 * first run. This is a small optimization.
2491 */
2492 dma_dom->next_address = dma_dom->aperture_size;
2493
2494 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2495 goto out;
2496
2497 /*
2498 * aperture was successfully enlarged by 128 MB, try
2499 * allocation again
2500 */
2501 goto retry;
2502 }
2503
2504 start = address;
2505 for (i = 0; i < pages; ++i) {
2506 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2507 if (ret == DMA_ERROR_CODE)
2508 goto out_unmap;
2509
2510 paddr += PAGE_SIZE;
2511 start += PAGE_SIZE;
2512 }
2513 address += offset;
2514
2515 ADD_STATS_COUNTER(alloced_io_mem, size);
2516
2517 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2518 domain_flush_tlb(&dma_dom->domain);
2519 dma_dom->need_flush = false;
2520 } else if (unlikely(amd_iommu_np_cache))
2521 domain_flush_pages(&dma_dom->domain, address, size);
2522
2523 out:
2524 return address;
2525
2526 out_unmap:
2527
2528 for (--i; i >= 0; --i) {
2529 start -= PAGE_SIZE;
2530 dma_ops_domain_unmap(dma_dom, start);
2531 }
2532
2533 dma_ops_free_addresses(dma_dom, address, pages);
2534
2535 return DMA_ERROR_CODE;
2536 }
2537
2538 /*
2539 * Does the reverse of the __map_single function. Must be called with
2540 * the domain lock held too
2541 */
2542 static void __unmap_single(struct dma_ops_domain *dma_dom,
2543 dma_addr_t dma_addr,
2544 size_t size,
2545 int dir)
2546 {
2547 dma_addr_t flush_addr;
2548 dma_addr_t i, start;
2549 unsigned int pages;
2550
2551 if ((dma_addr == DMA_ERROR_CODE) ||
2552 (dma_addr + size > dma_dom->aperture_size))
2553 return;
2554
2555 flush_addr = dma_addr;
2556 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2557 dma_addr &= PAGE_MASK;
2558 start = dma_addr;
2559
2560 for (i = 0; i < pages; ++i) {
2561 dma_ops_domain_unmap(dma_dom, start);
2562 start += PAGE_SIZE;
2563 }
2564
2565 SUB_STATS_COUNTER(alloced_io_mem, size);
2566
2567 dma_ops_free_addresses(dma_dom, dma_addr, pages);
2568
2569 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2570 domain_flush_pages(&dma_dom->domain, flush_addr, size);
2571 dma_dom->need_flush = false;
2572 }
2573 }
2574
2575 /*
2576 * The exported map_single function for dma_ops.
2577 */
2578 static dma_addr_t map_page(struct device *dev, struct page *page,
2579 unsigned long offset, size_t size,
2580 enum dma_data_direction dir,
2581 struct dma_attrs *attrs)
2582 {
2583 unsigned long flags;
2584 struct protection_domain *domain;
2585 dma_addr_t addr;
2586 u64 dma_mask;
2587 phys_addr_t paddr = page_to_phys(page) + offset;
2588
2589 INC_STATS_COUNTER(cnt_map_single);
2590
2591 domain = get_domain(dev);
2592 if (PTR_ERR(domain) == -EINVAL)
2593 return (dma_addr_t)paddr;
2594 else if (IS_ERR(domain))
2595 return DMA_ERROR_CODE;
2596
2597 dma_mask = *dev->dma_mask;
2598
2599 spin_lock_irqsave(&domain->lock, flags);
2600
2601 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2602 dma_mask);
2603 if (addr == DMA_ERROR_CODE)
2604 goto out;
2605
2606 domain_flush_complete(domain);
2607
2608 out:
2609 spin_unlock_irqrestore(&domain->lock, flags);
2610
2611 return addr;
2612 }
2613
2614 /*
2615 * The exported unmap_single function for dma_ops.
2616 */
2617 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2618 enum dma_data_direction dir, struct dma_attrs *attrs)
2619 {
2620 unsigned long flags;
2621 struct protection_domain *domain;
2622
2623 INC_STATS_COUNTER(cnt_unmap_single);
2624
2625 domain = get_domain(dev);
2626 if (IS_ERR(domain))
2627 return;
2628
2629 spin_lock_irqsave(&domain->lock, flags);
2630
2631 __unmap_single(domain->priv, dma_addr, size, dir);
2632
2633 domain_flush_complete(domain);
2634
2635 spin_unlock_irqrestore(&domain->lock, flags);
2636 }
2637
2638 /*
2639 * The exported map_sg function for dma_ops (handles scatter-gather
2640 * lists).
2641 */
2642 static int map_sg(struct device *dev, struct scatterlist *sglist,
2643 int nelems, enum dma_data_direction dir,
2644 struct dma_attrs *attrs)
2645 {
2646 unsigned long flags;
2647 struct protection_domain *domain;
2648 int i;
2649 struct scatterlist *s;
2650 phys_addr_t paddr;
2651 int mapped_elems = 0;
2652 u64 dma_mask;
2653
2654 INC_STATS_COUNTER(cnt_map_sg);
2655
2656 domain = get_domain(dev);
2657 if (IS_ERR(domain))
2658 return 0;
2659
2660 dma_mask = *dev->dma_mask;
2661
2662 spin_lock_irqsave(&domain->lock, flags);
2663
2664 for_each_sg(sglist, s, nelems, i) {
2665 paddr = sg_phys(s);
2666
2667 s->dma_address = __map_single(dev, domain->priv,
2668 paddr, s->length, dir, false,
2669 dma_mask);
2670
2671 if (s->dma_address) {
2672 s->dma_length = s->length;
2673 mapped_elems++;
2674 } else
2675 goto unmap;
2676 }
2677
2678 domain_flush_complete(domain);
2679
2680 out:
2681 spin_unlock_irqrestore(&domain->lock, flags);
2682
2683 return mapped_elems;
2684 unmap:
2685 for_each_sg(sglist, s, mapped_elems, i) {
2686 if (s->dma_address)
2687 __unmap_single(domain->priv, s->dma_address,
2688 s->dma_length, dir);
2689 s->dma_address = s->dma_length = 0;
2690 }
2691
2692 mapped_elems = 0;
2693
2694 goto out;
2695 }
2696
2697 /*
2698 * The exported map_sg function for dma_ops (handles scatter-gather
2699 * lists).
2700 */
2701 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2702 int nelems, enum dma_data_direction dir,
2703 struct dma_attrs *attrs)
2704 {
2705 unsigned long flags;
2706 struct protection_domain *domain;
2707 struct scatterlist *s;
2708 int i;
2709
2710 INC_STATS_COUNTER(cnt_unmap_sg);
2711
2712 domain = get_domain(dev);
2713 if (IS_ERR(domain))
2714 return;
2715
2716 spin_lock_irqsave(&domain->lock, flags);
2717
2718 for_each_sg(sglist, s, nelems, i) {
2719 __unmap_single(domain->priv, s->dma_address,
2720 s->dma_length, dir);
2721 s->dma_address = s->dma_length = 0;
2722 }
2723
2724 domain_flush_complete(domain);
2725
2726 spin_unlock_irqrestore(&domain->lock, flags);
2727 }
2728
2729 /*
2730 * The exported alloc_coherent function for dma_ops.
2731 */
2732 static void *alloc_coherent(struct device *dev, size_t size,
2733 dma_addr_t *dma_addr, gfp_t flag,
2734 struct dma_attrs *attrs)
2735 {
2736 u64 dma_mask = dev->coherent_dma_mask;
2737 struct protection_domain *domain;
2738 unsigned long flags;
2739 struct page *page;
2740
2741 INC_STATS_COUNTER(cnt_alloc_coherent);
2742
2743 domain = get_domain(dev);
2744 if (PTR_ERR(domain) == -EINVAL) {
2745 page = alloc_pages(flag, get_order(size));
2746 *dma_addr = page_to_phys(page);
2747 return page_address(page);
2748 } else if (IS_ERR(domain))
2749 return NULL;
2750
2751 size = PAGE_ALIGN(size);
2752 dma_mask = dev->coherent_dma_mask;
2753 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2754 flag |= __GFP_ZERO;
2755
2756 page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
2757 if (!page) {
2758 if (!(flag & __GFP_WAIT))
2759 return NULL;
2760
2761 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2762 get_order(size));
2763 if (!page)
2764 return NULL;
2765 }
2766
2767 if (!dma_mask)
2768 dma_mask = *dev->dma_mask;
2769
2770 spin_lock_irqsave(&domain->lock, flags);
2771
2772 *dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2773 size, DMA_BIDIRECTIONAL, true, dma_mask);
2774
2775 if (*dma_addr == DMA_ERROR_CODE) {
2776 spin_unlock_irqrestore(&domain->lock, flags);
2777 goto out_free;
2778 }
2779
2780 domain_flush_complete(domain);
2781
2782 spin_unlock_irqrestore(&domain->lock, flags);
2783
2784 return page_address(page);
2785
2786 out_free:
2787
2788 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2789 __free_pages(page, get_order(size));
2790
2791 return NULL;
2792 }
2793
2794 /*
2795 * The exported free_coherent function for dma_ops.
2796 */
2797 static void free_coherent(struct device *dev, size_t size,
2798 void *virt_addr, dma_addr_t dma_addr,
2799 struct dma_attrs *attrs)
2800 {
2801 struct protection_domain *domain;
2802 unsigned long flags;
2803 struct page *page;
2804
2805 INC_STATS_COUNTER(cnt_free_coherent);
2806
2807 page = virt_to_page(virt_addr);
2808 size = PAGE_ALIGN(size);
2809
2810 domain = get_domain(dev);
2811 if (IS_ERR(domain))
2812 goto free_mem;
2813
2814 spin_lock_irqsave(&domain->lock, flags);
2815
2816 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2817
2818 domain_flush_complete(domain);
2819
2820 spin_unlock_irqrestore(&domain->lock, flags);
2821
2822 free_mem:
2823 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2824 __free_pages(page, get_order(size));
2825 }
2826
2827 /*
2828 * This function is called by the DMA layer to find out if we can handle a
2829 * particular device. It is part of the dma_ops.
2830 */
2831 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2832 {
2833 return check_device(dev);
2834 }
2835
2836 static struct dma_map_ops amd_iommu_dma_ops = {
2837 .alloc = alloc_coherent,
2838 .free = free_coherent,
2839 .map_page = map_page,
2840 .unmap_page = unmap_page,
2841 .map_sg = map_sg,
2842 .unmap_sg = unmap_sg,
2843 .dma_supported = amd_iommu_dma_supported,
2844 };
2845
2846 int __init amd_iommu_init_api(void)
2847 {
2848 return bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2849 }
2850
2851 int __init amd_iommu_init_dma_ops(void)
2852 {
2853 swiotlb = iommu_pass_through ? 1 : 0;
2854 iommu_detected = 1;
2855
2856 /*
2857 * In case we don't initialize SWIOTLB (actually the common case
2858 * when AMD IOMMU is enabled), make sure there are global
2859 * dma_ops set as a fall-back for devices not handled by this
2860 * driver (for example non-PCI devices).
2861 */
2862 if (!swiotlb)
2863 dma_ops = &nommu_dma_ops;
2864
2865 amd_iommu_stats_init();
2866
2867 if (amd_iommu_unmap_flush)
2868 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
2869 else
2870 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
2871
2872 return 0;
2873 }
2874
2875 /*****************************************************************************
2876 *
2877 * The following functions belong to the exported interface of AMD IOMMU
2878 *
2879 * This interface allows access to lower level functions of the IOMMU
2880 * like protection domain handling and assignement of devices to domains
2881 * which is not possible with the dma_ops interface.
2882 *
2883 *****************************************************************************/
2884
2885 static void cleanup_domain(struct protection_domain *domain)
2886 {
2887 struct iommu_dev_data *entry;
2888 unsigned long flags;
2889
2890 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2891
2892 while (!list_empty(&domain->dev_list)) {
2893 entry = list_first_entry(&domain->dev_list,
2894 struct iommu_dev_data, list);
2895 __detach_device(entry);
2896 }
2897
2898 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2899 }
2900
2901 static void protection_domain_free(struct protection_domain *domain)
2902 {
2903 if (!domain)
2904 return;
2905
2906 del_domain_from_list(domain);
2907
2908 if (domain->id)
2909 domain_id_free(domain->id);
2910
2911 kfree(domain);
2912 }
2913
2914 static int protection_domain_init(struct protection_domain *domain)
2915 {
2916 spin_lock_init(&domain->lock);
2917 mutex_init(&domain->api_lock);
2918 domain->id = domain_id_alloc();
2919 if (!domain->id)
2920 return -ENOMEM;
2921 INIT_LIST_HEAD(&domain->dev_list);
2922
2923 return 0;
2924 }
2925
2926 static struct protection_domain *protection_domain_alloc(void)
2927 {
2928 struct protection_domain *domain;
2929
2930 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2931 if (!domain)
2932 return NULL;
2933
2934 if (protection_domain_init(domain))
2935 goto out_err;
2936
2937 add_domain_to_list(domain);
2938
2939 return domain;
2940
2941 out_err:
2942 kfree(domain);
2943
2944 return NULL;
2945 }
2946
2947 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2948 {
2949 struct protection_domain *pdomain;
2950 struct dma_ops_domain *dma_domain;
2951
2952 switch (type) {
2953 case IOMMU_DOMAIN_UNMANAGED:
2954 pdomain = protection_domain_alloc();
2955 if (!pdomain)
2956 return NULL;
2957
2958 pdomain->mode = PAGE_MODE_3_LEVEL;
2959 pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2960 if (!pdomain->pt_root) {
2961 protection_domain_free(pdomain);
2962 return NULL;
2963 }
2964
2965 pdomain->domain.geometry.aperture_start = 0;
2966 pdomain->domain.geometry.aperture_end = ~0ULL;
2967 pdomain->domain.geometry.force_aperture = true;
2968
2969 break;
2970 case IOMMU_DOMAIN_DMA:
2971 dma_domain = dma_ops_domain_alloc();
2972 if (!dma_domain) {
2973 pr_err("AMD-Vi: Failed to allocate\n");
2974 return NULL;
2975 }
2976 pdomain = &dma_domain->domain;
2977 break;
2978 case IOMMU_DOMAIN_IDENTITY:
2979 pdomain = protection_domain_alloc();
2980 if (!pdomain)
2981 return NULL;
2982
2983 pdomain->mode = PAGE_MODE_NONE;
2984 break;
2985 default:
2986 return NULL;
2987 }
2988
2989 return &pdomain->domain;
2990 }
2991
2992 static void amd_iommu_domain_free(struct iommu_domain *dom)
2993 {
2994 struct protection_domain *domain;
2995
2996 if (!dom)
2997 return;
2998
2999 domain = to_pdomain(dom);
3000
3001 if (domain->dev_cnt > 0)
3002 cleanup_domain(domain);
3003
3004 BUG_ON(domain->dev_cnt != 0);
3005
3006 if (domain->mode != PAGE_MODE_NONE)
3007 free_pagetable(domain);
3008
3009 if (domain->flags & PD_IOMMUV2_MASK)
3010 free_gcr3_table(domain);
3011
3012 protection_domain_free(domain);
3013 }
3014
3015 static void amd_iommu_detach_device(struct iommu_domain *dom,
3016 struct device *dev)
3017 {
3018 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3019 struct amd_iommu *iommu;
3020 u16 devid;
3021
3022 if (!check_device(dev))
3023 return;
3024
3025 devid = get_device_id(dev);
3026
3027 if (dev_data->domain != NULL)
3028 detach_device(dev);
3029
3030 iommu = amd_iommu_rlookup_table[devid];
3031 if (!iommu)
3032 return;
3033
3034 iommu_completion_wait(iommu);
3035 }
3036
3037 static int amd_iommu_attach_device(struct iommu_domain *dom,
3038 struct device *dev)
3039 {
3040 struct protection_domain *domain = to_pdomain(dom);
3041 struct iommu_dev_data *dev_data;
3042 struct amd_iommu *iommu;
3043 int ret;
3044
3045 if (!check_device(dev))
3046 return -EINVAL;
3047
3048 dev_data = dev->archdata.iommu;
3049
3050 iommu = amd_iommu_rlookup_table[dev_data->devid];
3051 if (!iommu)
3052 return -EINVAL;
3053
3054 if (dev_data->domain)
3055 detach_device(dev);
3056
3057 ret = attach_device(dev, domain);
3058
3059 iommu_completion_wait(iommu);
3060
3061 return ret;
3062 }
3063
3064 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3065 phys_addr_t paddr, size_t page_size, int iommu_prot)
3066 {
3067 struct protection_domain *domain = to_pdomain(dom);
3068 int prot = 0;
3069 int ret;
3070
3071 if (domain->mode == PAGE_MODE_NONE)
3072 return -EINVAL;
3073
3074 if (iommu_prot & IOMMU_READ)
3075 prot |= IOMMU_PROT_IR;
3076 if (iommu_prot & IOMMU_WRITE)
3077 prot |= IOMMU_PROT_IW;
3078
3079 mutex_lock(&domain->api_lock);
3080 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3081 mutex_unlock(&domain->api_lock);
3082
3083 return ret;
3084 }
3085
3086 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3087 size_t page_size)
3088 {
3089 struct protection_domain *domain = to_pdomain(dom);
3090 size_t unmap_size;
3091
3092 if (domain->mode == PAGE_MODE_NONE)
3093 return -EINVAL;
3094
3095 mutex_lock(&domain->api_lock);
3096 unmap_size = iommu_unmap_page(domain, iova, page_size);
3097 mutex_unlock(&domain->api_lock);
3098
3099 domain_flush_tlb_pde(domain);
3100
3101 return unmap_size;
3102 }
3103
3104 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3105 dma_addr_t iova)
3106 {
3107 struct protection_domain *domain = to_pdomain(dom);
3108 unsigned long offset_mask, pte_pgsize;
3109 u64 *pte, __pte;
3110
3111 if (domain->mode == PAGE_MODE_NONE)
3112 return iova;
3113
3114 pte = fetch_pte(domain, iova, &pte_pgsize);
3115
3116 if (!pte || !IOMMU_PTE_PRESENT(*pte))
3117 return 0;
3118
3119 offset_mask = pte_pgsize - 1;
3120 __pte = *pte & PM_ADDR_MASK;
3121
3122 return (__pte & ~offset_mask) | (iova & offset_mask);
3123 }
3124
3125 static bool amd_iommu_capable(enum iommu_cap cap)
3126 {
3127 switch (cap) {
3128 case IOMMU_CAP_CACHE_COHERENCY:
3129 return true;
3130 case IOMMU_CAP_INTR_REMAP:
3131 return (irq_remapping_enabled == 1);
3132 case IOMMU_CAP_NOEXEC:
3133 return false;
3134 }
3135
3136 return false;
3137 }
3138
3139 static void amd_iommu_get_dm_regions(struct device *dev,
3140 struct list_head *head)
3141 {
3142 struct unity_map_entry *entry;
3143 u16 devid;
3144
3145 devid = get_device_id(dev);
3146
3147 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3148 struct iommu_dm_region *region;
3149
3150 if (devid < entry->devid_start || devid > entry->devid_end)
3151 continue;
3152
3153 region = kzalloc(sizeof(*region), GFP_KERNEL);
3154 if (!region) {
3155 pr_err("Out of memory allocating dm-regions for %s\n",
3156 dev_name(dev));
3157 return;
3158 }
3159
3160 region->start = entry->address_start;
3161 region->length = entry->address_end - entry->address_start;
3162 if (entry->prot & IOMMU_PROT_IR)
3163 region->prot |= IOMMU_READ;
3164 if (entry->prot & IOMMU_PROT_IW)
3165 region->prot |= IOMMU_WRITE;
3166
3167 list_add_tail(&region->list, head);
3168 }
3169 }
3170
3171 static void amd_iommu_put_dm_regions(struct device *dev,
3172 struct list_head *head)
3173 {
3174 struct iommu_dm_region *entry, *next;
3175
3176 list_for_each_entry_safe(entry, next, head, list)
3177 kfree(entry);
3178 }
3179
3180 static const struct iommu_ops amd_iommu_ops = {
3181 .capable = amd_iommu_capable,
3182 .domain_alloc = amd_iommu_domain_alloc,
3183 .domain_free = amd_iommu_domain_free,
3184 .attach_dev = amd_iommu_attach_device,
3185 .detach_dev = amd_iommu_detach_device,
3186 .map = amd_iommu_map,
3187 .unmap = amd_iommu_unmap,
3188 .map_sg = default_iommu_map_sg,
3189 .iova_to_phys = amd_iommu_iova_to_phys,
3190 .add_device = amd_iommu_add_device,
3191 .remove_device = amd_iommu_remove_device,
3192 .get_dm_regions = amd_iommu_get_dm_regions,
3193 .put_dm_regions = amd_iommu_put_dm_regions,
3194 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
3195 };
3196
3197 /*****************************************************************************
3198 *
3199 * The next functions do a basic initialization of IOMMU for pass through
3200 * mode
3201 *
3202 * In passthrough mode the IOMMU is initialized and enabled but not used for
3203 * DMA-API translation.
3204 *
3205 *****************************************************************************/
3206
3207 /* IOMMUv2 specific functions */
3208 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3209 {
3210 return atomic_notifier_chain_register(&ppr_notifier, nb);
3211 }
3212 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3213
3214 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3215 {
3216 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3217 }
3218 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3219
3220 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3221 {
3222 struct protection_domain *domain = to_pdomain(dom);
3223 unsigned long flags;
3224
3225 spin_lock_irqsave(&domain->lock, flags);
3226
3227 /* Update data structure */
3228 domain->mode = PAGE_MODE_NONE;
3229 domain->updated = true;
3230
3231 /* Make changes visible to IOMMUs */
3232 update_domain(domain);
3233
3234 /* Page-table is not visible to IOMMU anymore, so free it */
3235 free_pagetable(domain);
3236
3237 spin_unlock_irqrestore(&domain->lock, flags);
3238 }
3239 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3240
3241 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3242 {
3243 struct protection_domain *domain = to_pdomain(dom);
3244 unsigned long flags;
3245 int levels, ret;
3246
3247 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3248 return -EINVAL;
3249
3250 /* Number of GCR3 table levels required */
3251 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3252 levels += 1;
3253
3254 if (levels > amd_iommu_max_glx_val)
3255 return -EINVAL;
3256
3257 spin_lock_irqsave(&domain->lock, flags);
3258
3259 /*
3260 * Save us all sanity checks whether devices already in the
3261 * domain support IOMMUv2. Just force that the domain has no
3262 * devices attached when it is switched into IOMMUv2 mode.
3263 */
3264 ret = -EBUSY;
3265 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3266 goto out;
3267
3268 ret = -ENOMEM;
3269 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3270 if (domain->gcr3_tbl == NULL)
3271 goto out;
3272
3273 domain->glx = levels;
3274 domain->flags |= PD_IOMMUV2_MASK;
3275 domain->updated = true;
3276
3277 update_domain(domain);
3278
3279 ret = 0;
3280
3281 out:
3282 spin_unlock_irqrestore(&domain->lock, flags);
3283
3284 return ret;
3285 }
3286 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3287
3288 static int __flush_pasid(struct protection_domain *domain, int pasid,
3289 u64 address, bool size)
3290 {
3291 struct iommu_dev_data *dev_data;
3292 struct iommu_cmd cmd;
3293 int i, ret;
3294
3295 if (!(domain->flags & PD_IOMMUV2_MASK))
3296 return -EINVAL;
3297
3298 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3299
3300 /*
3301 * IOMMU TLB needs to be flushed before Device TLB to
3302 * prevent device TLB refill from IOMMU TLB
3303 */
3304 for (i = 0; i < amd_iommus_present; ++i) {
3305 if (domain->dev_iommu[i] == 0)
3306 continue;
3307
3308 ret = iommu_queue_command(amd_iommus[i], &cmd);
3309 if (ret != 0)
3310 goto out;
3311 }
3312
3313 /* Wait until IOMMU TLB flushes are complete */
3314 domain_flush_complete(domain);
3315
3316 /* Now flush device TLBs */
3317 list_for_each_entry(dev_data, &domain->dev_list, list) {
3318 struct amd_iommu *iommu;
3319 int qdep;
3320
3321 /*
3322 There might be non-IOMMUv2 capable devices in an IOMMUv2
3323 * domain.
3324 */
3325 if (!dev_data->ats.enabled)
3326 continue;
3327
3328 qdep = dev_data->ats.qdep;
3329 iommu = amd_iommu_rlookup_table[dev_data->devid];
3330
3331 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3332 qdep, address, size);
3333
3334 ret = iommu_queue_command(iommu, &cmd);
3335 if (ret != 0)
3336 goto out;
3337 }
3338
3339 /* Wait until all device TLBs are flushed */
3340 domain_flush_complete(domain);
3341
3342 ret = 0;
3343
3344 out:
3345
3346 return ret;
3347 }
3348
3349 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3350 u64 address)
3351 {
3352 INC_STATS_COUNTER(invalidate_iotlb);
3353
3354 return __flush_pasid(domain, pasid, address, false);
3355 }
3356
3357 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3358 u64 address)
3359 {
3360 struct protection_domain *domain = to_pdomain(dom);
3361 unsigned long flags;
3362 int ret;
3363
3364 spin_lock_irqsave(&domain->lock, flags);
3365 ret = __amd_iommu_flush_page(domain, pasid, address);
3366 spin_unlock_irqrestore(&domain->lock, flags);
3367
3368 return ret;
3369 }
3370 EXPORT_SYMBOL(amd_iommu_flush_page);
3371
3372 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3373 {
3374 INC_STATS_COUNTER(invalidate_iotlb_all);
3375
3376 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3377 true);
3378 }
3379
3380 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3381 {
3382 struct protection_domain *domain = to_pdomain(dom);
3383 unsigned long flags;
3384 int ret;
3385
3386 spin_lock_irqsave(&domain->lock, flags);
3387 ret = __amd_iommu_flush_tlb(domain, pasid);
3388 spin_unlock_irqrestore(&domain->lock, flags);
3389
3390 return ret;
3391 }
3392 EXPORT_SYMBOL(amd_iommu_flush_tlb);
3393
3394 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3395 {
3396 int index;
3397 u64 *pte;
3398
3399 while (true) {
3400
3401 index = (pasid >> (9 * level)) & 0x1ff;
3402 pte = &root[index];
3403
3404 if (level == 0)
3405 break;
3406
3407 if (!(*pte & GCR3_VALID)) {
3408 if (!alloc)
3409 return NULL;
3410
3411 root = (void *)get_zeroed_page(GFP_ATOMIC);
3412 if (root == NULL)
3413 return NULL;
3414
3415 *pte = __pa(root) | GCR3_VALID;
3416 }
3417
3418 root = __va(*pte & PAGE_MASK);
3419
3420 level -= 1;
3421 }
3422
3423 return pte;
3424 }
3425
3426 static int __set_gcr3(struct protection_domain *domain, int pasid,
3427 unsigned long cr3)
3428 {
3429 u64 *pte;
3430
3431 if (domain->mode != PAGE_MODE_NONE)
3432 return -EINVAL;
3433
3434 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3435 if (pte == NULL)
3436 return -ENOMEM;
3437
3438 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3439
3440 return __amd_iommu_flush_tlb(domain, pasid);
3441 }
3442
3443 static int __clear_gcr3(struct protection_domain *domain, int pasid)
3444 {
3445 u64 *pte;
3446
3447 if (domain->mode != PAGE_MODE_NONE)
3448 return -EINVAL;
3449
3450 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3451 if (pte == NULL)
3452 return 0;
3453
3454 *pte = 0;
3455
3456 return __amd_iommu_flush_tlb(domain, pasid);
3457 }
3458
3459 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3460 unsigned long cr3)
3461 {
3462 struct protection_domain *domain = to_pdomain(dom);
3463 unsigned long flags;
3464 int ret;
3465
3466 spin_lock_irqsave(&domain->lock, flags);
3467 ret = __set_gcr3(domain, pasid, cr3);
3468 spin_unlock_irqrestore(&domain->lock, flags);
3469
3470 return ret;
3471 }
3472 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3473
3474 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3475 {
3476 struct protection_domain *domain = to_pdomain(dom);
3477 unsigned long flags;
3478 int ret;
3479
3480 spin_lock_irqsave(&domain->lock, flags);
3481 ret = __clear_gcr3(domain, pasid);
3482 spin_unlock_irqrestore(&domain->lock, flags);
3483
3484 return ret;
3485 }
3486 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3487
3488 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3489 int status, int tag)
3490 {
3491 struct iommu_dev_data *dev_data;
3492 struct amd_iommu *iommu;
3493 struct iommu_cmd cmd;
3494
3495 INC_STATS_COUNTER(complete_ppr);
3496
3497 dev_data = get_dev_data(&pdev->dev);
3498 iommu = amd_iommu_rlookup_table[dev_data->devid];
3499
3500 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3501 tag, dev_data->pri_tlp);
3502
3503 return iommu_queue_command(iommu, &cmd);
3504 }
3505 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3506
3507 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3508 {
3509 struct protection_domain *pdomain;
3510
3511 pdomain = get_domain(&pdev->dev);
3512 if (IS_ERR(pdomain))
3513 return NULL;
3514
3515 /* Only return IOMMUv2 domains */
3516 if (!(pdomain->flags & PD_IOMMUV2_MASK))
3517 return NULL;
3518
3519 return &pdomain->domain;
3520 }
3521 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3522
3523 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3524 {
3525 struct iommu_dev_data *dev_data;
3526
3527 if (!amd_iommu_v2_supported())
3528 return;
3529
3530 dev_data = get_dev_data(&pdev->dev);
3531 dev_data->errata |= (1 << erratum);
3532 }
3533 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3534
3535 int amd_iommu_device_info(struct pci_dev *pdev,
3536 struct amd_iommu_device_info *info)
3537 {
3538 int max_pasids;
3539 int pos;
3540
3541 if (pdev == NULL || info == NULL)
3542 return -EINVAL;
3543
3544 if (!amd_iommu_v2_supported())
3545 return -EINVAL;
3546
3547 memset(info, 0, sizeof(*info));
3548
3549 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3550 if (pos)
3551 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3552
3553 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3554 if (pos)
3555 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3556
3557 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3558 if (pos) {
3559 int features;
3560
3561 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3562 max_pasids = min(max_pasids, (1 << 20));
3563
3564 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3565 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3566
3567 features = pci_pasid_features(pdev);
3568 if (features & PCI_PASID_CAP_EXEC)
3569 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3570 if (features & PCI_PASID_CAP_PRIV)
3571 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3572 }
3573
3574 return 0;
3575 }
3576 EXPORT_SYMBOL(amd_iommu_device_info);
3577
3578 #ifdef CONFIG_IRQ_REMAP
3579
3580 /*****************************************************************************
3581 *
3582 * Interrupt Remapping Implementation
3583 *
3584 *****************************************************************************/
3585
3586 union irte {
3587 u32 val;
3588 struct {
3589 u32 valid : 1,
3590 no_fault : 1,
3591 int_type : 3,
3592 rq_eoi : 1,
3593 dm : 1,
3594 rsvd_1 : 1,
3595 destination : 8,
3596 vector : 8,
3597 rsvd_2 : 8;
3598 } fields;
3599 };
3600
3601 struct irq_2_irte {
3602 u16 devid; /* Device ID for IRTE table */
3603 u16 index; /* Index into IRTE table*/
3604 };
3605
3606 struct amd_ir_data {
3607 struct irq_2_irte irq_2_irte;
3608 union irte irte_entry;
3609 union {
3610 struct msi_msg msi_entry;
3611 };
3612 };
3613
3614 static struct irq_chip amd_ir_chip;
3615
3616 #define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3617 #define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3618 #define DTE_IRQ_TABLE_LEN (8ULL << 1)
3619 #define DTE_IRQ_REMAP_ENABLE 1ULL
3620
3621 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3622 {
3623 u64 dte;
3624
3625 dte = amd_iommu_dev_table[devid].data[2];
3626 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3627 dte |= virt_to_phys(table->table);
3628 dte |= DTE_IRQ_REMAP_INTCTL;
3629 dte |= DTE_IRQ_TABLE_LEN;
3630 dte |= DTE_IRQ_REMAP_ENABLE;
3631
3632 amd_iommu_dev_table[devid].data[2] = dte;
3633 }
3634
3635 #define IRTE_ALLOCATED (~1U)
3636
3637 static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3638 {
3639 struct irq_remap_table *table = NULL;
3640 struct amd_iommu *iommu;
3641 unsigned long flags;
3642 u16 alias;
3643
3644 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3645
3646 iommu = amd_iommu_rlookup_table[devid];
3647 if (!iommu)
3648 goto out_unlock;
3649
3650 table = irq_lookup_table[devid];
3651 if (table)
3652 goto out;
3653
3654 alias = amd_iommu_alias_table[devid];
3655 table = irq_lookup_table[alias];
3656 if (table) {
3657 irq_lookup_table[devid] = table;
3658 set_dte_irq_entry(devid, table);
3659 iommu_flush_dte(iommu, devid);
3660 goto out;
3661 }
3662
3663 /* Nothing there yet, allocate new irq remapping table */
3664 table = kzalloc(sizeof(*table), GFP_ATOMIC);
3665 if (!table)
3666 goto out;
3667
3668 /* Initialize table spin-lock */
3669 spin_lock_init(&table->lock);
3670
3671 if (ioapic)
3672 /* Keep the first 32 indexes free for IOAPIC interrupts */
3673 table->min_index = 32;
3674
3675 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3676 if (!table->table) {
3677 kfree(table);
3678 table = NULL;
3679 goto out;
3680 }
3681
3682 memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3683
3684 if (ioapic) {
3685 int i;
3686
3687 for (i = 0; i < 32; ++i)
3688 table->table[i] = IRTE_ALLOCATED;
3689 }
3690
3691 irq_lookup_table[devid] = table;
3692 set_dte_irq_entry(devid, table);
3693 iommu_flush_dte(iommu, devid);
3694 if (devid != alias) {
3695 irq_lookup_table[alias] = table;
3696 set_dte_irq_entry(alias, table);
3697 iommu_flush_dte(iommu, alias);
3698 }
3699
3700 out:
3701 iommu_completion_wait(iommu);
3702
3703 out_unlock:
3704 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3705
3706 return table;
3707 }
3708
3709 static int alloc_irq_index(u16 devid, int count)
3710 {
3711 struct irq_remap_table *table;
3712 unsigned long flags;
3713 int index, c;
3714
3715 table = get_irq_table(devid, false);
3716 if (!table)
3717 return -ENODEV;
3718
3719 spin_lock_irqsave(&table->lock, flags);
3720
3721 /* Scan table for free entries */
3722 for (c = 0, index = table->min_index;
3723 index < MAX_IRQS_PER_TABLE;
3724 ++index) {
3725 if (table->table[index] == 0)
3726 c += 1;
3727 else
3728 c = 0;
3729
3730 if (c == count) {
3731 for (; c != 0; --c)
3732 table->table[index - c + 1] = IRTE_ALLOCATED;
3733
3734 index -= count - 1;
3735 goto out;
3736 }
3737 }
3738
3739 index = -ENOSPC;
3740
3741 out:
3742 spin_unlock_irqrestore(&table->lock, flags);
3743
3744 return index;
3745 }
3746
3747 static int modify_irte(u16 devid, int index, union irte irte)
3748 {
3749 struct irq_remap_table *table;
3750 struct amd_iommu *iommu;
3751 unsigned long flags;
3752
3753 iommu = amd_iommu_rlookup_table[devid];
3754 if (iommu == NULL)
3755 return -EINVAL;
3756
3757 table = get_irq_table(devid, false);
3758 if (!table)
3759 return -ENOMEM;
3760
3761 spin_lock_irqsave(&table->lock, flags);
3762 table->table[index] = irte.val;
3763 spin_unlock_irqrestore(&table->lock, flags);
3764
3765 iommu_flush_irt(iommu, devid);
3766 iommu_completion_wait(iommu);
3767
3768 return 0;
3769 }
3770
3771 static void free_irte(u16 devid, int index)
3772 {
3773 struct irq_remap_table *table;
3774 struct amd_iommu *iommu;
3775 unsigned long flags;
3776
3777 iommu = amd_iommu_rlookup_table[devid];
3778 if (iommu == NULL)
3779 return;
3780
3781 table = get_irq_table(devid, false);
3782 if (!table)
3783 return;
3784
3785 spin_lock_irqsave(&table->lock, flags);
3786 table->table[index] = 0;
3787 spin_unlock_irqrestore(&table->lock, flags);
3788
3789 iommu_flush_irt(iommu, devid);
3790 iommu_completion_wait(iommu);
3791 }
3792
3793 static int get_devid(struct irq_alloc_info *info)
3794 {
3795 int devid = -1;
3796
3797 switch (info->type) {
3798 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3799 devid = get_ioapic_devid(info->ioapic_id);
3800 break;
3801 case X86_IRQ_ALLOC_TYPE_HPET:
3802 devid = get_hpet_devid(info->hpet_id);
3803 break;
3804 case X86_IRQ_ALLOC_TYPE_MSI:
3805 case X86_IRQ_ALLOC_TYPE_MSIX:
3806 devid = get_device_id(&info->msi_dev->dev);
3807 break;
3808 default:
3809 BUG_ON(1);
3810 break;
3811 }
3812
3813 return devid;
3814 }
3815
3816 static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
3817 {
3818 struct amd_iommu *iommu;
3819 int devid;
3820
3821 if (!info)
3822 return NULL;
3823
3824 devid = get_devid(info);
3825 if (devid >= 0) {
3826 iommu = amd_iommu_rlookup_table[devid];
3827 if (iommu)
3828 return iommu->ir_domain;
3829 }
3830
3831 return NULL;
3832 }
3833
3834 static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3835 {
3836 struct amd_iommu *iommu;
3837 int devid;
3838
3839 if (!info)
3840 return NULL;
3841
3842 switch (info->type) {
3843 case X86_IRQ_ALLOC_TYPE_MSI:
3844 case X86_IRQ_ALLOC_TYPE_MSIX:
3845 devid = get_device_id(&info->msi_dev->dev);
3846 if (devid >= 0) {
3847 iommu = amd_iommu_rlookup_table[devid];
3848 if (iommu)
3849 return iommu->msi_domain;
3850 }
3851 break;
3852 default:
3853 break;
3854 }
3855
3856 return NULL;
3857 }
3858
3859 struct irq_remap_ops amd_iommu_irq_ops = {
3860 .prepare = amd_iommu_prepare,
3861 .enable = amd_iommu_enable,
3862 .disable = amd_iommu_disable,
3863 .reenable = amd_iommu_reenable,
3864 .enable_faulting = amd_iommu_enable_faulting,
3865 .get_ir_irq_domain = get_ir_irq_domain,
3866 .get_irq_domain = get_irq_domain,
3867 };
3868
3869 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3870 struct irq_cfg *irq_cfg,
3871 struct irq_alloc_info *info,
3872 int devid, int index, int sub_handle)
3873 {
3874 struct irq_2_irte *irte_info = &data->irq_2_irte;
3875 struct msi_msg *msg = &data->msi_entry;
3876 union irte *irte = &data->irte_entry;
3877 struct IO_APIC_route_entry *entry;
3878
3879 data->irq_2_irte.devid = devid;
3880 data->irq_2_irte.index = index + sub_handle;
3881
3882 /* Setup IRTE for IOMMU */
3883 irte->val = 0;
3884 irte->fields.vector = irq_cfg->vector;
3885 irte->fields.int_type = apic->irq_delivery_mode;
3886 irte->fields.destination = irq_cfg->dest_apicid;
3887 irte->fields.dm = apic->irq_dest_mode;
3888 irte->fields.valid = 1;
3889
3890 switch (info->type) {
3891 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3892 /* Setup IOAPIC entry */
3893 entry = info->ioapic_entry;
3894 info->ioapic_entry = NULL;
3895 memset(entry, 0, sizeof(*entry));
3896 entry->vector = index;
3897 entry->mask = 0;
3898 entry->trigger = info->ioapic_trigger;
3899 entry->polarity = info->ioapic_polarity;
3900 /* Mask level triggered irqs. */
3901 if (info->ioapic_trigger)
3902 entry->mask = 1;
3903 break;
3904
3905 case X86_IRQ_ALLOC_TYPE_HPET:
3906 case X86_IRQ_ALLOC_TYPE_MSI:
3907 case X86_IRQ_ALLOC_TYPE_MSIX:
3908 msg->address_hi = MSI_ADDR_BASE_HI;
3909 msg->address_lo = MSI_ADDR_BASE_LO;
3910 msg->data = irte_info->index;
3911 break;
3912
3913 default:
3914 BUG_ON(1);
3915 break;
3916 }
3917 }
3918
3919 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3920 unsigned int nr_irqs, void *arg)
3921 {
3922 struct irq_alloc_info *info = arg;
3923 struct irq_data *irq_data;
3924 struct amd_ir_data *data;
3925 struct irq_cfg *cfg;
3926 int i, ret, devid;
3927 int index = -1;
3928
3929 if (!info)
3930 return -EINVAL;
3931 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
3932 info->type != X86_IRQ_ALLOC_TYPE_MSIX)
3933 return -EINVAL;
3934
3935 /*
3936 * With IRQ remapping enabled, don't need contiguous CPU vectors
3937 * to support multiple MSI interrupts.
3938 */
3939 if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
3940 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3941
3942 devid = get_devid(info);
3943 if (devid < 0)
3944 return -EINVAL;
3945
3946 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3947 if (ret < 0)
3948 return ret;
3949
3950 ret = -ENOMEM;
3951 data = kzalloc(sizeof(*data), GFP_KERNEL);
3952 if (!data)
3953 goto out_free_parent;
3954
3955 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3956 if (get_irq_table(devid, true))
3957 index = info->ioapic_pin;
3958 else
3959 ret = -ENOMEM;
3960 } else {
3961 index = alloc_irq_index(devid, nr_irqs);
3962 }
3963 if (index < 0) {
3964 pr_warn("Failed to allocate IRTE\n");
3965 kfree(data);
3966 goto out_free_parent;
3967 }
3968
3969 for (i = 0; i < nr_irqs; i++) {
3970 irq_data = irq_domain_get_irq_data(domain, virq + i);
3971 cfg = irqd_cfg(irq_data);
3972 if (!irq_data || !cfg) {
3973 ret = -EINVAL;
3974 goto out_free_data;
3975 }
3976
3977 if (i > 0) {
3978 data = kzalloc(sizeof(*data), GFP_KERNEL);
3979 if (!data)
3980 goto out_free_data;
3981 }
3982 irq_data->hwirq = (devid << 16) + i;
3983 irq_data->chip_data = data;
3984 irq_data->chip = &amd_ir_chip;
3985 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3986 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3987 }
3988 return 0;
3989
3990 out_free_data:
3991 for (i--; i >= 0; i--) {
3992 irq_data = irq_domain_get_irq_data(domain, virq + i);
3993 if (irq_data)
3994 kfree(irq_data->chip_data);
3995 }
3996 for (i = 0; i < nr_irqs; i++)
3997 free_irte(devid, index + i);
3998 out_free_parent:
3999 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4000 return ret;
4001 }
4002
4003 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4004 unsigned int nr_irqs)
4005 {
4006 struct irq_2_irte *irte_info;
4007 struct irq_data *irq_data;
4008 struct amd_ir_data *data;
4009 int i;
4010
4011 for (i = 0; i < nr_irqs; i++) {
4012 irq_data = irq_domain_get_irq_data(domain, virq + i);
4013 if (irq_data && irq_data->chip_data) {
4014 data = irq_data->chip_data;
4015 irte_info = &data->irq_2_irte;
4016 free_irte(irte_info->devid, irte_info->index);
4017 kfree(data);
4018 }
4019 }
4020 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4021 }
4022
4023 static void irq_remapping_activate(struct irq_domain *domain,
4024 struct irq_data *irq_data)
4025 {
4026 struct amd_ir_data *data = irq_data->chip_data;
4027 struct irq_2_irte *irte_info = &data->irq_2_irte;
4028
4029 modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4030 }
4031
4032 static void irq_remapping_deactivate(struct irq_domain *domain,
4033 struct irq_data *irq_data)
4034 {
4035 struct amd_ir_data *data = irq_data->chip_data;
4036 struct irq_2_irte *irte_info = &data->irq_2_irte;
4037 union irte entry;
4038
4039 entry.val = 0;
4040 modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4041 }
4042
4043 static struct irq_domain_ops amd_ir_domain_ops = {
4044 .alloc = irq_remapping_alloc,
4045 .free = irq_remapping_free,
4046 .activate = irq_remapping_activate,
4047 .deactivate = irq_remapping_deactivate,
4048 };
4049
4050 static int amd_ir_set_affinity(struct irq_data *data,
4051 const struct cpumask *mask, bool force)
4052 {
4053 struct amd_ir_data *ir_data = data->chip_data;
4054 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4055 struct irq_cfg *cfg = irqd_cfg(data);
4056 struct irq_data *parent = data->parent_data;
4057 int ret;
4058
4059 ret = parent->chip->irq_set_affinity(parent, mask, force);
4060 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4061 return ret;
4062
4063 /*
4064 * Atomically updates the IRTE with the new destination, vector
4065 * and flushes the interrupt entry cache.
4066 */
4067 ir_data->irte_entry.fields.vector = cfg->vector;
4068 ir_data->irte_entry.fields.destination = cfg->dest_apicid;
4069 modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
4070
4071 /*
4072 * After this point, all the interrupts will start arriving
4073 * at the new destination. So, time to cleanup the previous
4074 * vector allocation.
4075 */
4076 send_cleanup_vector(cfg);
4077
4078 return IRQ_SET_MASK_OK_DONE;
4079 }
4080
4081 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4082 {
4083 struct amd_ir_data *ir_data = irq_data->chip_data;
4084
4085 *msg = ir_data->msi_entry;
4086 }
4087
4088 static struct irq_chip amd_ir_chip = {
4089 .irq_ack = ir_ack_apic_edge,
4090 .irq_set_affinity = amd_ir_set_affinity,
4091 .irq_compose_msi_msg = ir_compose_msi_msg,
4092 };
4093
4094 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4095 {
4096 iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
4097 if (!iommu->ir_domain)
4098 return -ENOMEM;
4099
4100 iommu->ir_domain->parent = arch_get_ir_parent_domain();
4101 iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4102
4103 return 0;
4104 }
4105 #endif
This page took 0.156851 seconds and 5 git commands to generate.